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Introduction

In this paper, we investigate a probabilistic numerical method to approximate the solution of the following non-local PDE B t Upt, x, µq `bpx, Upt, x, µq, νq ¨Bx Upt, x, µq

`1 2
TrrB 2 xx Upt, x, µqapx, µqs `f `x, Upt, x, µq, B x Upt, x, µqσpx, µq, ν żR d B µ Upt, x, µqpυq ¨bpυ, Upt, υ, νq, νqdµpυq

`żR d 1 2
TrrB x B µ Upt, x, µqpυqapυ, µqsdµpυq " 0 ,

for pt, x, µq P r0, T q ˆRd ˆP2 pR d q with the terminal condition UpT, ¨q " gp¨q, where ν is a notation for the image of the probability measure µ by the mapping R d Q x Þ Ñ px, Upt, x, µqq P R 2d . Above, apx, µq " rσσ : spx, µq. The set P 2 pR d q is the set of probability measures with a finite second-order moment, endowed with the Wasserstein distance i.e.

W 2 pµ, µ 1 q :" inf

π ˆżR d ˆRd |x ´x1 | 2 dπpx, x 1 q ˙1 2 ,
for pµ, µ 1 q P P 2 pR d q ˆP2 pR d q, the infimum being taken over the probability distributions π on R d ˆRd whose marginals on R d are respectively µ and µ 1 .

Whilst the first two lines in (1) form a classical non-linear parabolic equations, the last two terms are non-standard. Not only are they non-local, in the sense that the solution or its derivatives are computed at points υ different from x, but also they involve derivatives in the argument µ, which lives in a space of probability measures. In this regard, the notation B µ Upt, x, µqpυq denotes the so-called Wasserstein derivative of the function U in the direction of the measure, computed at point pt, x, µq and taken at the continuous coordinate υ. We provide below a short reminder of the construction of this derivative, as introduced by Lions, see [START_REF] Cardaliaguet | Notes from P.L. Lions' lectures at the Collège de France[END_REF] or [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF]Chap. 5].

These PDEs arise in the study of large population stochastic control problems, either of mean field game type, see for instance [START_REF] Cardaliaguet | Notes from P.L. Lions' lectures at the Collège de France[END_REF][START_REF] Cardaliaguet | The master equation and the convergence problem in mean field games[END_REF][START_REF] Chassagneux | A Probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF][START_REF] Lions | Estimées nouvelles pour les équations quasilinéaires Seminar in Applied Mathematics at the Collège de France[END_REF] or [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF]Chap. 12] and the references therein, or of mean field control type, see for instance [START_REF] Bensoussan | The Master equation in mean field theory[END_REF][START_REF] Bensoussan | On the interpretation of the master equation[END_REF][START_REF] Chassagneux | A Probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF][START_REF] Pham | Bellman equation and viscosity solutions for mean field stochastic control problem[END_REF]. In both cases, U plays the role of a value function or, when the above equation is replaced by a system of equations of the same form, the gradient of the value function. Generally speaking, these types of equations are known as "master equations". We refer to the aforementioned papers and monographes for a complete overview of the subject, in which existence and uniqueness of classical or viscosity solutions have been studied. In particular, in our previous paper [START_REF] Chassagneux | A Probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF], we tackled classical solutions by connecting U with a system of fully coupled Forward-Backward Stochastic Differential Equations of the McKean-Vlasov type (MKV FBSDE), for which U plays the role of a decoupling field. We also refer to [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF]Chap. 12] for a similar approach.

In the current paper, we build on this link to design our numerical method.

The connection between U and FBSDEs may be stated as follows. Basically, U may be written as Upt, x, µq " Y t,x,µ t for all pt, x, µq P r0, T s ˆRd ˆP2 pR d q, where Y t,x,µ together with pX t,x,µ , Z t,x,µ q solves the following standard FBSDE: 

X t,
which is parametrized by the law of the following MKV FBSDE: 

X t,
Y t,ξ s " gpX t,ξ T , rX t,ξ T sq `ż T s f pX t,ξ r , Y t,ξ r , Z t,ξ r , rX t,ξ r , Y t,ξ r sqdr ´ż T s Z t,ξ r ¨dW r , [START_REF] Bayraktar | Rate Control under Heavy Traffic with Strategic Servers preprint[END_REF] where pW t q 0ďtďT is a Brownian motion and ξ has µ as distribution. In the previous equations and in the sequel, we use the notation rθs for the law of a random variable θ. In particular, in the above, we have that rξs " µ. So, to obtain an approximation of Upt, x, µq given by the initial value of (3), our strategy is to approximate the system (4)- [START_REF] Bayraktar | Rate Control under Heavy Traffic with Strategic Servers preprint[END_REF] as its solution appears in the coefficients of ( 2)- [START_REF] Achdou | Convergence of a Finite Difference Scheme to Weak Solutions of the System of Partial Differential Equations Arising in Mean Field Games[END_REF]. In this regard, our approach is probabilistic. Actually, our paper is not the first one to address the numerical approximation of equations of the type (1) by means of a probabilistic approach. In its PhD dissertation, Alanko [START_REF] Alanko | Regression-based Monte Carlo methods for solving nonlinear PDEs[END_REF] develops a numerical method for mean field games based upon a Picard iteration: Given the proxy for the equilibrium distribution of the population (which is represented by the mean field component in the above FBSDE), one solves for the value function by approximating the solution of the (standard) BSDE associated with the control problem; given the solution of the BSDE, we then get a new proxy for the equilibrium distribution and so on... Up to a Girsanov transformation, the BSDE associated with the control problem coincides with the backward equation in the above FBSDEs. In [START_REF] Alanko | Regression-based Monte Carlo methods for solving nonlinear PDEs[END_REF], the Girsanov transformation is indeed used to decouple the forward and backward equations and it is the keystone of the paper to address the numerical impact of the change of measure onto the mean field component. Under our setting, this method would more or less consist in solving for the backward equation given a proxy for the forward equation and then in iterating, which is what we call the Picard method for the FBSDE system. Unfortunately, convergence of the Picard iterations is a difficult issue, as the convergence is known in small time only, see the numerical examples in Section 4 below. It is indeed well-known that Picard theorem only applies in small time for fully coupled problems. In this regard, it must be stressed that our system (4)-( 5) is somehow doubly coupled, once in the variable x and once in the variable µ, which explains why a change of measure does not permit to decouple it entirely. As a matter of fact, the convergence of the numerical method is not explicitly addressed in [START_REF] Alanko | Regression-based Monte Carlo methods for solving nonlinear PDEs[END_REF].

In fact, a similar limitation on the length of the time horizon has been pointed out in other works on the numerical analysis of a mean field game. For instance, in a slightly different setting from ours, which does not explicitly appeal to a forward-backward system of the type (4)-( 5), Bayraktar, Budhiraja and Cohen [START_REF] Bayraktar | Rate Control under Heavy Traffic with Strategic Servers preprint[END_REF] provide a probabilistic numerical approach for a mean field game with state constraints set over a queuing system. The scheme is constructed in two steps. The authors first consider a discrete form of the original mean field game based upon a Markov chain approximation method à la Kushner-Dupuis of the underlying continuous-time control problem. The solution to the discretetime mean field game is then approximated by means of a Picard scheme: Given a proxy for the law of the optimal trajectories, the discrete Markov decision problem is solved first; the law of the solution then serves as a new proxy for the next step in the Picard sequence. The authors are then successful in proving the convergence of their approximation but again for a small time interval only, see Section 5.2 in [START_REF] Bayraktar | Rate Control under Heavy Traffic with Strategic Servers preprint[END_REF] for details.

The goal of our paper is precisely to go further and to propose an algorithm whose convergence with a rate is known on any interval of a given length. In the classical case, this question has been addressed by several authors, among which [START_REF] Delarue | A forward-backward stochastic algorithm for quasi-linear PDEs[END_REF][START_REF] Delarue | An Interpolated Stochastic Algorithm for Quasi-Linear PDEs[END_REF] and [START_REF] Bender | Time discretization and Markovian iteration for coupled FBSDEs[END_REF], but all these methods rely on the Markov structure of the problem. Here, the Markov property is true but at the price of regarding the entire R d ˆP2 pR d q as state space: The fact that the second component is infinite dimensional makes intractable the complexity of these approaches. To avoid any similar problem, we use a pathwise approach for the forward component; it consists in iterating successively the Picard method on small intervals, all the Picard iterations being implemented with a tree approximation of the Brownian motion. This strategy is inspired from the method of continuation, the parameter in the continuation argument being the time length T itself. The advantage for working on a tree is twofold: as we said, we completely bypass any Markov argument; also, we get, not only, an approximation of the system (4)-( 5) but also, for free, an approximation of the system (2)-(3), which "lives" on a subtree obtained by conditioning on the initial root. We prove that the method is convergent and provide a rate of convergence for it. Numerical examples are given in Section 4. Of course, the complexity remains pretty high in comparison with the methods developed in the classical non McKean-Vlasov case. This should not come as a surprise since, as we already emphasized, the problem is somehow infinite dimensional.

We refer the interested reader to the following papers for various numerical methods, based upon finite differences or variational approaches, for mean field games: [START_REF] Achdou | Mean field games: numerical methods[END_REF][START_REF] Achdou | Mean field games: convergence of a finite difference method[END_REF][START_REF] Achdou | Convergence of a Finite Difference Scheme to Weak Solutions of the System of Partial Differential Equations Arising in Mean Field Games[END_REF] and [START_REF] Benamou | Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations[END_REF][START_REF] Lachapelle | Computation of mean field equilibria in economics[END_REF][START_REF] Guéant | New numerical methods for mean field games with quadratic costs[END_REF].

The paper is organized as follows. The method for the system (4)-( 5) is exposed in Section 2. The convergence is addressed in Section 3. In Section 4, we explain how to compute in practice Upt, x, µq (and thus approximate (2)-( 3)) from the approximation of the sole (4)-( 5) and we present some numerical results validating empirically the convergence results obtained in Section 3. We collect in the appendix some key results for the convergence analysis.

A new algorithm for coupled forward backward systems

As announced right above, we will focus on the approximation of the following type of McKean-Vlasov forward-backward stochastic differential equation:

dX t " b `Xt , Y t , rX t , Y t s ˘dt `σ`X t , rX t s ˘dW t , dY t " ´f `Xt , Y t , Z t , rX t , Y t s ˘dt `Zt ¨dW t , t P r0, T s , Y T " g `XT , rX T s ˘and X 0 " ξ , (6) 
for some time horizon T ą 0. Throughout the analysis, the equation is regarded on a complete filtered probability space pΩ, F, F, Pq, equipped with a d-dimensional F-Brownian motion pW t q 0ďtďT . To simplify, we assume that the state process pX t q 0ďtďT is of the same dimension. The process pY t q 0ďtďT is 1-dimensional. As a result, pZ t q 0ďtďT is d-dimensional. In (6), the three processes pX t q 0ďtďT , pY t q 0ďtďT and pZ t q 0ďtďT are required to be Fprogressively measurable. Both pX t q 0ďtďT and pY t q 0ďtďT have continuous trajectories. Generally speaking, the initial condition X 0 is assumed to be square-integrable, but at some point, we will assume that X 0 belongs to L p pΩ, F, P; R d q, for some p ą 2. Accordingly, pX t q 0ďtďT , pY t q 0ďtďT and pZ t q 0ďtďT must satisfy:

~pX, Y, Zq~r 0,T s :" E " sup 0ďtďT `|X t | 2 `|Y t | 2 ˘`ż T 0 |Z t | 2 dt  1{2 ă 8.
The domains and codomains of the coefficients are defined accordingly. The assumption that σ is assumed to be independent of the variable y is consistent with the global solvability results that exist in the literature for equations like [START_REF] Benamou | Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations[END_REF]. For instance, it covers cases coming from optimization theory for large mean field interacting particle systems. We refer to our previous paper [START_REF] Chassagneux | A Probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF] for a complete overview on the subject, together with the references [START_REF] Bensoussan | Mean Field Games and Mean Field Type Control Theory[END_REF][START_REF] Cardaliaguet | Notes from P.L. Lions' lectures at the Collège de France[END_REF][START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF][START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF][START_REF] Carmona | Control of McKean-Vlasov versus Mean Field Games[END_REF]. In light of the examples tackled in [START_REF] Chassagneux | A Probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF], the fact that b is independent of z may actually seem more restrictive, as it excludes cases when the forward-backward system of the McKean-Vlasov type is used to represent the value function of the underlying optimization problem. It is indeed a well-known fact that, with or without McKean-Vlasov interaction, the value function of a standard optimization problem may be represented as the backward component of a standard FBSDE with a drift term depending upon the z variable. This says that, in order to tackle the aforementioned optimization problems of the mean field type by means of the numerical method investigated in this paper, one must apply the algorithm exposed below to the Pontryagin system. The latter one is indeed of the form [START_REF] Benamou | Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations[END_REF], provided that Y is allowed to be multi-dimensional. (Below, we just focus on the one-dimensional case, but the adaptation is straightforward.)

