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1Université de Lyon, Université Claude Bernard Lyon1, ISFA, LSAF, F-69007, LYON, France

2Banque de France, 61 rue Taitbout, 75009 Paris, France

3BNP Paribas Cardif, RISK, 10 rue du Port, 92000 Nanterre, France

February 16, 2018

Abstract

This paper answers crucial questions about the robustness of the PSDization

process for applications in insurance. PSDization refers to the process that forces

a matrix to become positive semi-definite. For companies using copulas to aggre-

gate risks in their internal model, PSDization occurs when working with correlation

matrices to compute the Solvency Capital Requirement (SCR). We study how clas-

sical operational choices concerning the modelling of risk dependence impacts the

SCR during PSDization. These operations refer to permutations of risks (or busi-

ness lines) in the correlation matrix, addition of a new risk, and introduction of

confidence weights given to the correlation coefficients. Using genetic algorithms,

it is shown that theoretically neutral transformations of the correlation matrix can

surprisingly lead to significant sensitivities of the SCR (up to 6%). This highlights

the need for a very strong internal control around the PSDization step.
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1 Motivation

When measuring the insurer’s exposure to numerous risks, in particular to determine the

own funds requirement (or Solvency Capital Requirement in insurance, denoted further

by SCRg, and representing the 99.5th percentile of the aggregated loss distribution), one

of the most sensitive steps is the modelling of the dependence between those risks.

This question is of course important and, quite deservedly, has recently attracted

attention from the scientific community, see for instance the works by Georgescu et al.

(2017), Cifuentes and Charlin (2016), Bernard et al. (2014), Cheung and Vanduffel (2013),

Devineau and Loisel (2009), Filipovic (2009), Denuit et al. (1999), and references therein.

This aggregation step allows to take into account mitigation, or the potentiality of those

individual risks to occur simultaneously. According to the European Directive Solvency

II, there exist two main approaches to compute aggregated risk measures considering

the dependence structure between risks. In the first case, this aggregation is performed

through a variance-covariance approach via the “Standard Formula”, that is

SCRg =

√ ∑
i∈J1,nK

∑
j∈J1,nK

ρij × SCRi × SCRj, (1.1)

where SCRi is the 99.5th percentile of the loss associated to risk i, and ρij is the linear

correlation such that ρij = Cov(SCRi, SCRj)/
√
V ar(SCRi)V ar(SCRj). This technique

was shown to be valid for elliptical loss vectors, which is not the case in full generality1.

Another possibility for insurers is to calculate SCRg thanks to their internal model,

once the latter has been approved by supervisors. In this case, insurers usually work with

copulas for the aggregation of risk factors in order to obtain the full distribution of losses.

Indeed, copulas can model the most general situation for dependence, as shown by the

well known Sklar’s theorem. In practice, internal models require the implementation of

these successive steps:

1. calibration of marginal distributions for each risk factor (e.g. equity, interest rates);

2. aggregation of risk factors by modelling their dependence through a copula;

3. fitting of proxy functions to link the risk factors to their associated loss (e.g. through

curve-fitting in ALM forecasts), which leads to get the entire distribution of the

aggregated loss. Taking the 99.5th percentile of this distribution then allows to

evaluate the aggregated SCR (SCRg with our notations).

1As the CEIOPS (ex-EIOPA) admitted in its Solvency II calibration paper of April 2010 (SEC-10-40).
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The aggregation thus requires a correlation matrix as input, whatever the technique.

This matrix, whose dimensions can be huge in practice (e.g. 1000x1000, i.e. with around

500 000 different values), is full of correlation coefficients that can result from empirical

statistical measures, expert judgments or automatic formulas. By the way, it is thus

rarely positive semi-definite (PSD): this is what is commonly called a pseudo-correlation

matrix. Unfortunately, this matrix cannot be used directly to aggregate risks. Indeed,

both variance-covariance and copula aggregation techniques require the correlation matrix

to be PSD (that is with all eigenvalues ≥ 0) for the following main reasons:

• Coherence: it is a well-known property that correlation matrices are PSD. The

presence of negative eigenvalues points a logical mistake made while establishing

the coefficients of the matrix. For instance, consider the case of a 3x3 matrix : if

the coefficients indicate a strong positive correlation between the first and second

risk factors, a strong positive correlation between the second and third risk factors,

but a strong negative correlation between the first and third risk factors, this will

generate a negative eigenvalue corresponding to the coherence mistake made;

• Prudence: taking more risk could decrease the insurer’s SCRg if there exists one

negative eigenvalue associated to an eigenvector with positive coefficients. For in-

stance, consider the loss vector (100Me, 10Me, 40Me) and the correlation matrix

ρ =


ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

 =


1 −0.9 −0.5

−0.9 1 −0.5

−0.5 −0.5 1

 .

Using the variance-covariance approach, the riskier situation with losses (106.20Me;

16.20Me; 44.81Me) leads to a lower SCRg (70.48Me against 74.16Me)!

• Ability to perform simulations: in the copula approach, the input correlation matrix

has to be PSD to apply Choleski decomposition. This is necessary for Gaussian or

Student vectors, which are the most famous cases for such tasks in practice.

Using PSD correlation matrices is therefore crucial, which explains why it is explicitly

required by Delegated Rules (EU) 2015/35 (Annex XVIII) of the Solvency II regulation.

In this view, insurers apply algorithms on their pseudo-correlation matrix in order to

make it become PSD: this is the so-called PSDization process. Most common algorithms

can be separated into three categories: Alternating Projections, Newton and Hypersphere
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algorithms. One focuses in this paper on the Rebonato-Jäckel algorithm, which belongs

to the latter family (see Section 3 for further details about the motivation of this choice).

Given this framework, one wonders how the SCR is impacted by standard operations

on the correlation matrix used for risk aggregation. Our interest lies in studying opera-

tional choices such as weighting the correlation coefficients during PSDization (to reflect

the confidence experts may have on these coefficients), permutating some columns in the

matrix (equivalently reorder the risks before aggregation), or adding one dimension (anal-

ogously add a business line, with the constraint that it should not impact SCRg at the

end). Numerical examples support the main idea of the paper: transformations of the ma-

trix, with low or null theoretical impact on SCRg, sometimes lead to unexpected changes

of this global SCR. For large insurance companies, this is all the more important that a

1% change of SCRg can cost millions of euros in terms of capital. This would strongly

affect the Return On Equity index, an essential profitability indicator for investors.

The paper is organized as follows: Section 2 introduces the pseudo-correlation matri-

ces to be considered hereafter. Section 3 describes most common PSD algorithms, and

motivates our choice. Thanks to some toy examples, Section 4 illustrates to which extent

PSDization leads to modify the initial pseudo-correlation coefficients. The cases of higher

risk matrix dimensions, weighted correlation coefficients and risk permutations are stud-

ied. Finally, real-life sensitivities are assessed in Section 5 thanks to the use of genetic

algorithms and simulations, and provides with some interesting results concerning the

aforementioned operations and their impact on the global SCR of the company.

