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Ismael Lemhadri∗
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Department of Applied Mathematics, Ecole Polytechnique

Abstract

In this article we revisit the classical problem of market impact, reviewing the recent literature both empirical
and theoretical. We propose a new agent-based model where market participants follow a mean-reversion process.
Our model, inspired from [DBMB], draws from the so-called mean �eld approach in Statistical Mechanics and
Physics ([Lasry and Lions]). It assumes that a large number of �agents� interact in the order book and by taking
the �continuum limit� (when the number of agents goes to in�nity), we obtain a set of nonlinear partial di�erential
equations. And we explicitly solve them using Fourier analysis. One could talk as well of a �micro-macro� approach
of equilibrium, where the market price is the consequence of each (�microscopic�) agent behaving with respect to
his preferences and to global (�macroscopic�) information. This model accomodates very well the concept of market
impact, leading to an integral equation satis�ed by the impacted price. We prove the existence of a solution to
this integral equation. And we establish that the impact of a metaorder decreases when either the volatility of the
underlying asset or the agents' reassesment intensity increases. In addition, we give various limiting cases, examples
and possible extensions.

Keywords: agent-based models, latent order book, price formation, market impact, reaction-

di�usion, optimal execution strategies, market microstructure, mean-�eld games.

Résumé

Nous nous intéressons ici au problème classique de l'impact de marché. Nous commencons par synthétiser la
littérature récente à la fois théorique et empirique. Nous proposons ensuite un nouveau modèle multi-agents pour
le carnet d'ordre où les agents obéissent à un processus de retour à la moyenne. Notre modèle, inspiré de [DBMB]
et de la théorie des "jeux à champ moyen" popularisée par [Lasry and Lions], conduit à une équation aux dérivées
partielles que nous résolvons explicitement par analyse de Fourier. Nous introduisons ensuite un métaordre et en
déduisons une équation intégrale dé�nissant l'impact de marché. Puis nous prouvons l'existence d'une solution à
cette équation et nous explicitons son comportement dans di�érents régimes, retrouvant ainsi un impact concave.
En particulier, nous montrons que l'impact décroit avec la volatilité de l'actif et la force de rappel. En�n, nous
explorons plusieurs cas limites au travers d'exemples numériques et d'approximations asymptotiques.

Mots-clés: modèles multi-agents, carnet d'ordres latent, formation des prix, impact de marché,

réaction-di�usion, stratégies optimales d'exécution, microstructure de marché, jeux à champ moyen.
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Disclaimer

Any opinion, �ndings, and conclusion or recommendations expressed in this material are those of the
author and do not necessarily re�ect the view of Jump Trading International. Examples of analysis
performed within this article are only examples. They should not be utilized in real-world analytic
products as they are based only on very limited assumptions. Assumptions made within the analysis
are not re�ective of real market conditions and should not be taken as such.
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Organization of the paper

The �rst section reviews some basic facts about modern �nancial markets. It can be skipped by the
experienced reader. First, it introduces the reader to the notion of order book and gives a short
historical summary of its evolution. It also presents the problems of liquidity risk and market impact.
The next section reviews our main reference, [DBMB], summarizing its main ingredients and �ndings.

The remaining sections present our contributions, both theoretical and empirical.
In section 3 we generalize the original model by allowing agents to cancel some of their orders and

submit new orders.
Section 4 is devoted to the mathematical analysis of the impacted price equation, and the existence

of a solution is established using Banach's �xed-point theorem.
In section 5, we discuss various approximations stated without proof in [DBMB]. We explicit the

assumptions under which they are valid and summarize the resulting formulations of the impacted
price and the cost of execution. In particular, we show how concave impact arises in di�erent trading
regimes.
In section 6, we propose our main improvement of the model, allowing the agents to exhibit a mean-

reversion behavior towards the �e�cient� price. We show how a metaorder impacts the price in this
new framework. And we analyse mathematically the resulting equations.
We conclude by indicating various directions and potential extensions that can be (or need to be)

investigated.
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1 Introduction

1.1 Basic facts

The limit order book forms the basis behind most modern �nancial networks. Passive orders cor-
respond to outstanding orders placed in the book and awaiting executing. These orders can only be
placed on a predetermined price grid whose size is called the tick size. Therefore a limit order cor-
responds to a disclosed buy/sell intention for a �xed volume and at a �xed price. One of the most
common ways of ordering orders that fall at the same price level is the �rst-in-�rst-out� time priority
queue. The bid corresponds to the highest available price for a buy limit order, and the ask to the
lowest available price for a sell limit order.
A trader who wishes to buy or sell a certain volume can also place an aggressive order that

consumes the best available limit orders. For instance, an aggressive buy order �rst consumes the
order at the best ask price, then the ask price plus one tick, and so on until executing the order's
volume.

Figure 1.1: Illustration of the activity and agent types within a limit order book

Passive limit orders may be viewed as the fundamental building block of the order book.Their
interaction with aggressive orders determines the bid and the ask and gives rise to the very notion
of price. The main advantage of aggressive orders is that they are executed immediately. Their cost,
however, depends on the structure of the orderbook. On the other hand, the cost of a passive order is
determined in advance, but its execution time is uncertain. Choosing between passive and aggressive
orders is generally a tradeo� between the price and the execution time, but a passive order also exposes
its sender to adverse selection (as de�ned in section 1.5.3).
Typically, if the current best bid/ask prices in the book are bt, at , and a new limit buy order at

price x is submitted, then:

• if x ≥ at, the transaction is executed immediately (entirely or partly depending on the available
volume and the speci�c type of order sent) by matching its volume with the available ask liquidity.

• if bt < x < at , the transaction reduces the bid-ask spread from at − bt to at − x but is not
executed.

4
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• if x≤ bt, the transaction is queued below existing orders in the bid book.

The evolution of the price when such a transaction is executed depends on the order matching rules
of the LOB. If the total size available for sale at x was higher than the volume of the new transaction,
then the new market price is usually set to x. Price changes also occur whenever the total volume
available at a price x is cancelled.
To help traders assess the current state of the market, the exchanges typically provide electronic

feeds that display the current state of the order book, i.e the di�erent prices and the corresponding
available volumes.

1.2 Structure of the order book

A usual order book allows the following types of actions:

• New limit sell order

• New limit buy order

• New market buy order

• New market sell order

• Cancellation of an existing order in the book

Figure 1.3: A market sell order with size of 1200, a limit ask order with size of 400 at 9.08, and a
cancellation of 23 shares of limit ask order at 9.10, in sequence.

In practice, a wide variety of orders are possible. In 2007, a new European directive called MiFID
(for Markets in Financial Instruments Directive) was enacted with the goal of increasing competition
between exchanges, which at the time corresponded to the large European stock markets1. This has led
to the emergence of new exchanges that set di�erent trading rules in order to attract more clients and
bring more liquidity. Worlwide, exchanges decided to drop transaction fees for large volume traders,
and created new types of limit orders: e.g iceberg orders, orders placed in a dark pool (where the entire
liquidity is hidden until it is executed, i.e. market participants can send orders but cannot read the
state of the book), orders indexed on the NBBO2, etc.

1A revision of this directive called Mi�d II is set to take e�ect in 2018.
2National Best Bid and O�er
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Figure 1.2: Illustration of the concept of order book. The vertical axis represents the available volume for any

given price, and each order is represented by a rectangle with height proportional to the volume. In

a price-time priority market, a new incoming order enters the queue below the existing orders at the

same price, and priority is given to the orders with the highest bid/the lowest ask. The di�erence

between the highest bid-price and the lowest ask-price is the spread. Source: [Gould et al.]

1.3 How to de�ne the �price�?

It is clear that the dynamics of the orderbook at the micro-level are not accurately represented by
the Black-Scholes price. Because the very notion of market price is ill-de�ned in the framework of
orderbooks, several de�nitions can be adopted:

1. The price at which transactions happen. This de�nition, perhaps the most intuitive, comes with
two drawbacks. The �rst is that it is only de�ned at the (discrete) times of transactions. The
second is that transactions take place from both sides of the spread, leading to a relatively high
mean-reversion at small time scales.

2. An average of transaction prices. Also called Volume-Weighted Average Price or Time-Weighted
Average Prices, depending on whether the mean is taken volume-wise or time-wise. This de�ni-
tion of prices is often used as a benchmark for assessing a broker's execution strategy.

3. The mid-price, de�ned as the middle of the spread. This �virtual� price allows to somewhat
denoise the microstructure noise due to the bid-ask spread.