In fact, our choice for assuming b to be independent of z should not come as a surprise. The same assumption appears in the papers [START_REF] Delarue | A forward-backward stochastic algorithm for quasi-linear PDEs[END_REF][START_REF] Delarue | An Interpolated Stochastic Algorithm for Quasi-Linear PDEs[END_REF] dedicated to the numerical analysis of standard FBSDEs, which will serve us as a benchmark throughout the text. See however Remark 4.

Finally, the fact that the coefficients are time-homogeneous is for convenience only.

As a key ingredient in our analysis, we use the following representation result given in e.g. Proposition 2.2 in [START_REF] Chassagneux | A Probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF],

Y ξ t :" Upt, X ξ t , rX ξ t sq , (7) 
where U : r0, T s ˆRd ˆP2 pR d q Ñ R is assumed to be the classical solution, in the sense of [START_REF] Chassagneux | A Probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF]Definition 2.6], to [START_REF] Achdou | Mean field games: numerical methods[END_REF]. In this regard, the derivative with respect to the measure argument is defined according to Lions' approach to the Wasserstein derivative. In short, the lifting Û of U to L 2 pΩ, F 0 , P; R d q, which we define by Ûpt, x, ξq " Upt, x, rξsq, t P r0, T s,

x P R d , ξ P L 2 pΩ, F 0 , P; R d q,
is assumed to be Fréchet differentiable. Of course, this makes sense as long as the space pΩ, F 0 , Pq is rich enough so that, for any µ P P 2 pR d q, there exists a random variable ξ P L 2 pΩ, F 0 , P; R d q such that ξ " µ. So, in the sequel, pΩ, F 0 , Pq is assumed to be atomless, which makes it rich enough. A crucial point with Lions' approach to Wasserstein differential calculus is that the Fréchet derivative of Û in the third variable, which can be identified with a square-integrable random variable, may be represented at point pt, x, ξq as B µ Upt, x, rξsqpξq for a mapping B µ Upt, x, µqp¨q : R d Q v Þ Ñ B µ Upt, x, µqpvq P R d . This latter function plays the role of Wasserstein derivative of U in the measure argument. To define a classical solution, it is then required that

R d Q v Þ Ñ B µ Upt,
x, µqpvq is differentiable, both B µ U and B v B µ U being required to be continuous at any point pt, x, µ, vq such that v is in the support of µ.

Assumptions. Our analysis requires some minimal regularity assumptions on the coefficients b, σ, f and the function U. As for the coefficients functions, we assume that there exists a constant Λ ě 0 such that:

-pH0q: The functions b, σ, f and g are Λ-Lipschitz continuous in all the variables, the space P 2 pR d q being equipped with the Wasserstein distance W 2 . Moreover, the function σ is bounded by Λ.

We now state the main assumptions on U, see Remark 1 for comments.

-pH1q: for any t P r0, T s and ξ P L 2 pΩ, F t , P; R d q, the McKean-Vlasov forward-backward system (6) set on rt, T s instead of r0, T s with X t " ξ as initial condition at time t has a unique solution pX t,ξ s , Y t,ξ s , Z t,ξ s q tďsďT ; in parallel, U is the classical solution, in the sense of [START_REF] Chassagneux | A Probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF]Definition 2.6], to (1); and U and its derivatives satisfy |Upt, x, µq ´Upt, x, µ 1 q| `|B x Upt, x, µq ´Bx Upt, x, µ 1 q| ď ΛW 2 pµ, µ 1 q , (8)

|B x Upt, x, µq| `}B µ Upt, x, rξsqpξq} 2 ď Λ , (9) 
|B 2 xx Upt, x, µq| `}B υ B µ Upt, x, rξsqpξq} 2 ď Λ , (10) 
and

|B 2 xx Upt, x, µq ´B2 xx Upt, x 1 , µq| ď Λ|x ´x1 | , (11) 
for pt, x, x 1 , ξq P r0, T s ˆRd ˆRd ˆL2 pΩ, F 0 , P; R d q and µ, µ 1 P P 2 pR d q. Also, we require that |Upt `h, x, rξsq ´Upt, x, rξsq| `|B x Upt `h, x, rξsq ´Bx Upt, x, rξsq| ď Λh

1 2 `1 `|x| `}ξ} 2 ˘, (12) 
and for all h P r0, T q, pt, xq P r0, T ´hs ˆRd , ξ P L 2 pΩ, F 0 , P; R d q and v, v

1 P R d , |B υ B µ Upt, x, rξsqpυq ´Bυ B µ Upt, x, rξsqpυ 1 q| ď Λt1 `|υ| 2α `|υ 1 | 2α `}ξ} 2α 2 u 1 2 |υ ´υ1 | , (13) 
for some α ą 0.

Remark 1. In [START_REF] Chassagneux | A Probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF], it is shown that, under some conditions on the coefficients b, f and σ, the PDE (1) has indeed a unique classical solution which satisfies the assumption pH1q.

(1) Estimate ( 13) is obtained by combining Definition 2.6 and Proposition 3.9 in [START_REF] Chassagneux | A Probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF].

A major difficulty in the analysis provided below is the fact that α may be larger than 1, in which case the Lipschitz bound for the second order derivative is superlinear. This problem is proper to the McKean-Vlasov structure of the equation and does not manifest in the classical setting, compare for instance with [START_REF] Delarue | A forward-backward stochastic algorithm for quasi-linear PDEs[END_REF][START_REF] Delarue | An Interpolated Stochastic Algorithm for Quasi-Linear PDEs[END_REF]. Below, we tackle two cases: the case when α ď 1, which has been investigated in [START_REF] Cardaliaguet | The master equation and the convergence problem in mean field games[END_REF] and [18, Chap. 12] under stronger conditions on the coefficients, and the case when α ą 1 but U is bounded. (2) Estimates (8)-( 12) are required to control the convergence error when the coefficients (b or f ) depend on Z.

(a) The estimate (8) can be retrieved from the computations made in [START_REF] Chassagneux | A Probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF]. 

˘.

As stated in Proposition 2.2 in [START_REF] Chassagneux | A Probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF], for ξ " µ, Ups, x, rX t,ξ s sq " u t,µ ps, xq where u t,µ is solution to a quasi-linear PDE. Then the estimate (12) follows from standard results on non-linear PDEs, see e.g. Theorem 2.1 in [START_REF] Delarue | A forward-backward stochastic algorithm for quasi-linear PDEs[END_REF].

In comparison with the assumption used in [START_REF] Delarue | A forward-backward stochastic algorithm for quasi-linear PDEs[END_REF], the condition pH1q is more demanding. In [START_REF] Delarue | A forward-backward stochastic algorithm for quasi-linear PDEs[END_REF], there is no need for assuming the second-order derivative to be Lipschitz in space. This follows from the fact that, here, we approximate the Brownian increments by random variables taking a small number of values, whilst in [START_REF] Delarue | A forward-backward stochastic algorithm for quasi-linear PDEs[END_REF], the Brownian increments are approximated by a quantization grid with a larger number of points. In this regard, our approach is closer to the strategy implemented in [START_REF] Delarue | An Interpolated Stochastic Algorithm for Quasi-Linear PDEs[END_REF].

2.1. Description. The goal of the numerical method exposed in the paper is to approximate U. The starting point is the formula (6) and, quite naturally, the strategy is to approximate the process pX ξ , Y ξ , Z ξ q :" pX 0,ξ , Y 0,ξ , Z 0,ξ q.

Generally speaking, this approach raises a major difficulty, as it requires to handle the strongly coupled forward-backward structure of [START_REF] Benamou | Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations[END_REF]. Indeed, theoretical solutions to (6) may be constructed by means of basic Picard iterations but in small time only, which comes in contrast with similar results for decoupled forward or backward equations for which Picard iterations converge on any finite time horizon. In the papers [START_REF] Delarue | A forward-backward stochastic algorithm for quasi-linear PDEs[END_REF][START_REF] Delarue | An Interpolated Stochastic Algorithm for Quasi-Linear PDEs[END_REF] -which deal with the non McKean-Vlasov case-, this difficulty is bypassed by approximating the decoupling field U at the nodes of a time-space grid. Obviously, this strategy is hopeless in the McKean-Vlasov setting as the state variable is infinite dimensional; discretizing it on a grid would be of a non-tractable complexity. This observation is the main rationale for the approach exposed below.

Our method is a variation of the so-called method of continuation. In full generality, it consists in increasing step by step the coupling parameter between the forward and backward equations. Of course, the intuition is that, for a given time length T , the Picard scheme should converge for very small values of the coupling parameter. The goal is then to insert the approximation computed for a small coupling parameter into the scheme used to compute a numerical solution for a higher value of the coupling parameter. Below, we adapt this idea, but we directly regard T itself as a coupling parameter. So we increase T step and by step and, on each step, we make use of a Picard iteration based on the approximations obtained at the previous steps.

This naturally motivates the introduction of an equidistant grid " tr 0 " 0, . . . , r N " T u of the time interval r0, T s, with r k " kδ and δ " T N for N ě 2. In the following we shall consider that δ is "small enough" and state more precisely what it means in the main results, see Theorem 5 and Theorem 7.

For 0 ď k ď N ´1, we consider intervals I k " rr k , T s and on each interval, the following FBSDE, for ξ P L 2 pF r k q (which is a shorter notation for L 2 pΩ, F r k , P; R d q):

X t " ξ `ż t r k b `Xs , Y s , rX s , Y s s ˘ds `ż t r k σpX s , rX s sqdW s , (14) 
Y t " g `XT , rX T s ˘`ż T t f `Xs , Y s , Z s , rX s , Y s s ˘ds ´ż T t Z s ¨dW s . (15) 
Picard iterations. We need to compute backwards the value of Upr k , ξ, rξsq for some ξ P L 2 pF r k q, 0 ď k ď N ´2. We are then going to solve the FBSDE ( 14)-( 15) on the interval I k . As explained above, the difficulty is the arbitrariness of T : When k is large, I k is of a small length, but this becomes false as k decreases. Fortunately, we can rewrite the forward-backward system on a smaller interval at the price of changing the terminal boundary condition. Indeed, from pH1q, we know that pX

r k ,ξ s , Y r k ,ξ s , Z r k ,ξ s q r k ďsďr k`1 solves: " X t " ξ `şt r k b `Xs , Y s , rX s , Y s s ˘ds `şt r k σ `Xs , rX s s ˘dW s , Y t " U `rk`1 , X r k`1 , rX r k`1 s ˘`ş r k`1 t f `Xs , Y s , Z s , rX s , Y s s ˘ds ´şr k`1 t Z s ¨dW s , for t P rr k , r k`1 s.
If δ is small enough, a natural approach is to introduce a Picard iteration scheme to approximate the solution of the above equation. To do so, one can implement the following recursion (with respect to the index j):

$ ' & ' % X j t " ξ `şt r k b `Xj s , Y j s , rX j s , Y j s s ˘ds `şt r k σ `Xj s , rX j s s ˘dW s , Y j t " U `rk`1 , X j´1 r k`1 , rX j´1 r k`1 s şr k`1 t f `Xj´1 s , Y j s , Z j s , rX j´1 s , Y j s s ˘ds ´şr k`1 t Z j s ¨dW s . with pX 0 s " ξ`ş t r k b `X0 s , 0, rX 0 s , 0s ˘ds`ş t r k σ `X0 s , rX 0 s s ˘dW s q r k ďsďr k`1 and pY 0 s " 0q r k ďsďr k`1 . It is known that, for δ small enough, pX j , Y j , Z j q Ñ jÑ8 pX, Y, Zq, in the sense that ~pX j ´X, Y j ´Y, Z j ´Zq~r r k ,r k`1 s Ñ jÑ8 0.
But in practice we will encounter three main difficulties.

(1) The procedure has to be stopped after a given number of iterations J.

(2) The above Picard iteration assumes the perfect knowledge of the map U at time r k , but U is exactly what we want to compute...

(3) The solution has to be discretized in time and space. Ideal recursion. We first discuss 1) and 2) above. The main idea is to use a recursive algorithm (with a new recursion, but on the time parameter).