2 Pseudo-correlation matrices under study

2.1 Correlation matrices of the Standard Formula

Before studying the algorithms which enable to make a matrix be PSD when using an

internal model, it is verified that the matrices defined by the standard formula are already

PSD. As a reminder, the Standard Formula given by the regulation states that risks should

be aggregated in a bottom-up approach, with a tree-based structure. This means that

individual SCRs first have to be assessed, each one corresponding to a module (Life, Non

Life, and so on). Solvency II texts then define several correlation matrices for each level of

aggregation. Table 1 shows that the eigenvalues of these matrices are all positive, meaning

that they are PSD. Except the global matrix which can be found in the Directive, all

matrices are described in the Delegated Acts, see references in the first column of Table 1.
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Module Dimension λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12 PSD

Global (Ann. IV) 5 1.92 1.16 0.75 0.75 0.40 Yes

Market up (Art. 164) 6 2.47 1.18 1.00 0.68 0.50 0.15 Yes

Market down (Art. 164) 6 2.89 1.00 0.87 0.57 0.50 0.15 Yes

Life (Art. 136) 7 2.18 1.51 1.07 0.81 0.70 0.57 0.12 Yes

Health SLT (Art. 151) 6 2.04 1.43 1.00 0.81 0.58 0.12 Yes

Health non SLT (Ann. XV) 4 3 0.5 0.5 0.5 Yes

Health (Art. 144) 3 1.68 0.81 0.5 Yes

Non Life (Art. 114) 3 1.25 1 0.75 Yes

Prem. Reserve (Ann. IV) 12 4.91 1.45 1.09 0.97 0.73 0.68 0.61 0.48 0.38 0.33 0.20 0.12 Yes

Table 1: Eigen values of correlation matrices in Solvency II regulation.

2.2 Notations and correlation matrices under study

Throughout the paper, Gxy denotes the initial pseudo-correlation matrix to be PSDized,

where x refers to the matrix dimension and y is the number of the example. When using

weights to apply to the correlation coefficients during PSDization, a weighting matrix Hxy

is defined. Then, we denote by SPA
xy the PSDized matrix obtained from Gxy using the

Alternated Projections algorithm; SN
xy the PSDized matrix with the Newton algorithm;

Sxy the PSDized matrix with the Hypersphere algorithm and SH
xy the PSDized matrix

with the Hypersphere algorithm using a weighting matrix H. The use of a weighting

matrix enables to give more importance to one or several correlation coefficients with

respect to other coefficients when making the correlation matrix PSD. This is very useful

for insurance companies, since some coefficients can have an bigger impact on the final

capital requirement, and the aim would be that PSDization modifies these coefficients as

little as possible. It must be noted that some algorithms (Newton, Hypersphere) can be

extended to use constraints on the correlation coefficients, such as ρmin
ij ≤ ρij ≤ ρmax

ij .

However, these extensions are left for future research because of two main reasons: very

few practitioners use them, and they cause non-trivial theoretical and practical issues

(there could be no solution, i.e. PSDized matrix, according to the constrained set).

Our examples are built with the same simple idea: assess the impact of PSDization

combined to classical operational choices on diverse situations to reflect the real world.

We thus consider correlation matrices of various dimensions, with positive and negative

eigen values, and with high heterogeneity regarding their individual correlation coefficients

(positive, negative, far or close to extreme values -1 or +1).

The seven examples studied all along the paper are listed in Appendix A, including the 10-

5



dimension correlation matrix that has been created manually. This example was designed

with the aim of having a certain coherence with the reality of risk aggregation in insurance.

The first risk factor, say X1, refers to the risk that interest rates decrease (X2 represents

the risk of interest rates rising). X3 corresponds to unexpected high expenses, X4 relates

to the bad assessment of the level of expenses, X5 is the risk of spreads increasing. The

risk that market stocks drop is given by X6, X7 accounts for the longevity risk, X8 is the

mass lapse risk, X9 corresponds to the reserve risk in Health business line ; and X10 is

the reserve risk in short-term disability.

Correlation coefficients were determined either by statistical measures built on histor-

ical data on financial markets, or by expert opinions. To read appropriately the matrix,

the linear correlation between X1 and X2 is the coefficient ρ12 (or ρ21), located on line 1

column 2 (of course, the coefficient equals −1 in this case). Finally, our pseudo-correlation

matrix looks like

G101 =



1 −1 −0.28 0 0.63 −0.47 0.25 0.75 0 0

−1 1 0.77 0.5 −0.38 0.88 0.25 0.75 0.25 0.25

−0.28 0.77 1 0.25 0.25 0.17 −0.25 0.25 0.5 0.5

0 0.5 0.25 1 0.25 0.25 0 0.5 0.5 0.5

0.63 −0.38 0.25 0.25 1 0.83 0.25 0.75 0 0

−0.47 0.88 0.17 0.25 0.83 1 0.75 0.75 0 0

0.25 0.25 −0.25 0 0.25 0.75 1 0.5 0.25 0.25

0.75 0.75 0.25 0.5 0.75 0.75 0.5 1 0.25 0.25

0 0.25 0.5 0.5 0 0 0.25 0.25 1 0.75

0 0.25 0.5 0.5 0 0 0.25 0.25 0.75 1



.

Table 2 sums up the eigen values of our seven pseudo-correlation matrices: notice that

none of the considered matrices is PSD. However, some of them are not very far from

having this property.

Example # Dim. Notation λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 PSD

1 3 G31 1.90 1.39 -0.29 No

2 3 G32 1.91 1.44 -0.35 No

3 4 G41 2.17 1.27 0.88 -0.32 No

4 4 G42 1.95 1.74 0.96 -0.64 No

5 5 G51 2.80 1.98 1.16 -0.17 -0.77 No

6 5 G52 2.44 1.97 1.67 -0.19 -0.88 No

7 10 G101 3.93 2.72 2.00 1.14 0.74 0.57 0.25 -0.03 -0.55 -0.77 No

Table 2: Eigen values in our examples, before PSDization.
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3 Selection of an adequate algorithm for PSDization

PSDization algorithms aim to build the nearest PSD matrix to an initial non-PSD matrix,

where the notion of “nearest” is detailed in the sequel. This section briefly presents

the main families of PSDization algorithms, and justifies our choice to work with the

Hypersphere (or Rebonato-Jäckel) algorithm. Interesting recent works on this topic and

more details can be found in Cutajar et al. (2017).

3.1 Families of algorithms

3.1.1 Alternating Projections

The Alternating Projections (AP) algorithm, introduced by Higham (2002), enables to

find the nearest correlation matrix under the W-norm, defined by

∀A ∈ Rn×n, ‖A‖W = ‖W
1
2AW

1
2‖2,

where ∀A ∈ Rn×n, ‖A‖22 =
∑

(i,j)∈J1;nK2 a
2
ij = tr(AAT ). This norm is also called the

Frobenius norm, and W is a matrix with positive coefficients.

The AP algorithm corresponds to a linear optimization, projecting alternatively the

matrix obtained at each step on two convex closed subsets of the matrix space Rn×n. It

enables in particular to show the uniqueness of the solution under this type of norm.

