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We provide in this work a robust solution theory for random rough differential equations of mean field type

where W is a random rough path and LpXtq stands for the law of Xt, with mean field interaction in both the drift and diffusivity. Propagation of chaos results for large systems of interacting rough differential equations are obtained as a consequence, with explicit optimal convergence rate. The development of these results requires the introduction of a new rough path-like setting and an associated notion of controlled path. We use crucially Lions' approach to differential calculus on Wasserstein space along the way.

Introduction

The first works on mean field stochastic dynamics and interacting diffusions / Markov processes have their roots in Kac's simplified approach to kinetic theory [START_REF] Kac | Foundations of kinetic theory[END_REF] and McKean's work [START_REF] Mckean | A class of markov processes associated with nonlinear parabolic equations[END_REF] on nonlinear parabolic equations. They provide the description of evolutions pµ t q tě0 in the space of probability measures under the form of a pathspace random dynamics dX t pωq " V `Xt pωq, µ t ˘dt `F`X t pωq, µ t ˘dW t pωq, µ t :" LpX t q, (0.1) (where LpAq stands for the law of a random variable A) and relate it to the empirical behaviour of large systems of interacting dynamics. The main emphasis of subsequent works has been on proving propagation of chaos and other limit theorems, and giving stochastic representations of solutions to nonlinear parabolic equations under more and more general settings; see [START_REF] Sznitman | Topics in propagation of chaos[END_REF][START_REF] Tanaka | Probabilistic treatment of the Boltzman equation of Maxwellian molecules[END_REF][START_REF] Gärtner | On the McKean-Vlasov limit for interacting diffusions[END_REF][START_REF] Dawson | Large deviations from the McKean-Vtasov limit for weakly interacting diffusions[END_REF][START_REF] Dawson | Stochastic McKean-Vlasov equations[END_REF][START_REF] Budhiraja | Large deviation properties of weakly interacting processes via weak convergence methods[END_REF][START_REF] Budhiraja | Moderate Deviation Principles for Weakly Interacting Particle Systems[END_REF] for a tiny sample. Classical stochastic calculus makes sense of equation (0.1), in a probabilistic setting pΩ, F, Pq, only when the process W is a semi-martingale under P, for some filtration, and the integrand is predictable. However, this setting happens to be too restrictive in a number of situations, especially when the diffusivity is random. This prompted several authors to address equation (0.1) by means of rough paths theory. Indeed, one may understand rough paths theory as a natural framework for providing probabilistic models of interacting populations, beyond the realm of Itô calculus. Cass and Lyons [START_REF] Cass | Evolving communities with individual preferences[END_REF] did the first study of mean field random rough differential equations and proved the well-posed character of equation (0.1), and propagation of chaos for an associated system of interacting particles, under the assumption that ' there is no mean field interaction in the diffusivity, Fpx, µq " Fpxq, ' the drift depends linearly on the mean field interaction V px, µq " ż V px, yq µpdyq, for some function V p¨, ¨q on R d ˆRd .

The method of proof of Cass and Lyons depends crucially on both assumptions. Bailleul extended partly these results in [START_REF] Bailleul | Flows driven by rough paths[END_REF] by proving well-posedness of the mean field rough differential equation (0.1) in the case where the drift depends nonlinearly on the interaction term and the diffusivity is still independent of the interaction, and by proving an existence result when the diffusivity depends on the interaction. The naive approach to showing well-posedness of equation (0.1) in its general form consists in treating the measure argument as a time argument. However, this is of a rather limited scope since, in this generality, one cannot expect the time dependence in F to be better than 1 p -Hölder if the rough path W is itself 1 p -Hölder. Clearly, such a time regularity is not sufficient to make sense of the rough integral ş Fp¨¨¨q dW in the case p ě 2. This serious issue explains why, so far in the literature, the coefficient F has been assumed to be a function of the sole variable x.

Including the time component as one of the components of W brings back the study of equation (0.1) to the study of equation dX t pωq " F `Xt pωq, LpX t q ˘dW t pωq, µ t :" LpX t q;

(0.2) this is the precise purpose of the present paper. Treating the drift as part of the diffusivity has the drawback that we shall impose on V some regularity conditions stronger than needed. Our method accommodates the general case but we leave the reader the pleasure of optimizing the details and concentrate on the new features of our approach, working on equation (0.2). The raw driver `Wt pωq ˘tě0 will be assumed to take values in some R m and to be 1 p -Hölder continuous, for p P r2, 3q, and the one form F will be an LpR m , R d q-valued function on R d ˆP2 pR d q, where P 2 pR d q is the so-called Wasserstein space of probability measures µ with a finite second-order moment. Inspired by Lions' approach [START_REF] Lions | Théorie des jeux à champs moyen et applications[END_REF][START_REF] Cardaliaguet | Notes on mean field games[END_REF][START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF] to differential calculus on P 2 pR d q, one of the key point in our analysis is to lift the function F into a function p F defined on the space R d ˆL2 `Ω, F, P; R d ˘, given by the formula p F `x, Z ˘" Fpx, LpZq ˘, (0.3) for x P R d and Z P L 2 pΩ, F, P; R d q. So, we may rewrite equation (0.2) as dX t pωq " p F `Xt pωq, X t p¨q ˘dW t pωq. (0.4)

We used the notation X t p¨q to distinguish the realization X t pωq of the random variable X t at point ω from the random variable itself, seen as an element of the space L 2 `Ω, F, P; R d ˘. So, X t p¨q is a random variable, and thus an infinite-dimensional object, whilst X t pωq is a finite-dimensional vector. We feel that this writing is sufficiently explicit to remove the hat over F.

Our main well-posedness result is stated below, in a preliminary form only. The precise statement requires additional ingredients that we introduce later on in the text. In this first formulation ' the quantity wp¨, ¨q " `wps, tq ˘0ďsăt is a random control function that is used to quantify the regularity of the solution path on subintervals rs, ts of a given finite interval r0, T s, using some associated notion of p-variation for the same p as above, ' the quantity N pr0, T s, αq is some local accumulated variation of the 'rough lift' of W that counts the increments of w of size α over a bounded interval r0, T s for a given positive α; see Section 1 for the set-up. The regularity assumptions on the diffusivity F are spelled-out in Section 3.

1. Theorem -Let F satisfy the regularity assumptions Assumption 1 and Assumption 2. Assume there exists a positive time horizon T such that the random variables wp0, T q and `N `p0, T q, α ˘˘αą0 have 'sub' and super exponential tails, respectively, ' P `wp0, T q ě t ˘ď c 1 exp `´t ε 1 ˘, ' P `N `r0, T s, α ˘ě t ˘ď c 2 pαq exp `´t 1`ε 2 pαq ˘, α ą 0, for some positive constants c 1 and ε 1 and possibly α-dependent positive constants c 2 pαq and ε 2 pαq. Then for any d-dimensional square-integrable random variable X 0 , the mean field rough differential equation dX t " F `Xt , LpX t q ˘dW t has a unique solution defined on the whole interval r0, T s.

Results of that form seem out of reach of the methods used in [START_REF] Cass | Evolving communities with individual preferences[END_REF][START_REF] Bailleul | Flows driven by rough paths[END_REF]. Theorem 1 applies in particular to mean field rough differential equations driven by some fractional Brownian motion with Hurst parameter greater than 1 3 , other Gaussian processes or some Markovian rough paths; see Section 1. It is important that the solution depends continuously on the driving 'rough path', in a quantitative sense detailed in Theorem 20. As an example that fits our regularity assumptions, one can solve the above mean field rough differential equation with The Curie-Weiss model, where F is of the form Fpx, µq " ∇U pxq `şpx ´yqµpdyq, falls outside the scope of what is written here, because of the linear growth rate in x, but is within reach of our method.

One of the difficulties in solving equation (0.2) comes from the fact that it happens not to be sufficient to consider each signal W ' pωq as the first level of a rough path; one somehow needs to consider the whole family `W' pωq ˘ωPΩ as an infinite-dimensional rough path. This leads us to defining in Section 1 a rough setting where `Wt pωq, W t p¨q ˘0ďtďT is, for each ω, the first level of a rough path over R m ˆLq `Ω, F, P; R m ˘; seemingly, the natural choice for q, as dictated by the aforementioned lifting procedure of the Wasserstein space, is q " 2; we shall actually need a larger value. Unlike the seminal works [START_REF] Cass | Evolving communities with individual preferences[END_REF][START_REF] Bailleul | Flows driven by rough paths[END_REF] that set the scene in Davie's approach of rough differential equations, such as reshaped by Friz-Victoir and Bailleul respectively, we use here Gubinelli's versatile approach of controlled paths to make sense of equation (0.2). Our mixed finite/infinite dimensional setting introduces an interesting twist in the notion of controlled path presented in Section 2.1. Defining the rough integral of a controlled path with respect to a rough driver is done classically in Section 2.2 using the sewing lemma. We prove stability of a certain class of controlled paths by nonlinear mappings in Section 3.1, which is precisely the place where Lions' differential calculus on P 2 pR d q comes in. One then has all the ingredients needed to formulate in Section 3 equation (0.2) as a fixed point problem in some space of controlled paths. Local well-posedness is proved, and sufficient conditions on the law of the driver are given to get well-posedness on any fixed time interval. As expected from any solution theory for rough differential equations, the solution depends continuously on all the parameters in the equation, most notably its law depends continuously on the law of the driving rough path. This point is used in Section 4 to provide a proof of propagation of chaos for an interacting particle system associated with equation (0.2) and quantify the convergence rate; see equation (4.1) for the particle system. Among others, it recovers Sznitman' seminal work [START_REF] Sznitman | Topics in propagation of chaos[END_REF] on the case where the noise is a Brownian motion. We formulate this result here for the case of Gaussian rough signals and refer the reader to Theorem 22 and Theorem 24 for finer and more general statements.