Namely, for k ď N ´1, we assume that we are given a solver which computes

solver[k `1](ξ) " Upr k`1 , ξ, rξsq ` k`1 pξq , (16) 
where is an error made, for any ξ P L 2 pF r k`1 q. We shall sometimes refer to solver[k 1]( ¨) as "the solver at level k `1".

Taking these observations into account, we first define an ideal solver, which assumes that each Picard iteration in the approximation of the solution of the forward-backward system can be perfectly computed. We denote it by picard[](). Accordingly, we identify (for the time being) solver

[k `1]() with picard[k `1](). Given picard[k `1](), picard[k]() is defined as follows. $ ' & ' % Xk,j t " ξ `şt r k b `X k,j s , Ỹ k,j s , r Xk,j s , Ỹ k,j s s ˘ds `şt r k σ `X k,j s , r Xk,j s s ˘dW s , Ỹ k,j t " picard[k `1]( Xk,j´1 r k`1 ) ´şr k`1 t Zk,j s ¨dW s `şr k`1 t f `X k,j´1 s , Ỹ k,j s , Zk,j s , r Xk,j´1 s , Ỹ k,j s s ˘ds , (17) 
for j ě 1 and with

´X k,0 s " ξ `şt r k bpX k,0 s , 0, rX k,0 s , 0sqds `şt r k σpX k,0 s , rX k,0 s sqdW s ¯rk ďsďr k`1 , and p Ỹ k,0 s " 0q r k ďsďr k`1 . We then define picard[k](ξ) :" Y k,J r k and k pξq :" Y k,J r k ´Upr k , ξ, rξsq , where J ě 1 is the number of Picard iterations.
At level N ´1, which is the last level for our recursive algorithm, the Picard iteration scheme is given by

$ ' ' ' & ' ' ' % XN´1,j t " ξ `şt r N ´1 b `X N ´1,j s , Ỹ N ´1,j s , r XN´1,j s , Ỹ N ´1,j s s ˘ds `şt r N ´1 σ `X N ´1,j s , r XN´1,j s s ˘dW s , Ỹ N ´1,j t " gp XN´1,j´1 T , r XN´1,j´1 T sq ´şT t ZN´1,j s ¨dW s `şT t f `X N ´1,j´1 s , Ỹ N ´1,j s , ZN´1,j s , r XN´1,j´1 s , Ỹ N ´1,j s s ˘ds . (18) 
Here, the terminal condition g is known and the error comes from the fact that the Picard iteration is stopped. It is then natural to set, for ξ P L 2 pF T q, picard[N ](ξ) " gpξ, rξsq and N pξq " 0 .

Practical implemention. As already noticed in 3) above, it is not possible to solve the backward and forward equations in [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF] perfectly, even though the system is decoupled. Hence, we need to introduce an approximation that can be implemented in practice. Given a continuous adapted input process X " pX s q r k ďsďr k`1 such that Ersup r k ďsďr k`1 |X s | 2 s ă 8 and η P L 2 pΩ, F r k`1 , P; Rq, we thus would like to solve

# Xt " X r k `şt r k b `X s , Ỹs , r Xs , Ỹs s ˘ds `şt r k σ `X s , r Xs s ˘dW s Ỹt " η `şr k`1 t f `Xs , Ỹs , Zs , rX s , Ỹs s ˘ds ´şr k`1 t
Zs ¨dW s , for t P rr k , r k`1 s. Let π be a discrete time grid of r0, T s such that Ă π, π :" tt 0 :" 0 ă ¨¨¨ă t n :" T u and |π| :" max

iăn pt i`1 ´ti q. ( 20 
)
For 0 ď k ď N ´1, we note π k :" tt P π | r k ď t ď r k`1 u and for later use, we define the indices pj k q 0ďkďN as follows

π k " tt j k :" r k ă ¨¨¨ă t i ă ¨¨¨ă r k`1 ": t j k`1 u ,
for all k ă N . So, instead of a perfect solver for an iteration of the Picard scheme [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF], we assume that we are given a numerical solver, denoted by solver[k]( X,η,f ), which computes an approximation of the process p Xs , Ỹs , Zs q r k ďsďr k`1 on π k for a discretization p Xt q tPπ k of the time continuous process pX s q r k ďsďr k`1 . The output is denoted by p Xt , Ȳ t , Zt q tPπ k . In parallel, we call input the triplet formed by the random variable η, the discrete-time process p Xt q tPπ k and the driver f of the backward equation. In short, the output is what the numerical solver returns after one iteration in the Picard scheme when the discrete input is pη, X, f q. Pay attention that, in contrast with b and σ, we shall allow f to vary; this is the rationale for regarding it as an input. However, when the value of f is clear, we shall just regard the input as the pair pη, p Xt q tPπ k q.

The full convergence analysis, including the discretization error, will be discussed in the next section in the following two cases: first for a generic (or abstract) solver solver[](,,) and second for an explicit solver, as given in the example below. Example 2. This example is the prototype of the solver solver[](,,) . We consider an approximation of the Brownian motion obtained by quantization of the Brownian increments. At every time t P π, we denote by Wt the value at time t of the discretized Brownian motion. It may expressed as

Wt i :" i´1 ÿ j"0 ∆ Wj ,
where ∆ Wj :" h 1 2 j j , j :" Γ d ´h´1 2 j `Wt j`1 ´Wt j ˘¯, Γ d mapping R d onto a finite grid of R d . Importantly, Γ d is assumed to be bounded by Λ and each j is assumed to be centered and to have the identity matrix as covariance matrix. Of course, this is true if Γ d is of the form

Γ d `w1 , ¨¨¨, w d ˘:" `Γ1 pw 1 q, ¨¨¨, Γ 1 pw d q ˘, pw 1 , ¨¨¨, w d q P R d ,
where Γ 1 is a bounded odd function from R onto a finite subset of R with a normalized second order moment under the standard Gaussian measure. In practice, Γ d is intended to take a small number of values. Of course, the typical example is the so-called binomial approximation, in which case Γ 1 is the sign function.

On each interval rr k , r k`1 s, given a discrete-time input process X and a terminal condition η, we thus implement the following scheme (below, E t i is the conditional expectation given F t i ):

(1) For the backward component: (a) Set as terminal condition, p Ȳt j k`1 , Zt j k`1 q " pη, 0q.

(b) For j k ď i ă j k`1 , compute recursively Ȳt i " E t i " Ȳt i`1 `pt i`1 ´ti qf `X t i , Ȳt i , Zt i , r Xt i , Ȳt i s ˘‰ , Zt i " E t i " ∆ Wi t i`1 ´ti Ȳ t i`1
 .

(2) For the forward component: (a) Set as initial condition,

Xt j k " Xr k . (b) For j k ă i ď j k`1 , compute recursively Xt i`1 " Xt i `b`X t i , Ȳt i , r Xt i , Ȳt i s ˘pt i`1 ´ti q `σ`X t i , r Xt i s ˘∆ Wi .
Full algorithm for solver[](). Using solver[](,,) , for each level, we can now give a completely implementable algorithm for solver[](). Its description is as follows.

The value solver[k](ξ), i.e. the value of the solver at level k with initial condition ξ P L 2 pF r k q, is obtained through:

(1) Initialize the backward component at Ȳ k,0 t " 0 for t P π k and regard p Xk,0 t q tPπ k as the forward component of solver

[k](ξ,0,0) (2) for 1 ď j ď J (a) compute Ȳ k,j r k`1 " solver[k `1]( Xk,j´1 r k`1 ). (b) compute p Xk,j , Ȳ k,j , Zk,j q " solver[k]( Xk,j´1 , Ȳ k,j r k`1 ,f ) (3) return Ȳ k,J r k`1 . Following (19), we let solver[N ](ξ) " gpξ, rξsq . (21) 
We first explain the initialization step. The basic idea is to set the backward component to 0 and then to solve the forward component as an approximation of the autonomous McKean-Vlasov diffusion process in which the backward entry is null. Of course, this may be solved by means of any standard method, but to make the notation shorten, we felt better to regard the underlying solver as a specific case of a forward-backward solver with null coefficients in the backward equation. We specify in the analysis below the conditions that this initial solver solver[](,0,0) must satisfy.

It is also worth noting that each Picard iteration used to define the solver at level k calls the solver at level k `1. This is a typical feature of the way the continuation method manifests from the algorithmic point of view. In particular, the total complexity is of order OpJ N Kq, where K is the complexity of the solver solver[](,,) . In this regard, it must be stressed that, for a given length T , N is fixed, regardless of the time step |π|. Also, J is intended to be rather small as the Picard iterations are expected to converge geometrically fast, see the numerical examples in Section 4 in which we choose J " 5. However, it must be noticed that the complexity increases exponentially fast when T tends to 8, which is obviously the main drawback of this method. Again, we refer to Section 4 for numerical illustrations.

Useful notations. Throughout the paper, } ¨}p denotes the L p norm on pΩ, F, Pq. Also, p Ω, F, Pq stands for a copy of pΩ, F, Pq. It is especially useful to represent the Lions' derivative of a function of a probability measure and to distinguish the (somewhat artificial) space used for representing these derivatives from the (physical) space carrying the Wiener process. For a random variable X defined on pΩ, F, Pq, we shall denote by xXy its copy on p Ω, F, Pq.

We shall use the notations C Λ , c Λ for constants only depending on Λ (and possibly on the dimension as well). They are allowed to increase from line to line. We shall use the notation C for constants not depending upon the discretization parameters. Again, they are allowed to increase from line to line. In most of the proofs, we shall just write C for C Λ , even if we use the more precise notation C Λ in the corresponding statement.

2.2.

A first analysis with no discretization error. To conclude this section, we want to understand how the error propagates through the solvers used at different levels in the ideal case where the Picard iteration in [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF] can be perfectly computed or equivalently when the solver is given by solver[k]() " picard[k](). For j ě 1, we then denote by p Xk,j , Ỹ k,j , Zk,j q, the solution on rr k , r k`1 s of [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF].

The main result of the section, see Theorem 5, is an upper bound for the error when we use picard[ ¨]( ¨) to approximate U. The proof of this theorem requires the following proposition, which gives a local error estimate for each level. Proposition 3. Let us define, for j P t1, ¨¨¨, Ju, k P t1, ¨¨¨, N ´1u,

∆ j k :" › › › sup tPrr k ,r k`1 s `Ỹ k,j t ´Upt, Xk,j t , r Xk,j t sq ˘› › › 2 then, there exist constants C Λ , c Λ such that, for δ :" C Λ δ ă c Λ , ∆ j k ď δj ∆ 0 k `j ÿ "1 δ ´1e δ › › k`1 p Xk,j´ r k`1 q › › 2 . ( 22 
)
We recall that k pξq stands for the error term:

k pξq " picard[k](ξ) ´Upr k , ξ, rξsq , with N pξq " 0 . Remark 4.
A careful inspection of the proof shows that, whenever σ depends on Y or b depends on Z, the same result holds true but with a constant C Λ depending on N . As N is fixed in practice, this might still suffice to complete the analysis of the discretization scheme in that more general setting.

Proof. We suppose that the full algorithm is initialized at some level k P t0, ¨¨¨, N ´1u, with an initial condition ξ P L 2 pF r k q. As the value of the index k is fixed throughout the proof, we will drop it in the notations p Xk,j , Ỹ k,j , Zk,j q and ∆ j k . Applying Ito's formula for functions of a measure argument, see [START_REF] Buckdahn | Mean-field stochastic differential equations and associated PDEs[END_REF][START_REF] Chassagneux | A Probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF] Observe that this argument is reminiscent of the four-step scheme, see [START_REF] Ma | Solving forward-backward stochastic differential equations explicitly -a four step scheme[END_REF].