However, the W-norm does not in general correspond to the norm insurers may be inter-

ested in. The H-norm, defined by ∀A ∈ Rn×n, ‖A‖2H =
∑

(i,j)∈J1;nK2 hija
2
ij where H ∈ Rn×n,

offers more flexibility to weight coefficients according to their materiality on SCRg, or

according to the confidence level one has on the coefficients. The W-norm and the H-

norm only coincide when W is diagonal (W = diag(wi)i∈J1;nK) and H is a rank-1 matrix

(H = [(wiwj)
1
2 ]). Thus, the AP algorithm lacks flexibility in that it does not enable to

use another general matrix to weight freely each individual correlation coefficient.

3.1.2 Newton algorithm

Newton algorithms with such applications were introduced by Qi and Sun (2006). They

were initially designed for the traditional 2-norm, and are therefore computationally

quicker than the Alternating Projections. However, their extension to the most general

case (i.e. H-norm) requires optimization techniques such as the Uzawa method. Unfor-

tunately, Uzawa method implies optimization within optimization, and makes the overall

algorithm much more time consuming, as well as much more complex to interpret.
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3.1.3 Rebonato-Jäckel algorithm

Belonging to the family of Hypersphere algorithms, Rebonato-Jäckel method was initially

introduced in Rebonato and Jäckel (1999). Since then, it has been extensively studied in

the literature, and many papers have proved its efficiency in reaching a robust solution.

Its large success follows from the following theorem (see the proof in Jäckel (2002)): any

correlation matrix ρ can be written as

ρ = BBT

where the coefficients of the matrix B ∈ Rn×n can be written as:{
∀(i, j) ∈ J1;nK× J1;n− 1K, Bij = cos(θij)

∏j−1
k=1 sin(θik);

∀i ∈ J1;nK, Bin =
∏n−1

k=1 sin(θik).

In addition, the angular vector θ is unique if :{
∀(i, j) ∈ J1;nK× J1;n− 1K, θij ∈ [0, π];

∀i ≤ j, θij = 0.

The Hypersphere algorithm thus consists in looking for the solution matrix under the

above-mentioned form. It offers several advantages; in particular it is simple to use, easily

understandable, and is the most widely used algorithm in the bank and insurance sectors.

Moreover, it allows the use of the H-norm and converges fairly quickly. However, its

main weakness lies in that it sometimes converges to local minima, and therefore does not

guarantee that the output is the nearest PSDized correlation matrix. This drawback has

to be kept in mind, since it may cause other side effects. Let us mention for instance the

fact that the order in which risk factors are considered in the correlation matrix matters,

although it should not (see Sections 4 and 5).

3.2 Choice of the algorithm for the rest of the paper

To check for the robustness when performing PSDization with these algorithms, one first

compares the distances between the initial pseudo-correlation matrix and its PSDized

version in the three different cases. Of course, the lower this distance the better the

algorithm. We use the Frobenius-norm (see 3.1.1), since it is common for all algorithms.

Results about PSDized versions for each example are detailed in Appendix B : notice

that the PSDized correlation matrices are the same when the dimension remains low,

whatever the algorithm under consideration. More precisely, the three algorithms give
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very similar results with PSDized versions of G31, G32, G41, G42, G51, and G52 (same co-

efficients, up to 10−4). On the contrary, the PSDized versions of G101 are slightly different

depending on the algorithm used. As an illustration, we get the following distances:

||SPA
101 −G101||2 = ||SN

101 −G101||2 = 1.211 ≤ ||S101 −G101||2 = 1.213.

In this example, it seems that the two first algorithms give better results. The Rebonato-

Jäckel algorithm is likely to have selected a locally-optimal solution. Despite not being

the best technique in this particular case, we will use the latter for three main reasons in

coming analyses : i) distances do not seem to be significantly different from one method to

another, ii) the Rebonato-Jäckel algorithm enables to easily integrate confidence weights

to the individual correlation coefficients in practice (through the H-norm), which is a key

point, iii) the Rebonato-Jäckel algorithm is fast and easy to interpret. Indeed, experts

know that some initial coefficient values can be particularly reliable, or they can anticipate

that some of them will have a significant impact on the global SCR (SCRg).

3.3 One PSDization example: the 10-dimensioned matrix

Trying to replicate the conditions in which insurers use PSDization algorithms, it is clearly

more appropriate to consider the H-norm. Indeed, it allows to integrate confidence weights

given to correlation coefficients during the PSDization process. PSDization of G101 using

the Rebonato-Jackël algorithm and the weighting matrix H101 (see Appendix A) leads to

a new correlation matrix SH
101 (disclosed in Appendix B), whose eigen values are

λ ∈ {3.70; 2.49; 1.83; 1.05; 0.64; 0.27; 0.02; 0.00; 0.00; 0.00}.

The three last values equal 10−5, which is the lower bound defined in the algorithm. This

means that the three negative eigen values of G101 (see Table 2) have been replaced by the

lowest possible value. One then measures the standardized distance between the initial

pseudo-correlation matrix G101 and its PSDized version SH
101:

DH
101 =

||SH
101 −G101||H
||G101||H

= 19, 7%.

It thus seems that PSDization globally had a great impact on the pseudo-correlation

matrix. Some coefficients were strongly modified, see for instance ρ65 (fictional correlation

between equity and spreads). Indeed, ρ65 equals 0.83 at the beginning in G101, but is close

to 0.54 after PSDization in SH
101. Such an example highlights the need for the insurer to

check all the modifications, to gain control and monitor her internal model.
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4 Sensitivity of the matrices to PSDization

In this section, one would like to illustrate how the correlation matrix can be modified

when performing PSDization by the Rebonato-Jackël algorithm, with toy examples. In

particular, we investigate how the coefficients of G31 (Appendix A) change during the sole

PSDization. We also investigate the evolution of individual correlation coefficients when

considering other classical operations for practitioners: permutations of some coefficients

before PSDization, change of matrix dimension (before PSDization), or weights given to

the correlation coefficients during PSDization. In this view, we consider the following

initial weighting matrix

H init
31 =


1 0.1 0.9

0.1 1 0.5

0.9 0.5 1

 .

These operations mainly correspond to the decisions actuaries have to make when

developing internal models for risk aggregation. Note that the impact on the capital

requirement can be substantially different from the impact in terms of matrix norm,

according to the respective importance of the loss marginals. This impact will be studied

in Section 5.

4.1 Impact of permutations

To study how permutations of risks defining the correlation matrix impacts the standard

PSDization process, one first considers the permutation σ such that
1 2 3

↓ ↓ ↓
2 3 1

 .

As a result, one obtains the following modifications on the correlation coefficients:

Coefficient Before PSDization Direct PSDization PSDization after permutation

ρ12 -0.9 -0.585 -0.605

ρ13 -0.5 -0.473 -0.476

ρ23 -0.5 -0.437 -0.411

Examining the coefficients, we notice that they are significantly modified: first by the PS-

Dization process itself, but also by the permutation of risks. This last result is surprising,

since there should be no theoretical impact with this operation. However, because our
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algorithm presents local minima issues, the choice of the order of risk factors (arbitrarily

made by the insurer) matters when performing PSDization.