2. Theorem -Let W be a continuous centered Gaussian process defined over some time interval r0, T s. Assume it has independent components and its covariance function has finite ρ-two dimensional variation, for some ρ P r1, 3{2q. Let the diffusivity F satisfy Assumption 1 and Assumption 2 and some further mild regularity assumptions satisfied by the above two examples. Then the empirical measure

1 n
ř n i"1 δ X i,pnq pωq of the interacting n-particle system associated with the mean field rough differential equation (0.2), converges almost surely to L `Xp¨q ˘. The marginals of the empirical measure converge at the same mean speed in 1-Wasserstein distance as an empirical sample of independent, identically distributed, random variables with the same law as X 0 , provided the latter is sufficiently integrable.

While Lyons formulated his theory in a Banach setting from the begining [START_REF] Lyons | Differential equations driven by rough paths[END_REF], the theory has mainly been explored for finite dimensional drivers, with the noticeable exception of the works of Ledoux, Lyons and Qian on Banach space valued rough paths [START_REF] Ledoux | Lévy area of Wiener processes in Banach spaces[END_REF][START_REF] Lyons | Flows of diffeomorphisms induced by geometric multiplicative functionals[END_REF], Dereich follow-up works [START_REF] Dereich | Rough paths analysis of general Banach space-valued Wiener process[END_REF][START_REF] Dereich | A support theorem and a large deviation principle for Kunita flows[END_REF], Kelly and Melbourne application to homogenization of fast/slow systems of ordinary differential equations [START_REF] Kelly | Deterministic homogenization for fast-slow systems with chaotic noise[END_REF], and Bailleul and Riedel's work on rough flows [START_REF] Bailleul | Rough flows[END_REF]. One can see the present work as another illustration of the strength of the theory in its full generality. However, although the underlying rough set-up associated to pW t pωq, W t p¨qq 0ďtďT is a mixed finite/infinite dimensional object, a solution to the mean field rough differential equation is more than a solution to a rough differential equation driven by an infinite dimensional rough path. Indeed, the mean field structure imposes an additional fixed point condition, which is to identify the finite dimensional component of the solution as the ω-realization of the infinite dimensional component. This is precisely this constraint that makes the equation difficult to solve and that explains the need for a specific analysis.

The present work leaves wide open the question of refining the strong law of large numbers given by the propagation of chaos result stated in Theorem 2 -Theorem 22 in its full form. A central limit theorem for the fluctuations of the empirical measure of the particle system is expected to hold under reasonable conditions on the common law of the rough drivers. Large and moderate deviation results would also be most welcome. In a different direction, it would be interesting to investigate the propagation of chaos phenomenon for systems of interacting rough dynamics subject to a common noise. Very interesting things happen in the Itô setting in relation with mean field games [START_REF] Carmona | [END_REF][START_REF] Kolokoltsov | On the mean field games with common noise and the McKean-Vlasov SPDEs[END_REF]. Also, one would get a more realistic model of natural phenomena by working with systems of particles driven by non-independent noises. Individuals with close initial conditions could have drivers strongly correlated while individuals started far apart could have (almost-)independent drivers. Limit mean field dynamics are likely to be different from the results obtained here -see [START_REF] Coghi | Propagation of chaos for interacting particles subject to environmental noise[END_REF] for a result in this direction in the Itô setting. We invite the reader to make his own mind about these problems.

Notations. We gather here a number of notations that will be used throughout the text.

' We denote by S 2 the simplex ps, tq P r0, 8q 2 : s ď t ( , and set S T 2 :" ps, tq P r0, T s 2 : s ď t ( .

' We denote by pΩ, F, Pq an atomless Polish probability space, F standing for the completion of the Borel σ-field under P, and denote by x¨y the expectation operator and by x¨y r , for r P r1, `8s, the L r -norm on pΩ, F, Pq and by ⟪¨⟫ and ⟪¨⟫ r the expectation operator and the L r -norm on `Ω2 , F b2 , P b2 ˘.

Importantly, when r is finite, L r pΩ, F, P; Rq is separable as Ω is Polish.

' When dealing with processes X ' " pX t q tPI , defined on some time interval I, we often write X for X ' .

-Probabilistic Rough Structure

We define in this section a notion of rough path appropriate for the study of mean field rough differential equations. It happens to be a mixed finite/infinite dimensional object. Throughout the section, we work on a finite time horizon r0, T s, for a given T ą 0.

' We define the first level of our rough path structure as an ω-indexed pair of paths `Wt pωq, W t p¨q ˘0ďtďT ,

where `Wt p¨q ˘0ďtďT is a collection of q-integrable R m -valued random variables on pΩ, F, Pq, which we regard as a deterministic L q pΩ, F, P; R m q-valued path, for some exponent q ě 1, and `Wt pωq ˘0ďtďT stands for the realizations of these random variables along the outcome ω P Ω; so the pair (1.1) takes values in R m ˆLq pΩ, F, P; R m q.

As we already explained, a natural choice would be to take q " 2, but for technical reasons that will get clear below we shall require q ě 8.

The second level of the rough path structure contains a two-parameter path `Ws,t pωq ˘0ďsďtďT with values in R mˆm , obtained as the ω-realizations of a collection of q-integrable random variables `Ws,t p¨q ˘0ďsďtďT defined on Ω; importantly, this second level also comprises the sections `WK K s,t pω, ¨q˘0 ďsďtďT and `WK K s,t p¨, ωq ˘0ďsďtďT of a collection of R mˆm -valued random variables defined on the product space `Ω2 , F b2 , P b2 ˘and considered as a deterministic L q `Ω2 , F b2 , P b2 ; R mˆm ˘-valued path `WK K s,t p¨, ¨q˘0 ďsďtďT . Each W K K s,t p¨, ¨q, for ps, tq P S T 2 , belonging to the space L q `Ω2 , F b2 , P b2 ; R mˆm ˘, we have @ W K K s,t pω, ¨qD q ă 8, @ W K K s,t p¨, ωq

D q ă 8, (1.2) 
for P-almost every ω P Ω. Below, we shall assume (1.2) to be true for every ω P Ω. This is not such a hindrance since we can modify in a quite systematic way the definition of the rough path structure on the null event where (1.2) fails; this is exemplified in Proposition 4 below. Taken this assumption for granted, we can regard Ω Q ω Þ Ñ W K K s,t pω, ¨q and Ω Q ω Þ Ñ W K K s,t p¨, ωq as random variables with values in L q pΩ, F, P; R mˆm q: Since L q pΩ, F, P; R mˆm q is separable, it suffices to notice from Fubini's theorem that, for any Z P L q pΩ, F, P; R mˆm q, Ω Q ω Þ Ñ @ W K K s,t pω, ¨q ´ZD q is measurable, and similarly for W K K s,t p¨, ωq. Hence, the entire second level has the form of an ω-dependent two-index path with values in `Rm ˆLq pΩ, F, P; R m q ˘b2 and is encoded in matrix form as

ˆWs,t pωq W K K s,t pω, ¨q W K K s,t p¨, ωq W K K s,t p¨, ¨q ˙0ďsďtďT . (1.3)
Here,

' W s,t pωq is in pR m q b2 » R mˆm , ' W K K s,t pω, ¨q is in R m b L q `Ω, F, P; R m ˘» L q `Ω, F, P; R mˆm ˘, ' W K K s,t p¨, ωq is in L q `Ω, F, P; R m ˘b R m » L q `Ω, F, P; R mˆm ˘, ' W K K s,t p¨, ¨q is in L q `Ωb2 , F b2 , P b2 ; R mˆm ˘, the realizations of which read in the form Ω 2 Q pω, ω 1 q Þ Ñ W K K
s,t pω, ω 1 q P R mˆm and the two sections of which are precisely given by W K K s,t pω, ¨q

: Ω Q ω 1 Þ Ñ W K K s,t pω, ω 1 q, and W K K s,t p¨, ωq Q ω 1 Þ Ñ W K K
s,t pω 1 , ωq, for ω P Ω. As usual with rough paths, algebraic consistency requires that Chen's relations W r,t pωq " W r,s pωq `Ws,t pωq `Wr,s pωq b W s,t pωq,

W K K r,t p¨, ωq " W K K r,s p¨, ωq `WK K s,t p¨, ωq `Wr,s p¨q b W s,t pωq, W K K r,t pω, ¨q " W K K r,s pω, ¨q `WK K s,t pω, ¨q `Wr,s pωq b W s,t p¨q, W K K r,t p¨, ¨q " W K K r,s p¨, ¨q `WK K s,t p¨, ¨q `Wr,s p¨q b W s,t p¨q, (1.4) 
hold for any 0 ď r ď s ď t ď T . We used here the very convenient notation f r,s :" f s ´fr , for a function f from r0, 8q into a vector space. In (1.4) and throughout, we denote by Xp¨q b Y p¨q, for any two X and Y in L q pΩ, F, P; R m q, the random variable `ω, ω 1 q Þ Ñ `Xi pωqY j pω 1 q ˘1ďi,jďm defined on the product space Ω 2 . It defines an element of L q `Ω2 , F b2 , P b2 ; R mˆm ˘.