4. The micro-price, also computed as an average of the bid and the ask, but weighted by the inverse
of the volumes. This de�nition is used as an indicator in the context of price prediction, as the
imbalance of the orderbook should give more information that just the transaction price: if there
are many more buyers in the bid side than sellers in the ask size, one can expect the price to rise
in the near future.
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1.4 Overview of the market ecosystem and participants

Historically, the task of supplying liquidity by permanently maintaining limit orders in the book was
assumed by designated market makers who, in exchange for this service, kept a spread, namely, they
o�ered to buy at a price lower than their sell price, leading to pro�t on each transaction. All other
actors were liquidity takers, being forced to interact with a market maker. In reality, the idea of market
makers pro�ting on each transaction due to the bid-ask spread is hindered by the challenge of adverse
selection: if an informed trader has an accurate prediction about the future evolution of the price
(while the market maker is less informed and has not updated his quotes accordingly), he can pro�t
by entering a transaction with them.
To reduce his information mismatch, the market maker seeks to process any new piece of public

information as soon as possible, and re-adjust the quotes they are o�ering accordingly. By reducing
the latency between di�erent trading platforms up to the speed of light, this type of arbitrage has
allowed cross-market synchronization to happen at the scale of microseconds.
The market-making business was profoundly a�ected by the decimalization rule that came into e�ect

in 2001 in the United States, which required stock exchanges to quote prices with a minimum tick size
of 0.01$ instead of the prevailing 1

16th of a dollar. As the bid-ask spread got narrower, this led to
a drastic reduction in pro�t for traditional market-makers. Since then, the market-making business
has greatly expanded. In particular, high-frequency traders have come in and, through the execution
of massive volumes, they were capable of operating at such small incremental margins. The de�ning
di�erence between a human trader and an HFT is that the latter 1) has very short portfolio holding
periods, 2) operates at a very short time scale, where human traders cannot compete. The speed
requirements of HFT problems require signi�cant hardware and software investments. However, the
recent technological developments have lowered the barriers to entry into HFT. Therefore, the market-
making business has become widely diversi�ed and fragmented, and the ever-increasing competition
between liquidity providers led to even more abrupt reductions in the spread size: from≈ 70 basepoints3

between 1900 and 1980, it has shrunk to a few basepoints today. We refer the reader to [Loveless1,
Loveless2] for a concise summary of the historical development and technological challenges of high-
frequency trading.
Due to the nature of their activity, market-makers are not typically a�ected by long-term trends in

prices, as they operate on a much more �local� level. On the other hand, the second class of market
participants, that of large investors, e.g. institutional investors, is typically in the opposing situa-
tion. This class roughly encompasses brokerage �rms, asset management funds, traditional investment
banks and hedge funds, all acting on behalf of their clients. For our purposes, we need not make a
speci�c distinction between these actors. To understand the di�culty that such an investor faces when
executing a large order, we need to introduce the notion of liquidity risk.

1.5 Liquidity risk and market impact

The concept of �liquidity risk� re�ects the extra cost incurred during a buy (resp. sell) order that is
due to the scarcity of supply (resp. demand). In the most extreme cases, it can even mean that it is
impossible to trade an asset due to the absence of counterparty. One striking example is that during
the subprimes crisis, products such as CDOs became practically unsaleable. Another example is that
it can be impossible to convert certain currencies that are very weak in US dollars or euros.
It is the case, however, that the majority of the assets on a given market are liquid enough to allow

to buy and sell small volumes at a price very close to the listed price. Therefore liquidity risk is often
insigni�cant for a small trader. When a trader wishes to execute large volumes, however, the impact
of their orders is noticeable and must be taken account as an additional cost.

31 bp = 1 basepoint = 0.01% of the trading currency
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In summary, when a trader seeks to execute a large transaction, the scarcity of instantaneous liquidity
means that the order must be executed incrementally. Hence the importance of devising execution
strategies that minimize the cost to the investor: given a time horizon and a volume, the investor/ the
broker distributes the execution over time so as to obtain the best average execution price. To do so,
he can decide to add limit orders to the book, or to send market orders. It is important to note that,
generally speaking, the market reacts to all types of orders and not just to market orders.
The concept of price impact is fundamental when it comes to designing execution strategies for

large orders. Since the available liquidity at a given time is not su�cient to absorb the entire order,
the trader must split his order into several chunks to be executed incrementally. Every time a small
order - also called child order - is executed, the price is mechanically pushed in its direction, making
the average execution price higher than the decision price and leading to the notion of execution
shortfall. If the market can �guess� that the trader intends to buy (resp. sell) large quantities, he can
be outrun by informed traders who push the price up (resp. down) in order to bene�t from his orders.
Without such price pressure, all trading strategies would be in�nitely scalable, as the cost of trading
would remain unchanged despite the size of the trade increasing. This does not seem plausible and
contradicts the fact that at any given time, there are only limited amounts of liquidity available in the
real order book.
Understanding the determinants of impact is crucial for several reasons:

• From a theoretical point of view, modeling the impact means understanding how prices change
and how much they re�ect some �fundamental price�. It requires to develop a �micro-model� for
the statistics of prices.

• From a practical point of view, price impact can represent a large fraction of transaction execution
costs. Assessing the impact of a trading strategy is of utmost importance for quantitative asset
managers, since too much trading (in volume and/or frequency) can signi�cantly deteriorate the
performance of a strategy, or even turn a winning strategy into a money-losing one.

• From the regulatory point of view, acknowledging the existence of impact means that fair value
accounting with mark-to-market prices is over-optimistic. A second important point is that
trading costs may prevent investors from executing certain trades, so that a better understanding
of market impact should lead to new market microstructure regulations that lower certain trading
costs to improve the allocation of investors [Foucault and Menkveld]. Finally, it is important
because it explains the connections between market design and systemic risk.

1.5.1 The empirical square root law

Let I(Q) be the average price variation after executing a volume Q: I(Q) =< pT − p0|Q >, where p0
(resp. pT ) is the price of the �rst (resp. last) child order. Then the typical market impact �law� reads:

I(Q) = Y σ

√
Q

V
(1.1)

where Q is the total executed volume, V is the (average) daily traded volume, σ the daily volatility,
and Y a homogeneization constant of order 1.
This near universal empirical law has been empirically veri�ed for very diverse markets and instru-

ments: stocks [Lehalle et al.], futures contracts, options [Tóth et al.], and does not seem to depend on
geographical zone or time period (as can be checked by comparing [Barra, Almgren], that use pre-2004
data, to [Mastromatteo et al., Deremble], that use post-2007 data).
The square-root law implies that the impact of trading only depends on the traded volume, and

not on the duration of execution and the execution path. Nevertheless, real data shows that impact
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does depend on the execution path. This �law� should therefore be seen as a (good) �rst-order ap-
proximation and a way to benchmark market impact models. It indicates that markets are inherently
fragile: the impact of vanishingly small volumes is disproportionately high. While this result may seem
counterintuitive and is in sharp contrast with the classical economic literature (which asserts linear
impact, [Kyle]), it is perfectly in accordance with the fact that the instantaneous supply of liquidity is
limited in real markets.

1.5.2 Why concave impact?

This empirical law asserts that impact is non-additive but strictly concave: after having traded a
volume Q

2 , the next
Q
2 will have less impact on the price.

One justi�cation for this is to consider impact as a price surprise due to new information. If some
traders have superior information about the �fair price� of the asset in the future, then the observation
of an excess buy demand allows the market to guess this information. The fact that this surprise
decreases marginally with the metaorder's volume leads to a concave impact.
The model we develop provides an alternative vision where impact is a purely mechanical phe-

nomenon, the universal mechanism by which prices respond to traded volumes. The concavity means
that there must be additional volume available deeper in the book, which is however not observable
and only appears when we push the price. This justi�es the elaboration of a model where orders to
buy/sell are not always visible but only reveal themselves as the transaction price moves closer to their
limit price, which leads to the framework of latent order books.

1.5.3 Modelling strategies

Modeling or not market impact depends on the underlying problem settings and de�nitely depends on
the time horizon of the trade. Within the Black-Scholes framework where there are no transaction costs
and no bid-ask spread, liquidity risk is ignored, i.e we assume in�nite liquidity at the market price.
This framework is reasonable and has proven successful, since the pioneering work of Black-Scholes
[BS] and Merton [M] to tackle problems in derivatives pricing and hedging. Despite the limitation they
su�er, they may be enough for an investor who wishes to assess its impact over a long period ( of a
few weeks at least), and who would estimate it roughly as a quantity that only depends on the traded
volume.
However, when the estimation of impact becomes critical at lower time horizons, e.g when the im-

pact becomes the main factor that prevents a trading strategy from being scalable, the need arises for
a more realistic model of stock prices, in which can be incorporated the stylized facts and universal
statistical features observed on all �nancial assets.