Using standard arguments from BSDE theory and pH0q-pH1q, we then compute

∆ j ď e Cδ › › Upr k`1 , Xj r k`1 , r Xj r k`1 sq ´Ỹ j r k`1 › › 2 ď e Cδ ´› › k`1 p Xj´1 r k`1 q › › 2 `› › Upr k`1 , Xj r k`1 , r Xj r k`1 sq ´Upr k`1 , Xj´1 r k`1 , r Xj´1 r k`1 sq › › 2 ¯, recalling Ỹ j r k`1 " picard[k `1]( Xj´1 r k`1
) and ( 16). Since U is Lipschitz, we have

∆ j ď e Cδ ´› › k`1 p Xj´1 r k`1 q › › 2 `2L › › Xj r k`1 ´X j´1 r k`1 › › 2 ¯. (23) 
We also have that

Xj t ´X j´1 t " ż t r k b `X j s , Ỹ j s , r Xj t , Ỹ j t s ˘´b `X j´1 s , Ỹ j´1 s , r Xj´1 t , Ỹ j´1 t s ˘(ds `ż t r k σ `X j s , r Xj s s ˘´σ `X j´1 s , r Xj´1 s s ˘(dW s .
Using usual arguments (squaring, taking the sup, using Bürkholder-Davis-Gundy inequality), we get, since b and σ are Lipschitz continuous,

› › › sup tPrr k ,r k`1 s | Xj t ´X j´1 t | › › › 2 ď C ´δ› › › sup tPrr k ,r k`1 s | Ỹ j t ´Ỹ j´1 t | › › › 2 `δ 1 2 › › › sup tPrr k ,r k`1 s | Xj t ´X j´1 t | › › › 2 ¯.
Observing that

| Ỹ j s ´Ỹ j´1 s | ď | Ỹ j s ´Ups, Xj s , r Xj s sq| `| Ỹ j´1 s ´Ups, Xj´1 s , r Xj´1 s sq| `Λp| Xj´1 s ´X j s | `} Xj´1 s ´X j s } 2 q
, we obtain, for δ small enough,

› › › sup tPrr k ,r k`1 s | Xj t ´X j´1 t | › › › 2 ď Cδp∆ j `∆j´1 q . ( 24 
)
Combining the previous inequality with [START_REF] Gomes | Economic Models and Mean-field Games Theory, Publicaões Matemáticas[END_REF], we obtain, for δ small enough,

∆ j ď e Cδ › › k`1 p Xj´1 r k`1 q › › 2 `Cδ∆ j´1
, which by induction leads to

∆ j ď pCδq j ∆ 0 `j ÿ "1 pCδq ´1e Cδ › › k`1 p Xj´ r k`1 q › › 2 ,
and concludes the proof. l

We now state the main result of this section, which explains how the local error induced by the fact that the Picard iteration is stopped at rank J propagates through the various levels k " N ´1, ¨¨¨, 0.

Theorem 5. We can find two constants C Λ , c Λ ą 0 and a continuous non-decreasing function B : R `Ñ R `matching 0 in 0, only depending on Λ, such that, for δ :" C Λ δ ă minpc Λ , 1q and β ě Bp δq satisfying

pJ ´1qΛ δJ e βC Λ T e β δ ´1 ď 1 ( 25 
)
where J is the number of Picard iterations in a period, it holds, for any period k P t0, ¨¨¨, N u and ξ P L 2 pF r k q,

}solver[k](ξ) ´Upr k , ξ, rξsq} 2 ď Λ e βC Λ T β δJ´1 `1 `› › P ‹ r k ,T pξq › › 2 ˘, (26) 
where P r k ,t pξq is the solution at time t of the stochastic differential equation dX 0 s " b `X0 s , 0, rX 0 s , 0s ˘ds `σ`X 0 s , rX 0 s s ˘dW s , with X 0 r k " ξ as initial condition, and P ‹ r k ,t pξq " sup sPrr k ,ts |P r k ,s pξq|.

Of course, it is absolutely straightforward to bound

› › ›P ‹ r k ,T pξq › › › 2
by Cp1 `}ξ} 2 q in (26). Theorem 5 may be restated accordingly, but the form used in the statement is more faithful to the spirit of the proof.

Proof. We prove the claim by an induction argument. We show below that for all k P t0, . . . , N u,

› › › k pξq › › › 2 " }solver[k](ξ) ´Upr k , ξ, rξsq} 2 ď θ k ´1 `› › P ‹ r k ,T pξq › › 2 ¯, (27) 
where pθ k q k"0,¨¨¨,N ´1 is defined by the following backward induction: θ N :" 0, recall [START_REF] Carmona | Control of McKean-Vlasov versus Mean Field Games[END_REF], and for k P t0, ¨¨¨, N ´1u,

θ k :" Λ δJ `eβ δ θ k`1 , (28) 
where β is such that ˆγ `γ δe γ δ pγ `Λ 1 ´δ q ˙ď e β δ , with γ :" e δ 1 ´δ .

With this definition, we have, for all k P t0, ¨¨¨, N u,

θ k " Λ δJ N ´k´1 ÿ j"0 e jβ δ ď Λ δJ e βC Λ T e β δ ´1 , (30) 
which gives the expected result.

We now prove [START_REF] Lasry | Jeux à champ moyen I. Le cas stationnaire[END_REF]. Observe that it is obviously true for the last step N . Assume now that it holds true at step k `1, for k ă N , and that (30) holds true for θ k`1 . Then, using (25), we have

θ k`1 j ď 1, for all j ď J ´1 . (31) 
From Proposition 3, we have

∆ j k ď δj ∆ 0 k `j ÿ "1 δ ´1e δ } k`1 p Xk,j´ r k`1 q} 2 . ( 32 
)
Using the induction hypothesis [START_REF] Lasry | Jeux à champ moyen I. Le cas stationnaire[END_REF], we compute

∆ j k ď δj ∆ 0 k `eδ 1 ´δ θ k`1 `eδ θ k`1 j´1 ÿ "0 δj´1´ › › P ‹ r k`1 ,T `X k, r k`1 ˘› › 2 . ( 33 
)
We study the last sum. Observe that for P t1, ¨¨¨, j ´1u,

› › P ‹ r k`1 ,T `X k, r k`1 ˘› › 2 ď › › P ‹ r k`1 ,T `X k,0 r k`1 ˘› › 2 ` ÿ i"1 › › ›P ‹ r k`1 ,T `X k,i r k`1 ˘´P ‹ r k`1 ,T `X k,i´1 r k`1 ˘› › › 2 .
We observe that P r k`1 ,t p Xk,0 r k`1 q " P r k ,t p Xk,0 r k q " P r k ,t pξq, for t P rr k`1 , T s. Hence, P ‹ r k`1 ,T p Xk,0 r k`1 q ď P ‹ r k ,T pξq. Also, it is well-checked that there exists a constant C Λ such that each P ‹ t,T is C Λ -Lipschitz continuous from L 2 pF t q into L 2 pF T q. Then,

j´1 ÿ "0 δj´1´ › › P ‹ r k ,T `X k, r k`1 ˘› › 2 ď C Λ j´1 ÿ "1 δj´1´ ÿ i"1 › › › Xk,i r k`1 ´X k,i´1 r k`1 › › › 2 `j´1 ÿ "0 δ › › P ‹ r k ,T pξq › › 2 .
Using [START_REF] Gomes | Voskanyan Regularity Theory for Mean-Field Game Systems[END_REF] in the proof of Proposition 3 and changing the definition of δ, we obtain

j´1 ÿ "0 δj´1´ › › P ‹ r k ,T `X k, r k`1 ˘› › 2 ď δ j´1 ÿ i"1 p∆ i k `∆i´1 k q j´1 ÿ "i δj´1´ `j´1 ÿ "0 δ › › P ‹ r k ,T pξq › › 2 . ( 34 
)
Observing that, for all i ď j ´1, ř j´1

"i δj´1´ ď 1 1´δ , we get j´1 ÿ "0 δj´ › › P ‹ r k ,T `X k, r k`1 ˘› › 2 ď 2 δ 1 ´δ S j´1 k `1 1 ´δ › › P ‹ r k ,T pξq › › 2 , (35) 
where S n k :"

ř n i"0 ∆ i k .
Inserting the previous estimate into [START_REF] Pham | Bellman equation and viscosity solutions for mean field stochastic control problem[END_REF] and changing δ into 2 δ, we obtain

∆ j k ď δj ∆ 0 k `eδ 1 ´δ θ k`1 `1 `› › P ‹ r k ,T pξq › › 2 ˘`θ k`1 δe δ 1 ´δ S j´1 k . (36) 
We note that ∆ 0 k ď Λp1 `}P ‹ r k ,T pξq} 2 q. Recalling γ in [START_REF] Lasry | Mean Field Games[END_REF], equation (36) leads to

∆ j k ď a j `γθ k`1 δS j´1 k . ( 37 
)
where we set a j :" pΛ δj `γθ k`1 qp1 `}P ‹ r k ,T pξq} 2 q. We have

S j k ´Sj´1 k " ∆ j k ď a j `γθ k`1 δS j´1 k ,
and then

S j k ď e γθ k`1 δj S 0 k `j ÿ "1 e γθ k`1 δpj´ q a . ( 38 
)
We compute

j ÿ "1 a ď ´jγθ k`1 `Λδ 1 ´δ ¯`1 `› › P ‹ r k ,T pξq › › 2 ˘,
which combined with the properties ( 31) and (38) leads to, for all j ď J ´1,

S j k ď e γ δ ˆγ `Λ 1 ´δ ˙`1 `› › P ‹ r k ,T pξq › › 2 ˘,
where we recall that S 0 k " ∆ 0 k ď Λp1 `}P ‹ r k ,T pξq} 2 q. We insert the previous inequality into (37) for j " J and get

∆ J k ď ˆΛδ J `ˆγ `γ δe γ δ pγ `Λ 1 ´δ q ˙θk`1 ˙´1 `› › P ‹ r k ,T pξq › › 2 ¯.
Using [START_REF] Lasry | Mean Field Games[END_REF], this rewrites

∆ J k ď ´Λδ J `eβ δ θ k`1 ¯´1 `› › P ‹ r k ,T pξq › › 2 ¯,
and validates [START_REF] Lasry | Jeux à champ moyen II. Horizon fini et contrôle optimal[END_REF] and thus [START_REF] Lions | Estimées nouvelles pour les équations quasilinéaires Seminar in Applied Mathematics at the Collège de France[END_REF]. We then obviously have that ( 27) holds true. l

Convergence Analysis

3.1.

Error analysis in the generic case. We now study the convergence of a generic implementable solver solver[](), based upon the local solver solver[](,,) as described above, as long as the output of the local solver solver[k](,,) satisfies some conditions, which are shown to be true for Example 2.

In order to define the required assumption, we use the same letters Λ and α as in pH0q and pH1q, except that, without any loss of generality, we assume that α is greater than 1. For the same coefficients as in the equation ( 6), and in particular for the same driver f , we then ask solver[k](,,) to satisfy the following three conditions.

pA1q sup tPπ k › › Upt, Xt , r Xt sq ´Ȳ t › › 2α ď e Λδ › › Upr k`1 , Xr k`1 , r Xr k`1 sq ´Ȳ r k`1 › › 2α `Λ max j k ďiăj k`1 › › Xt i ´X t i › › 2α `D1 p|π|q `D2 p|π|q `1 `}ξ} α 2α ˘, pA2q sup tPπ k › › Xt ´X 1 t › › 2α ď Λδ sup tPπ k › › Ȳt ´Ȳ 1 t › › 2α , pA3q › › Upr k`1 , Xr k`1 , r Xr k`1 sq ´Ȳ r k`1 › › α 2α ď Λ › › Upr k`1 , Xr k`1 , r Xr k`1 sq ´Ȳ r k`1 › › 2α
, where p X, Ȳ , Zq :" solver[k]( X,η,f ), for f as before, and p X1 , Ȳ 1 , Z1 q :" solver[k]( X1 ,η 1 ,f 1 ), for another f 1 either equal to f or 0, are two output values of solver[](,,) associated to two input processes X, X1 , with the same initial condition Xr k " X1 r k " ξ, and to two different terminal conditions η and η 1 . For i P t1, 2u, the function D i : r0, 8q Ñ r0, 8q is a discretization error associated to the use of the grid π, which satisfies lim hÓ0 D i phq " 0. Importantly, both D 1 and D 2 are independent of X, η, J and N .

In full analogy with the discussion right below Theorem 5, we shall also need some conditions on the solver solver[k](,0,0) used to initialize the algorithm at each step. Following the definition of pP r k ,t q 0ďtďT introduced in the statement of Theorem 5, we let by induction, for a given k P t0, ¨¨¨, N ´1u: P r k ,t pξq " `solver[k](ξ,0,0) ˘1 t , t P π k , ξ P L 2 pF r k q , where we recall that `solver[k](ξ,0,0) ˘1 is the forward component of the algorithm's output, and, for k ď N ´2, P r k ,t pξq " P r ,t `Pr k ,r pξq ˘, t P π , k ă ď N ´1, and then P ‹ r k ,T pξq " max sPπ,sPrr k ,T s |P r k ,s pξq|, for ξ P L 2 pF r k q. It then makes sense to assume pA4q

› › P ‹ r k ,T pξq ´P‹ r k ,T pξ 1 q › › 2α ď Λ › › ξ ´ξ1 › › 2α pA5q › › P ‹ r k ,T pξq › › 2α ď Λ `1 `› › ξ › › 2α
where ξ, ξ 1 P L 2α pF r k q and k P t0, ¨¨¨, N ´1u.

