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ABSTRACT. The solution of 3D models in degenerated geometries in which some characteristic
dimensions are much lower than the other ones - e.g. beams, plates or shells - is a tricky issue
when using standard mesh-based discretization techniques. Separated representations allow
decoupling the meshes used for approximating the solution along each coordinate. Thus, in
plate or shell geometries 3D solutions can be obtained from a sequence of 2D and 1D problems
allowing a fine and accurate representation of the solution evolution along the thickness coordi-
nate while keeping the computational complexity characteristic of 2D simulations. In this work
we revisit the application of such methodology for addressing different physics (thermal models,
solid and fluid mechanics and electromagnetic problems) in such degenerated geometries.

RÉSUMÉ. La résolution de problèmes 3D sur des domaines qui présentent un important rapport
d’aspect tels que les structures minces (plaques et coques) représente un défi pour les méthodes
de résolution utilisant un maillage. Une représentation séparée permet de découpler les mail-
lages utilisés pour approximer la solution selon les différentes coordonnées. Ainsi, la solution
3D d’un problème défini sur une géométrie plaque ou coque peut être obtenue par la résolution
d’une séquence de problèmes 1D et 2D. Cette représentation permet d’obtenir une solution pré-
cise sur l’ensemble du domaine (en particulier dans la direction de l’épaisseur, maillée en 1D)
en utilisant des maillages adaptés suivant les différentes dimensions, ceci en gardant une com-
plexité 2D. Cette méthode est appliquée ici pour un certain nombre de physiques (thermique,
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mécanique des solides et des fluides, électromagnétisme) définies sur des domaines à fort rap-
port d’aspect.

KEYWORDS: plate domains, shell domains, laminates, PGD, model order reduction.

MOTS-CLÉS : plaques, coques, stratifiés, PGD, réduction de modèles.

1. Introduction

Plates and shells are very common in nature and thus they inspired engineers that

used both from the very beginning of structural mechanics. In general the design of

such structural elements requires the calculation of stresses, strains and displacements

for the design loads. Strains and stresses are related by the so-called constitutive law,

the simplest one being the linear elasticity. Moreover other physics can be encountered

in these structural elements as for example thermal processes, electromagnetism or

fluid flows. Typically composites manufacturing processes usually involve a resin

flowing into the double scale porous media, that polymerize by a thermal, chemical or

electromagnetic activation. Welding processes could also involve the use of thermal,

mechanical or electromagnetic devices.

Thus, structural or processes design always involve the solution of a set of partial

differential equations in the degenerate domain of the plate or the shell with appro-

priate initial and boundary conditions. These domains are degenerated because one

of its characteristic dimensions (the thickness in the present case) is much lower that

the other characteristic dimensions. We will understand the consequences of such de-

generacy later. When analytical solutions are neither available nor possible because

the geometrical or behavior complexities, the solution must be calculated by invok-

ing any of the available numerical techniques (finite elements, finite differences, finite

volumes, methods of particles, ...).

In the numerical framework the solution will be only obtained in a discrete number

of points, usually called nodes, properly distributed in the domain. From the solution

at those points, it can be interpolated at any other point in the domain. In general

regular nodal distributions are preferred because they offer the best accuracy. In the

case of degenerated plate or shell domains one could expect that if the solution evolves

significantly in the thickness direction, a large enough number of nodes must be dis-

tributed along the thickness direction to ensure the accurate representation of the field

evolution in that direction. In that case, a regular nodal distribution in the whole do-

main will imply the use of an extremely large number of nodes with the consequent

impact on the numerical solution efficiently.

When simple behaviors and domains were considered, plate and shell theories

were developed allowing, through the introduction of some hypotheses, reducing the

3D complexity to the 2D related to the problem now formulated by considering the

in-plane coordinates. The use of these theories was extended gradually for addressing
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larger and more complex geometries (anisotropic laminates, ... ) and behaviors (Tim-

oshenko and Woinowsky-Krieger 1959; Zhang and Yang 2009; Qatu 2012). These

simplified "plate models" exist for most of the physics just referred, but their applica-

bility is in many cases too constrained.