Remark -The last three lines in Chen's relations (1.4) are somewhat redundant.

Assume indeed that we are given a collection of random variables `WK K s,t p¨, ¨q˘0

ďsďtďT satisfying the last line of (1.4). Then, for all 0 ď r ď s ď t ď T and for P b2 -almost every pω, ω 1 q P Ω 2 , it holds

W K K r,t pω, ω 1 q " W K K r,s pω, ω 1 q `WK K s,t pω, ω 1 q `Wr,s pωq b W s,t pω 1 q.
Clearly, for P-almost every ω P Ω, the second and third lines in (1.4) hold true as well. This is slightly weaker than the formulation (1.4) as, therein, the second and third lines are required to hold for all ω P Ω. As exemplified in the proof of Proposition 4, one may modify the definition of W K K so that the second and third lines in (1.4) hold true for all ω and for all 0 ď r ď s ď t ď T .

Definition -We shall denote by W pωq the rough set-up specified by the ω-dependent collection of maps given by (1.1) and (1.3).

As for the component W K K of W pωq, the notation K K is used to indicate, as we shall make it clear below, that W K K s,t p¨, ¨q should be thought of as the random variable

pω, ω 1 q Þ Ñ ż t s
´Wr pωq ´Ws pωq ¯b dW r pω 1 q.

Since Ω 2 Q pω, ω 1 q Þ Ñ pW t pωqq tě0 and Ω 2 Q pω, ω 1 q Þ Ñ pW t pω 1 qq tě0 are independent under P b2 , we then understand W K K s,t as an iterated integral for two independent copies of the noise. While such a construction is elementary for a random C 1 path, the well-defined character of this integral needs to be proved for more general probability measures P.

3. Example -Let W stand for an R m -valued Brownian motion defined on some probability space pΩ, F, Pq. Denote by W t p¨q the equivalence class of Ω Q ω Þ Ñ W t pωq in L q `Ω, F, P; R m ˘, and extend W t on the product space `Ω2 , F b2 , P b2 ˘, setting W t pω, ω 1 q :" W t pωq. Define also on the product space the random variable W 1 t pω, ω 1 q :" W t pω 1 q. Then, W and W 1 are two independent m-dimensional Brownian motions under P b2 , and one can construct the time-indexed Stratonovich stochastic integral

Ω 2 Q pω, ω 1 q Þ Ñ ˆ"ż t s pW r ´Ws q b ˝dW 1 r * pω, ω 1 q ˙0ďsďtďT P C `S2 ; R mˆm ˘.
The stochastic integral is uniquely defined up to an event of zero measure under P b2 . Up to an exceptional event (of pΩ 2 , F b2 , P b2 q), we then let

W K K s,t pω, ω 1 q :" ˆż t s `Wr ´Ws ˘b ˝dW 1 r ˙pω, ω 1 q, 0 ď s ď t ď T.
We can specify the definition of W K K on the remaining exceptional event and then modify the definition of W on a null event of pΩ, F, Pq in such a way that Chen's relations (1.4) hold everywhere -see the end of the proof of Proposition 4 below for a detailed proof of this fact-. The process `Ws,t pωq ˘0ďsďt is defined in a standard way from a Stratonovich integral defined outside a set of null measure: W s,t pωq :" ˆż t s pW r ´Ws q b ˝dW r ˙pωq, 0 ď s ď t ď T.

The principle underpinning the above example may be put in a more general framework which will be useful to prove continuity of the Itô-Lyons solution map to the mean field rough differential equation (0.2). We advise the reader to come back to this proposition later on.

4. Proposition -Let pΞ, G, Qq be a probability space, and W 1 :" `W 1 t ˘0ďtďT and W 2 :" `W 2 t ˘0ďtďT be two independent and identically distributed R m -valued processes defined on Ξ. Assume they have continuous trajectories and

E Q " sup 0ďtďT ˇˇW 1 t ˇˇq  ă 8.
Let also `pW i,j s,t q 0ďsătďT ˘i,j"1,2 be four

R m b R m -R mˆm -valued continuous paths such that E Q " sup 0ďsătďT ˇˇW i,j s,t ˇˇq  ă 8,
for i, j " 1, 2, and `W 1 , W 1,1 ˘is independent of W 2 . Last, assume that, for almost every ξ P Ξ, the pair

ˆ´W 1 pξq W 2 pξq ¯, ´W 1,1 pξq W 1,2 pξq W 2,1 pξq W 2,2 pξq ¯ṡatisfies Chen's relation. Set Ω :" Ξ ˆr0, 1s
with r0, 1s equipped with its Borel σ-algebra B `r0, 1s ˘, and denote by Leb the Lebesgue measure on r0, 1s. Then we can find a triple of random variables `W, W, W K K ˘, the first two components being defined on `Ω, F b Bpr0, 1sq, Q b Leb ˘, the last component being constructed on the product space, and the whole family satisfying all the above requirements for a rough set-up, such that

P ´!pξ, uq : `W, W ˘pξ, uq " `W 1 , W 1,1 ˘pξq )¯" 1,
and, for P-almost every ω " pξ, uq, the law of W K K p¨, ωq is the same as the conditional law of W 2,1 given `W 1 pξq, W 2 pξq, W 1,1 pξq ˘.

Proof -Recall first from Blackwell and Dubins [START_REF] Blackwell | An extension of Skorohod's almost sure representation theorem[END_REF] the following form of Skorokhod representation theorem. There exists a function

Ψ : r0, 1s ˆP´C `ST 2 ; R m b R m ˘¯Ñ C `ST 2 ; R m b R m such
that ' for every probability µ on CpS T 2 q, equipped with its Borel σ-field, r0, 1s Q u Þ Ñ Ψpu, µq is a random variable with µ as distribution -r0, 1s being equipped with Lebesgue measure, ' the map Ψ is measurable.

Let now `qpw 1 , w 2 , w 1,1 , ¨q˘w 1 ,w 2 PCpr0,T s;R m q;w 1,1 PCpS T 2 ;R m bR m q be a regular conditional probability of W 2,1 given pW 1 , W 2 , W 1,1 q. Define on Ω the random variables W pξ, uq :" W 1 pξq, Wpξ, uq :" W 1,1 pξq, and, on Ω 2 , W 1 `pξ, uq, pξ 1 , u 1 q ˘:" W 1 pξ 1 q, W K K `pξ, uq, pξ 1 , u 1 q ˘:" Ψ ´u1 , q `W 1 pξ 1 q, W 1 pξq, W 1,1 pξ 1 q, ¨˘¯.

Since the law of `W, W 1 , W ˘under P b2 is the same as the law of `W 1 , W 2 , W 1,1 ȗnder Q, we deduce that the law of `W, W 1 , W, W J J ˘under P b2 , with W J J pω, ω 1 q :" W K K pω 1 , ωq, is the same as the law of `W 1 , W 2 , W 1,1 , W 2,1 ˘under Q. In particular, with probability 1 under P b2 , for all 0 ď r ď s ď t ď T , W J J r,t pω, ω 1 q " W J J r,s pω, ω 1 q `WJ J s,t pω, ω 1 q `Wr,s pω 1 q b W s,t pωq, that is W K K r,t pω, ω 1 q " W K K r,s pω, ω 1 q `WK K s,t pω, ω 1 q `Wr,s pωq b W s,t pω 1 q. Call now A P F the set of those ω's in Ω for which the above relation fails for ω 1 in a set of positive probability measure under P. Clearly, PpAq " 0. Define in a similar way A 1 by exchanging the roles of ω and ω 1 . For ω P A Y A 1 , set W pωq " 0; and whenever ω P A or ω 1 P A 1 , set W K K pω, ω 1 q " 0. If ω R A, we have, by definition of A, the third identity in (1.4) -pay attention that we use the fact that the identity is understood as an equality between classes of random variables that are P-almost surely equal. If ω P A, it is also true since all the terms are zero. The second identity in (1.4) is checked in the same way. As for the first one, it holds on the complementary B A of a null event B. We then replace A by A Y B and A 1 by A 1 Y B in the previous lines and set W pωq " 0 and Wpωq " 0 on

A Y A 1 Y B.
We use in this work the notion of p-variation to handle the regularity of the various trajectories in hand. The choice of the p-variation, instead of the simplest Hölder (semi-)norm, is dictated by the arguments we use below to prove well-posedness of equation (0.4). As we make it clear in the text, we shall indeed invoke some integrability results due to Cass, Litterer and Lyons [START_REF] Cass | Integrability and tail estimates for Gaussian rough differential equations[END_REF] which are explicitly based upon the notion of p-variation and are not proved in Hölder (semi-)norm. Several types of p-variations are needed to handle differently the finite and infinite dimensional components of a rough set-up W . Throughout, the exponent p is taken in the interval r2, 3q. For a continuous function G from the simplex S T 2 into some R , we set, for any p 1 ě 1,

}G} p 1 r0,T s,p 1 ´var :" sup 0"t 0 ăt 1 ¨¨¨ătn"T n ÿ i"1 |G t i´1 ,t i | p 1 ,
and define for any function g from r0, T s into R , }g} p r0,T s,p´var :" }G} p r0,T s,p´var as the p-variation semi-norm of its associated two index function G s,t :" g t ´gs .