To figure out more comprehensively the impact of permutations, the best would be to

look at the exhaustive list of permutations for a given pseudo-correlation matrix. Recall

that a D-dimensioned matrix admits D! permutations, and let us consider the example

G51. Figure 1 shows the Frobenius distance to the initial matrix for the 5! permutations

of G51, knowing that this distance between G51 and SH
51 initially equals 1.68 without any

permutation. The Frobenius norm is clearly not the norm that the algorithm optimizes,

but it simply illustrates to which extent the solution matrix SH
51 is modified. Two remarks

can be made here. First, the distances follow a block pattern which is due to the order of

the permutations. Second, the permutations do not always lead to increase the distance

to the initial pseudo-correlation matrix.

Figure 1: Impact of permutations on the Frobenius norm, in the case of G51 and H51.

4.2 Adding a risk: higher the matrix dimension

Another arbitrary element chosen by the actuaries of the company is the number of risk

factors to be aggregated. In some cases, it might be necessary to model many risk factors,

according to the use of the internal model that is made by the business units (need to

model many lines of business when modelling the reserving loss factor for instance). These

choices have to be made for risk factors which are not material at the Group level, even

if they can be important for the concerned subsidiaries. Nevertheless, these choices will

impact the final SCR (SCRg) through the modification brought to the overall correlation

11



matrix during PSDization. Still based on the same example, let us consider the following

case: 
1 −0.9 −0.5

−0.9 1 −0.5

−0.5 −0.5 1

 →


1 −0.9 −0.5 0.1

−0.9 1 −0.5 0.1

−0.5 −0.5 1 0.1

0.1 0.1 0.1 1


As can be noticed, the correlation is low between the added risk and others.

Coef. Before PSDization Direct PSDization PSDization with higher dimension

ρ12 -0.9 -0.585 -0.577

ρ13 -0.5 -0.473 -0.471

ρ23 -0.5 -0.437 -0.435

Direct PSDization obviously gives the same results, whereas correlation coefficients are

slightly modified after PSDization when introducing the new risk. Changes on these

coefficients are hard to anticipate, but it seems that the impact is lower in this case than

with permutations. A natural question would be to understand whether the value of the

correlation coefficient that was added is key to explain the modifications obtained in the

PSDized correlation matrix. Figure 2 shows this impact on the Frobenius norm, with

a new risk whose correlation coefficients vary from 0.1 to 1. Results are intuitive: the

bigger the coefficients added, the larger the Frobenius norm. Indeed, PSDization is a

whole process that takes into account every coefficient, including the one that was added.

Figure 2: Impact of adding a new dimension on the Frobenius norm (through modified

PSDized coefficients), with various correlation coefficients corresponding to the new risk.
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4.3 Impact of confidence weights

Finally, the choice of the weights associated to the terms of the correlation matrix, which

somewhat represents the confidence level given by experts to the individual correlation

coefficients, can also have a significant impact on the PSDized matrix. To illustrate this,

still keeping in mind the example G31 with the initial weights listed in H init
31 , we consider

the new following weights:
ω11 ω12 ω13

ω21 ω22 ω23

ω31 ω32 ω33

 =


1 0.2 0.8

0.2 1 0.4

0.8 0.4 1

 .

The PSDized matrix now reads

Coef. Before PSDization PSDized (initial weights) PSDization with new weights

ρ12 -0.9 -0.585 -0.642

ρ13 -0.5 -0.473 -0.463

ρ23 -0.5 -0.437 -0.381

As it can be seen, correlation coefficients significantly vary. Notice that the modifications

are all the more far from the standard PSDized coefficient that the weight is low, which

is in line with intuition. Indeed, more weight on some correlation coefficients means

more importance in the PSDization process, and thus less modification for them (so as

to minimize the Frobenius norm). To generalize and understand deeper to which extent

the weights could impact the correlation coefficients after PSDization, Figure 3 shows the

Frobenius norm between the solution SH
51 and the initial matrix G51, with weights varying

from H51 to a limit weighting matrix given by

H limit
51 =



1 0.5 0.5 0.5 0.5

0.5 1 0.2 0.5 0.5

0.5 0.2 1 0.6 0.6

0.5 0.5 0.6 1 0.1

0.5 0.5 0.6 0.5 1


.

This limit weighting matrix is used for illustration purposes only. It corresponds to

increase linearly by +0.4 the lowest weights of the matrix H51, while decreasing high-

est weights by the same factor. Figure 3 shows that the Frobenius norm decreases as

the weighting matrix is distorted towards the limit H limit
51 , and a closer analysis reveals

that this phenomenon is mainly due to the correlation coefficients ρ24, ρ25, ρ34 and ρ35

13



of G51 (and their transposed coefficients) which are much less modified than with the

initial weighting matrix since their weights are significantly increased: from 0.1 to 0.5 and

respectively from 0.2 to 0.6.

Figure 3: Impact of weights on the Frobenius norm, in the case of the example G51.

4.4 Summary

To put it in a nutschell, Figure 4 shows the impact of permutations and weights (the two

most prominent operations) on the Frobenius norm, in the conditions stated above. It

shows that the impact on the Frobenius norm is more important when weights vary than

when the order of risk factors is changed. After these primary illustrations, we now move

to the analysis of such transformations on the capital requirement, SCRg.

5 Analysis of SCR sensitivity

One has just highlighted the importance of PSDization on the final correlation matrix

to be used to assess the insurer’s own funds requirement. The correlation coefficients

chosen by the experts, or even those defined by statistical means can be significantly

modified. The aim of this section is to provide with some real-life sensitivities concerning

the computation of the global SCR thanks to internal models. One would like to see

SCRg as a function of the main parameters in the actuary’s hand.
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Figure 4: 3D plot showing the impact of permutations and weights on the Frobenius

norm, with G51 and H51.

To make it, one applies genetic algorithms to find a range [min,max]2 of values to

which the SCR belongs; given a copula, realizations of risk factors, and proxy functions

(more details further). The implemented algorithms are disclosed in Appendices D.1

and D.2, respectively for the case of permutations and weights. They correspond to an

adaptation of the Rebonato-Jackël algorithm that incorporate these operations. At the

end, the range is obtained for a given pseudo-correlation matrix G, a given weighting

matrix H, and possibly a given permutation σ. Hence we want to evaluate the function

g such that g : (G,H, σ) → g(G,H, σ) = SCR(PSDH(σ.G)), where σ.G stands for the

effect of σ on the risk factors represented in G, and PSDH(G) represents the nearest

(from G) PSD matrix obtained using the Rebonato-Jackël algorithm with weights H.

The considered permutation σ is the one presented at the beginning of Section 4.1.

2Recall that the genetic algorithms must be seen as “clever” sensitivities rather than fully convergent

optimization algorithms. There is no guarantee that the convergence to a minimum is obtained.

15



5.1 Loss factors or risk factors?

In full generality, it is a very hard task to estimate the loss generated by the occurrence of

some given risk. Much easier is to describe the behavior of risk factors, through marginal

distributions. For instance if the interest rates rise, the potential loss for the insurer

depends on impacts on both assets (e.g. value of obligations drops) and liabilities (con-

tract credited rates may vary, which should modify expected lapse rates). To compute

the loss associated to the variation of some risk factors, one thus needs a (very) complex

transformation. Practically speaking, and to save computation time, simple functions

(polynomial form) approximate these losses. However, the insurer can sometimes directly

evaluate the loss related to one given loss factor: this is the case for example when consid-

ering the reserve risk, which can be modeled by classical statistical methods (bootstrap).