Moreover, as soon as richer physics are involved in the models and the considered

geometries differ of those ensuring the validity of the different reduction hypotheses,

efficient simulations are compromised. For example in composites manufacturing pro-

cesses of large parts many reactions and thermal processes inducing significant evo-

lutions on the thermomechanical fields in the thickness occur. These inhomogeneities

are at the origin of residual stresses and the associated distortion of the formed parts.

In these circumstances as just indicated the reduction from the 3D model to a 2D

simplified one is not obvious, and 3D simulations appear many times as the only valid

route for addressing such models, that despite the fact of being defined in degenerated

geometries (plate or shell) they seem requiring a fully 3D solution. In order to integrate

such calculations (fully 3D and implying an impressive number of degrees of freedom)

in usual design procedures, a new efficient (fast and accurate) solution procedure is

needed.

A new discretization technique based on the use of separated representations was

recently proposed for addressing space-time nonlinear models (Ladeveze, 1999) and

then it was generalized for defining general separated representations of solutions in-

volving conformational coordinates (Ammar et al., 2006), space and time and even

parameters considered as extra-coordinates. The interested reader can refer to the re-

cent reviews (Chinesta et al., 2010; Chinesta, Ammar et al., 2011; Chinesta, Ladeveze

and Cueto, 2011) and the references therein.

A direct consequence was the separated representations involving the space coor-

dinates. Thus an in-plane-out-of-plane decomposition was proposed for solving flow

problems in laminates (Chinesta, Ammar et al., 2011; Ghnatios et al., 2013), ther-

mal problems in extruded geometries (Leygue et al., 2013) and laminates (Chinesta

et al., 2013), elasticity problems in plates (Bognet et al., 2012) and shells geome-

tries (Bognet et al., 2013). In general the 3D solution was obtained from the solution

of a sequence of 2D problems (the ones involving the in-plane coordinates) and 1D

problems (the ones involving the coordinate related to the plate thickness).

It is important emphasizing the fact that these approaches are radically different

to standard plate and shell approaches. We proposed a 3D solver able to compute

the different unknown fields without the necessity of introducing any hypothesis. The

most outstanding advantage is that 3D solutions can be obtained with a computational

cost characteristic of standard 2D solutions.

In this work we revisit the in-plane-out-of-plane representation and its application

for addressing different physics (thermal, elastic, flow and electromagnetic models)

in plate domains, eventually consisting of a laminate composed of several anisotropic

plies.
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2. Models defined in plate and shell geometries

2.1. Elastic problem in plate domains

We proposed in Bognet et al. (2012) and original in-plane-out-of-plane decompo-

sition of the 3D elastic solution in a plate geometry. The elastic problem was defined

in a plate domain Ξ = Ω × I with x = (x1, x2) ∈ Ω, Ω ⊂ R2 and x3 ∈ I,

I = [0, H] ⊂ R, being H the plate thickness. The separated representation of the

displacement field u = (u1, u2, u3) reads:

u(x1, x2, x3) =

⎛
⎝ u1(x1, x2, x3)

u2(x1, x2, x3)
u3(x1, x2, x3)

⎞
⎠ ≈

N∑
i=1

⎛
⎝ P i

1(x1, x2) · T i
1(x3)

P i
2(x1, x2) · T i

2(x3)
P i
3(x1, x2) · T i

3(x3)

⎞
⎠ (1)

where P i
k, k = 1, 2, 3, are functions of the in-plane coordinates x = (x1, x2) whereas

T i
k, k = 1, 2, 3, are functions involving the thickness coordinate x3.

Expression (1) can be written in a more compact form by using the Hadamard

product:

u(x, x3) ≈
N∑
i=1

Pi(x) ◦Ti(x3) (2)

where vectors Pi and Ti contains functions P i
k and T i

k respectively.

Because neither the number of terms in the separated representation of the dis-

placement field nor the dependence on x3 of functions T i
k are assumed a priori, the

approximation is flexible enough for representing the fully 3D solution, being obvi-

ously more general than theories assuming particular a priori evolutions in the thick-

ness direction x3.