Similarly, for a random variable Gp¨q on Ω with values in CpS T 2 ; R q, and p 1 ě 1, we define its p 1 -variation in L q as xGp¨qy p 1 q;r0,T s,p 1 ´var :" sup

0"t 0 ăt 1 ¨¨¨ătn"T n ÿ i"1 @ G t i´1 ,t i p¨q D p 1 q , (1.5) 
and define for a random variable Gp¨q on Ω, with values in Cpr0, T s; R q @ Gp¨q D p q;r0,T s,p´var :" @ Gp¨q D p q;r0,T s,p´var , as the p-variation semi-norm in L q of its associated two-index function S T 2 Q ps, tq Þ Ñ G s,t p¨q " G t p¨q ´Gs p¨q. Last, for a random variable Gp¨, ¨q from pΩ 2 , F b2 q into CpS T 2 ; R q, we set ⟪Gp¨, ¨q⟫ p{2 q;r0,T s,p{2´var :" sup

0"t 0 ăt 1 ¨¨¨ătn"T n ÿ i"1 ⟪G t i´1 ,t i p¨, ¨q⟫ p{2 q . (1.6)
Given these definitions, we require from the rough set-up W that ' For any ω P Ω, the path W pωq is in the space Cpr0, T s; R m q, and the map W : Ω Q ω Þ Ñ W pωq P Cpr0, T s; R m q is Borel-measurable and q-integrable (meaning that the supremum of W over r0, T s is q-integrable).

' For any ω P Ω, the two-index path Wpωq is in CpS T 2 ; R mˆm q, and the map W : Ω Q ω Þ Ñ Wpωq P CpS T 2 ; R mˆm q is Borel-measurable and q-integrable (i.e., the supremum of W over S T 2 has a finite q-moment). ' For any pω, ω 1 q P Ω 2 , the two-index path W K K pω, ω 1 q is an element of the space CpS T 2 ; R mˆm q, and the map W K K : Ω 2 Q pω, ω 1 q Þ Ñ W K K pω, ω 1 q P CpS T 2 ; R mˆm q is Borel-measurable and q-integrable. In particular, for almost every ω P Ω, the two-time parameter path W K K pω, ¨q is in C `ST 2 ; L q pΩ, F, P; R mˆm q ˘, and the map Ω Q ω Þ Ñ W K K pω, ¨q is Borel-measurable and q-integrable, and similarly for W K K p¨, ωq; as before, we assume the latter to be true for every ω P Ω. Also, the two-time parameter deterministic path

W K K p¨, ¨q is a continuous mapping from S T 2 into L q `Ω2 , F b2 , P b2 ; R mˆm ˘.
We then set, for all 0 ď s ď t ď T and ω P Ω, vps, t, ωq :" › › W pωq › › p rs,ts,p´var `@W p¨q D p q;rs,ts,p´var

`› › Wpωq › › p{2 rs,ts,p{2´var `@W K K pω, ¨qD p{2 
q;rs,ts,p{2´var

`@W K K p¨, ωq D p{2 q;rs,ts,p{2´var `⟪W K K p¨, ¨q⟫ p{2 q;rs,ts,p{2´var ,

and we assume that, for any positive finite time T and any ω P Ω, the quantity vp0, T, ωq is finite. Importantly, we have the following super-additivity property. For any 0 ď r ď s ď t ď T , and ω P Ω, we have vpr, t, ωq ě vpr, s, ωq `vps, t, ωq.

Observe also from [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF]Proposition 5.8] that ω Þ Ñ pvps, t, ωqq ps,tqPS T 2 is a random variable with values in CpS T 2 ; R `q. Throughout the analysis, we assume @ vp0, T, ¨qD q ă 8, for any rough set-up considered on the interval r0, T s. By Lebesgue's dominated convergence theorem, the function

S T 2 Q ps, tq Þ Ñ @ vps, t, ¨qD q
is continuous. We shall actually assume that it is of bounded variation on r0, T s, i.e., xvp¨qy q;rs,ts,1´var :" sup

0ďt 1 㨨¨ăt K ďT K ÿ i"1
xvpt i´1 , t i , ¨qy q ă 8.

Below, we set wps, t, ωq :" vps, t, ωq `xvp¨qy q;rs,ts,1´var .

(1.8)

Note the useful inequality xwps, t, ¨qy q ď 2 wps, t, ωq, (1.9)

and the super-additivity property satisfied by w wpr, t, ωq ě wpr, s, ωq `wps, t, ωq.

Below, we often check that S T 2 Q ps, tq Þ Ñ xvps, t, ¨qy q is of bounded variation by proving that it is Lipschitz continuous.

5.

Example -Gaussian processes -Start from an R m -valued collection W :" pW 1 , ¨¨¨, W m q of independent and centered continuous Gaussian processes, defined on some finite time interval r0, T s, such that the two-dimensional covariance of W is of finite ρ-variation for some ρ P r1, 3{2q and there exists a constant K such that, for any subinterval rs, ts Ă r0, T s and any k " 1, ¨¨¨, m, one has

sup ÿ i,j ˇˇE " `W k t i`1 ´W k t i ˘`W k s j`1 ´W k s j ˘ıˇˇˇρ ď K|t ´s|, (1.10) 
where the supremum is taken over all dissections pt i q i and ps j q j of the interval rs, ts. See Definition 5.54 in [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF]. This setting includes the case of fractional Brownian motion, with Hurst index greater than 1{4. Without any loss of generality, we may assume that the process W is constructed on the canonical space pΩ, F, Pq, where Ω " W, with W :" Cpr0, T s; R m q, F is the Borel σ-field, and W is the coordinate process.

We then denote by pΩ, H, Pq the abstract Wiener space associated with W , where H is a Hilbert space, which is automatically embedded in the subspace C ´var `r0, T s; R m ˘of C `r0, T s; R m ˘consisting of continuous paths of finite -variation. By Theorem 15.34 in [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF], we know that, for ω outside an exceptional event, the trajectory W pωq may be lifted into a rough path pW pωq, Wpωqq with finite p-variation for any p P p2ρ, 3q, namely W pωq has a finite p-variation and Wpωq has a finite p{2-variation. We lift arbitrarily (say onto the zero path) on the null set where the lift is not automatic. The pair pW, Wq, indexed by ω is part of our rough set-up. In this regard, we recall from Theorem 15.34 and Theorem 7.44 in [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF] that the random variables

Ω Q ω Þ Ñ › › W pωq › › r0,T s,p´var , Ω Q ω Þ Ñ › › Wpωq › › r0,T s,p{2´var , (1.11) 
have Gaussian tails, and thus have a finite L q -moment. One can proceed as follows to construct the other elements

`WK K pω, ¨q˘ω PΩ , `WK K p¨, ωq ˘ωPΩ , W K K p¨, ¨q
of our rough set-up. We extend the space into pΩ 2 , F b2 , P b2 q, with Ω embedded in the first component say, and denote by pW, W 1 q the canonical coordinate process on Ω 2 . They are independent and have independent Gaussian components under P 2 . The associated abstract Wiener space is nothing but `Ω2 , H ' H, P b2 ˘. The process pW, W 1 q also satisfies Theorem 15.34 in [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF] for the same exponent ρ as before, so, we can enhance pW, W 1 q into a Gaussian rough path, with some arbitrary extension outside the P b2 -exceptional event on which we cannot construct the enhancement. To ease the notations, we merely write W pωq for W pω, ω 1 q as it is independent of ω; similarly, we write W 1 pω 1 q for W 1 pω, ω 1 q. Proceeding as before, we call `WK K pω, ω 1 q ˘ω,ω 1 PΩ , the upper off-diagonal m ˆm block in the decomposition of the second-order tensor of the rough path in the form of a p2mq ˆp2mq-matrix with flour blocks of size m ˆm. Chen's relationship then yields, for P b2 -almost every pω, ω 1 q, W K K r,t pω, ω 1 q " W K K r,s pω, ω 1 q `WK K s,t pω, ω 1 q `Wr,s pωq b W s,t pω 1 q, for all r ď s ď t. As before, the paths of `WK K pω, ω 1 q ˘ω,ω 1 PΩ are almost surely of finite p{2-variation and the p{2-variation semi-norm has we know from Theorem 15.33 in [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF] that the 1{p-Hölder semi-norm of W pωq, which we denote by }W pωq › › r0,T s,p1{pq´Hölder , and the 2{p-Hölder semi-norm of W K K pω, ω 1 q, which we denote by › › W K K pω, ω 1 q › › r0,T s,p2{pq´Hölder , have respectively Gaussian and exponential tails, when considered as random variables on the spaces pΩ, F, Pq and `Ω2 , F b2 , P b2 ˘. In particular, for almost every ω P Ω, we may consider `WK K s,t pω, ¨q˘p s,tqPS T 2 as a continuous process with values in L q . Moreover, @ W K K pω, ¨qD p{2 q;r0,T s,p{2´var " sup

0"t 0 ăt 1 㨨¨ătn"T n ÿ i"1 @ W K K t i´1 ,t i pω, ¨qD p{2 q ď T A }W K K pω, ¨q} r0,T s,p2{pq´Hölder E p{2 q ď T A }W K K pω, ¨q} p{2 r0,T s,p2{pq´Hölder E q ,
which shows that the left-hand side has finite moments of any order. Arguing in the same way for `WK K p¨, ωq ˘ωPΩ and for W K K , we deduce that v in (1.7) is almost surely finite and q-integrable. Obviously, by replacing r0, T s by rs, ts Ă r0, T s, we obtain that the q-moment of v is Lipschitz, as required. All these properties (that hold true on a full event) may be extended to the full set Ω 2 by arguing as in the proof of Proposition 4.