The insurer’s total loss, P , thus reads

P = 11R6=∅ f((Xi)i∈R) + 11P6=∅
∑
i∈P

Xj,

where f is a given (proxy) function, Xi and Xj are random variables, P is the set of loss

factors and R is the set of risk factors.

For our coming analysis, Table 3 gives the different functional forms depending on the

risk dimension and the risk factors Xi. For the sake of simplicity, one considers that all

our marginals (Xi and Xj) follow the same distribution, but with different parameters.

This common distribution is lognormal LN (µ, λ), since it is widely used in insurance for

prudential reasons. Table 4 sums up the parameters involved in the eight different cases

under study: vectors Xa
k (where k refers to the dimension of the vector) will be used to

compute the global loss in the case of loss factors aggregation (meaning that R = ∅),
whereas vectors Xb

k will be the input of proxy functions defined in Table 3 for risk factors

aggregation (P = ∅). We distinguish these two configurations to see whether taking

into account proxy functions gives very different SCR sensibilities as compared to only

aggregate risk factors.

5.2 Variance-covariance or copula approach, pros and cons

Except PSDization step itself that generates different results, another important choice

is the aggregation approach. Here, one would like to detail the reasons for choosing one

of them (i.e. copula or variance-covariance). Let us consider the simplest framework: the

loss P only depends on loss factors (no need to apply proxy functions that link risk factors

to loss factors). It is then possible to model this loss as following: P =
∑

i∈P Xi.
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Dimension Functional form under consideration

3 P = f((Xi)i∈[1,3]) = 0.5X2
1 + 2X4

2 + 0.3X3 + 10X1X2

4 P = f((Xi)i∈[1,4]) = 5X1 + 0.02X2
2 + 2000X3 + 5X

3/2
4

5 P = f((Xi)i∈[1,5]) = X1 + 0.1X2
2 + 50X3 +X

1/2
4 − 1.2X5

10 P = f((Xi)i∈[1,10]) = 0.5X3
1 + 0.4X3

2 + 3X2
3 + 2X2

4 +
∑7

i=5X
2
i + 0.5X2

8 +
∑10

i=9Xi

Table 3: Polynomials used as proxy functions to get the overall insurer’s loss.

Individual loss factors have to be modeled and estimated by the actuaries for internal

models, or come from standardized shocks if using the Standard Formula. Fortunately,

it is likely that extreme events corresponding to the 99.5th percentile of every loss factors

do not occur at the same time: there is thus a mitigation effect, that generally yields to

q99.5%(P ) ≤
∑
i∈P

q99.5%(Xi).

As already mentioned in Section 1, the regulation states that the variance-covariance

approach can be used to aggregate risks, with the given correlation matrices. This method

has some advantages, but also some drawbacks (Embrechts et al. (2013)). Of course, it

is the easiest way to aggregate risks: the formula is quickly implemented (which allows

to compute sensitivities without too much effort), and easy to understand. However it

does not provide with the entire distribution of the aggregated loss, knowing that the

insurer is sometimes interested in other risk measures than the unique 99.5th percentile.

Name Dim. Parameters X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Xa
3 3 (µ, λ) (6,0.5) (5,0.5) (4,0.1)

Q99.5 1463 538 71

Xb
3 3 (µ, λ) (6,0.8) (3,0.1) (12,2)

Q99.5 3167 26 28110637

Xa
4 4 (µ, λ) (6,0.5) (5,0.5) (4,0.1) (3,0.9)

Q99.5 1463 538 71 204

Xb
4 4 (µ, λ) (1,5) (2,4) (3,3) (1,4)

Q99.5 1065704 220426 45592 81090

Xa
5 5 (µ, λ) (6,0.5) (5,0.5) (4,0.1) (4,0.9) (3,0.3)

Q99.5 1463 538 71 555 43

Xb
5 5 (µ, λ) (1,3) (2,2) (1,1) (2,4) (1,3)

Q99.5 6170 1276 36 220426 6170

Xa
10 10 (µ, λ) (6,0.5) (5,0.5) (5,0.2) (6,0.1) (4,0.3) (5,0.6) (5,0.5) (5,0.4) (5,0.3) (6,0.3)

Q99.5 1463 538 248 522 118 696 538 416 321 874

Xb
10 10 (µ, λ) (1.2,2) (2,1.5) (0.3,2.5) (2,2) (1.5,2) (3.5,1) (1.5,2) (2.5,2) (5,2) (6,2)

Q99.5 573 352 845 1276 774 435 774 2104 25633 69679

Table 4: Marginals for each risk factor and corresponding 99.5th percentile.
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Moreover, this approach is not adequate for modeling non-linear correlations, which is

often the case when considering the tails of loss distributions. It means that it is very

tricky to calibrate the correlation matrix so as to ensure that we can effectively estimate

the 99.5th percentile of the aggregated loss. Finally, the variance-covariance approach is

too restrictive since it does not allow to correlate risk factors, but only correlate losses.

This makes the interpretation of scenarios generating a huge aggregated loss very difficult.

For all these reasons, internal models are generally developed using copulas: they en-

able to simulate a large number of joint replications of the risk factors, before applying

proxy functions (most of time). By this technique, insurers obtain the full distribution

of P , and thus a richer information among which the quantile of interest (Embrechts and

Puccetti (2010), Lescourret and Robert (2006)). Very familiar copulas in the insurance

industry (Gaussian and Student copulas) are parameterized by the linear correlation ma-

trix, whose marginals are the risk and loss factors. This is linked to the main property

of copulas: they allow to define the correlation structure and the marginals separately.

For example, aggregation with the Gaussian copula can be simulated with the following

steps:

• simulation of the marginals stand-alone (stored in the vector X ∈ Rn×B, where n

stands for the number of risk factors and B the number of random samples);

• simulation of a Gaussian vector Y through the expression Y = TZ, where T repre-

sents the Choleski decomposition of the correlation matrix ρ = (ρij)(i,j)∈J1,nK and Z

is an independent Gaussian vector of size n;

• orderingX in the same order as Y to ensure that ∀j ∈ {1, ..., B},∀i ∈ {1, ..., n}, q(Xij) =

q(Yij) (q(x) stands for the quantile corresponding to x).

5.3 Results using a simplified internal model

Applications presented hereafter were designed to consider a wide range of operational

situations in which the insurer aims to estimate its global SCR, i.e. SCRg.

For a given PSD correlation matrix SH
xy, and given values for the vector of risk factors

(simulated with lognormal distributions), one performs Q = 131072 = 217 simulations for

the aggregation of risk factors (dependence structure). As a matter of fact, there are two

sources of uncertainty explaining the variation of SCRg values (SCRg = (SCRg
q)q=1,...,Q).

First, the genetic algorithm itself is likely to have reached different local solutions de-

pending on the simulation. Second, the simulation of the Gaussian or Student vectors
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to model the correlation through copulas may change. In order to focus the study on

correlation, it must be noted that marginals were simulated initially and then kept fixed.

Roughly, it can be assumed that the confidence interval of the global SCR is similar to

that of a Gaussian distribution (SCRg
q ∼ SCRg ∼ N (m,σ)) because of the Central Limit

Theorem and of the independence of the simulations of each SCR, i.e.