Let’s consider a linear elasticity problem on a plate domain Ξ = Ω×I. The weak

formulation reads:∫
Ξ

ε(u∗)T ·K · ε(u) dx =

∫
Ξ

u∗ · fd dx+

∫
ΓN

u∗ · Fd dx (3)

with K the generalized 6 × 6 Hooke tensor, fd represents the volumetric body forces

while Fd represents the traction applied on the boundary ΓN . In what follows we

assume that K, fd and Fd accepts an in-plane-out-of-plane separated representation

(we come back to this issue later).

The separated representation constructor proceeds by computing a term of the sum

at each iteration. Assuming that the first n− 1 modes (terms of the finite sum) of the

solution were already computed, un−1(x, x3) with n ≥ 1, the solution enrichment

reads:

un(x, x3) = un−1(x, x3) +Pn(x) ◦Tn(x3) (4)

where both vectors Pn and Tn containing functions Pn
i and Tn

i (i = 1, 2, 3) de-

pending on x and x3 respectively, are unknown at the present iteration, resulting in a

non-linear problem.
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We proceed by considering the simplest linearization strategy, an alternated direc-

tions fixed point algorithm, that proceeds by calculating Pn by assuming Tn known,

and then by updating Tn from the just calculated Pn. The iteration procedure contin-

ues until convergence, that is, until reaching the fixed point.

When Tn is assumed known, we consider the test function u� given by P� ◦Tn.

By introducing the trial and test functions into the weak form and then integrating

in I because all the functions depending on the thickness coordinate are known, we

obtain a 2D weak formulation defined in Ω whose discretization (by using a standard

discretization strategy, e.g. finite elements) allows computing Pn.

Analogously, when Pn is assumed known, the test function u� is given by Pn◦T�.

By introducing the trial and test functions into the weak form and then integrating in

Ω because all the functions depending on the in-plane coordinates x are at present

known, we obtain a 1D weak formulation defined in I whose discretization (using

any technique for solving standard ODE equations) allows computing Tn.

As discussed in Bognet et al. (2012) this separated representation allows com-

puting 3D solutions while keeping a computational complexity characteristic of 2D

solution procedures. If we consider a hexahedral domain discretized using a regular

structured grid with N1, N2 and N3 nodes in the x1, x2 and x3 directions respec-

tively, usual mesh-based discretization strategies imply a challenging issue because

the number of nodes involved in the model scales with N1 · N2 · N3, however, by

using the separated representation and assuming that the solution involves N modes,

one must solve about N 2D problems related to the functions involving the in-plane

coordinates x and the same number of 1D problems related to the functions involving

the thickness coordinate x3. The computing time related to the solution of the one-

dimensional problems can be neglected with respect to the one required for solving

the two-dimensional ones. Thus, the resulting complexity scales as N · N1 · N2. By

comparing both complexities we can notice that as soon as N3 � N the use of sepa-

rated representations leads to impressive computing time savings, making possible the

solution of models never until now solved, and even using light computing platforms

(Bognet et al., 2012).

2.2. Elastic problem in shell domains

The shell domain ΩS , assumed with constant thickness, can be described from a

reference surface X, that in what follows will be identified to the shell middle surface

but that in the general case could be any other one, parametrized by the coordinates

ξ, η, that is X(ξ, η), where:

X(ξ, η) =

⎛
⎝ X1(ξ, η)

X2(ξ, η)
X3(ξ, η)

⎞
⎠ (5)
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Being n the unit vector normal to the middle surface, the shell domain ΩS can be

parametrized from:

x(ξ, η, ζ) = X(ξ, η) + ζ · n (6)

The geometrical transformation (ξ, η, ζ) → (x1, x2, x3) involves

F̃ =

[
∂x

∂ξ

∂x

∂η
n

]
(7)

With the weak form of the elastic problem defined in the reference domain Ξ =
Ω×I, with (ξ, η) ∈ Ω and ζ ∈ I, the situation is quite similar to the one encountered

in the analysis of elastic problems in plate geometries, that was addressed in Bognet

et al. (2012).