To use that rough set-up in our machinery for solving mean field rough differential equations we need a version of an integrability result of Cass, Litterer and Lyons [START_REF] Cass | Integrability and tail estimates for Gaussian rough differential equations[END_REF] whose proof is postponed to Appendix A. Given a continuous positive valued function on S 2 , a non-negative parameter s and a positive threshold α, we define inductively a sequence of times setting τ 0 ps, αq :" s, and

τ n`1 ps, αq :" inf ! u ě τ n ps, αq : `τ n ps, αq, u ˘ě α ) , (1.12) 
with the understanding that inf H " `8. For t ě s, set N `rs, ts, α ˘:" sup

! n P N : τ n ps, αq ď t ) . (1.13) 
Below, we call N the local accumulation of (of size α if we specify the value of the threshold). When ps, tq " wps, t, ωq with w as in (1.8) and when the framework makes it clear, we just write N prs, ts, ω, αq for N prs, ts, αq. Similarly, we also write τ n ps, ω, αq for τ n ps, αq when ps, tq " wps, t, ωq. We will also use the convenient notation τ n ps, t, αq :" τ n ps, αq ^t.

The proof of the following statement is given in Appendix A.1. Recall that a positive random variable A has a Weibull tail with shape parameter 1{ if A 1{ρ has a Gaussian tail.

6. Theorem -Let W be a continuous centered Gaussian process, defined over some finite interval r0, T s. Assume it has independent components, and denote by pW, H, Pq its associated Wiener space. Suppose that the covariance function is of finite two dimensional -variation for some P r1, 3{2q and satisfies the Lipschitz estimate (1.10). Then, for p P p2 , 3q and α ą 0, the process N p¨, αq :" pN pr0, T s, ω,αqq ωPΩ associated to the rough-set up built from W has a Weibull tail with shape parameter 1{ .

The integrability estimate on N required in Theorem 1 is satisfied in this setting. For the same value of p, the quantity wp0, T q in (1.8) also satisfies the integrability statement of Theorem 1; the latter then applies in the above Gaussian setting. Building on Cass-Ogrodnik's work [START_REF] Cass | Tail estimates for Markovian rough paths[END_REF] on Markovian rough paths one can prove a similar result as Theorem 6 for Markovian rough paths.

-Controlled Trajectories and Rough Integral

With a rough set-up at hands on a given finite time interval r0, T s, one can follow Gubinelli [START_REF] Gubinelli | Controlling rough paths[END_REF] and define an associated notion of controlled path and rough integral. This section is dedicated to that task, for which we follow a now classical approach.

-Controlled Trajectories

We first define the notion of controlled trajectory for a given outcome ω P Ω. 7. Definition -An ω-dependent continuous R d -valued path pX t pωqq 0ďtďT is called an ω-controlled path on r0, T s if its increments can be decomposed as is in CpS T 2 ; R d q, and ~Xpωq~‹ ,r0,T s,w,p :" |X 0 pωq| `ˇδ x X 0 pωq ˇˇ`@δ µ X 0 pω, ¨qD 4{3 `~Xpωq~r 0,T s,p ă 8, with ~Xpωq~r 0,T s,w,p :" }Xpωq} r0,T s,w,p `}δ x Xpωq} r0,T s,w,p `@δ µ Xpω, ¨qD r0,T s,w,p,4{3 We call δ x Xpωq and δ µ Xpω, ¨q in the decomposition (2.1) the derivatives of the controlled path Xpωq.

X
The value 4{3 is somewhat arbitrary here. The analysis provided below could be managed, if needed, with another exponent strictly greater than 1, but this would require higher values for the exponent q than that one we use in the definition of the rough set-up -recall q ě 8. It seems that the value 4{3 is pretty convenient, as 4{3 is the conjugate exponent of 4. It follows from the fact that ~Xpωq~‹ ,r0,T s,p is finite that an ω-controlled path is controlled in the usual sense by the first level `Wt pωq, W t p¨q ˘0ďtďT of our rough set-up, provided the latter is considered as taking values in an infinite dimensional space.

We now define the notion of random controlled trajectory, which consists of a collection of ω-controlled trajectories indexed by the elements of Ω.

8. Definition -A family of ω-controlled paths pXpωqq ωPΩ such that the maps

Ω Q ω Þ Ñ `Xt pωq ˘0ďtďT P C `r0, T s; R d Ω Q ω Þ Ñ `δx X t pωq ˘0ďtďT P C `r0, T s; R dˆm Ω Q ω Þ Ñ `δµ X t pωq ˘0ďtďT P C `r0, T s; L 4{3 pΩ, F, P; R dˆm q Ω Q ω Þ Ñ `RX s,t pωq ˘ps,tqPS T 2 ,
are measurable and satisfy

@ X 0 p¨q D 2 `@~Xp¨q~r 0,T s,w,p D 8 ă 8 (2.2)
is called a random controlled path on r0, T s.

Note from (1.9) the following elementary fact, whose proof is left to the reader.

9. Lemma -Let `pX t pωqq ˘0ďtďT q ωPΩ be a random controlled path on a time interval r0, T s. Then, for any 0 ď s ă t ď T , we have A straightforward consequence of Lemma 9 is that a random controlled trajectory induces a continuous path from r0, T s to L 2 pΩ, F, P; R d q.

@ X s,

-Rough Integral

Set U :" R m ˆLq pΩ, F, P; R m q and note that U b U can be canonically identified with `Rm b R m ˘' ´Rm b L q pΩ, F, P; R m q ' ´Lq pΩ, F, P; R m q b R m ¯' ´Lq pΩ, F, P; R m q b L q pΩ, F, P; R m q ¯.

We take as a starting point of our analysis the fact that W pωq may be considered as a rough path with values in U ' U b2 , for any given ω. Indeed the first level W p1q pωq :" `Wt pωq, W t p¨q ˘tě0 of W pωq is a continuous path with values in U and its second level

W p2q pωq :" ˆW0,t pωq W K K 0,t pω, ¨q W K K 0,t p¨, ωq W K K 0,t p¨, ¨q ˙tě0 
, is a continuous path with values in U bU , with W 0,t pωq seen as an element of R m bR m , with W K K 0,t pω, ¨q seen as an element of R m b L q pΩ, F, P; R m q, and W K K 0,t p¨, ωq seen as an element of L q pΩ, F, P; R m q b R m , and W K K 0,t p¨, ¨q as an element of L q pΩ, F, P; R m q b L q pΩ, F, P; R m q. Condition (1.4) then reads as Chen's relation for W pωq.

We can then use Feyel-de la Pradelle' sewing lemma [START_REF] Feyel | Curvilinear Integrals Along Enriched Paths[END_REF], in the form given by Coutin and Lejay in [START_REF] Coutin | Perturbed linear rough differential equations[END_REF][START_REF] Coutin | Sensitivity of rough differential equations: an approach through the Omega lemma Technical report[END_REF], to construct the rough integral of an ω-controlled path and a Banach-valued rough set-up.

10. Theorem -There exists a universal constant c 0 and, for any ω P Ω, there exists a continuous linear map

`Xt pωq ˘0ďtďT Þ Ñ ˆż t s X s,u pωq b dW u pωq ˙ps,tqPS T 2
from the space of ω-controlled trajectories equipped with the norm ~¨~‹ ,r0,T s,p , onto the space of continuous functions from S T 2 into R d bR m with finite norm }¨} r0,T s,w,p{2 , with w being evaluated along the realization ω, that satisfies for any 0 ď r ď s ď t ď T the identity To make notations clear, δ x X s pωq W s,t pωq is the product of a d ˆm matrix and an m ˆm matrix, so it gives back a d ˆm matrix, with components

ż t r X r,u pωq b dW u pωq " ż s r X r
`δx X s pωqW s,t pωq ˘i,j " m ÿ k"1
`δx X i s pωq ˘k`W s,t pωq ˘k,j , for i P t1, ¨¨¨, du and j P t1, ¨¨¨, mu. We also stress that the notation

E " δ µ X s pω, ¨qW K K s,t p¨, ωq ‰ ,
which reads as the expectation of a matrix of size d ˆm, can be also interpreted as a contraction product between an element of R d b L 4{3 pΩ, F, P; R m q and an element of L q pΩ, F, P; R m qbR m . While this remark may seem anecdotal it is actually important for the proof below.