P(|SCRg −m| < 1.65σ) = 90%,

where σ stands for the standard deviation of SCRg, and m its mean. Of course, the

estimation of these parameters is made simple using their empirical counterparts, denoted

by m̂ = (1/Q)
∑

q SCR
g
q and σ̂2 = (1/(Q− 1))

∑
q(SCR

g
q − m̂)2. Table 5 summarizes the

estimated quantities for each case in our framework.

Then, we study the impact of our transformations (permutation, weights varying,

and higher dimension) as compared to this standard deviation σ̂. More precisely, we

consider one operation, perform the same number of simulations, and store the minimum

and maximum values of the vector (SCRg
q)q=1,...,Q. This way, it is possible to define a

normalized range (NR) for these values, whose expression follows

NR =
max(SCRg)−min(SCRg)

m̂
.

If NR is lower than (2× 1.65× σ̂), the transformation is said to have a limited impact on

SCRg. Otherwise, it is considered as a significant impact. The worst cases correspond to

situations where NR is greater than (2× 2.89× σ̂). The multiplier 2 enables to take into

account the fact that there are two sources of uncertainty (genetic algorithm and simulated

dependence structure). All the results are stored in Table 6, where column ‘Imp.’ describes

the strength of the impact of the transformation under study : ‘0’ refers to a limited impact

Gaussian copula Student copula (3 d.f.)

Loss factors Xa
k Risk factors Xb

k Loss factors Xa
k Risk factors Xb

k

Example Dim. k m̂ σ̂ m̂ σ̂ m̂ σ̂ m̂ σ̂

SH
31 3 2566 0.06% 12119354 0.16% 2576 0.11% 12473296 0.32%

SH
32 3 2694 0.08% 13808174 0.19% 2813 0.20% 14641263 0.86%

SH
41 4 3319 0.10% 3532563 0.10% 3379 0.16% 3555426 0.33%

SH
42 4 2809 0.14% 3563414 0.31% 2997 0.29% 3578124 0.35%

SH
51 5 2605 0.09% 9359 0.68% 2677 0.18% 9411 0.59%

SH
52 5 3139 0.13% 8303 0.28% 3260 0.32% 8531 0.99%

SH
101 10 5825 0.26% 4174500 0.73% 6717 0.31% 4234635 1.14%

Table 5: Mean and standard deviation of the global SCR, SCRg (Q = 217 simulations).
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(NR < 2 × 1.65σ̂), ‘+’ means a significant impact (NR ∈ [2 × 1.65σ̂, 2 × 2.89σ̂]), and

‘++’ a very strong impact (NR > 2× 2.89σ̂).

5.3.1 Impact of permutations on the global SCR

On the 14 examples under study (7 pseudo-correlation matrices Gxy, times Gaussian

or Student copula), the permutation systematically causes a very strong impact on the

global SCR. This change can represent up to 6.7% in practice, although it should have

no theoretical impact. This is mainly due to the PSDization process that leads to select

different local minima after permutation is made. This highlights two phenomenons: the

need to control the bias coming from the initial choice of the insurer concerning the order

of risk factors, and the need to initially define PSD correlation matrices (revisiting the

experts’ opinions, and identifying incoherent correlation submatrices).

To have a more comprehensive view of this impact, Figure 5 illustrates it on the total

loss distribution (rather than the sole 99.5th percentile), with G52, H52 and considering

the aggregation of loss factors. The red curve corresponds to the loss distribution after

applying the permutation (1 7→ 5; 4 7→ 1; 5 7→ 4) to G52 in the case of a Gaussian copula,

whereas the blue one corresponds to the permutation (2 7→ 3; 3 7→ 4; 4 7→ 5; 5 7→ 2).

Figure 5: Illustration of the impact of the permutation on the loss distribution, with a

focus on the right on the area around the capital requirement (99.5 quantile)

5.3.2 Impact of the modification of weights on SCR

Our sensitivities relate to weighting coefficients varying in a given range. This range is

defined by weights between Hmin = [0](i,j)∈J1,nK2 and Hmax = [1](i,j)∈J1,nK2 . This sensitivity

is denoted by ‘W Sensi1’ in Table 6. On the 28 examples analyzed here (7 pseudo-

correlation matrices Gxy, times (Gaussian or Student copula), times (risk or loss factors)),
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17 cases lead to a very strong impact on SCRg. The range [SCRmin;SCRmax] can

represent more than 5.4% of the SCR, which is really huge in practice.

The same analysis with stronger constraints (weights belonging to an interval of width 0.2

around the initial weights, i.e. Hmin = H − [0.1](i,j)∈J1,nK2 and Hmax = H + [0.1](i,j)∈J1,nK2 ,

see ‘W Sensi2’ in Table 6 ) shows that on 28 examples, 7 cases lead to a very significant

impact on the final SCR, with a range likely to represent more than 4.7% of the SCR!

Once more, this shows the necessity to properly define correlation coefficients at the very

beginning.

5.3.3 Impact of adding a dimension to the correlation matrix

In practice, the insurer’s global loss often incorporates some negligible loss factor. In the

simple case where there are only loss factors affecting the global loss, it means that

P =
∑

j∈P,j 6=n+1

Xj + εXn+1,

where ε thus tends to 0. The limit case would be ε = 0, which means that the (n+1)th

risk factor would have no impact on the insurer’s loss, but still plays a role through

its presence in the correlation matrix and its impact in the PSDization process. The

correlation between this risk factor and others is fixed to 0.1 (as in Section 4.2). We

measure SCRg value before and after adding this dimension.

On the 28 examples analyzed, almost one third (9 cases exactly) leads to a statistically

significant impact on the final SCR (strong or very strong impact on SCRg). However,

except one particular case involving an impact value around 6%, most of the impacts seem

to be lower than with other operations. Once again, it is important to realize that this

transformation should have no theoretical impact. Of course, it suggests that it would be

worth conducting deeper analyses on this aspect, especially about adding more than one

dimension and changing the correlation coefficients of the added risk factor.

Concluding remarks and discussion

Insurers using internal models, as well as supervisors, are legitimate to ask themselves

about the robustness of their PSDization algorithm. Our study shows and highlights the

importance of PSDization through quantified answers to very practical questions on a

series of real-life examples. On the 98 (3*28+14) examples based on various configura-

tions (different copulas and ways to consider risks, see Table 6), approximately one half
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(exactly 47) generates significant impacts on the global SCR (up to 6%) when study-

ing sensitivities to our three tuning parameters (weights given to individual correlation

coefficients, permutations, and addition of a fictive business line). Knowing that these

transformations are either theoretically neutral, or should not lead to big effects on the

global capital requirement, this underlines that practicioners’ choices (risk managers, ac-

tuaries) are fundamental when performing risk aggregation in internal models. A strong

control of PSDization by supervisors thus makes sense. Proxy functions do not seem to

change conclusions here: SCRg sensitivity is similar when considering only loss factors.