Remark 6. The main challenging assumption (and maybe the most surprising one) is pA3q. It is obviously satisfied when α " 1 as long as Λ is assumed to be greater than 1. We refer to [START_REF] Cardaliaguet | The master equation and the convergence problem in mean field games[END_REF] and [17, Chap. 12] for sets of conditions under which this is indeed true. When α ą 1, Assumption pA3q is checked provided we have an a priori bound on }Upr k`1 , Xr k`1 , r Xr k`1 sq ´Ȳ r k`1 } 2α , see Lemma 10. This permits to invoke the result proven in our previous paper [START_REF] Chassagneux | A Probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF], which holds true in a weaker setting than the solvability results obtained in [START_REF] Cardaliaguet | The master equation and the convergence problem in mean field games[END_REF] and [17, Chap. 12].

Theorem 7. We can find two constants C Λ , c Λ ą 0 and a continuous non-decreasing function B : R `Ñ R `matching 0 in 0, only depending on Λ, such that, for δ :" C Λ δ ă minpc Λ , 1q and β ě Bp δq satisfying

pJ ´1q ´Λδ J `eβ δ D 2 p|π|q ¯eβC Λ T e β δ ´1 ď 1 , ( 39 
)
where J is the number of Picard iterations in a period, it holds, for any period k P t0, ¨¨¨, N u and ξ P L 2 pF r k q,

› › solver[k](ξ) ´Upr k , ξ, rξsq › › 2α ď C `δ J´1 `pN ´kqD 2 p|π|q ˘`1 `}ξ} α 2α ˘`CpN ´kqD 1 p|π|q ,
for a constant C independent of the discretization parameters.

Proof. The proof will follow closely the proof of Theorem 5 but we now have to take into account the discretization error. We will first show that for all k " t0, ¨¨¨, N u,

› › k pξq › › 2α ď θ k `1 `› › P ‹ r k ,T pξq › › α 2α ˘`ϑ k D 1 p|π|q , (40) 
where k pξq " solver[k](ξ) ´Upr k , ξ, rξsq , and pθ k , ϑ k q k"0,¨¨¨,N is defined by the following backward induction: pθ N , ϑ N q :" p0, 0q, recall [START_REF] Delarue | A forward-backward stochastic algorithm for quasi-linear PDEs[END_REF], and for k P t0, ¨¨¨, N ´1u,

θ k :" Λ δJ `eβ δ tθ k`1 `D2 p|π|qu and ϑ k :" e β δ pϑ k`1 `1q , (41) 
β being defined as in equation (48).

Assume for a while that thids holds true. Then, we have, for all k " t0, ¨¨¨, N ´1u,

θ k ď `Λδ J `eβ δ D 2 p|π|q ˘eβ δpN ´kq ´1 e β δ ´1
and ϑ k ď e β δ e βpN ´kq δ ´1 e β δ ´1

.

Recalling that δN " C Λ T , we get the announced inequality.

We now prove (40). Obviously, it holds true for the last step N . Assume now that it is true at step k `1, for k ă N and that (42) holds for θ k`1 and ϑ k`1 . In particular, using (39), we observe that θ k`1 j ď 1, for all j ď J ´1 .

(43)

First

Step. For j P t0, . . . , Ju, let

∆j k :" sup tPπ k › › Upt, Xk,j t , r Xk,j t sq ´Ȳ k,j t › › 2α .
Under pA1q´pA2q, we will prove in this first step an upper bound for ∆j k , for j " 1, ¨¨¨, J, similar to the one obtained in Proposition 3.

Using pA1q and pH1q and the fact that

Ȳ k,j r k`1 " U `rk`1 , Xk,j´1 r k`1 , r Xk,j´1 r k`1 s ˘` k`1 p Xk,j´1 r k`1 q ,
we observe that

∆j k ď e Λδ " › › U `rk`1 , Xk,j r k`1 , r Xk,j r k`1 s ˘´U `rk`1 , Xk,j´1 r k`1 , r Xk,j´1 r k`1 s ˘› › 2α `› › k`1 p Xk,j´1 r k`1 q › › 2α ı `Λ max j k ďiăj k`1 › › Xk,j t i ´X k,j´1 t i › › 2α `D1 p|π|q `D2 p|π|q `1 `› › ξ › › α 2α ˘(44) ď C Λ max tPπ k › › Xk,j t ´X k,j´1 t › › 2α `eΛδ › › k`1 p Xk,j´1 r k`1 q › › 2α `D1 p|π|q `D2 p|π|q `1 `› › P ‹ r k ,T pξq › › α 2α ˘.
Using pA2q, we also have

sup tPπ k › › Xk,j t ´X k,j´1 t › › 2α ď Λδ sup tPπ k " › › Ȳ k,j t ´Upt, Xk,j t , r Xk,j t sq › › 2α `Λ› › Xk,j t ´X k,j´1 t › › 2α `› › Upt, Xk,j´1 t , r Xk,j´1 t sq ´Ȳ k,j´1 t › › 2α ı ď C Λ δ ´∆ j k `∆ j´1 k ¯,
for δ small enough. Inserting the previous inequality in (44), we get

∆j k ď C Λ δ ∆j´1 k `eC Λ δ › › k`1 p Xk,j´1 r k`1 q › › 2α `D1 p|π|q `D2 p|π|q `1 `› › P ‹ r k ,T pξq › › α 2α ˘, ď δj ∆0 k `eδ j´1 ÿ "0 δ › › k`1 p Xk,j´1´ r k`1 q › › 2α `D1 p|π|q 1 ´δ `D2 p|π|q 1 ´δ `1 `› › P ‹ r k ,T pξq › › α 2α ˘,
with δ :" C Λ δ. We note that compared to [START_REF] Delarue | An Interpolated Stochastic Algorithm for Quasi-Linear PDEs[END_REF], there is a new term, namely pD 1 p|π|q D2 p|π|qp1 `}P ‹ r k ,T pξq} α 2α q{p1 ´δq, which is due to the discretization. Second Step. Using (40) at the previous step k `1 and noting that ∆0 k ď Λp1 }P ‹ r k ,T pξq} 2α q ď 2Λp1 `}P ‹ r k ,T pξq} α 2α q, we claim that

∆j k ď `2Λ δj `γD 2 p|π|q ˘`1 `› › P ‹ r k ,T pξq › › α 2α ˘`γpϑ k`1 `1qD 1 p|π|q `eδ θ k`1 j´1 ÿ "0 δj´1´ ´1 `› › P ‹ r k`1 ,T p Xk, r k`1 q › › α 2α ¯, (45) 
where γ :" e δ {p1 ´δq. This corresponds to equation ( 33) adapted to our context. By pA2q, we have, for ď J ´1,

› › P ‹ r k`1 ,T p Xk, r k`1 q ´P‹ r k`1 ,T p Xk,0 r k`1 q › › 2α ď C Λ sup tPπ k › › Xk, t ´X k,0 t › › 2α . ( 46 
)
Using pA4q, we then compute, recalling that Ȳ k,0 " 0, sup

tPπ k › › Xk, t ´X k,0 t › › 2α ď Λδ sup tPπ k › › Ȳ k, t › › 2α ď Λδ ˆ∆ k `Λ sup tPπ k › › Xk, t ´X k,0 t › › 2α `Λ`1 `› › ξ › › 2α ˘ď C Λ δ ∆ k `CΛ δ `1 `› › ξ › › 2α ˘,
where for the last inequality we used the fact that δ is small enough. Observing that

› › ξ › › 2α ď › › P ‹ r k ,T pξq › › 2α
and combining the previous inequality with (46), we obtain

› › P ‹ r k`1 ,T p Xk, r k`1 q ´P‹ r k`1 ,T p Xk,0 r k`1 q › › 2α ď C Λ δ ∆ k `CΛ δ `1 `› › P ‹ r k ,T pξq › › 2α ˘.
So that, by using the fact that P ‹ r k`1 ,T p Xk,0 r k`1 q ď P ‹ r k ,T pξq together with a convexity argument,

› › P ‹ r k`1 ,T p Xk, r k`1 q › › α 2α ď ´CΛ δ ∆ k ``1 `CΛ δ ˘`1 `› › P ‹ r k ,T pξq › › 2α ˘¯α , ď `1 `2C Λ δ ˘α´1 ´CΛ δ `∆ k ˘α ``1 `CΛ δ ˘› › P ‹ r k ,T pξq › › α 2α ¯,
Appealing to pA3q and redefining δ, we get

› › P ‹ r k`1 ,T p Xk, r k`1 q › › α 2α ď δ ∆ k `eδ `1 `› › P ‹ r k ,T pξq › › α 2α ˘,
which may be rewritten as

j´1 ÿ "0 δj´1´ › › P ‹ r k`1 ,T p Xk, r k`1 q › › α 2α ď δ j´1 ÿ "1 δj´1´ ∆ k `eδ 1 ´δ `1 `› › P ‹ r k ,T pξq › › α 2α ˘.
Recalling the notation γ " e δ {p1 ´δq and letting Sn k :"

ř n i"0
δn´i ∆i k , we obtain a new version of (37), namely

∆j k ď Λ δj `1 2 `› › P ‹ r k ,T pξq › › α 2α ˘`ā `θk`1 γ δ Sj´1 k , (47) 
where we changed the constant 2Λ in (45) into 1 2 Λ as we changed the value of δ, and where we put

ā " `γ2 θ k`1 `γD 2 p|π|q ˘`1 `› › P ‹ r k ,T pξq › › α 2α ˘`γpϑ k`1 `1qD 1 p|π|q . We straightforwardly deduce that Sj k " ∆j k `δ Sj´1 k ď Λ δj `1 `› › P ‹ r k ,T pξq › › α 2α ˘`ā ``1 `γθ k`1 ˘δ Sj´1 k ď e γθ k`1 j δj S0 k `j´1 ÿ "0 e γθ k`1 δ ´Λδ j´ `1 `› › P ‹ r k ,T pξq › › α 2α ˘`ā ¯, which yields Sj k ď Λpj `2q δj e γθ k`1 pj´1q `1 `› › P ‹ r k ,T pξq › › α 2α ˘`ā 1 ´eγθ k`1 δ ,
where we used S0 k ď 2Λp1 `}P ‹ r k ,T pξq} α 2α q. Thanks to (47), we get

∆J k ď Λ δJ ´1 2 `δγpJ `2qθ k`1 e γθ k`1 pJ´1q ¯`1 `› › P ‹ r k ,T pξq › › α 2α ˘`ā 1 ´eγθ k`1 δ .
Recalling that pJ ´1qθ k`1 ď 1, we deduce that, for δ small enough,

∆J k ď `Λδ J `eβ δ tθ k`1 `D2 p|π|qu ˘`1 `› › P ‹ r k ,T pξq › › α 2α ˘`e β δ pϑ k`1 `1qD 1 p|π|q , provided that β satisfies γ 2 1 ´eγθ k`1 δ ď e β δ . (48) 
This validates (41) and concludes the proof. l 3.2. Convergence error for the implemented scheme. We now analyse the global error of our method when the numerical algorithm is given by our benchmark Example 2, see Section 4.1.

Lemma 8. (Scheme stability) Condition pA2q holds true for the scheme given in Example 2.

Proof. For k ď N ´1, we consider p X, Ȳ , Zq :" solver[k]( X,η,f ) and p X1 , Ȳ 1 , Z1 q :" solver 

[k]( X1 ,η 1 ,f 1 ) with Xr k " X1 r k " ξ. Letting ∆X i " Xt i ´X 1 t i and ∆Y i " Ȳt i ´Ȳ 1 t i , we observe |∆X i`1 | ď ˇˇˇi ÿ "j k pt `1 ´t q∆b ˇˇˇ`ˇˇˇi ÿ "j k ∆σ ∆ W ˇˇˇ, for i P tj k , ¨¨¨, j k`1 u,
› › ∆X i`1 › › 2α ď Cδ max "j k ,¨¨¨,i `› › ∆Y › › 2α `› › ∆X › › 2α ˘`C › › › › i ÿ "j k |∆σ | 2 ¨|∆ Ŵ | 2 › › › › 1 2 α ď Cδ max "j k ,¨¨¨,i `› › ∆Y › › 2α `› › ∆X › › 2α ˘`C ˆi ÿ "j k pt `1 ´t q › › ∆X › › 2 2α ˙1 2 ď Cδ max "j k ,¨¨¨,i `› › ∆Y › › 2α `› › ∆X › › 2α ˘`Cδ 1{2 max "j k ,¨¨¨,i `› › ∆X › › 2α ˘,
where we used the identity t `1 ´t " δ{pj k`1 ´jk q. For δ small enough (taking the sup in the sum), we then obtain

max j k ďiďj k`1 › › ∆X i › › 2α ď Cδ max j k ďiďj k`1 › › ∆Y i › › 2α , (49) 
which concludes the proof. l

We now turn to the study of the approximation error.