Classical models: from Kyle to the propagators

The �rst and simplest market impact model is probably due to [Kyle]. It assumes that impact is
permanent and linear both in time and in the traded volume. A single trade of volume v and sign
ε leads to a price move ∆p = λεv for some constant λ. This leads to a total price change between
times 0 and T : pT = p0 +

∑
0≤t≤T λεtvt. If the price (pt)t is to follow a random walk, then the signs

of the trades (εt)t should be uncorrelated. However, real data shows that orders signs are correlated
on longer timescales. Furthermore, while the assumptions of linearity can be justi�ed within the Kyle
model, real data shows that the impact of trading follows a near square-root law.
This is closely related to a general family of models that fall under the category of propagator

models [Almgren, Bouchaud0, JoR32, Ow]. Given a positive, non-increasing function G : R+ → R+,

the idea is to write the impact of a series of trades with given volume and sign
(

(qs, εs)
)
s≥0

on

the price at time t as
∑

s<t εsqsG(t − s). This can be stated equivalently in the continuous case as

9



It =
∫ t
0 dsG(t− s)ms where ms represents the instantaneous trading rate. The requirement that G be

non-increasing represents the decay of impact with time. The fact that lim
+∞
G =0 means that the impact

vanishes at longer timescales [see 5.1 for a discussion on transient and permanent impact]. [?]provides
a good summary of propagator models. The propagator family has the advantage of being easy to
design and to lead to tractable analytical results. However, it does not provide any explanation for the
origin of impact, which fundamentally lies in the price formation process. This is what the last class
of models aims at improving.
This last category is more structural and can be described as statistical models of supply and

demand [DBMB, Mastromatteo et al., Deremble, DB]. Such models start by describing the spatio-
temporal evolution of the order book which leads en passant to an accurate description of market
impact. This is the category to which our main paper belongs through the concept of the latent order
book.

A new idea: the latent order book

When working at the mesoscopic time-scale, the study of the visible order book is no longer su�cient,
as it does not re�ect the true supply and demand in the market. In reality, the visible order book
mostly displays the activity of high-frequency participants, whereas the intentions of low-frequency
actors remain hidden up till times very close to their execution. The fundamental reason for this
is the asymmetry between liquidity providers and liquidity takers. In [Glosten et Milgrom], Glosten
and Milgrom �rst introduced the notion of adverse selection, the idea being that submitting limit
orders exposes the trader to the posisibility that another trader, who has superior private information
about the future evolution of the price, engages in a transaction with her. Yet an order can only take
place if a liquidity provider has already submitted a limit order book. Therefore, liquidity providers
must factor in these adverse selection costs when submitting their limit orders, hence determining the
bid-ask spread.
As a consequence of the adverse selection risks, most of the participants' intentions are not clearly

displayed in the order book, leading to low visible liquidity and market order splitting. It is in this
regard that was introduced the concept of the latent order book as a means to describe the true sup-
ply and demand of �nancial markets by collecting the expected/intended trading volumes and prices
for all market participants.
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Figure 1.4: Latent vs real order book. Source:I. Mastromatteo

Notations.
LOB stands for limit order book and LLOB for latent limit order book.
δ denotes the Dirac distribution.
We use the French notation for open and closed intervals, e.g [a, b[ is closed to the left and open to

the right.
The convolution of two square-integrable complex-valued functions is the function f1 ? f2 : x 7→∫ +∞
−∞ f1(y)f2(x− y)dy.
Whenever working with �nite di�erence schemes, ∆T and ∆x generically stand for time and space

discretization steps, respectively. Since our schemes are unconditionnally stable, we do not enforce any
particular conditions on the discretization.
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2 The latent order book model

2.1 Introduction and notations

The main motivation behind the concept of latent order book is that the real, displayed order books
contain imperfect information, making a realistic and comprehensive analysis very di�cult. The latent
limit order book, �rst introduced in the paper [Deremble], attempts to circumvent these game-theoretic
issues.Our model, [DBMB], takes place in this LLOB framework. It builds upon coupled continuous
reaction-di�usion equations for the dynamics of the bid and the ask sides of the latent order book and
is amenable to exact analytical treatment of the price trajectory for any execution pro�le. In the case
of slow execution, we recover a linear propagator that relates past orders to the current price through
a decay kernel.

At any given price x, at time t, we let ρB (resp. ρA) be the density of buy (resp. sell) orders.
The current market price is de�ned as the point such that ρB(pt, t) = ρA(pt, t).
Assuming that the order book is symmetric from the bid and ask regions, let us take the example

of the bid density, whose evolution is modeled with four components:

• The addition of new buy orders with a term λ1{x<pt};

• the cancellation of already existing orders with a term −νρB;

• the matching of already exisiting orders: whenever the market price changes, this leads certain
exisiting orders to be activated as they cross the bid-ask boundary. This reaction term is given
by κρAρB, and

• the mechanical evolution due to random �uctuations in prices, which leads to a drift-di�usion at
the di�usion rate D.

2.2 The drift-di�usion term

We postulate that a large number of in�nitesimal agents with heterogeneous beliefs, interact in the
market. The idea is that each agent has its own assessment of the �perfect price�, and this assessment
evolves with time. This evolution is modeled as a drift-di�usion phenomenon: the drift is due to
external information (e.g public news), whereas the di�usion refers to the endogeneous movements of
the agents. Once more, we do not consider a single seller or buyer but continua of them through their
densities and the price is then determined by a dynamic equilibrium.

Figure 2.1: A white �particle� di�using from the bid side, and a black particle di�using from the ask
side, annihilate when they bump into each other near the market price. The annihilated
particles correspond to a transaction happening in the (real) order book. Source: [Bak]

Let pi,t denote the reservation price (i.e the �perfect price� at which he is willing to trade) of the
i-th agent. Then the reservation price evolves between times t and t+ dt following the dynamics

pi,t+dt = pi,t + βiξt + ηi,t.

12



Here the drift ξt represents the new (�fundamental�) information, common to all market participants,
and βi the sensitivity of the i-th agent to the news. The second term ηi,t (e.g a centered Gaussian
variable) refers to the di�usion. It can be interpreted as a noise because the agents only have an
approximate estimate ξ̂i,t of the �fundamental� value ξt.
In the �continuum limit� where the number of agents goes to in�nity, we obtain the dynamics of the

density of the buy (and ask):

ρ(x, t+dt) =

∫
β
P(dβ)

∫
η
P(dη)

∫ +∞

−∞
dyρ(y, t)δ(x−y−βξt−η) =

∫
β

∫
η
ρ(x−βξt−η, t)Π(β)R(η)dβdη,

where Π and R are the probability density functions of β and η respectively.
Consequently, a second-order expansion leads to

ρ(x, t+ dt) = ρ(x, t)− ∂ρ

∂x
(x, t)

(
ξtE[β] + E[η]

)
+

1

2

∂2ρ

∂x2
(x, t)

(
ξ2tE[β2] + E[η2]

)
.

It is reasonable to assume that the agents' assessments sum up to an unbiased assessment, i.e
E[β] = 1,E[η] = 0.
Letting ξt = Vtdt and Var(η) = 2Ddt = σ2dt , we may neglect the term ξ2t . We obtain the following

partial di�erential equation:

∂ρ

∂t
(x, t) = −Vt

∂ρ

∂x
(x, t) +D

∂2ρ

∂x2
(x, t).

Vt is the instantaneous movement in the fundamental price, so that the fundamental price is p̂t =∫ t
0 Vsds. p̂t can be taken as, e.g, an additive Brownian motion.4

2.3 The order book in the absence of meta-orders

The previous ingredients sum up to{
∂ρB
∂t (x, t) = −Vt ∂ρA∂x (x, t) +D ∂2ρA

∂x2
(x, t) + λ1{x≤pt} − νρB(x, t)− κρA(x, t)ρB(x, t)

∂ρA
∂t (x, t) = −Vt ∂ρA∂x (x, t) +D ∂2ρA

∂x2
(x, t) + λ1{x≥pt} − νρA(x, t)− κρA(x, t)ρB(x, t)

If we now introduce ϕ = ρB − ρA, we obtain the simpler PDE

∂ϕ

∂t
(x, t) = −Vt

∂ϕ

∂x
(x, t) +D

∂2ϕ

∂x2
(x, t) + λsign(pt − x)− νϕ(x, t),

where the market price pt is de�ned by the equality ϕ(pt, t) = 0.
At this stage, we can perform a change of reference frame by letting y = x − p̂t and g(y, t) =

ϕ(y + p̂t, t). If we still denote g by ϕ (for notational simplicity) this leads to:

∂ϕ

∂t
(y, t) = D

∂2ϕ

∂y2
(y, t) + λsign(pt − p̂t − y)− νϕ(y, t). (2.1)

This equation, which is at the core of the present model, describes the structural evolution of the
LLOB around the fundamental price p̂t. However, p̂t no longer appears in the above equation, meaning
that the evolution of the order book can be treated independently from the dynamics of the price itself,
as long as it is studied in the reference frame of the price. Even if the price is random, e.g. a Brownian
motion, the shape of the order book is still deterministic. This is due to the fact that we allow
microscopic orders. Still, a relationship exists between the two through the factor D, which is related
to the variance of the price process.