The following best practices were identified: i) develop a sound internal control frame-

work on both the triggers generating negative eigenvalues (e.g. expert judgments) and the

PSDization step itself, ii) assess the need for adding a new risk (e.g. new business line)

in terms of its impact on the correlation matrix and thus on the global SCR. On the for-

mer point, independent validations and systematic reviews of the modifications brought

to the correlation matrix by the algorithm should be analyzed, and a wide number of

sensitivities has to be implemented to challenge the results. Concerning the dimension

of the risk matrix, there seems to be a trade-off to find: adding business lines allows to

increase granularity when describing the correlation between risks, but tend to cause more

disturbance on the individual correlation coefficients during PSDization. As usual, the

best choice lies in an intermediate dimension for the risk matrix.

Finally, this work could be extended in several ways, among which the definition of

algebraic tests to detect in advance inconsistencies in the experts’ choices; and a deeper

understanding of the permutations leading to the minimum or maximum values of the

SCR. In particular, if these permutations show some similar features, it would be possible

to define best practices when ordering risk factors.
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Embrechts, P., Puccetti, G., and Rüschendorf, L. (2013). Model uncertainty and VaR

aggregation. Journal of Banking & Finance, 37(8):2750–2764.

Filipovic, D. (2009). Multi-level Risk Aggregation. ASTIN Bulletin, 39(2):565–575.

Georgescu, D., Higham, N., and Peters, G. (2017). Explicit Solutions to Correlation

Matrix Completion Problems, with an Application to Risk Management and Insurance.

Technical report, Univ. of Manchester, Manchester Institute for Mathematical Sciences.

Higham, N. (2002). Computing the nearest correlation matrix - a problem from finance.

IMA Journal of Numerical Analysis, 22(3):329–343.
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A Pseudo-correlation matrices under study

Let us present the pseudo-correlation matrices, but also the weighting matrices coming

from expert judgments to be taking into account during PSDization.

Example #1:

G31 =


1 −0.9 −0.5

−0.9 1 −0.5

−0.5 −0.5 1

 H31 =


1 0.9 0.8

0.9 1 0.1

0.8 0.1 1


Example #2:

G32 =


1 −0.6 0.5

−0.6 1 0.9

0.5 0.9 1

 H32 =


1 0.1 0.1

0.1 1 0.9

0.1 0.9 1

 .

Example #3:

G41 =


1 0.9 −0.5 −0.7

0.9 1 0.2 0.1

−0.5 0.2 1 0.1

−0.7 0.1 0.1 1

 H41 =


1 0.9 0.2 0.9

0.9 1 0.2 0.1

0.2 0.2 1 0.1

0.9 0.1 0.1 1


Example #4:

G42 =


1 0.1 −0.8 0.75

0.1 1 0.2 0.1

−0.8 0.2 1 0.9

0.75 0.1 0.9 1

 H42 =


1 0.1 0.9 0.2

0.1 1 0.1 0.1

0.9 0.1 1 0.9

0.2 0.1 0.9 1

 .
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Example #5:

G51 =



1 −0.8 −0.9 −0.9 0.2

−0.8 1 0.9 −0.7 0.6

−0.9 0.9 1 0.2 −0.6

−0.9 −0.7 0.2 1 −0.1

0.2 0.6 −0.6 −0.1 1


H51 =



1 0.9 0.1 0.9 0.1

0.9 1 0.6 0.1 0.1

0.1 0.6 1 0.2 0.2

0.9 0.1 0.2 1 0.1

0.1 0.1 0.2 0.1 1


Example #6:

G52 =



1 0.7 −0.8 −0.8 0.2

0.7 1 0.8 −0.6 0.6

−0.8 0.8 1 0.2 −0.6

−0.8 −0.6 0.2 1 0.8

0.2 0.6 −0.6 0.8 1


H52 =



1 0.1 0.9 0.9 0.1

0.1 1 0.1 0.9 0.1

0.9 0.1 1 0.1 0.9

0.9 0.9 0.1 1 0.1

0.1 0.1 0.9 0.1 1


.

Example #7:

G101 =



1 −1 −0.28 0 0.63 −0.47 0.25 0.75 0 0

−1 1 0.77 0.5 −0.38 0.88 0.25 0.75 0.25 0.25

−0.28 0.77 1 0.25 0.25 0.17 −0.25 0.25 0.5 0.5

0 0.5 0.25 1 0.25 0.25 0 0.5 0.5 0.5

0.63 −0.38 0.25 0.25 1 0.83 0.25 0.75 0 0

−0.47 0.88 0.17 0.25 0.83 1 0.75 0.75 0 0

0.25 0.25 −0.25 0 0.25 0.75 1 0.5 0.25 0.25

0.75 0.75 0.25 0.5 0.75 0.75 0.5 1 0.25 0.25

0 0.25 0.5 0.5 0 0 0.25 0.25 1 0.75

0 0.25 0.5 0.5 0 0 0.25 0.25 0.75 1



H101 =



1 0.3 0.9 0.3 0.9 0.9 0.3 0.3 0.3 0.3

0.3 1 0.9 0.3 0.9 0.9 0.3 0.3 0.3 0.3

0.9 0.9 1 0.3 0.3 0.9 0.3 0.3 0.3 0.3

0.3 0.3 0.3 1 0.3 0.3 0.3 0.3 0.3 0.3

0.9 0.9 0.3 0.3 1 0.9 0.3 0.3 0.3 0.3

0.9 0.9 0.9 0.3 0.9 1 0.3 0.3 0.3 0.3

0.3 0.3 0.3 0.3 0.3 0.3 1 0.3 0.3 0.3

0.3 0.3 0.3 0.3 0.3 0.3 0.3 1 0.3 0.3

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1 0.3

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1



.
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B PSDized matrices, without weighting coefficients

We recall here that except for the highest dimension under consideration (dimension 10),

the three algorithms give the same solution.

Examples #1 and #2: SPA
31 = SN

31 = S31, and SPA
32 = SN

32 = S32, where

S31 =


1 −0.725 −0.371

−0.725 1 −0.370

−0.371 −0.370 1

 , S32


1 −0.436 0.343

−0.436 1 0.695

0.343 0.695 1

 .

Examples #3 and #4: SPA
41 = SN

41 = S41, and SPA
42 = SN

42 = S42, where

S41 =


1 0.711 −0.398 −0.573

0.711 1 0.122 0.003

−0.398 0.122 1 0.152

−0.573 0.003 0.152 1

 , S42 =


1 0.068 −0.481 0.444

0.068 1 0.165 0.133

−0.481 0.165 1 0.566

0.444 0.133 0.566 1

 .

Examples #5 and #6: SPA
51 = SN

51 = S51, and SPA
52 = SN

52 = S52, where

S51 =



1 −0.508 −0.830 −0.585 0.140

−0.508 1 0.651 −0.360 0.350

−0.830 0.651 1 0.148 −0.409

−0.585 −0.360 0.148 1 −0.221

0.140 0.350 −0.409 −0.221 1


S52 =



1 0.483 −0.544 −0.697 0.225

0.483 1 0.392 −0.392 0.282

−0.544 0.392 1 0.060 −0.337

−0.697 −0.392 0.060 1 0.513

0.225 0.282 −0.337 0.513 1


.

Example #7: on this example, the PSDized versions of the initial pseudo-correlation matrix differ

depending on the algorithm used.