Lemma 9. Assume that pH0q-pH1q are in force. Then, condition pA1q holds true for the scheme given in Example 2 with

D 1 p|π|q ď C a |π| and D 2 p|π|q ď C a |π|.
Proof. First Step. Given the scheme defined in Example 2, we introduce its piecewise continuous version, which we denote by p Xs q 0ďsďT . For i ă n, t i ă s ă t i`1 , Xs :" Xt i `bi ps ´ti q `σi ? s ´ti i , i :"

1 ? t i`1 ´ti ∆ Wi ,
with pb i , σ i q :" pbp Xt i , Ȳt i , r Xt i , Ȳt i sq, σp Xt i , r Xt i sqq. In preparation for the proof, we also introduce a piecewise càd-làg version, denoted by p Xpλq s q 0ďsďT , where λ is a parameter in r0, 1q. For i ă n, t i ă s ă t i`1 , Xpλq s :" Xt i `bi ps ´ti q `λσ i ? s ´ti i .

For the reader's convenience, we also set Ūs :" U `s, Xs , r Xs s ˘,

V x s :" B x U `s, Xs , r Xs s ˘, V µ s :" B µ U `s, Xs , r Xs s ˘px Xs yq , V x,0 s :" B x U `s, Xp0q s , r Xs s ˘.
Applying the discrete Itô formula given in Proposition 14, and using the PDE solved by U, recall (1), we compute

Ūt i`1 " Ūt i `ż t i`1 t i V x s ¨ b `X t i , Ȳt i , r Xt i , Ȳt i s ˘´b `X t i , Ūt i , r Xt i , Ūt i s ˘( ds `ż t i`1 t i Ê " V µ s ¨ xb `X t i , Ȳt i , r Xt i , Ȳt i s ˘´b `X t i , Ūt i , r Xt i , Ūt i s ˘(y ‰ ds ´pt i`1 ´ti qf ´X t i , Ūt i , σ : `X t i , r Xt i s ˘V x t i , r Xt i , Ūt i s V x t i ¨´a t i`1 ´ti σ `X t i , r Xt i s ˘ i Rw i `Rf i `Rbx i `Rbµ i `Rσx i `Rσµ i `δMpt i , t i`1 q `δT pt i , t i`1 q , with R w i :" ż t i`1 t i p V x,0 s ´V x,0 t i q ¨σp Xp0q t i , r Xt i sq i 2 ? s ´ti ds , R f i :" ż t i`1 t i ! f ´X s , Ūs , σ : `X s , r Xs s ˘V x s , r Xs , Ūs s f ´X t i , Ūt i , σ : `X t i , r Xt i s ˘V x t i , r Xt i , Ūt i s ¯) ds , R bx i :" ż t i`1 t i V x s ¨ b `X t i , Ūt i , r Xt i , Ūt i s ˘´b `X s , Ūs , r Xs , Ūs s ˘( ds ,
R bµ i :"

ż t i`1 t i Ê " V µ s ¨ xb `X t i , Ūt i , r Xt i , Ūt i s ˘´b `X s , Ūs , r Xs , Ūs s ˘y(‰ ds , and 
R σx i " 1 2 
ż t i`1 t i ż 1 0 ∆ x ps, λqdλds , R σµ i " 1 2 
ż t i`1 t i ż 1 0 ∆ µ ps, λqdλds , (50) 
where

∆ x ps, λq :" Tr ! B 2 xx U `s, Xpλq s , r Xs s ˘ap Xt i , r Xt i sq ´B2 xx U `s, Xs , r Xs s ˘ap Xs , r Xs sq ) ∆ µ ps, λq :" Ê" Tr ! B v B µ U `s, Xs , r Xs s ˘px Xpλq s yqxap Xt i , r Xt i sqy ´Bv B µ U `s, Xs , r Xs s ˘px Xs yqxap Xs , r Xs sqy )ı . Also, δMpt i , t i`1 q is a martingale increment satisfying E " |δMpt i , t i`1 q| 2α | F t i ‰ 1{p2αq ď Ch i and }δT pt i , t i`1 q} 2α ď C Λ h
Second Step. Denoting i :" i { ? t i`1 ´ti and

δb i :" 1 h i ż t i`1 t i V x s ¨ b `X t i , Ȳt i , r Xt i , Ȳt i s ˘´b `X t i , Ūt i , r Xt i , Ūt i s ˘( ds `1 h i ż t i`1 t i Ê " V µ s ¨ xb `X t i , Ȳt i , r Xt i , Ȳt i s ˘´b `X t i , Ūt i , r Xt i , Ūt i s ˘y(‰ ds ,
the previous equation reads

Ūt i`1 " Ūt i `ζi `hi " δb i ´f ´X t i , Ūt i , σ : `X t i , r Xt i s ˘V x t i , r Xt i , Ūt i s ¯`V x t i ¨`σp Xt i , r Xt i sq i ˘ı , (51) 
where

ζ i :" R w i `Rf i `Rbx i `Rbµ i `Rσx i `Rσµ i `δMpt i , t i`1 q `δT pt i , t i`1 q .
On the other hand, the scheme can be rewritten as

Ȳt i " Ȳt i`1 `hi f `X t i , Ȳt i , Zt i , r Xt i , Ȳt i s ˘´h i Zt i ¨ i ´∆M i , (52) 
where ∆M i satisfies

E t i r∆M i s " 0 , E t i r i ¨∆M i s " 0 and E " |∆M i | 2 ‰ ă 8 . (53) 
Denoting ∆ Ȳi " Ȳt i ´Ū t i , ∆ Zi " Zt i ´σ: p Xt i , r Xt i sq V x t i , and adding (51) and (52), we get

∆ Ȳi " ∆ Ȳi`1 `hi pδb i `δf i q `ζi ´hi ∆ Zi ¨ i ´∆M i , (54) 
where

δf i " f `X t i , Ȳt i , Zt i , r Xt i , Ȳt i s ˘´f ´X t i , Ūt i , σ : `X t i , r Xt i s ˘V x t i , r Xt i , Ūt i s ¯.
For later use, we observe that

|δb i | `|δf i | ď C Λ `|∆ Ȳi | `› › ∆ Ȳi › › 2 `|∆ Zi | ˘. (55) 
Summing the equation (54) from i to j k`1 ´1, we obtain

∆ Ȳi `jk`1 ´1 ÿ "i th ∆ Z ¨ `∆M u " ∆ Ȳj k`1 `jk`1 ´1 ÿ "i h pδb `δf q ´jk`1 ´1 ÿ "i ζ .
Squaring both sides and taking expectation, we compute, using (53) for the left side and Young's and conditional Cauchy-Schwarz inequality for the right side,

E tq " |∆ Ȳi | 2 ‰ `jk`1 ´1 ÿ "i h E tq " |∆ Z | 2 ‰ ď E tq « p1 `Cδq|∆ Ȳj k`1 | 2 `C j k`1 ´1 ÿ "i h |δb `δf | 2 `C δ ˆjk`1 ´1 ÿ "i ζ ˙2ff ,
for i ě q ě j k . Combining (55) and Young's inequality, this leads to

E tq " |∆ Ȳi | 2 ‰ `1 2 j k`1 ´1 ÿ "i h E tq " | Z | 2 ‰ ď E tq « e Cδ |∆ Ȳj k`1 | 2 `C j k`1 ´1 ÿ "i h |∆ Ȳ | 2 `C δ ˆjk`1 ´1 ÿ "i ζ ˙2ff .
Using the discrete version of Gronwall's lemma and recalling that

ř j k`1 ´1 "j k h " δ, we obtain, for i " q, |∆ Ȳi | 2 ď E t i « e Cδ |∆ Ȳj k`1 | 2 `C δ max j k ďiďj k`1 ´1ˆj k`1 ´1 ÿ "i ζ ˙2ff ,
and then,

∆ 2 Y :" max j k ďiďj k`1 › › ∆ Ȳi › › 2 2α ď e Cδ › › ∆ Ȳj k`1 › › 2 2α `C δ › › › › max j k ďiďj k`1 ´1ˆj k`1 ´1 ÿ "i ζ ˙› › › › 2 2α . (56) 
Third Step. To conclude, we need an upper bound for the error }max

j k ďiďj k`1 ´1p ř j k`1 ´1 "i ζ q} 2 2α
where ζ is defined in (52). To do so, we study each term in (52) separately. We also define

∆ X :" max tPπ k › › Xt ´X t › ›
2α and we recall that Xr k " ξ. Third Step a. We first study the contribution of R f i to the global error term and note that

› › › › max j k ďiďj k`1 ˆjk`1 ´1 ÿ "i R f ˙› › › › 2 2α ď C δ |π| j k`1 ´1 ÿ "j k › › R f › › 2 2α . (57) 
We will upper bound this last term.

Let us first observe, that, for

t i ď s ď t i`1 , | V x s ´V x t i | ď ˇˇB x U `s, Xs , r Xs s ˘´B x U `ti , Xt i , r Xt i s ˘ď C ˆ| Xs ´X t i | `W2 pr Xs s, r Xt i sq `h 1 2 i `1 `| Xt i | `} Xt i } 2 ˘˙,
where we used the Lipschitz property of B x U given in pH1q, together with ( 8) and [START_REF] Cardaliaguet | Notes from P.L. Lions' lectures at the Collège de France[END_REF]. Hence,

› › V x s ´V x t i › › 2 2α ď C ´› › Xs ´X t i › › 2 2α `hi `1 `} Xt i } 2 2α ˘¯. (58) 
From the boundedness of σ and the Lipschitz property of b and U, we compute

› › Xs ´X t i › › 2 2α ď C Λ ´hi `h2 i › › Ūt i ´Yt i › › 2 2α `h2 i › › Xt i › › 2 2α ¯. (59) 
Using Lemma 15 from the appendix below, we obtain

› › V x s ´V x t i › › 2 2α ď C ´hi `1 `}ξ} 2 2α ˘`h 2 i ∆ 2 Y ¯.
From the boundedness of B x U, σ and the lipschitz property of σ, we obtain

› › σ : `X s , r Xs s ˘V x s ´σ: `X t i , r Xt i s ˘V x t i › › 2 2α ď C `hi `1 `}ξ} 2 2α ˘`h 2 i ∆ 2 Y ˘,
where we used the same argument as above to handle the difference between the two σ terms. Combining the previous inequality with the Lipschitz property of f and replicating the analysis to handle the difference between the Ū terms, we deduce

› › R f i › › 2 2α ď Ch 2 i ´∆2 X `hi `1 `}ξ} 2 2α ˘`h 2 i ∆ 2 Y ¯. (60) 
Third Step b. Combining the Lipschitz property of b, the fact that

| V x s | 2 `Êr| V µ s | 2 s ď C and Cauchy-Schwarz inequality, we get › › R bx i › › 2 2α `› › R bµ i › › 2 2α ď Ch 2 i › › Ūs ´Ū t i › › 2 2α `› › Xs ´X t i › › 2 2α . (61) 
Arguing as in the previous step, we easily get

› › R b i › › 2 2α ď Ch 2 i ´hi `1 `}ξ} 2 2α ˘`h 2 i ∆ 2 Y ¯. (62) 
Third Step c. We now study the contribution of the terms R w i to the global error. From the independance property of p i q i"0,¨¨¨,n´1 , we may regard each R w as a martingale increment. By Burkholder-Davies-Gundy inequalities for discrete martingales, we first compute, using the fact that each i is uniformly bounded,