In Bognet et al. (2013) we considered the in-plane-out-of-plane separated repre-

sentation of the displacement field, similar to (1) but now involving the coordinates

(ξ, η, ζ)

u(ξ, η, ζ) =

⎛
⎝ u1(ξ, η, ζ)

u2(ξ, η, ζ)
u3(ξ, η, ζ)

⎞
⎠ ≈

N∑
i=1

⎛
⎝ P i

1(ξ, η) · T i
1(ζ)

P i
2(ξ, η) · T i

2(ζ)
P i
3(ξ, η) · T i

3(ζ)

⎞
⎠ (8)

or in a more compact form

u(ξ, η, ζ) ≈
N∑
i=1

Pi(ξ, η) ◦Ti(ζ) (9)

2.3. Darcy’s flow model

We now illustrate the application of separated representations to the modeling of

resin transfer molding processes deeply addressed in Chinesta, Ammar et al. (2011).

We consider the flow within a porous medium in a plate domain Ξ = Ω × I with

Ω ⊂ R2 and I = [0, H] ⊂ R. The governing equation is obtained by combining

Darcy’s law, which relates the fluid velocity to the pressure gradient

v = −K · ∇p (10)

and the incompressibility constraint,

∇ · v = 0 (11)

Introduction of Eq. (10) into Eq. (11) yields a single equation for the pressure field

∇ · (K · ∇p) = 0 (12)

Remark: The heat equation being formally similar to Eq. (12) the considerations that

follow also apply for the solution of thermal models in plate geometries. �
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Again we assume the permeability separability

K(x, y, z) =
P∑
i=1

Ki(x) · ξi(z) (13)

where x denotes the in-plane coordinates, i.e. x = (x, y) ∈ Ω.

The weak form of Eq. (12) reads:∫
Ξ

∇p∗ · (K · ∇p) dΞ = 0 (14)

for all test functions p∗ selected in an appropriate functional space. Dirichlet boundary

conditions are imposed for the pressure at the inlet and outlet of the flow domain, while

zero flux (i.e. no flow) is imposed elsewhere as a weak boundary condition. We seek

an approximate solution p(x, y, z) in the separated form:

p(x, z) ≈
N∑
j=1

Xj(x) · Zj(z) (15)

The PGD algorithm then proceeds as follows. Assume that the first n functional

products have been computed, i.e.

pn(x, z) =
n∑

j=1

Xj(x) · Zj(z) (16)

is a known quantity. We must now perform an enrichment step to obtain

pn+1(x, z) = pn(x, z) +R(x) · S(z) (17)

The test function involved in the weak form is given by

p∗(x, z) = R∗(x) · S(z) +R(x) · S∗(z) (18)

Introducing Eqs. (17) and (18) into Eq. (14), we obtain∫
Ξ

(( ∇̃R∗ · S
R∗ · dS

dz

)
+

( ∇̃R · S∗

R · dS∗
dz

))
·
(
K ·

( ∇̃R · S
R · dS

dz

))
dΞ =

= −
∫
Ξ

(( ∇̃R∗ · S
R∗ · dS

dz

)
+

( ∇̃R · S∗

R · dS∗
dz

))
·Qn dΞ (19)

where ∇̃ denotes the plane component of the gradient operator, i.e. ∇̃T =
(

∂
∂x ,

∂
∂y

)
and Qn is a flux term known at step n:

Qn = K ·
n∑

j=1

(
∇̃Xj(x) · Zj(z)

Xj(x) · dZj(z)
dz

)
(20)
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As discussed previously, each enrichment step of the PGD algorithm is a non-

linear problem which must be performed by means of a suitable iterative process. The

simplest one proceeds assuming R(x) known to obtain S(z), and then updating R(x).
The process continues until reaching convergence. The converged solutions provide

the next functional product of the PGD: R(x) → Xn+1(x) and S(z) → Zn+1(z).

2.4. Stokes flow model

The Stokes model is defined in Ξ = Ω× I and reads for an incompressible fluid:{ ∇p = ∇ · (η · ∇v)
∇ · v = 0

(21)

To circumvent the issue related to stable mixed formulations (LBB conditions)

within the separated representation we consider a penalty formulation that modifies

the mass balance by introducing a penalty coefficient λ small enough

∇ · v + λ · p = 0 (22)

or more explicitly

p = − 1

λ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
= −∇ · v

λ
(23)

By replacing it into the momentum balance (first equation in (21)) we obtain

∇ (∇ · v) + ξΔv = 0 (24)

with ξ = η · λ.