SPA
101 =



1 −0.681 −0.310 −0.008 0.574 −0.241 0.158 0.390 0.017 0.017

−0.681 1 0.596 0.434 −0.010 0.684 0.233 0.390 0.269 0.269

−0.310 0.596 1 0.295 0.144 0.256 −0.222 0.293 0.480 0.480

−0.008 0.434 0.295 1 0.210 0.276 0.024 0.508 0.487 0.487

0.574 −0.010 0.144 0.210 1 0.520 0.308 0.710 −0.001 −0.001

−0.241 0.684 0.256 0.276 0.520 1 0.625 0.674 0.019 0.019

0.158 0.233 −0.222 0.024 0.308 0.625 1 0.537 0.226 0.226

0.390 0.390 0.293 0.508 0.710 0.674 0.537 1 0.245 0.245

0.017 0.269 0.480 0.487 −0.001 0.019 0.226 0.245 1 0.760

0.017 0.269 0.480 0.487 −0.001 0.019 0.226 0.245 0.760 1



;

SN
101 = SPA

101 .
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S101 =



1 −0.671 −0.313 −0.018 0.563 −0.243 0.159 0.396 0.010 0.010

−0.671 1 0.592 0.422 −0.110 0.676 0.233 0.392 0.262 0.262

−0.313 0.592 1 0.296 0.146 0.259 −0.223 0.294 0.479 0.479

−0.018 0.422 0.296 1 0.217 0.281 0.025 0.507 0.486 0.486

0.563 −0.110 0.146 0.217 1 0.521 0.310 0.704 −0.000 −0.000

−0.243 0.676 0.259 0.281 0.521 1 0.625 0.669 0.018 0.018

0.159 0.233 −0.223 0.025 0.310 0.625 1 0.5350.224 0.224

0.396 0.392 0.294 0.507 0.704 0.669 0.535 1 0.249 0.249

0.010 0.262 0.479 0.486 −0.000 0.018 0.224 0.249 1 0.761

0.010 0.262 0.479 0.486 −0.000 0.018 0.224 0.249 0.761 1



.

C PSDized matrices with weighted coefficients

Since the only method that allows to integrate weights when looking for the closest PSDized matrix is

the Rebonato-Jäckel algorithm, we have here seven results coming from our seven examples.

Examples #1 and #2:

SH
31 =


1 −0.848 −0.505

−0.848 1 −0.029

−0.505 −0.029 1

 , SH
32


1 −0.278 0.187

−0.278 1 0.892

0.187 0.892 1

 .

Examples #3 and #4: SPA
41 = SN

41 = S41, and SPA
42 = SN

42 = S42, where

SH
41 =


1 0.844 −0.401 −0.707

0.844 1 −0.029 −0.329

−0.401 −0.029 1 0.216

−0.707 −0.329 0.216 1

 , SH
42 =


1 0.041 −0.614 0.041

0.041 1 0.129 0.144

−0.614 0.129 1 0.763

0.041 0.144 0.763 1

 .

Examples #5 and #6: SPA
51 = SN

51 = S51, and SPA
52 = SN

52 = S52, where

SH
51 =



1 −0.822 −0.795 −0.811 0.132

−0.822 1 0.834 0.353 0.155

−0.795 0.834 1 0.371 −0.412

−0.811 0.353 0.371 1 −0.193

0.132 0.155 −0.412 −0.193 1


SH
52 =



1 0.569 −0.714 −0.776 0.310

0.569 1 0.049 −0.555 0.206

−0.714 0.049 1 0.213 −0.610

−0.776 −0.555 0.213 1 0.339

0.310 0.206 −0.610 0.339 1


.
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Example #7:

SH
101 =



1 −0.709 −0.294 −0.016 0.547 −0.313 0.116 0.366 0.012 0.012

− 0.709 1 0.647 0.389 −0.158 0.660 0.236 0.355 0.291 0.291

− 0.294 0.647 1 0.326 0.006 0.251 −0.226 0.334 0.468 0.468

− 0.016 0.389 0.326 1 0.200 0.299 0.034 0.496 0.479 0.479

0.547 − 0.158 0.006 0.200 1 0.539 0.355 0.719 −0.008 −0.008

− 0.313 0.660 0.251 0.299 0.539 1 0.582 0.657 0.029 0.029

0.116 0.236 −0.226 0.034 0.355 0.582 1 0.561 0.220 0.220

0.366 0.355 0.334 0.496 0.719 0.657 0.561 1 0.257 0.257

0.012 0.264 0.468 0.479 −0.008 0.029 0.220 0.257 1 0.769

0.012 0.264 0.468 0.479 −0.008 0.029 0.220 0.257 0.769 1



D Genetic algorithms used in this paper

D.1 Algorithm with permutations

(Genetic algorithm for permutations). Implement the following steps:

1. (Creation of the initial population): Simulate a random population of N permutations, with the

identity: {σk ∈ Sn|k ∈ J1;NK}. We have chosen to use N = 6 for stability purposes and compu-

tational feasibility.

2. (Ranking of the population): Use the function which associates to each permutation the associated

SCR (for fixed marginals, fixed weighting matrix, given loss function and copula) to rank the

individuals of the population.

3. (Reproduction of two individuals): For any couple (σ1, σ2) ∈ S2
n, create two new individuals by

the following permutation composition : σ′ = σ1 ◦ σ2 and σ′′ = σ2 ◦ σ1. If the two permutation

commute, compose one of them by any transposition σ′ ← τ ◦ σ′.

4. (Mutation) : The mutation of a permutation corresponds to its composition by a random trans-

position τ = (k, k + 1).

5. (Evolution of the population) : The population evolves without any of its individuals disappear-

ing, which enables to obtain at the end of the algorithm both a minimum and a maximum (not

corresponding necessarily to the absolute extrema - but only the results of the simulation).

6. (End of the algorithm) : Terminates when a maximum number of iterations is obtained (5).

D.2 Algorithm with confidence weights

(Genetic algorithm for weights). Implement the following steps:
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1. (Creation of the initial population): Simulate a random population of N weighting matrices be-

tween Hmin and Hmax initially chosen: {Hk ∈ [−1; 1]n×n|k ∈ J1;NK}. We have chosen to use N

= 8 for stability purposes and computational feasibility.

2. (Ranking of the population): Use the function which associates to each weighting matrices the

associated SCR (for fixed marginals, given loss function and copula) to rank the individuals of the

population.

3. (Reproduction of two individuals): For any couple (H1, H2) ∈ ([−1; 1]n×n)2, create two new

individuals H’ et H” in the following manner (with H[,j] designating the j-th column of the matrix

H, and E(x) the integer part of x):{
∀j ≤ E(n

2 ), H ′[, j] = H1[, j], H ′′[, j] = H2[, j]

∀j > E(n
2 ), H ′[, j] = H2[, j], H ′′[, j] = H1[, j].

4. (Mutation) : The mutation of a weighting matrix corresponds to the random modification of a

coefficient of the matrix H considered. The mutation consists in simulating a random coefficient

between 0 and 1.

5. (Evolution of the population) : The population evolves without any of its individuals disappear-

ing, which enables to obtain at the end of the algorithm both a minimum and a maximum (not

corresponding necessarily to the absolute extrema - but only the results of the simulation).

6. (End of the algorithm) : The algorithm terminates when a maximum number of iterations is

obtained (5).
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