› › › › max j k ďiďj k´1 ˆjk`1 ´1 ÿ "i R w ˙› › › › 2 2α ď C › › › › › › j k`1 ´1 ÿ "j k ˇˇˇˇż t i`1 t i σ : p Xp0q t i , r Xt i sq V 0,x s ´V 0,x t i ? s ´ti ds ˇˇˇˇ2 › › › › › › α ď C j k`1 ´1 ÿ "j k h i ˆhi `1 `}ξ} 2 2α ˘`› › › sup sPrt i ,t i`1 s | Xp0q s ´X t i | 2 › › › α ˙. Since | Xp0q s ´X t i | ď h i |bp Xt i , Ȳt i , r Xt i , Ȳt i sq|, for s P rt i , t i`1 s, so that } Xp0q s ´X t i } 2α ď C Λ h i p1 `} Xt i } 2α `} Ȳt i } 2α q ď C Λ h i p1 `} Xt i } 2α
`∆2 Y q, the previous inequality, together with Lemma 15, leads to

› › › › max j k ďiďj k´1 ˆjk`1 ´1 ÿ "i R w ˙› › › › 2 2α ď Cδ|π| ´1 `}ξ} 2 2α `|π|∆ 2 Y ¯.
Similarly,

› › › › max j k ďiďj k´1 ˆjk`1 ´1 ÿ "i δMpt , t `1q ˙› › › › 2 2α ď C j k`1 ´1 ÿ "j k › › ˇˇδMpt , t `1q ˇˇ2 › › α ď C δ|π| .
Hence, 

› › › › max j k ďiďj k´1 ˆjk`1 ´1 ÿ "i R w ˙› › › › 2 2α `› › › › max j k ďiďj k´1 ˆjk`1 ´1 ÿ "i δMpt , t `1q ˙› › › › 2 2α ď Cδ|π| `1 `}ξ} 2 2α ˘`Cδ|π| 2 ∆ 2 Y . (63 
› › ∆ x ps, λq › › 2 2α ď Ch i `1 `hi › › Ūt i ´Yt i › › 2 2α `hi › › Xt i › › 2 2α ˘.
which leads, using Lemma 15 again, to 

› › R σx i › › 2 2α ď Ch 2 i ´hi `h2 i `∆2 Y `}ξ} 2 2α ˘¯. (65) 
ˇˇ‰ ď C › › Xt i ´X s › › 2 ď C › › Xt i ´X s › › 2α .
Recalling from (59) that 

› › Xs ´X t i › › 2 2α ď C Λ ph i `h2 i p∆ 2 Y `} Xt i } 2 2α qq,
ı ď C a h i ´1 `} Xpλq s } α 2α `} Xs } α 2α ¯. (68) 
We then observe that

› › Xpλq s › › 2α `› › Xs › › 2α ď C ´› › Xt i › › 2α `hi › › Ūt i ´Ȳ t i › › 2α `ah i ď C p1 `}ξ} 2α `δ∆ Y q ,
where we used lemma 15 for the last inequality. Combining the last inequality with (68) and using also (67), we compute

|R σµ i | ď Ch and then › › › › j k`1 ´1 ÿ "j k |R σµ | › › › › 2 2α ď C|π|δ 2 `1 `δ2 ∆ 2 Y `}ξ} 2 2α ˘. (69) 
4. Collecting the estimates (60), ( 62) and (65), we compute

¨jk`1 ´1 ÿ "j k › › R f `Rb `Rσx › › 2α '2 ď Cδ 2 `∆2 X `|π|t1 `}ξ} 2 2α u `|π| 2 ∆ 2 Y ˘.
Observing that

¨jk`1 ´1 ÿ "j k › › δT pt i , t i`1 q › › 2α '2 ď Cδ 2 |π| ,
and combining the previous inequality with (69), ( 63) and (56), we obtain

∆ 2 Y ď e Cδ } Ūr k`1 ´Ȳ r k`1 } 2 2α `C´δ ∆ 2 X `|π| `1 `}ξ} 2 2α ˘`|π|δ∆ 2 Y ¯,
which concludes the proof for δ small enough. l Lemma 10. Assume that g and f p¨, 0, 0, r¨, 0sq are bounded. Then pA3q is satisfied whatever the value of α.

Proof. It suffices to prove that U is bounded on the whole space and that Ȳ is bounded independently of the discretization parameters. We refer to [START_REF] Chassagneux | A Probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF] for the proof of the boundedness of U.

The bound for Ȳ may obtained by squaring (52) and then by taking the conditional expectation exactly as done in the second step of the proof of Lemma 9.

l Assumptions pA4q and pA5q are easily checked. It suffices to observe that pP r k ,t pξqq tPπ,těr k coincides with the solution of the discrete Euler scheme:

X0 t i`1 " X0 t i `pt i`1 ´ti qb `X0 t i , 0, rX 0 t i , 0s ˘`a t i`1 ´ti σ `X0 t i , rX 0 t i s ˘ i ,
with X0 r k " ξ as initial condition. Combining Lemma 9, Lemma 8 and Lemma 10 with Theorem 7, we have the following result.

Corollary 11. Under pH1q-pH0q, assuming (39), the following holds

› › solver[k](ξ) ´Upr k , ξ, rξsq › › 2α ď C ´pCδq J´1 `|π| 1 2 δ ´1p1 `}ξ} 2α q ¯,
for δ small enough.

The first term in the right hand side is connected with the local Picard iterations on a step of length δ. As expected, it decreases geometrically fast with the number of iterations. The second term is due to the propagation of the error along the mesh. The leading term |π| 1 2 is consistent with that observed for classical forward-backward systems, see for instance [START_REF] Delarue | A forward-backward stochastic algorithm for quasi-linear PDEs[END_REF][START_REF] Delarue | An Interpolated Stochastic Algorithm for Quasi-Linear PDEs[END_REF]. The normalization by δ is due to the propagation of the error through the successive local solvers.

Numerical applications

In practice, we would like to approximate the value of Up0, ¨q at some point px, µq P R d ˆP2 pR d q. In the first section below, we explain how to retrieve such approximation using the approximation of Up0, ξ, rξsq given by the algorithm solver[0](), for some ξ " µ. In a second part, we discuss the numerical results obtained by implementing solver[0]() with two levels, i.e. N " 2. In particular, we show that it is more efficient than an algorithm based simply on Picard Iterations. 4.1. Approximation of Up0, x, µq. The goal of this section is to show how to obtain an approximation of Up0, x, rξsq with ξ " µ and x P supppµq. We will assume that we thus have at hand a discrete valued random variable ξ |π| " µ |π| " ř M "1 p δ x such that µ |π| is a good approximation of µ for the Wasserstein distance. For instance, such an approximation can be constructd by using quantization techniques. Then, we can use solver[0](ξ |π| ) to obtain an approximation of Up0, ξ |π| , rξ |π| sq.

Note that solver[0](ξ |π| ) is a discrete random variable as the algorithm is initialised by a discrete random variable as well. In practice, this means that each point x will be the root of a tree and will be associated to an output value y " Up0, x , rξ |π| sq and then solver[0](ξ |π| ) " ř M "1 p δ y . It is important to remark that the computations on the trees are connected via the McKean-Vlasov interaction.

Using the Lipschitz continuity of U, one easily obtains ":

E 1 p|π|, ξq , (70) 
where x ¯ is a point in the support of µ |π| realising the minimum in the first line.

Remark 12. In many cases, it will be easy to have x P supppµ |π| q and thus reduce the above error to the term W 2 pµ |π| , µq. This is obviously the case if ξ is deterministic.

As mentioned above, the approximation of Up0, x ¯ , µ |π| q is obtained by running solver[0](ξ |π| ) and by taking its value on the tree initiated at x ¯ , precisely we have Up0, x ¯ , µ |π| q " y ¯ . The corresponding pointwise error is given by

E 2 p|π|, δ, ξq :" |y ¯ ´Up0, x ¯ , rξ |π| sq| . (71) 
Of a course, this might be estimated by

E 2 p|π|, δ, ξq ď 1 p¯ › › ›Up0, ξ |π| , rξ |π| sq ´solver[0](ξ |π| ) › › › 2 ,
but this is very poor when the initial distribution µ is diffuse and accordingly when µ |π| has a large support, in which case p¯ is expected to be small. To bypass this difficulty, we must regard E 2 p|π|, δ, ξq as a conditional error. Somehow, it is the error of the numerical scheme conditional on the initial root of the tree. It requires a new analysis, but it should not be so challenging: Now that we have investigated the error for the McKean-Vlasov component, we can easily revisit the proof of Theorem 7 in order to derive a bound for this conditional error.

Instead of revisiting the whole proof, we can argue by doubling the variables. For ξ and x as above, we can regard the four equations ( 2), (3), ( 4) and ( 5) as a single forwardbackward system of the McKean-Vlasov type. The forward component of such a doubled system is X " pX 0,x,µ , X 0,ξ q and the backward components are Y " pY 0,x,µ , Y 0,ξ q and Z " pZ 0,x,µ , Z 0,ξ q. Except for the fact that the dimension of X is no longer equal to the dimension of the noise, which we assumed to be true for convenience only, and for the fact that Y takes values in R 2 , the setting is exactly the same as before, namely pX, Y, Zq can be regarded as the solution of a McKean-Vlasov forward-backward SDE in which the mean field component reduces to the marginal law of pX 0,ξ , Y 0,ξ q. We observe in particular that Y 0,x,µ t " Upt, X 0,x,µ t , rX 0,ξ t sq, Y 0,ξ t " Upt, X 0,ξ t , rX 0,ξ t sq, t P r0, T s, with similar relationships for Z 0,x,µ and Z 0,ξ . Hence, Y t (and Z t ) can be represented as a function of X, which was the key assumption in our analysis. For sure, the fact that Y takes values in dimension 2 is not a limitation for duplicating the arguments used to prove Theorem 7.

Numerically speaking, the tree initiated at root x ¯ under the initial distribution µ |π| provides an approximation of Up0, x ¯ , rξ |π| sq, which is equal to Y 0,x ¯ ,rξ |π| s . So our numerical (implemented) scheme is in fact a numerical for the whole process pX, Y, Zq.

This leads us to the following result. 4.2. Numerical illustration. In this section, we will prove empirically the convergence of the approximation obtained by the solver solver[](). In particular, we will compare the output of our algorithm solver[](), when implemented with two levels, i.e. N " 2 (we simply call it two-level algorithm), with the output of a basic algorithm based only on Picard iterations, which can be seen as a solver solver[](), but with only one level, i.e. N " 1 (we simply call it one-level algorithm). In both cases, we use Example 2 as discretization scheme, with a standard Bernoulli quantization of the normal distribution, d being equal to 1. In the numerical studies below, we show that the two-level algorithm converges in case when the one-level algorithm fails.

4.2.1.

The example of a linear model. In this part, we compare the output of both algorithms for the following linear model where a closed-form solution is available:

dX t " ´ρErY s t dt `σdW t , X 0 " x , dY t " ´aY t dt `Zt dW t , and Y T " X T ,
for ρ, a ą 0, and the true solution for ErX 0 s " m 0 is given by Y 0 " m 0 e aT 1 `ρ a pe aT ´1q .

The errors for various time steps and for both algorithms are shown on the log-log error plot of Figure 1. The parameters are fixed as follows: ρ " 0.1, a " 0.25, σ " 1, T " 1 and x " 2. Moreover, the two-level algorithm uses 5 Picard Iterations per level, and the one-level algorithm computes 25 Picard Iterations. Here, the model is the following

dX t " ρ cospY t qdt `σdW t , X 0 " x , Y t " E t rsinpX T qs . ( 72 
)
On Figure 2, we plot the output of the two-level and one-level algorithm along with a proxy of the true solution computed by usual BSDE approximation method (after a Girsanov transform) and with a very high-level of precision. On the graph, the value Y 0 stands for the approximation of Up0, xq: There is no dependence upon the initial measure as there is no MKV interaction in this example. The parameters are fixed as follows: σ " 1, T " 1 and x " 0. Moreover, the two-level algorithm uses 5 Picard Iterations per level, and the one-level algorithm computes 25 Picard Iterations. An example from large population stochastic control. . For this part, the model is given by dX t " ´ρY t dt `dW t , X 0 " x , dY t " atanpErX t sqdt `Zt dW t and Y T " G 1 pX T q :" atanpX T q.

(73) coming from Pontryagin principle applied to MFG

inf α E " GpX α t q `ż T 0 ˆ1 2ρ α 2 t
`Xα t atanpErX α t sq ˙dt  with dX α t " α t dt `dW t , see e.g. [START_REF] Carmona | Probabilistic Analysis of Mean Field Games[END_REF]. We do not know the exact solution for this model and it is not possible to obtain easily an approximation as in the previous example. We plot on Figure 3, the output value of the one-level algorithm and two-level algorithm. On the graph, the value Y 0 stands for the approximation of Up0, x, δ x q. The parameters are fixed as follows: σ " 1, T " 1 and x " 1. Moreover, the two-level algorithm uses 5 Picard Iterations per level, and the one-level algorithm computes 25 Picard Iterations. 73): onelevel algorithm (blue line), two-level algorithm (black line). We observe the same phenomenon as in the previous model: The two-level algorithm converges to a unique value for a larger range of coupling parameter than the one-level algorithm, which exhibits a bifurcation. Observe that the two-level algorithm fails to converge at points: One should add a level of computation to shorten the time period δ.