In the present case it suffices considering the separated representation of the ve-

locity field according to (Ghnatios et al., 2013):

v =

⎛
⎝ u

v
w

⎞
⎠ ≈

⎛
⎜⎜⎜⎜⎜⎜⎝

i=N∑
i=1

Xu
i (x, y) · Zu

i (z)

i=N∑
i=1

Xv
i (x, y) · Zv

i (z)

i=N∑
i=1

Xw
i (x, y) · Zw

i (z)

⎞
⎟⎟⎟⎟⎟⎟⎠

(25)

that leads to a separated representation of the strain rate, that introduced into the Stokes

problem weak form allows the calculation of functions Xi(x, y) by solving the cor-

responding 2D problems and functions Zi(z) by solving the associated 1D problems.

Because of the one-dimensional character of problems defined in the laminate thick-

ness we can use extremely fine descriptions along the thickness direction without a

significant impact on the computational efficiency.
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3. Laminates

In the case of laminates, several plies with different thermomechanical properties

(eventually anisotropic) are found through the domain thickness. In the case of ad-

dressing the flow in a porous preform we could suppose P different anisotropic plies

of thickness h, each one characterized by a permeability tensor Ki(x, y) that is as-

sumed constant through the ply thickness. Then, we define a characteristic function

ξi(z) =

{
1 zi ≤ z ≤ zi+1

0 otherwise
(26)

where zi = (i − 1) · h is the location of ply i in the plate thickness. The laminate’s

permeability is thus given in separated form

K(x, y, z) =

P∑
i=1

Ki(x) · ξi(z) (27)

where x denotes the in-plane coordinates, i.e. x = (x, y) ∈ Ω.

3.1. Brinkmann model

In composites manufacturing processes resin located among the fibers in the rein-

forcement layers also flows. Many studies have been reported on the squeeze flow of

Newtonian and non-Newtonian fluids between rigid parallel flat bodies with or with-

out wall-slip concerning both experimental and numerical analyses, fundamentals and

applications (Gibson and Toll 1999; Engmann et al. 2005).

A usual approach for evaluating the resin flow in such circumstances consists of

solving the associated Darcy’s model. It is well known that Darcy-Stokes coupling at

the interlayers generates numerical instabilities because the localized boundary layers

whose accurate description requires very rich representations (very fine meshes along

the laminate thickness).

In Ghnatios et al. (2013) we proposed the use of the Brinkman model that allows

representing in an unified manner both the Darcy and the Stokes behaviors. In order

to avoid numerical inaccuracies we use a very fine representation along the thickness

direction and for circumventing the exponential increase in the number of degrees of

freedom that such a fine representation would imply when extended to the whole lam-

inate domain, we consider again the in-plane-out-of-plane separated representation

previously introduced.

The Brinkman model is defined by:

∇p = μ ·K−1 · v + η ·Δv (28)

where μ is the dynamic viscosity, K the layer permeability tensor and η the dynamic

effective viscosity.

9



In the zones where Stokes model applies (resin layers) we assign a very large

isotropic permeability K = 1 (units in the metric system) whereas in the ones oc-

cupied by the reinforcement, the permeability is assumed anisotropic, being several

orders of magnitude lower, typically 10−8. Thus the Darcy’s component in Eq. (28)

does not perturb the Stokes flow in the resin layers, and it becomes dominant in the

reinforcement layers. Additionally by choosing this outstanding difference in per-

meability, representative of the one observed in liquid Resin Infusion process when

highly porous distribution media are used, we also want to give the evidence that this

type of problem can be addressed by the proposed approach.

3.2. On the approximation continuity

All the just addressed models imply second order derivatives in the space coor-

dinates, and then, after integrating by parts to recover their associated weak forms,

only continuous approximations are required for both the trial and the test functions.

Thus in general in our numerical applications we considered standard piecewise linear

functions for approximating the 2D fields defined in Ω and the 1D defined in I. Ob-

viously higher order approximations are possible with the only constraint of ensuring

continuity.