4Note that in this case, the change of reference performed in section 2.3 leads to an Itô term which adds up to D.
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In the absence of market impact, it should hold that pt = p̂t. This allows to study the stationary
density ϕst obtained by letting t→ +∞, which satis�es

|D∂
2ϕst
∂y2

(y, t) = λsign(y) + νϕst(y, t). (2.2)

Since the LLOB is symmetric in the stationary case, ϕst is an odd function, and ϕst(0) = 0. There-
fore, ϕst(y ≥ 0) = −λ

ν (1− e−γy) and ϕst(y ≤ 0) = λ
ν (1− eγy), where γ =

√
ν
D .

2.4 Derivation of the impact equation

The cancellation rate ν de�nes the �memory� of the order book as τν = ν−1: for times much larger
than τν , all orders in the LLOB have been cancelled and replaced by other ones so that its �memory�
has been wiped. This time scale is of crucial importance because concave impact can hold only in the
case when the duration of the metaorder satis�es T � τν , so that the LLOB retains the �information�
that a metaorder is being executed. We therefore restrict the dynamics to the limit ν → 0 such that
times are small compared to τν . Since the deposition rate must not exceed the cancellation rate too
much in a balanced order book, this means we should also take the limit λ → 0. Note that in the
regime where ν → 0, ϕst becomes a simple linear function of y. This observation leads us to enforce
a speci�c boundary condition on ϕ. If we simultaneously shrink the cancellation and deposition rates
λ, ν → 0 in 2.1, the evolution becomes

∂ϕ

∂t
(y, t) = D

∂2ϕ

∂y2
(y, t), (2.3)

which is just the heat equation.
This linear approximation can be justi�ed by recalling the empirical square root law. If we assume

that the current order book ϕ = ρB − ρA is linear, say ϕ(x) = −L(x− p0) , then buying a volume Q

moves the price from 0 to the price p+ such that
∫ p+
p0

ϕst(y)dy = Q, i.e p+ =
√

2QL , hence a square-
root impact. Note that the equilibrium price p0 is well-de�ned here only if execution takes place
instantaneously, or at least that the characteristic duration at which the equilibrium moves is much
larger than the duration of the metaorder. In practice, however, meta-orders are split into several child
orders and there is no equilibrium price at which the market pauses. The di�usive nature of prices
means that between the beginning and the end of execution, the price shift pT − p0 is due to many
other variations than the impact of our trade. Consequently, the above argument is only valid locally
to estimate the impact of one child order, which concludes the justi�cation of the linear approximation.
We can explicitly add the contribution of the metaorder as follows. We consider some �xed horizon

T > 0. When the agent executes a metaorder (given by its execution rate, a continuous function
m : [0, T ]→ R)then the evolution becomes

∂ϕ

∂t
(y, t) = D

∂2ϕ

∂y2
(y, t) +mtδ(y − yt), (2.4)

with the time boundary condition

ϕ|t=0(y) = −Ly on R.

Note that y − yt = x − pt, therefore the Dirac term simply means that the child order at time t is
executed at the market price x = pt. The boundary condition is equivalent to assuming that far from
the current price, the orderbook replenishes at a constant rate, so that ∂ϕ

∂y (y, t) →
y→±∞

−L , where

L = |∂ϕst∂y (y = 0)| = λγ
ν = λ√

νD
. We obtain the solution of the equation 2.4 as
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ϕ(y, t) = −Ly +

∫ t

0

dsms√
4πD(t− s)

e
− (y−ys)2

4D(t−s) ,

leading to the following integral equation for the impacted price:

yt =
1

L

∫ t

0

dsms√
4πD(t− s)

e
− (yt−ys)

2

4D(t−s) . (2.5)
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3 The deposition-cancellation model

In order to obtain the main di�erential equation (2.4), the authors neglected the e�ect of deposition
and cancellation of new orders. Our contribution here is to re-integrate them and deduce the dynamics
of the LLOB and the impacted price.
The full PDE reads:

∂ϕ

∂t
(y, t) = −νϕ+D

∂2ϕ

∂y2
(y, t) + λsign(y) +mtδ(y − yt). (3.1)

Using the initial condition ϕ(y, 0) = −Ly, this equation can be solved explicitly by working in
Fourier space. The explicit steps of the derivation are outlined in section 6.2.2. Letting g(y, s) =

e−νs
(

(λsign(y) +msδ(y − ys)
)
and E1 : (y, t) 7→ e−νt 1√

4πDt
e−

y2

4Dt , the solution takes the form

ϕ(y, t) =
(
ϕ(·, 0) ? E1(·, t)

)
(y) +

∫ t

0
(g(·, s) ? E1(·, t− s))(y)ds.

Hence

ϕ(y, t) = −Lye−νt +

∫ t

0

dse−ν(t−s)√
4πD(t− s)

(
mse

− (y−ys)2
4D(t−s) + λ

(∫ +∞

0
dxe
− (y−x)2

4D(t−s) −
∫ 0

−∞
dxe
− (y−x)2

4D(t−s)
))

,

i.e

ϕ(y, t) = −Lye−νt +

∫ t

0

dse−ν(t−s)

(
mse

− (y−ys)2
4D(t−s)√

4πD(t− s)
+ λ(1− 2φy,2D(t−s)(0))

)
,

where φx,V is the cumulative density function of the Gaussian distribution N (x, V ).
Consequently, the impacted price satis�es the integral equation

yt =
1

L

∫
t
0ds
(mse

νse
− (yt−ys)

2

4D(t−s)√
4πD(t− s)

+ λ(1− 2φyt,2D(t−s)(0))
)
.

• The in�uence of the cancellation rate ν is clear: it simply yields the usual impact equation with
the trading rate (mse

νs)s instead of (ms)s.

• The in�uence of the deposition rate λ is more sublte. Let us make a �rst approximation and
consider the �rst term of the right-hand side constant, to focus on the equation y = C+λ

∫ t
0 ds(1−

2φy,t−s) . We can check numerically that its solution decreases to 0 as λ increases, which is
compatible with the intuition that higher deposition rates decrease the impact because they
contribute to the replenishment of the order book (thus reducing its imbalance and increasing
the instantaneous liquidity).
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4 Existence and uniqueness of the impacted price

Despite the absence of an explicit solution to the integral equation 2.5, we have the

Theorem 4.1. Let m : [0, T ]→ R be a continuous execution strategy. Then the impacted price equation
2.5 admits a solution y de�ned over [0,+∞[.

Proof. We work in E :=
(
C(I,R), ‖ · ‖∞

)
, the space of real-valued continuous functions on I := [0, T ].

Let T > 0 and m = (mt)0≤t≤T be a �xed function of E. For any ε ≥ 0, consider the function
Fε : E × E → E de�ned by

Fε(x, y)(t) =

∫ t−ε

0

dsms√
t− s

e−
(xt−ys)

2

t−s

for all y ∈ E. We have dropped the constants from equation 2.5 for readability but they do not a�ect
the proof.
The �rst step is to show that the partial function F0(x, ·) has a �xed point y(x) for any function

x ∈ E. To do so we use Banach's �xed point theorem to prove that for all ε > 0 , Fε(x, ·) has a unique
�xed point yε(x). Then we prove that yε(x) converges to a �xed point of F0(x, ·) as ε→ 0.
Given y and ỹ in E and s, t ∈ I with s < t, we have:

|e−
(xt−ỹs)

2

t−s − e−
(xt−ys)

2

t−s | = 2

t− s
|
∫ ỹs

ys

du(u− xt)e−
(u−xt)

2

t−s | ≤ 1

e1/4
1

t− s
|ys − ỹs|.

The equality is just the fundamental theorem of calculus applied to the function y 7→ e
− (xt−y)

2

2(t−s) between
ys and ỹs, and for the inequality we have used the fact that xe−x

2 ≤ 1
2e1/4

which is valid for all x ≥ 0.
This leads to

|Fε(x, y)(t)− Fε(x, ỹ)(t)| ≤ 1
e1/4

∫
t−ε

0
dsmst−s

∫ ỹs
ys

du (u−xt)√
t−s e

− (u−xt)
2

t−s

≤ 1
ε

1
e1/4
‖m‖∞

∫ t−ε
0 ds|ys − ỹs|.