Appendix

5.1.

A discrete Itô formula. We consider the following Euler scheme on the discrete time grid π of the interval r0, T s, recall (20), Xt i`1 " Xt i `bi pt i`1 ´ti q `σi a t i`1 ´ti i ,

where p i q iďn are i.i.d. centered R d -valued random variables such that the covariance matrix Er i : i s is the identity matrix and } i } 2 2α ď Λh i , and pb i , σ i q P L 2 pF t i q, for all i ď n.

We also introduce a piecewise continuous version of the previous scheme, for i ă n, t i ď s ă t i`1 and λ P r0, 1s, the process p Xpλq t q 0ďtďT , Xpλq s " Xt i `bi ps ´ti q `σi λ ? s ´ti i (75) and Xpλq tn " Xtn . Following the notation used in the proof of Lemma 9, we just write p Xs q 0ďsďT for p Xp1q s q 0ďsďT , which defines a continuous version of the Euler scheme given in (74). Proposition 14. For any i P t0, ¨¨¨, n ´1u, the following holds true: 

Upt i`1 , Xt i`1 ,
σ i i 2 ?
s ´ti ds `δMpt i , t i`1 q `δT pt i , t i`1 q , where a i is here equal to σ i σ : i , and δMpt i , t i`1 q is a martingale increment satisfying }δMpt i , t i`1 q} 2α ď C Λ h 2 i and }δT pt i , t i`1 q} 2α ď C Λ h i .

We insert these expansions back into the identity we obtained for the term Upt i`1 , Xt i`1 , r Xt i`1 sq. We let δMpt i , t i`1 q " 1 2 ¯,

ż t i
where we used again Bürkholder-Davis-Gundy inequality for discrete martingales. Combining (77) with the boundedness of σ, we then have

› › Xt i`1 › › 2 2α ď C ´› › Xr k › › 2 2α `δ `δ2 max j k ďiăj k`1 }d i } 2 2α `Cδ i ÿ "j k h › › Xt › › 2 2α ¯.
Using the discrete version of Gronwall's lemma, the result easily follows. l

  |Up0, x, µq ´Up0, x ¯ , µ |π| q| ď C ˆmin yPsuppprξ |π| sq |y ´x| `W2 pµ |π| , µq

Figure 1 . 4 . 2 . 2 .

 1422 Figure1. Convergence of the algorithms: log-log error plot for the same data as in the text. We can observe that both algorithms return the same value which is close to the true value. This validates the convergence of both methods in this simple linear setting.

Figure 2 .

 2 Figure 2. Comparison of algorithms' output for different value of the coupling parameter and for the same data as in Example (72): two-level (black star), one-level (blue cross), true value (red line). The two-level algorithm converges for larger coupling parameter than the one-level algorithm. It is close to the true solution up to parameter ρ " 7, the discrepancy for large coupling parameter coming most probably from the discrete-time error. Interestingly, the one-level algorithm shows bifurcations.

Figure 3 .

 3 Figure 3. Algorithms' output for the same data as in Example (73): onelevel algorithm (blue line), two-level algorithm (black line). We observe the same phenomenon as in the previous model: The two-level algorithm converges to a unique value for a larger range of coupling parameter than the one-level algorithm, which exhibits a bifurcation. Observe that the two-level algorithm fails to converge at points: One should add a level of computation to shorten the time period δ.

  where ∆b :" bp Xt , Ȳt , r Xt , Ȳt sq ´bp X1 t , Ȳ 1 t , r X1 t , Ȳ 1 t sq and, similarly, ∆σ :" σp Xt , r Xt sq ´σp X1 Invoking Cauchy-Schwartz inequality for the first term and the Bürkholder-Davis-Gundy inequality for discrete martingales for the second term and appealing to the Lipschitz property of b and σ, we get

t , r X1 t sq.

)

  Third Step d. (i) We study the contribution of R σx i . We observe that |∆ x ps, λq| ď ˇˇB 2 xx U `s, Xpλq s , r Xs s ˘´B 2 xx U `s, Xs , r Xs s ˘ˇ¨| ap Xt i , r Xt i sq| `ˇB 2 xx Ups, Xs , r Xs sq ˇˇ¨ˇˇap Xt i , r Xt i sq ´ap Xs , r Xs sq ˇˇ, for s P rt i , t i`1 s. Using the boundedness and Lipschitz continuity of B 2 xx U and σ, we get, from the previous expression,

		› › ∆ x ps, λq › › 2 2α ď C ´› › Xpλq s ´X s	› › 2 2α	`› › Xs ´X t i	› › 2 2α ¯.	(64)
	Observing that	› › Xpλq s ´X s	› ›	2α ď C	?	h i , we obtain using (59), for t i ď s ď t i`1

  Ups, Xs , r Xs sqpx Xpλq s yq ´Bυ B µ Ups, Xs , r Xs sqpx Xs yq Ups, Xs , r Xs sqpx Xs yq ˇˇ¨ˇˇxap Xt i , r Xt i sq ´ap Xs , r Xs sqy ˇˇ‰ . Xs sqpx Xs yq ˇˇ¨ˇˇxap Xt i , r Xt i sq ´ap Xs , r Xs sqy

	(ii) To study R σµ i , we first observe that	
	|∆ µ ps, λq| ď C	Ê " ˇˇB υ B µ ˇˇı	(66)
	`Ê υ B µ For the last term, we combine Cauchy-Schwarz inequality (10) and boundedness and "ˇˇB
	Lipschitz continuity of σ to get	
	Ê "ˇˇB		

υ B µ Ups, Xs , r

  Xs sqpx Xs yq ˇˇ¨ˇˇxap Xt i , r Xt i sq ´ap Xs , r Xs sqy Ups, Xs , r Xs sqpx Xpλq s yq ´Bυ B µ Ups, Xs , r Xs sqpx Xs yq| Ups, Xs , r Xs sqpx Xpλq s yq ´Bυ B µ Ups, Xs , r Xs sqpx Xs yqu|

						we obtain, using
	Lemma 15, that				
	Ê "ˇˇB					ˇˇ‰
	ď C Λ h	1 2 i ˆ1	`h 1 2 i t∆ Y `}ξ} 2α u ˙.	(67)
	For the first term in (66), we use pH1q equation (13) to get
	|B υ B µ ď C	!	1 `|x Xpλq s y| 2α `|x Xs y| 2α `› › Xs	› › 2α 2	) 1 2 |x Xpλq
	By Cauchy Schwarz inequality, we obtain
	Ê " |tB υ B µ		

υ B µ Ups, Xs , r s y ´x Xs y| .

  r Xt i`1 sq " Upt i , Xt i , r Xt i sq `ż t i`1 t i B t Ups, Xs , r Xs sqds `ż t i`1 Ups, Xs , r Xs sqpx Xs yq ¨xb i y Ups, Xs , r Xs sqpx Xpλq s yqxa i y

	t i	ˆBx Ups, Xs , r Xs sq ¨bi	`1 2	0 ż 1	Tr	" B 2 xx Ups, Xpλq s , r Xs sqa i	‰	dλ ˙ds
	`ż t i`1	Ê " B µ ‰	ds
	t i						
	`1 2	0 ż 1	Ê " Tr	"	B υ B µ ‰	dλ	ı	ds
	`ż t i`1	B x Ups, Xp0q			
	t i						

s , r Xs sq

  and by using the standard chain rule for continuously differentiable functions on a Hilbert space, we getUpt i`1 , Xt i`1 , r Xt i`1 sq " Upt i , Xt i ,r Xt i sq `ż t i`1 Ups, Xs , r Xs sqpx Xs yq ¨xb i Xs sq `?s ´ti B 2 xx Ups, Xp0q s , r Xs sqσ i i `?s ´ti T 1 psq , where T 1 psq is a random variable defined on pΩ, F, Pq such that }T 1 psq} 2α ď Ch Ups, Xs , r Xs sqpx Xs yq " B µ Ups, Xs , r Xs sqpx Xp0q B υ B µ Ups, Xs , r Xs sqpx Xpλq s yqxσ i i ydλ " B µ Ups, Xs , r Xs sqpx Xp0q s yq `?s ´ti B v B µ Ups, Xs , r Xs sqpx Xp0q s yqxσ i i y `?s ´ti T 2 psq , where T 2 psq is a random variable on the enlarged space pΩ ˆΩ, F b F, P b Pq such that Ê " |T 2 psq| 2α ‰ 1{p2αq ď Ch

					3
					2 i .
	Proof. By writing				
	Xt i`1 " Xt i	`ż t i`1 t i	`bi	`σi i 2 s ´ti ?	˘ds,
				t i	B `σi i 2 s ´ti ?	˘ds
	"				˙d
	`Ê	B µ `σi i 2 ? s ´ti	y	s .
	Now we observe that,				
	B ż 1	B 2 xx Ups, Xpλq
				0	
						1
						2 i , and
	B µ s yq
		ż 1			
	`?s ´ti				
		0			
	1				
	2				

t Ups, Xs , r Xs sqds `ż t i`1 t i ˆBx Ups, Xs , r Xs sq ¨`b i x Ups, Xs , r Xs sq " B x Ups, Xp0q s , r Xs sq `?s ´ti s , r Xs sqσ i i dλ " B x Ups, Xp0q s , r

  Xs sqσ i i ¨`σ i i Xs sqσ i i ¨`σ i i `T1 psq `T2 psq ˘¨σ i i ds .It defines a martingale increment satisfyingE t i " |δMpt i , t i`1 q| 2α ‰ 1{p2αq ď Ch i . Observing that for t i ď s ď t i`1 , Ê " B µ Ups, Xs , r Xs sqpx Xp0q s yq ¨xσ i i y Xs sqσ i i ¨`σ i i ˘ı " E t i Xs sqσ i i ¨`σ i i ˘ı " E t i Xs sqa i ˘ı , Ê " B v B µ Ups,Xs , r Xs sqpx Xp0q Xs sqpx Xp0q s yqxa i y ˘ı , we complete the proof. l 5.2. Estimates for the scheme given in Example 2. Lemma 15. Under pH0q-pH1q, the following holds for the forward component of the scheme given in Example 2 and its continuous version, Proof. We introduce d i :" |Upt i , Xt i , r Xt i sq ´Ȳ t i | and observe from the Lipschitz property of b and U that ˇˇb `X t i , Ȳt i , r Xti , Ȳt i s ˘ˇď C Λ `1 `| Xt i | `› › Xt iSquaring the previous inequality, using Cauchy-Schwarz inequality for the first sum and the martingale property for the second sum, we obtain

									`1	" B 2 xx Ups, Xp0q	Ȇt
									t i
									i	" B 2 xx Ups, Xp0q	˘ıı ds ,
			δT pt i , t i`1 q "	1 2	ż t i`1 t i
									ı
									" 0 ,
	E t i	" B 2 xx Ups, Xp0q		" Tr `B2
	E t i	" B 2 xx Ups, Xp0q		" Tr `B2
			max tPπ k	› › Xt	› › 2α ď C Λ ˆ1 `› › Xr k	› ›	2α `δ max tPπ k	› › Upt, Xt , r Xt sq ´Yt	› › 2α ˙,	(76)
									› › 2α `di `› › d i	› ›	2α ˘.	(77)
	Recall that the scheme for the forward component reads
		Xt i`1 " Xr k	`i ÿ
								"j k
	› › Xt i`1	› › 2 2α ď C	› › Xr k	› › 2 2α	`C i ÿ	h	´δ› › bp Xt , Ȳt , r Xt , Ȳt sq › › 2 2α `}σp Xt , r Xt sq} 2 2α
									"j k

s , r s , r s , r xx Ups, Xp0q s , r Xs sqa i ˘ı , s , r xx Ups, Xp0q s , r s yq ?

s ´ti xσ i i y ¨xσ i i y ı " Ê " Tr `Bv B µ Ups, Xs , r b `X t , Ȳt , r Xt , Ȳt s ˘pt `1 ´t q `i ÿ "j k σ `X t , r Xt s ˘∆ W .

i , recall Proposition 14.

i p1 `}ξ} 2α `δ∆ Y q ,