Proof -The proof is a consequence of Proposition 2 in Coutin and Lejay's work [START_REF] Coutin | Perturbed linear rough differential equations[END_REF], except for one main fact. In order to use Coutin and Lejay's result, we consider W pωq as a rough path with values in U ' U b2 and `Xpωq, δ x Xpωq, δ µ Xpωq, R X pωq ȃs a controlled path; this was explained above. When doing so, the resulting integral is constructed as a process with values in R d b U , whilst the integral given by the statement of Theorem 10 takes values in R d . We denote the R d bU -valued integral by pI t s X s,u pωq b dW u pωqq ps,tqPS T

2

. We use a simple projection to pass from the infinite dimensional-valued quantity I t s X s,u pωq b dW u pωq to the finite dimensional-valued quantity ş t s X s,u pωq b dW u pωq. Indeed, we may use the canonical projection from

R d b U -`Rd b R m ˘' `Rd b L q pΩ, F, P; R m q ˘onto R d b R m to project I t s X s,u pωq b dW u pωq onto ş t s X s,u pωq b dW u pωq.
As usual, we define an additive process setting When Xpωq is given as the ω-realization of a random controlled path pXpω 1 qq ω 1 PΩ , the integral may be defined for any ω 1 P Ω. For the integral ş 0 X s pωq b dW s to define a random controlled path, its ~¨~r 0,T s,w,p -semi-norm needs to have finite 8-th moment. When the trajectory Xpωq takes in values in

ż
R d b R m rather than R d , the integral ż t 0 X s pωq b dW s pωq P R d b R m b R m
may be identified with a tuple ˜ˆż t 0 X s pωq b dW s pωq ˙i,j,k ¸pi,j,kqPt1,¨¨¨,duˆt1,¨¨¨,muˆt1,¨¨¨,mu .

We then set for i P t1, ¨¨¨, du

ˆż t 0 X s pωqdW s pωq ˙i :" m ÿ j"1 ˆż t 0 X s pωq b dW s pωq ˙i,j,j ,
and consider ş t 0 X s pωqdW s pωq as an element of R d .

-Stability of Controlled Paths under Nonlinear Maps

We show in this section that controlled paths are stable under some nonlinear, sufficiently regular, maps and start by recalling the reader about the regularity notion used when working with functions defined on Wasserstein space. We refer the reader to Lions' lectures [START_REF] Lions | Théorie des jeux à champs moyen et applications[END_REF], to the lecture notes [START_REF] Cardaliaguet | Notes on mean field games[END_REF] of Cardaliaguet or to Carmona and Delarue's monograph [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF]Chapter 5] for basics on the subject.

' Recall pΩ, F, Pq stands for an atomless probability space, with Ω a Polish space and F its Borel σ-algebra. Fix a finite dimensional space E " R k and denote by L 2 : " L 2 pΩ, F, P; Eq the space of E-valued random variables on Ω with finite second moment. We equip the space P 2 pEq :" LpZq ; Z P L 2 ( with the 2-Wasserstein distance d 2 pµ 1 , µ 2 q :" inf

! }Z 1 ´Z2 } 2 ; LpZ 1 q " µ 1 , LpZ 2 q " µ 2
) .

An R k -valued function u defined on P 2 pEq is canonically extended into L 2 by setting, for any Z P L 2 , U pZq :" u `LpZq ˘.

' The function u is then said to be differentiable at µ P P 2 pEq if its canonical lift is Fréchet differentiable at some point Z such that LpZq " µ; we denote by ∇ Z U P pL 2 q k the gradient of U at Z. The function U is then differentiable at any other point Z 1 P L 2 such that LpZ 1 q " µ, and the laws of ∇ Z U and ∇ Z 1 U are equal, for any such Z (2.6) we have in particular Du P L 2 µ pE; E k q:" L 2 pE, BpEq, µ; E k q , where BpEq is the Borel σ-field on E. In order to emphasize the fact that Du depends upon LpZq, we shall write DupLpZqqp¨q instead of Dup¨q. Sometimes, we shall put an index µ and write D µ upLpZqqp¨q in order to emphasize the fact that the derivative is taken with respect to the measure argument; this will be especially useful for functionals u depending on additional variables. Importantly, this representation is independent of the choice of the probability space pΩ, F, Pq; in fact, it can be easily transported from one probability space to another. (A simple proof of the structural equation (2.6) can be found in [START_REF] Wu | An elementary proof for the structure of derivatives in probability measures[END_REF].)

As an elementary example, think of a real-valued function u of the form upµq " f `ş x 2 µpdxq ˘, for which the lift Z Þ ÑU pZq " f `ErZ 2 s ˘has differential pd Z U qpHq " 2f 1 `ErZ 2 s ˘ErZHs and gradient 2f 1 `ErZ 2 s ˘Z, so Dupµqpzq " 2f 1 `ş x 2 µpdxq ˘z here. We refer to [START_REF] Cardaliaguet | Notes on mean field games[END_REF] and [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF]Chapter 5] for further examples.

' Back to controlled paths. Let F stand here for a map from R d ˆL2 pΩ, F, P; R d q into the space LpR m , R d q -R d b R m of linear mappings from R m to R d . Intuitively, F should be thought of as the lift of the coefficient driving equation (0.2), or, with the same notation as in (0.3), as p F itself, with the slight abuse of notation that it requires to identify F and p F. Our goal now is to expand the image of a controlled trajectory by F.

Regularity assumptions 1 -Assume that F is continuously differentiable in the joint variable px, Zq, that B x F is also continuously differentiable in px, Zq and that there is some positive finite constant Λ such that sup xPR d , µPP 2 pR d q ˇˇFpx, µq ˇˇ_ ˇˇB x Fpx, µq ˇˇ_ ˇˇB 2

x Fpx, µq ˇˇď Λ, sup

xPR d , LpZqPP 2 pR d q › › ∇ Z Fpx, Zq › › 2 _ › › B x ∇ Z Fpx, Zq › › 2 ď Λ, (2.7) 
and

∇ Z Fpx, ¨q : L 2 pΩ, F, P; R d q Ñ L 2 pΩ, F, P; LpR d , R d b R m qq Z Þ Ñ ∇ Z Fpx, Zq " D µ F px, LpZqqpZq is a Λ-Lipschitz function of Z P L 2 pΩ, F, P; R d q, uniformly in x P R d .
Importantly, the L 2 -Lipschitz bound required in the second line of (2.7) may be formulated as a Lipschitz bound on P 2 pR d q equipped with d 2 . Moreover, notice that L 2 `Ω, F, P; LpR d , R d b R m q ˘can be identified with L 2 pΩ, F, P; R d q dˆm ; also, B x Fpx, Zq and ∇ Z Fpx, Zq will be considered as random variables with values in

LpR d , R d b R m q -R d b R m b R d . As an example, the functions Fpx, µq " ż f px, yqµpdyq
for some fuction f of class C 2 b , and Fpx, µq " g ˆx, ż yµpdyq ḟor some function g of class C 2 b , both satisfy Regularity assumptions 1. We expand below the path `FpX t pωq, Y t p¨qq ˘0ďtďT , which we write FpXpωq, Y p¨qq, where Xpωq is an ω-controlled path and Y p¨q is an R d -valued random controlled path, both of them being defined on some finite time interval r0, T s. Identity (2.4) tells us that a fixed point formulation of the mean field rough differential equation (0.2) will only involve pairs pXpωq, Y p¨qq such that

δ µ Xpωq " 0, δ µ Y p¨q " 0, (2.8) 
which prompts us to restrict ourselves to the case when Xpωq and Y have null µ-derivatives in the expansion (2.1).