Therefore, we have the inequality |Fnε (x, y)(t) − Fnε (x, ỹ)(t)| ≤ C
ε

∫ t−ε
0 ds|Fn−1ε (y)(t) − Fn−1ε (ỹ)(t)

,where C = 1
e1/4
‖m‖∞, which gives

‖Fnε (x, y)(t)− Fnε (x, ỹ)(t)‖∞ ≤
1

n!

(C(t− ε)
ε

)n
‖y − ỹ‖∞.

In the right-hand side we �nd the general term of an exponential series, therefore it is < 1 for
su�ciently large n (since it tends to 0 as n → ∞). For such a choice of n , Fnε (x, ·) is therefore
a contraction in the (complete) space E . This guarantees that Fε(x, ·) has a unique �xed point
yε(x) ∈ E.
Observe that the family (yε(x))ε∈]0,T [ is uniformly bounded for the || · ‖∞ norm. Therefore, for any

t ∈ I, we can �nd a sequence (εn)n which tends to 0 and such that yεn(x)(t) converges as n → ∞.
Denoting its limit y0(x)(t), we obtain a measurable, bounded function y0(x).
Since for all t ∈ I,

|yε(x)(t)− F0(x, yε(x)(t)| = |Fε(x, yε(x)(t)− F0(x, yε(x))(t)|

= |
∫ t
t−ε

dsms√
t−s(e

− (x−yε(x)(s))2
t−s )|

≤ 2‖m∞‖
√
ε
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we obtain by taking the limit ε→ 0 that y0(x) is a �xed point of F0(x, ·), which concludes the �rst
step. Note that in fact y0 must be continuous since it is the integral of a measurable function (and in
fact is even C∞ ).
The second idea is to �x a time step δ and start from any function x0 ∈ C([0, δ],R) , then iterate

this �xed point procedure in order to build a solution of equation 2.5. Starting from x0, build the
corresponding �xed point x1 = y(x0) , and repeat this procedure n = bTδ c times. Then concatenate
these functions together, i.e consider the function yδ de�ned on [0, T ] by yδ(t) = xk(t − kδ) where
k = b tδ c. By construction, the function yδ satis�es

yδ(t) =

∫ t

0

dsms√
t− s

e−
(yδ(t−δ)−ys)

2

t−s

We obtain the desired solution by letting δ → 0.

Possible extensions: does the impact equation admit a unique solution? Intuitively we expect that
the answer be positive. If so, it would be interesting to see if this solution depends continuously on
the execution pro�le, and more generally to study its regularity depending on the regularity of the
execution strategy.
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5 Asymptotic expansions and approximations

The goal of this section is to derive simple expressions for the market impact equation and to justify
the approximations performed in [DBMB]. While the general impact equation is likely intractable,
we are able to simplify it considerably by making a few assumptions on the trading rates. These
assumptions are general enough as they only distinguish between small and large trading rates, the
reference for comparison being given by J := LD. The parameter J represents the average number of
transactions (or rate of trading) in the stationary orderbook. Our �ndings allow to recover once more
the square-root law, and yield a 3

2 power-law of the volume for the total trading cost.

5.1 Transient or permanent impact?

Suppose that certain agents are able to successfully forecast short term price movements and use
this information for their trading. For instance, if the agent correctly predicted (or was otherwise
informed) that the price is about to rise, he is more likely to buy as an anticipation of this movement.
This should result in measurable correlation between trades and price changes, even if the trades by
themselves have absolutely no e�ect on the prices. Therefore, the information processed by investors,
driving their decisions, leads to permanent price changes so that the market adjusts the asset to its new
�fundamental� value. This vision of market impact is purely based on information does not assume
any mechanical impact.
So far, the model was able to re�ect uninformed trading only: impact is seen as a temporary,

statistical e�ect due to order �ow �uctuations and the liquidity imbalance following a metaorder. This
temporary e�ect re�ects an important aspect of the market structure, namely the di�erence between
short-term and long-term supply. If a trader speeds up his buy trades, he depletes the short-term
supply and increases the immediate cost for additional trades. As more time elapses, supply gradually
recovers and the price witnesses a mean-reversion to its initial value.
Ideally, a model for market impact would take into account both the mechanical and informational

aspects, or equivalently, it would display both a transient and a permanent component. For an adept
of the mechanical vision, permanent impact is seen as the accumulation over time of the mechanical
e�ects. For an adept of the informational vision, mechanical impact is a noise that re�ects the activity of
uninformed traders. This distinction gives a double interpretation of impact: on the one hand, market
impact is a friction, and on the other it is the process by which prices adjust to new information.
Whilst the latent orderbook framework so far has only explained mechanical impact, it would be

very interesting to incorporate permanent impact. To do so we would need to elaborate the random
drift and its correlations with volume, so that (ms)s would be a distribution endogenized together
with the one of Vs. We leave this question as an extension for future work.

5.2 Closed-form expressions

5.2.1 Constant trading rate

The equation 2.5 can not be solved analytically in general. However, it can be solved explicitly in the
case of a constant trading rate m ≡ m0 by looking for a solution of the form yt = A

√
Dt. By making

the change of variable s = tu, such a function is a solution if and only if A satis�es:

A =
m0

J

∫ 1

0

du√
4π(1− u)

e
−A

2(1−
√
u)

4(1+
√
u) , (5.1)

where J = LD. Small constant trading rate For a small trading rate such that m0 � J , we
can approximate A by �rst assuming A � 1, then neglecting the exponential term, which leads to
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A ≈ 1√
π
m0
J and yt = 1√

π
m0

√
DT
J . This can be rewritten as yt =

√
m0D
πJ

√
Qt where Qt is the cumulative

traded volume up till time t.
We have recovered the empirical, universal square-root law and this serves as a �rst con�rmation

of our latent order book model. In fact, this same law can be recovered in several di�erent regimes
as is proved below, the di�erence lying in the constant pre-factor. Large constant trading rate For
a large trading rate such that m0 � J , we can approximate A by restricting the integral to u close

to 1, i.e writing A ≈ m0
J

∫ 1
1−ε

du√
4π(1−u)

e
−A

2(1−
√
u)

4(1+
√
u) for some ε. If we let u = 1 − s, we approximate∫ 1

1−ε
du√
(1−u)

e
−A

2(1−
√
u)

4(1+
√
u) ≈

∫ ε
0
ds√
s
e−A

2 s/2
2 . A good choice of ε is such that e−A

2 s
4
x � 1 vanishes beyond

when x > ε. Now, changing the variables again to v = A2

4 s gives A
2 ≈ 1√

π
2m0
J

∫ A2ε/4
0 dv e

−v
√
v
. Finally,

since
∫ A2 s

4
0 dv e

−v
√
v
≈ Γ(1/2) =

√
π, this leads to A2 = 2m0

J , hence A =
√

2m0
J (since A must be positive)

and yt =
√

2Dm0t
J , which are exactly the values stated in [1]. In particular, yT =

√
2
LQ.

5.2.2 Small trading rate

A small trading rate allows to drop the exponential term in 2.5, leading to the impact

yt =
1

L

∫ t

0

dsms√
4πD(t− s)

We observe that the impact is linear and accumulates with a square-root decay kernel. This impact
equation actually falls within the broad family of propagator models. This class of equations has
been investigated extensively in the literature, see in particular [?] and [?].

5.2.3 Large trading rate

When the trading rate satis�es m� J , the integral equation 2.5 can be simpli�ed by keeping only the
values of s that are close to t. Using a �rst order expansion ys = yt + (s − t)y′t + o(s − t), we write

yt ≈ 1
L

∫ t
t−α

dsms√
4πD(t−s)

e−
y
′2
t (t−s)
4D , for some (small) value of α.

With the change of variable v = y
′2
t
t−s
4D , this gives yt = 1

Ly′t
√
π

∫ β
0 mt− 4Dv

y
′2
t

dve−v√
v

where β =y2t
α
4D . At

this stage, we can assume that α is small enough for the expansion mt− 4Dv

y
′2
t

≈ mt − 4Dv
y
t
′2
m′t to be valid

for all v ∈ [0, β]. Approximating the two integrals by Γ(1/2) =
√
π and Γ(3/2) = 1

2

√
π respectively, we

arrive at the �rst-order approximation:

yty
′
t =≈ 1

L
(mt −

2Dm′t
y
′2
t

).

Keeping the term of order 0 only, this leads to 1
2y

2
t = 1

L

∫ t
0 dsmse

vs, i.e

yt =

√
2

L
Qt, (5.2)

where Qt =
∫ t
0 dsmsys is the cumulative traded volume until time t. In particular, yT =

√
2
LQ which

con�rms the value derived above in the particular case of a large constant trading rate.
Note that for higher-order approximations to remain valid, one should expand both m and y around

t , leading to the equation (54) in [DBMB].
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5.3 The cost of impact

The cost of an execution strategy m is de�ned by C =
∫ T
0 dtmtyt. We illustrate the derivation of the

cost in the case of constant trading rates.
The cost becomes C = A

∫ T
0 dtm0

√
Dt = 2

3Am0

√
DT 3/2.