Electromagnetic models derived from Maxwell’s equations usually involves vector

potentials that appears in the weak form affected by the curl operator. Let’s A =
(Ax, Ay, Az) such a potential. We have

(∇×A)T =

(
∂Az

∂y
− ∂Ay

∂z
,
∂Ax

∂z
− ∂Az

∂x
,
∂Ay

∂x
− ∂Ax

∂y

)
(29)

that proves that Ax must be continuous with respect to the coordinates y and z but

should be preferably discontinuous in the x coordinate in order to ensure the trans-

fer conditions from one medium to other. The same reasoning applies for the other

components of the vector potential.

If for the sake of clarity we consider in what follows the 2D case defined by the

coordinates (x, z) we could approximate Ax and Az from

⎧⎪⎪⎨
⎪⎪⎩

Ax ≈
i=N∑
i=1

Xx
i (x) · Zx

i (z)

Az ≈
i=N∑
i=1

Xz
i (x) · Zz

i (z)

(30)

where Xx
i and Zx

i are approximated using piecewise constant (discontinuous) and

linear (continuous) functions of the x and z coordinates respectively. On the other

hand Xz
i and Zz

i are approximated using piecewise linear (continuous) and constant

(discontinuous) functions of the x and z coordinates respectively. This simple choice

ensure the continuity requirement just specified, and constitutes the simplest gener-
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Figure 1. Representation of the domain and the three possible ’patches’

alization of the so-called Nedelec’s elements usually considered in electromagnetic

numerical simulations.

4. Parametric models

The in-plane-out-of-plane separated representation can be enriched by adding mo-

del parameters as extra-coordinates and then computing the general parametric solu-

tion off-line that could be used in online real time applications as proved in our former

papers Bognet et al. (2012) where material and geometrical parameters were included

in the parametric solution as extra-coordinates.

In what follows we consider a discrete extra-coordinate to represent different part

topologies. The simulation is then performed simultaneously for all possible topolo-

gies.

Let us consider the problem defined on the domain Ω(d) = Ω0 ∪ Ωd, where d ∈
[1, 2, 3] defined on figure 1.

The square plate domains Ω(d) has one (for d = 1), four (for d = 2) or no hole

(if d = 3). The material is assumed isotropic and homogeneous (E = 150GPa, ν =
0.3). The plate is clamped at one of its lateral faces and a unit shear force applies on

the opposite face.

If we consider an arbitrary field u, its separated representation reads:

u(x1, x2, x3, d) ≈
N∑
i=1

Pi(x1, x2) · Ti(x3) ·Di(d) (31)

where d = 1, 2, 3 and function Di(d) = 1 inside the patch Ω(d) and Di(d) = 0
elsewhere. The deformed domain is given on figure 2 for each possible scenario.
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Figure 2. Deformed configuration for (from left to right)
Ω0 ∪ Ω1, Ω0 ∪ Ω2 and Ω0 ∪ Ω3

5. Conclusions

In this paper we revisited the use of separated representations for solving mod-

els defined in degenerated domains. The issue related to the extremely fine meshes

required for capturing rich behaviors along the thickness direction was circumvented

by considering in-plane-out-of-plane separated representations of the fields and model

parameters involved in the models as well as the geometries in which they are defined.

In the case of quite simple behaviors plate or shell elements were introduced and

widely used in many engineering applications. However, in the case of richer behav-

iors and/or geometries these simplified models fail to describe the more complex be-

haviors of the associated solutions. Thus for example we proved in Chinesta, Ammar

et al. (2011) that when averaging permeability in composite laminates the computed

solution differs drastically from the fully 3D solution. The same conclusions apply in

the case of thermal models that are formally similar to the ones related to the flow in

porous media. We also proved In Bognet et al. (2012) that when geometries become

complex the standard elastic plate theories fail for calculating the 3D solution, and in

Ghnatios et al. (2013) the necessity of 3D flow calculation was pointed out.

3D solutions as previously discussed in too expensive from a computational point

of view, however the used of in-plane-out-of-plane separated representations allows

calculating 3D solutions with a computational complexity characteristic of 2D mod-

els. In the case of models involving the curl operator we proved that the decomposition

also applies and that the approximation can be enhanced by enforcing the approxima-

tion discontinuity, by generalizing Nedelec’s approximations widely considered in the

finite elements framework.
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