11. Proposition -Let Xpωq be an ω-controlled path and Y p¨q be an R d -valued random controlled path. Assume that condition (2.8) hold and we have the ω-independent bound M :" sup

0ďtďT ´ˇδ x X t pωq ˇˇ_ @ δ x Y t p¨q D 8 ¯ă 8.
Then, F `Xpωq, Y p¨q ˘is an ω-controlled path with

δ x ´F`X pωq, Y p¨q ˘¯t " B x F `Xt pωq, Y t p¨q ˘δx X t pωq,
which is understood as `Bx F i,j `Xt pωq, Y t p¨q ˘`δ x X t pωq ˘k˘i ,j,k , with i, k P t1, ¨¨¨, du and j P t1, ¨¨¨, mu, and (with a similar interpretation for the product)

δ µ ´F`X pωq, Y p¨q ˘¯t " ∇ Z F `Xt pωq, Y t p¨q ˘δx Y t p¨q " D µ F `Xt pωq, LpX t q ˘`X t p¨q ˘δx Y t p¨q,
and one can find a constant C Λ,M , depending only on Λ and M , such that

F `Xpωq, Y p¨q ˘ r0,T s,w,p ď C Λ,M ´1 `~Xpωq~2 r0,T s,w,p `@~Y p¨q~r 0,T s,w,p D 2 8 ¯. Proof -For 0 ď s ă t, expand FpXpωq, Y p¨qq s,t into FpXpωq, Y p¨qq s,t " F `Xt pωq, Y t p¨q ˘´F `Xs pωq, Y s p¨q " ! F `Xt pωq, Y t p¨q ˘´F `Xs pωq, Y t p¨q ˘) `!F `Xs pωq, Y t p¨q ˘´F `Xs pωq, Y s p¨q ˘) ": ! (1) `(2) ` (3) 
) `!(4) `( 5)

) , (2.9) 
where

(1) :" B x F `Xs pωq, Y s p¨q ˘!δ x X s pωqW s,t pωq `RX s,t pωq
) ,

(2) :"

ż 1 0 " B x F ´Xpλq s;ps,tq pωq, Y t p¨q ¯´B x F ´Xpλq s;ps,tq pωq, Y s p¨q ¯ıX s,t pωq dλ, (3) 
:"

ż 1 0 " B x F ´Xpλq s;ps,tq pωq, Y s p¨q ¯´B x F `Xs pωq, Y s p¨q ˘ıX s,t pωq dλ, (4) : 
" A ∇ Z F `Xs pωq, Y s p¨q ˘Ys,t p¨q E , (5) : 
"

ż 1 0 A´∇ Z F `Xs pωq, Y pλq s;ps,tq p¨q ˘´∇ Z F `Xs pωq, Y s p¨q ˘¯Y s,t p¨q E dλ;
we used here the fact that Xpωq and Y p¨q have null µ-derivative and where we let X pλq s;ps,tq pωq " X s pωq `λX s,t pωq, Y pλq s;ps,tq p¨q " Y s p¨q `λY s,t p¨q.

(2.10)

We read on the decomposition (2.9) the formulas for the x and µ-derivatives of FpXpωq, Y p¨qq. The remainder R FpX,Y q s,t in the controlled decomposition of the path FpXpωq, Y p¨qq is

B x F `Xs pωq, Y s p¨q ˘RX s,t pωq `A∇ Z F `Xs pωq, Y s p¨q ˘RY s,t p¨q E `(2) `(3) `(5). (2.11)
We now compute F `Xpωq, Y p¨q ˘ ‹,r0,T s,w,p .

' We have first from the regularity assumptions on F that the initial conditions for the quantities 

F `Xpωq, Y p¨q ˘, δ x ´F`X pωq, Y p¨q ˘¯, δ µ ´F`X pωq, Y

-Solving the Equation

We now have all the tools to formulate the mean field rough differential equation (0.4) (or (0.2)) as a fixed point problem and solve it by Picard iteration. Our definition of the fixed point is given in the form of a two-step procedure: The first step is to write a frozen version of the equation, in which the mean field component is seen as a mere exogenous collection of ω-controlled trajectories; the second step is to regard the family of exogenous controlled trajectories as an input and to map it to the collection of controlled trajectories solving the frozen version of the equation. In this way, we define a solution as a collection of ω-controlled trajectories. In order to proceed, recall the generic notation `Xpωq; δ x Xpωq; B µ Xpω, ¨q˘f or an ω-controlled path and its derivatives; we sometimes abuse notations and talk of Xpωq as an ω-controlled path.

12. Definition -Let W together with its enhancement W satisfy the assumption of Section 1 on a finite nontrivial time interval r0, T s, and let Y p¨q stand for some R dvalued random controlled path on r0, T s, with the property that δ µ Y p¨q " 0 and that sup 0ďtďT xδ x Y t p¨qy 8 ă 8. For a given ω P Ω, let Xpωq be an R d -valued ω-controlled path on r0, T s, with the properties that δ µ Xpωq " 0 and sup 0ďtďT |δ x X t pωq| ă 8.

We associate to ω and Xpωq an ω-controlled path by setting

Γ `ω, Xpωq, Y p¨q :" ˆX0 pωq `ż t 0 F `Xs pωq, Y s p¨q ˘dW s pωq ; F `Xt pωq, Y t p¨q ˘; 0 ˙0ďtďT .
A solution to the mean field rough differential equation

dX t " F `Xt , LpX t q ˘dW t ,
on the time interval r0, T s, with given initial condition X 0 p¨q P L 2 pΩ, F, P; R d q is a random controlled path Xp¨q starting from X 0 p¨q and satisfying the same prescription as Y p¨q, such that for P-almost every ω the path Xpωq and Γ `ω, Xpωq, Xp¨q ˘coincide.

We should more properly replace Xpωq in Γ `ω, Xpωq, Y p¨q ˘by `Xpωq ; δ x Xpωq ; 0 ȃnd Y p¨q by `Y p¨q ; δ x Y p¨q ; 0 ˘, but we stick to the above lighter notation. Observe also that our formulation bypasses any requirement on the properties of the map Γ itself. To make it clear, we should be indeed tempted to check that, for a random controlled path Xp¨q, the collection `Γpω, Xpωq, Y p¨qq ˘ωPΩ , for Y p¨q as in the statement, is also a random controlled path. Somehow, our definition of a solution avoids this question; however, it should not come as a surprise that, at the end of the day, we need to check this fact carefully; below, we refer to it as the stability properties of Γ, see Section 3.1.

What remains of the above definition when W is the Itô or Stratonovich enhancement of a Brownian motion? The key point to connect the above notion of solution to the mean field rough differential equation (0.2) with the standard notion of solution to mean field stochastic differential equation is to observe that the rough integral therein should be, if a solution exists, the limit of the compensated Riemann sums K´1 ÿ j"0 ˆF`X t j pωq, X t j p¨q ˘Wt j ,t j`1 pωq `Bx F `Xt j pωq, X t j p¨q ˘F`X t j pωq, X t j p¨q ˘Wt j ,t j`1 pωq

`AD µ F `Xt j pωq, X t j p¨q ˘`X t j p¨q ˘F`X t j pωq, X t j p¨q ˘WK K t j ,t j`1 p¨, ωq E ˙,
as the step of the dissection 0 " t 0 ă ¨¨¨ă t K " t tends to 0. When the solution is constructed by a contraction argument, such as done below, the process pX t p¨qq 0ďtďT is adapted with respect to the completion of the filtration pF t q 0ďtďT generated by the initial condition X 0 p¨q and the Brownian motion W p¨q. Returning if necessary to Example 5, we then check that

E " W K K t j ,t j`1 p¨, ωq | F t j ‰ " 0,
whatever the interpretation of the rough integral, Itô or Stratonovich. Pay attention that the conditional expectation is taken with respect to "¨", while the element ω is kept frozen. This implies that, for any j P t0, ¨¨¨, K ´1u, we have

A D µ F `Xt j pωq, X t j p¨q ˘`X t j p¨q ˘F`X t j pωq, X t j p¨q ˘WK K t j ,t j`1 p¨, ωq E " 0.
This proves that the solution to the rough mean field equation coincides with the solution that is obtained when the equation (0.2) is interpreted in the standard McKean-Vlasov sense.

We formulate here the regularity assumptions on Fpx, µq needed to show that Γ satisfies the required stability properties and to run Picard's iteration for proving the well-posed character of the mean field rough differential equation (0.4) (or (0.2)) in small time, or in some given time interval. Recall from (2.6) the definition of D µ Fpx, ¨qp¨q as a function from P 2 pR d qˆR d to LpR d , R d bR m q -R d bR m bR d such that D µ Fpx, LpZqqpZq " ∇ Z Fpx, Zq, where we emphasize the dependence of D µ Fpx, ¨q on µ " LpZq by writing D µ Fpx, µqp¨q. In addition to Regularity assumptions 1, we make the following assumptions on the interaction-dependent diffusivity F.

Regularity assumptions 2 -' The function B x F is differentiable in px, µq in the same sense as before.

' For each px, µq P R d ˆP2 pR d q, there exists a version of D µ Fpx, µqp¨q P L 2 µ pR d ; R d b R m q such that the map px, µ, zq Þ Ñ D µ Fpx, µqpzq from R d ˆP2 pR d q ˆRd to R d b R m b R d is of class C 1 ,
the derivative in the direction µ being understood as before.

' The function `x, Z ˘Þ Ñ B 2 x F `x, LpZq from R d ˆL2 pΩ, F, P; R d q to R d b R m b R d b R d -LpR d b R d , R d b R m q is bounded by Λ and Λ-Lipschitz continuous. ' The following three functions px, Zq Þ Ñ B x D µ F `x, LpZq ˘pZp¨qq px, Zq Þ Ñ D µ B x F `x, LpZq ˘pZp¨qq px, Zq Þ Ñ B z D µ F `x, LpZq ˘pZp¨qq from R d ˆL2 pΩ, F, P; R d q to L 2 `Ω, F, P; R d b R m b R d b R d ˘,
are bounded by Λ and Λ-Lipschitz continuous. (By Schwarz' theorem, the transpose of B x D µ F i,j is in fact equal to D µ B x F i,j , for any i P t1, ¨¨¨, du and j P t1, ¨¨¨, mu.) ' For each µ P P 2 pR d q, we denote by

D 2
µ Fpx, µqpz, ¨q the derivative of D µ Fpx, µqpzq with respect to µ -which is indeed given by a function.