• When m0 � J , this gives C = 2
3
√
π

√
D
J m2

0T
3
2 = 2

3
√
π

√
D
J m

1/2
0 Q3/2.

• For m0 � J , the cost becomes C = 2
√

2
√
D
J Q3/2, which only depends on the total volume Q.

Since D was de�ned as the variance of the noise η, this is in line with the wide empirical consensus
in the litterature that the impact-induced costs are on the order of σQ3/2V 1/2, where σ is the daily
volatility and V the daily traded volume.

5.4 Extension to the deposition/cancellation model

We have seen that nonzero deposition rates simply led to consider the rescaled volume Q̂ =
∫ T
0 dsmse

νs

instead of Q =
∫ T
0 dsmse

νs .Therefore, the approximations and analytical estimations we have derived
here remain valid so long as the rescaled volume satis�es the required assumptions. In particular, we
expect the square root law to remain approximately valid in several regimes.

5.5 Why a stronger di�usion leads to smaller impact

In this section we explicit the in�uence of the di�usion σ on the impacted price. Intuitively, we can
foretell that a higher di�usion decreases the impact due to its �smoothing e�ect� that replenishes the
order book liquidity, thus increasing the resistance towards a price impact.
To simplify the treatment further we take the case of a constant trading rate. We have seen in

Section 5.2.1 that yt takes the form yt = A
√
Dt, where D ∝σ2 and A is a constant that depends on D

and on the metaorder m.
Recall that A satis�es an integral equation given in 5.1. Di�erentiating this equation with respect to

A yields ∂DA = −m0

∫ 1
0

du√
1−ue

−A2 1−
√
u

1+
√
u

(
1
D2 + 2AD∂DA

1−
√
u

1+
√
u

)
. Grouping the terms together we obtain

that ∂DA(1 + 2AD
∫ 1
0

du√
1−u

1−
√
u

1+
√
u

) = −A
D . Since A > 0, this implies that ∂DA < 0, and in fact we even

have ∂DA(1 + ∗) = −A
D =⇒ ∂D(DA) = − ∗ ∂DA ≤ 0, hence the impact yt ∝ A

√
D decreases with σ,

which concludes the proof.

5.5.1 Price manipulation in changing markets

Section VIII of [DBMB] shows that the model is consistent with the principle of no-dynamic-arbitrage,
that is, a �pump and dump� strategy that sells the asset with the aim of lowering its price before
buying it again (or conversely by buying before selling) cannot lead to positive pro�ts. The authors

show that for any round trip strategy, de�ned by an execution path (mt)t such that
∫ T
0 dtmt = 0,the

expected cost of trading satis�es C :=
∫ T
0 dtmtyt ≥ 0. This is the de�nition of price manipulation

according to [Huberman and Stanzl]. The idea is that if such a strategy existed, then by repeating it
in�nitely many times, we would obtain using the law of large numbers an arbitrage almost surely in
the usual meaning.
However, price manipulation is not proven to be impossible in real markets. Consider for instance

the example of FX trading. Forex trading hours move around the world so that at any time of the
day, it is possible to trade FX instruments, either in London, New York, Tokyo. It is observed that
during the Tokyo shift, the liquidity of the EUR/USD is relatively weak, meaning that a price impact
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could be higher at these times. A manipulator could thus perform a round trip trade that buys large
quantities during the Asian shifts and dumps them during the London/NY hours.
This observation can be accounted for in the extended model where nonzero deposit/cancellation

rates are allowed. It is enough for this example to allow piecewise-constant cancellation rates, and zero
deposit rates. The lower-liquidity setting comes with a higher cancellation rate νAsia > νNY . For the
sake of computational simplicity, let us assume a constant small trading rate ±m0 � J , and take the
execution strategy

m(t) =

{
m0 if 0 ≤ t < tNY

−m0 if tNY ≤ t ≤ T

where tNY is the opening time of the New York FX platform. This leads to the impact yt =
m0
L

( ∫ t∧tNY
0 dseνAsias −

∫ t∧T
t∧tNY dseνNY s

)
, and it is immediate to check that the corresponding cost

is negative.

Figure 5.1: Illustration of a price manipulation strategy when the cancellation parameter ν is allowed
to vary. Here, a trader can pro�t from the changing dynamics to keep prices up despite his
selling. The simulation was performed using the scheme 6.6 from section 6.3.
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6 The Mean Reverted LLOB

6.1 Introduction

We now allow the agents to adjust their current price towards the latent/hidden price of the asset (or
rather their estimation of it). The idea is to maintain the same di�usive behavior and to complement
it with a mean-reversion process. A motivation for this work is that the original dynamics are purely
di�usive, and in this sense, resemble the �zero-intelligence� model of [Farmer], raising doubts about its
ability to account for the rationality of agents.
To obtain the new price dynamics we start by writing the microscopic evolution in a non-rigorous

way and transform it into a partial di�erential equation.
We write that each agent reassesses its price from pi,t to pi,t+dt = pi,t+ηi,t−κ(pi,t−Bt)dt , where the

process (Bt)t represents a reference price, either exogeneous (e.g a Brownian motion) or endogeneous
(e.g, take the current market price and plug it in, leading to a feedback loop). The noise variables

ηi,t
i.i.d∼ N (0, σ2dt) are the noise in the agents' estimations of the fundamental price. Finally κ > 0

quanti�es the return force towards Bt.
To obtain the corresponding partial di�erential equation, note that pi,t = 1

1−κdt(pi,t+dt − ηi,t +
κBtdt) ≈ pi,t+dt − ηi,t + κ(pi,t+dt −Bt)dt. Now perform a second-order expansion:

ϕ(x, t+ dt) =

∫
P(η)

∫
dyϕ(y, t)δ(x− η + κ(x−Bt)dt− y)

≈ ϕ(x) +
(

0 + κ(x−Bt)
)
∂xϕ(x, t)dt +

1

2
σ2∂xxϕ(x, t),

so that the the density of agents evolves according to the PDE:

∂tϕ(x, t) = κ(x−Bt)∂xϕ(x, t) +
1

2
σ2∂xxϕ(x, t), ∀y ∈ R, ∀t ≥ 0. (6.1)

This means that the agents reassess their price all the more as they are far from the reference price
Bt , and the intensity of the reassessments is controlled by the parameter κ.

6.2 Analytical resolution

Due to the presence of the reference price Bt , the dynamics of the orderbook 6.1 are no longer
linear. However, we can change the reference frame to get rid of the reference price, thereby con-
siderably simplifying the PDE. To do so we perform the change of variable y = x − f(t), where
f(t) := κ

∫ t
0 dsBse

−κ(t−s). This means that we de�ne a new function φ(y, t) = ϕ(y + f(t), t). Since f
satis�es the di�erential equation f ′ + κf = κBt, φ satis�es the linear PDE

∂tφ(y, t) = κy∂yφ(y, t) +
1

2
σ2∂yyφ(y, t). (6.2)

6.2.1 First approach: separation of variables

Here we are interested in special solutions of 6.2 of the form φ(y, t) = f(y)g(t), leading to the system{
g′(t) = cg(t)

κyf ′(y) + σ2

2 f
′′(y) = cf(y)

for some c ∈ R. We only keep C = 0 as an acceptable parameter since at large times, the orderbook
is expected to not collapse to 0 or explode to +∞. De facto this ensures that g ≡ cte , so we are
looking for a stationary solution, i.e φst(y) = cf(y) and κyf ′+ σ2

2 f
′′ = 0. A straightforward calculation

yields φst(y) = c0 + c1
∫ y
−∞ dxe−

κx2

σ2 .
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Figure 6.1: Left: an example of stationary solution φst plotted for c0 = 1.5 and c1 = −3
√

κ
πσ2 and

σ2

κ ∈ {2, 5}. Right: the corresponding orderbook, where the blue (resp. the red) curve
represents the bid side (resp. the ask side). In the new reference frame the equilibrium
price is 0.

Going back to the original reference frame simply yields

ϕst(x, t) = c0 + c1

∫ x−f(t)

−∞
dxe−

κ(x−f(t))2

σ2 .

6.2.2 Full resolution

Our �rst approach has consisted in performing a simple change of variable that linearized the equation
and allowed for variable separation. We can actually simplify the equation 6.1 further with the change
of variable y = eκt(x− f(t)). That is, by letting ψ(y, t) = ϕ(e−κty + f(t), t), the equation becomes

∂tψ(y, t) =
σ2

2
e2κt∂yyψ(y, t), (6.3)

The �rst di�erential equation 6.1 was di�cult to tackle directly because of the non-linear term, the
reference price Bt around which the mean-reversion occurs. Our change of variable can be decomposed
into two steps:

• the �rst change, y0 = x− f(t), translates the �coordinates� to follow the reference price.

• the second change, y1 = eκty0, is a change of time scale. Under this change the price evolves as
a simple di�usion process (at a time-dependent di�usion rate).

For more readability we have decided to keep our results in the new reference frame, and the conversion
from ψ to ϕ is left to the reader.
All that is left now is to solve 6.3. To this end we recall some elementary facts about the Fourier

transform. Given an integrable function f ∈ L1(R,C), its Fourier transform is de�ned by F(f) : k 7→∫ k
−∞ dyf(y)e−iky. If f̂ := F (f) ∈ L1(R,C) , in particular if f is continuous, the inverse Fourier trans-

form F−1(f̂) : y 7→ 1
2π

∫ +∞
−∞ dkf(k)e+iky is well de�ned and satis�es F−1(f̂) = f almost everywhere.

The Fourier transform is a very convenient tool to solve (partial) di�erential equations and we
illustrate its application below on the resolution of equation 6.3.
We Fourierize the space variable, leading to the PDE

∂tψ̂(k, t) = −σ
2

2
e2κtk2ψ̂(k, t),

where we used the fact that F [∂yyψ] = −k2ψ.
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The solution to this last equation is straightforward by variation of constants: ψ̂(k, t) = g(k)e−
C(0,t)σ2k2

2

, where g = F [ψ0] (where the initial condition ψ0 = ϕ0 := ϕ(·, t = 0) is a continuous function over R)
and

C(s, t) :=

∫ t

s
due2κu =

1

2κ
(e2κt − e2κs)

for 0 ≤ s ≤ t.
By going back to the space domain, and since the transform of the product of two functions is the

convolution of their transforms, the solution is given by

ψ(y, t) =

∫ +∞

−∞

du√
2πC(0, t)σ2

ϕ0(u)e
− (u−xy)

2C(0,t)σ2 ,

Note that this solution is well-de�ned i� the integrand is in L1 for all t ≥ 0 . This condition is not
very restrictive and allows for a large choice of initial conditions (and in particular linear functions).
The price evolves with a di�usion rate (i.e the variance of the heat kernel) that increases exponentially

with time, which is just due to the exponential change of variable.
We conclude by noting that we indeed recover the usual impact pro�le when we let κ→ 0.

6.2.3 The impacted price

What market price does our model predict during the execution of a metaorder?
The previous equation can be very easily tailored to answer this question. The PDE in the presence

of a metaorder m ∈ C([0, T ]) , executed at the current market price, denoted xt, becomes

∂tϕ(x, t) = κ(x−Bt)∂xϕ(x, t) +
1

2
σ2∂xxϕ(x, t) +mtδ(x− xt),

where δ is the Dirac distribution.
This means that in the new frame of reference we have:

∂tψ(y, t) =
σ2

2
e2κt∂yyψ(y, t) +mtδ(e

−κty − xt).

Since the Dirac distribution ξ 7→ δ(ξ) is homogeneous of degree −1 with respect to ξ, we may rewrite
this equation as

∂tψ(y, t) =
σ2

2
e2κt∂yyψ(y, t) +mte

κtδ(y − yt).

where yt := eκt(xt−f(t)) is the market price in the new reference frame, i.e the zero of ψ(·, t) (whose
existence and unicity depend on the initial condition and that we admit at this stage). Observe that
the metaorder has become mte

κt instead of mt. This is a natural consequence of our change of variable
which made the new space variable depend on time.
Going again to Fourier domain gives ∂tψ̂(k, t) = −σ2

2 e
2κtk2ψ̂(k, t) +mte

κte−ikyt , which is solved by

a variation of constants and gives ψ̂(k, t) = g(k)e−
σ2C(0,t)k2

2 +
∫ t
0 dsmse

κse−ikys−
σ2C(s,t)k2

2 , where g is
again the Fourier transform of the initial condition.
Going back to the space domain therefore leads

ψ(y, t) =
1√

2πC(0, t)σ2
(ψ0 ∗ e

− x2

2C(t)σ2 )(y) +

∫ t

0
dsmse

κsF−1[e−ikys−
σ2C(s,t)k2

2 ](y).

For a linear initial condition ψ0(y) = ϕ0(y) = −Ly , this gives
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ψ(y, t) = −Ly +

∫ t

0

dsmse
κs√

2πC(s, t)σ2
e
− (y−ys)2

2σ2C(s,t) ,

hence the impacted price satis�es the integral equation

yt =
1

L

∫ t

0

dsmse
κs√

2πC(s, t)σ2
e
− (yt−ys)

2

2σ2C(s,t) . (6.4)

Existence of a solution to 6.4

In Section 4 we proved the existence of a solution to the impact equation 2.5. The proof can be
easily adapted to show that 6.4 enjoys an existence property as well. Since for every 0 ≤ s < t
, eκs√

e2κt−e2κs = 1√
e2κ(t−s)−1

≤ 1√
2κ(t−s)

( as a consequence of the inequality ex ≥ 1 + x applied to

x = t − s ≥ 0), the proof remains valid by replacing t − s everywhere with C(s, t), and we therefore
have the

Theorem 6.1. Let m ∈ C([0, T ],R) be any execution strategy. Then the integral equation 6.4 admits
a solution y de�ned over [0,+∞[.

6.2.4 The limit of small trading rates

In the limit where ‖m‖∞ � Lσ, we make the approximation of small impacts: (yt − ys)2 � C(s, t)
that allows to drop the exponential term in 6.4. We therefore obtain the linear propagator:

yt =
1

L

∫ t

0

dsmse
κs√

2πC(s, t)σ2

To have an insight about the behavior of this impacted price, we take a constant trading rate
m ≡ m0. Then a straightforward calculation with the change of variable v = e−κ(t−s) yields the
following concave impact:

yt =
1

Lσ
√
κπ

∫ 1

e−κt

dv√
1− v2

=
1

Lσ
√
κπ

(π
2
− arcsin(e−κt)

)
(6.5)

Since arcsinx ∼
x→1

π
2 −

√
2(1− x), we obtain in the short time scales yt ∼

t→0

1
Lσ

√
2t, i.e we recover

the original square-root law. In the larger time scales, however, the impact converges to a �nite

nonzero value: yt →
t→+∞

√
π

Lσ
√
2κ
, in contrast with the divergence of the impact in the original model.

This is explained by the fact that here agents keep reassessing their price towards the fundamental
value (i.e 0 in this new reference frame), providing resistance to price increases by the means of added
liquidity.
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Figure 6.2: For very small trading rates, we have recovered a special linear propagator that leads to
concave impact. This propagator replicates the square-root behavior at the shorter times,
and converges to a �nite value as t→∞.

Let us emphasize that this is the impacted price in the new reference frame, whereas in the original
reference frame it is given by xt = e−κt(yt + f(t)). Surprisingly, the latter decreases invariably to 0
due to the exponential shrinkage. This somewhat unexpected behaviour (discussed in greater detail in
the conclusion) might indicate that our mean-reversion approach was too strong, and we leave further
investigation of this phenomenon as a priority for future work.

6.2.5 The in�uence of di�usion and mean-reversion

The objective of this section here is to explicit the in�uence 6.4 of the microscopic parameters governing
the PDE 6.1 : the volatility σ and the intensity of reversion κ, both on the �mispricing� of the market
and on the impacted price.
On mispricing

We can speak of �convergence� of the market price to the e�cient price in the sense that the stronger
the value of κ, the closer f(t) is to the �true� underlying movement Bt. To see this, observe that an
integration by parts (where the Ito term is 0 since the integrand is a deterministic function of time)
leads to

f(t) = κ

∫ t

0
dse−κ(t−s)Bs =

∫ t

0
d(e−κ(t−s))Bs = Bt −

∫ t

0
e−κ(t−s)dBs.

Therefore the �mispricing�

Bt − f(t) =

∫
e−κ(t−s)dBs

is a centered Gaussian variable with variance ν(κ, t) =
∫ t
0 e
−2κ(t−s)ds , which clearly decreases with κ

(for all t).
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Figure 6.3: The stronger the mean-reversion, the smaller the mispricing (displayed here for t = 1).

On the impacted price

Observe that the original framework corresponds to κ → 0 so that C(s, t) ∼
κ→0

t − s, allowing to

recover exactly the original impact equation 2.5. And we have seen in section 5.5 that in the original
model the impacted price decreases with di�usion.
To get an intuition about our new model, we �rst look at the stationary solution φst plotted in

6.1(in the reference frame of Bt). We see that an increase in the volatility σ leads to decreasing
liquidity around the market price, making the market less robust to small perturbations. The reversion
parameter κ has the inverse e�ect as it drives the liquidity towards the price. We therefore would like
to show that the impact decreases with κ as well.
Intuitively, a higher κ strengthens the reversion and thus diminishes the impact. Similarly, a strong

volatility should lead to di�usion of impact. This is explained because the di�usive price jumps, which
act as a smoothing mechanism, occur more frequently.
These results can be proved using the integral equation 6.4 to deduce the sign of ∂κyt , using

arguments similar to those of section 5.5. Note that by taking the special case of small constant
trading rates, where the impact is explicitly given by equation 6.5, it is immediate to see that the
impact indeed decreases with κ.

6.3 Numerical experiments

6.3.1 The order book

Our objective here is to con�rm numerically the analytical formulations derived above. To this end
we build a Crank-Nicolson �nite di�erence scheme. We use the �rst and second order di�erentiation

matrices B =


0 0 .. .. 0
0 −1 1 0 ..
.. .. .. .. ..
0 .. 0 −1 1
0 .. .. 0 0

 and A =


0 0 .. .. 0
1 −2 1 0 ..
.. .. .. .. ..
0 .. 1 −2 1
0 .. .. 0 0

, respectively. The �rst and last

row of A and B enforce re�ective Dirichlet boundary conditions, namely ∂xϕ(−M, t) = ∂xϕ(M, t) =
0,∀t for B and ϕ(−M, t) = −LM,ϕ(M, t) = LM, ∀t ≥ 0 for A.
Our scheme reads:(

I − ∆T.D

2∆x2
A
)
Uk+1 =

(
I +

∆T.D

2∆x2
A+

∆T.κ

∆x
(X −Bt1̃)TB

)
Uk, (6.6)
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where X =

( −M
−M + ∆x

...
M −∆x

M

)
.

Figure 6.4: Starting from a linear initial condition ϕ(y, 0) = −50y (plotted on the left), 1500 iterations
of the Crank-Nicolson scheme 6.6 are performed and the �nal result is plotted on the right.
This simulation con�rms the stationary shape predicted using the separation of variables.
Here κ = 0.05 and Bt ≡ 0 .

Using this simulation, we know the shape of the order book at any point in time. Hence we can
immediately recover the market price, which is just the zero of the density function ϕ. In the absence
of a metaorder, we observe that the market price simply follows the dynamics of Bt.

6.3.2 The mean reversion

Figure 6.5: When mean-reversion is su�ciently strong (with κ = 0.5 here), The market price closely
follows the evolution of the reference price Bt (taken here as an a�ne transformation of a
Brownian motion).

The change of variable we derived in Section 6.2.2 led us to a di�usion equation, which foretells that the

real market price should �converge� not to B but to f . Note that if we write f(t) ≈ f̂(t) :=
∫ t
0 dBse

κs∫ t
0 dseκs

,

f may be seen as a weighted average of all the past values of B, with τ := 1
κ de�ning the �memory� of

the averaging.
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Figure 6.6: The reference price Bt, the observed market price with the Crank Nicolson scheme, and
the theoretical prediction f(t). We observe a very good �t for higher values of κ, in line
with the analysis of mispricing conducted in 6.3. The time unit is one simulation step.

6.3.3 Impacted price

Incorporating a buy (resp. sell) metaorder is simply done by consuming the corresponding volume from
the best available ask (resp. bid). This allows to observe the evolution of the price in the presence of
a metaorder.

Figure 6.7: Evolution of the price during a buy metaorder. Left: the metaorder's execution pro�le.
Middle: the resulting impacted price in the absence of mean-reversion. Right: the resulting
impacted price when Bt is 0 (amounting to the �rst change of reference frame). Observe
that the impact decreases when κ > 0 due to the attraction towards the origin.

The graph below con�rms the prediction of section 6.2.5 : higher di�usion leads to smaller impact.

Figure 6.8: Evolution of the impacted price (yt)t for a constant buy metaorder executed during [0, 500],
proving that the volatility has a negative e�ect. Here κ = 1.

Another interesting simulation consists in taking an exogeneous Bt that opposes the direction of the
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metaorder.

Figure 6.9: Evolution of the price for the same metaorder as Figure 6.7but with Bt as in Figure 6.5
. Observe the tradeo� between the positive push of the metaorder and the negative push
of Bt. During the �rst 500 seconds, the e�ect of the metaorder dominates, but the price
reverts to negative territory as soon as its execution has �nished.
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7 Conclusion and discussion

We have carried out an extensive analysis of the latent order book model, based on the seminal work of
[Deremble] and [DBMB]. We have �rst investigated the mathematical properties of the price dynamics
and have proved the existence of a solution to the impacted price equation. We have con�rmed our
theoretical predictions by extensive numerical experiments that rely on a �nite-di�erence scheme to
discretize the partial di�erential equation. Our results have led us to question the assumptions of
absence of arbitrage and we have shown how a real-world manipulation strategy can take place within
our framework.
Our essential building block, the latent order book, uses only minimal ingredients, thereby con�rming

the universality of the concave impact law. Our model has constructed impact as the consequence of
two opposing phenomena: liquidity consumption, which increases the cost of trading and the spread,
and di�usion which pushes the prices back towards a mean-reversion equilibrium.
It is worth mentioning that we have recently con�rmed our �ndings on Bitcoin data [Lemhadri],

demonstrating that the salient characteristics of concave impact remain valid even on such an amateur
marketplace (at least at this time). Even when individual metaorders cannot be systematically detected
(due to the anonymity enforced on exchanges), even in the absence of a notion of fundamental value
(which makes little sense as of today on the Bitcoin market), the persistence of impact suggests that
a robust self-organizing mechanism is at work, which is well incorporated in the latent order book
model. Contrary to ad-hoc stochastic models of prices, this modelling strategy o�ers a much deeper
understanding of price formation and can certainly be extended to other economic situations.
We have complemented the initial latent order book model by suggesting that the di�usive motion

can be taylored from a basic random walk to an Ornstein-Uhlenbeck process. This allowed us to incor-
porate a phenomenon of mean-reversion towards the �fundamental price� as estimated by the market
participants. We then quanti�ed the mispricing between the real market price and the fundamental
price, and we observed the complex interplay between liquidity taking with metaorders and liquidity
provision by mean-reverting agents. And we analyzed mathematically the resulting equations. In par-
ticular, we have established that the impact of a metaorder decreases when either the volatility of the
underlying asset or the agents' reassesment intensity (quanti�ed by κ ) increase.
We see numerous ways in which this work can be complemented. First and foremost, the resolution

of the mean-reverted model indicates that impact decreases to 0 for any constant trading strategy.
This is because by bounding the exponential term in equation 6.4 by 1, we obtain the arcsine shape
that corresponds to the limit of small rates, which collapses to zero when going back to the original
reference frame. This contrasts notably with the original LLOB model and may be interpreted as the
informational content of the metaorder being discovered by market participants. When this information
discovery is over, the increase in price ceases, eventually leading to null permanent impact. However,
this result is surprising since our modelling did not incorporate any informational component. It would
therefore be advisable to compare these results to variations of our model and see if the impact decrease
still persists. For instance, instead of taking a latent Brownian (known to all market participants) as
the origin of mean-reversion, take the market price itself. This type of feedback loop would make the
model more realistic, however it is likely to lose analytical tractability.
In addition, the vast majority of price impact models assume that there is only one large investor (the

rest of the market evolving through a martingale). This assumption is reasonable when a market brings
together a large number of agents with heterogeneous beliefs, but it can (and should) be questioned
if other large investors happen to trade at the same time. It would be very interesting to extend the
framework to allow for di�erent metaorders to interact simultaneously in the orderbook. Such problems
have important connections with game theory and are certainly of great interest to practitioners. One
possible way to do this would be to �x the random drift and its correlation with metaorder volumes,
so that an execution strategy be seen as a distribution, endogenized together with the one of the drift.
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The tremendous complexity of real-world markets makes it all too clear that our model is only
a rough approximation of the dynamics of the orderbook, and suggests that many other practical
problems (e.g the market-maker's problem, the presence of transaction costs and other market design
peculiarities) are yet to be incorporated. Building a detailed full-scale model of order �ow would
certainly be welcome for future work, however our main objective was to show how a simpli�ed model
allows to capture the most salient characteristics of price formation: concave price impact and locally
small liquidity.
As a concluding remark, we note that our work has important practical consequences for market

regulators as it supports more than ever the idea of impact-adjusted valuation of assets.
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