For

z 1 P R d , D 2 µ Fpx, µqpz, z 1 q is an element of R d b R m b R d b R d . Denote by `r Ω, r
F, r P ˘a copy of pΩ, F, Pq, and given a random variable Z on pΩ, F, Pq, write r Z for its copy on p r Ω, r F, r Pq. We assume that the function , both satisfy Regularity assumptions 2. We refer to [9, Chapter 5] and [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF]Chapter 5] for other examples of functions that satisfy the above assumptions and for sufficient conditions under which these assumptions are satisfied. We feel free to abuse notations and write Zp¨q for LpZq in the argument of the functions B x D µ F, B z D µ F and D 2 µ F. We prove in Section 3.1 that the map Γ sends some large ball of its state space into itself for a small enough time horizon T . The contractive character of Γ is proved in Section 3.2, and Section 3.3 is dedicated to proving the well-posed character of equation (0.4) and continuity of the law of its solution with respect to all the parameters in the problems.

px, Zq Þ Ñ D 2 µ F `x, LpZq ˘`Zp¨q, r Zp¨q ˘, from R d ˆL2 pΩ, F, P; R d q to L 2 `Ω ˆr Ω, F b r F, P b r P; R d b R m b R d b R d ˘,

-Stability of Balls by Γ

Recall Λ was introduced in Regularity assumptions 1 and 2 as a bound on F and some of its derivatives. The following lemma, of a technical nature, brings back the general case to Λ " 1.

13. Lemma -There is no loss of generality in assuming Λ " 1 in Regularity assumptions 1 and Regularity assumptions 2.

Proof -We may indeed change F into Λ ´1F. Doing so, we need to change in equation (0.4) the driver W into ΛW and W into Λ 2 W, and also

W K K into Λ 2 W K K .
Importantly, for an ω-controlled path Xpωq and a random controlled path Y p¨q on a segment r0, T s, for T ą 0, this change of variable leaves invariant the definition of the integral ˆż t 0 F `Xs pωq, Y s p¨q ˘dW s pωq ˙0ďtďT .

Indeed, changing the first-level W p1q of the rough set-up into W p1q,pΛq :" ΛW p1q requires to change δ x Xpωq into δ pΛq

x Xpωq :" Λ ´1δ x Xpωq. Also,

δ pΛq x " Λ ´1F `Xpωq, Y p¨q ˘‰s " Λ ´1B x F `Xs pωq, Y s p¨q ˘δpΛq x X s pωq " Λ ´2B x F `Xs pωq, Y s p¨q ˘δx X s pωq " Λ ´2δ x " F `Xpωq, Y p¨q ˘‰s ,
and, with similar notations,

δ pΛq µ " F `Xpωq, Y p¨q ˘‰s " Λ ´2δ µ " F `Xpωq, Y p¨q ˘‰s .
Setting W p2q,pΛq :" Λ 2 W p2q , for the second level of the rough set up, we then observe that, up to a small remainder,

ż t s Λ ´1F `Xu pωq, Y u p¨q ˘dW pΛq u pωq « Λ ´1F `Xs pωq, Y s p¨q ˘W pΛq s,t pωq `δpΛq x " Λ ´1F `Xpωq, Y p¨q ˘‰s W pΛq s,t pωq `E" δ pΛq µ " Λ ´1F `Xpωq, Y p¨q ˘‰s W K K,pΛq s,t p¨, ωq ı " F `Xs pωq, Y s p¨q ˘Ws,t pωq `δx " F `Xpωq, Y p¨q ˘‰s W s,t pωq `E" δ µ " F `Xpωq, Y p¨q ˘‰s W K K s,t p¨, ωq ı .
As the last line is the second order expansion of

ş t s F `Xu pωq, Y u p¨q ˘dW u pωq, this shows indeed that ż t s Λ ´1F `Xu pωq, Y u p¨q ˘dW pΛq u pωq " ż t s F `Xu pωq, Y u p¨q ˘dW u pωq.
Recall from identity (1.13) the definition of the local accumulated variation N `r0, T s, ω; α ˘.

We use the notations ~¨~r a,bs,w,p and ~¨~‹ ,ra,bs,w,p , for some interval ra, bs, to denote a quantity defined in Definition 8 for paths defined on some interval ra, bs rather than on the interval r0, T s.

14. Proposition -Let F satisfy Regularity assumptions 1 with Λ " 1. Consider an ω-controlled path Xpωq together with a random controlled path Y p¨q satisfying

sup 0ďtďT ´ˇδ x X t pωq ˇˇ_ @ δ x Y t p¨q D 8 ¯ď 1. (3.1)
Assume that there exists a positive constant L such that we have

@ }Y p¨q} r0,T s,w,p D 2 8 ď ? L, @ ~Y p¨q~r 0,T s,w,p D 2 8 ď L, (3.2) 
and Xpωq

2 rt i ,t i`1 s,w,p ď ? L, (3.3) 
for all 0 ď i ď N , with N :" N pr0, T s, ω, 1{p4Lqq, and for the sequence `ti :" τ i p0, T, ω, 1{p4Lqq ˘i"0,¨¨¨,N`1 given by (1.12). Then, these bounds remain true for possibly larger values of L, and there exists a universal constant L 0 such that the following two properties hold for every L ě L 0 .

' The path Γ `ω, Xpωq, Y p¨q ˘satisfies for each ω the size estimate (3.3), and there exist two positive constants c and C L , with c universal and C L depending only on L, such that the following estimates hold for each ω:

Γ `ω, Xpωq, Y p¨q ˘ 2 r0,T s,w,p ď C L ! 1 `N ´r0, T s, ω, 1{p4Lq ¯2p1´1{pq ) , Γ `ω, Xpωq, Y p¨q ˘ 2 ‹,r0,T s,w,p ď c ˇˇX 0 pωq ˇˇ2 `CL " 1 `N ´r0, T s, ω, 1{p4Lq ¯2p1´1{pq * ; 
(3.4)

' If Xpωq is the ω-realization of a random controlled path Xp¨q " `Xpω 1 q ˘ω1 PΩ 1 such that the estimate Xpω 1 q 2 rt i ,t i`1 s,w,p ď ?

L holds for all ω 1 , for the ω 1dependent partition `ti :" τ i p0, T, ω 1 , 1{p4Lqq ˘i"0,¨¨¨,N`1 of r0, T s, with N :" N pr0, T s, ω 1 , 1{p4Lqq, and if T is small enough to have

A N `r0, T s, ¨, 1{p4Lq ˘`1 E 2pp´1q{p 8 ď 2; then @ }Γp¨, Xp¨q, Y q} r0,T s,w,p D 2 8 ď ? L, @ ~Γp¨, Xp¨q, Y q~r 0,T s,w,p D 2 8 ď L, and A Γp¨, Xp¨q, Y q ‹,r0,T s,w,p E 2 2 ď C L ´1 `@X 0 p¨q D 2 2 ¯.
The measurability properties of the function ω Þ Ñ Γ `ω, Xpωq, Y p¨q ˘implicitely required above can all be checked by approximating the integral in the definition of Γ `ω, Xpωq, Y p¨q ˘by means of (2.3).

Proof -We proceed in three steps.

' For a given ω P Ω, consider a subdivision pt i q 0ďiďN `1 of r0, T s such that wpt i , t i`1 , ωq ď 1 for all i P t0, ¨¨¨, N u, for some integer N ě 0. Then, by Proposition 4 in Coutin and Lejay [START_REF] Coutin | Sensitivity of rough differential equations: an approach through the Omega lemma Technical report[END_REF] (rearranging the terms therein), we know that

ż ẗ i F `Xr pωq, Y r p¨q ˘dW r pωq rt i ,t i`1 s,w,p ď γ `γwpt i , t i`1 , ωq 1{p F `Xpωq, Y p¨q ˘ ‹,rt i ,t i`1 s,w,p
, for a universal constant γ ě 1. By Proposition 11 and (3.1), we deduce that

ż ẗ i F `Xr pωq, Y r p¨q ˘dW r pωq rt i ,t i`1 s,w,p ď γ `C1,1 γ wpt i , t i`1 , ωq 1{p ´1 `~X~2 rt i ,t i`1 s,w,p `@~Y p¨q~r 0,T s,w,p D 2 8 ¯. (3.5)
For a given constant L ě 1 that will be fixed later on, assume that we have both C 1,1 γ wpt i , t i`1 , ωq 1{p ď 1{p4Lγq ď 1 and

@ }Y p¨q} r0,T s,w,p D 2 8 ď ? L, @ ~Y p¨q~r 0,T s,w,p D 2 8 ď L, (3.6) 
and Xpωq ' We now use a concatenation argument to get an estimate on the whole interval r0, T s. For all s ă t in r0, T s, we have

2 rt i ,t i`1
ˇˇ"Γ `ω, Xpωq, Y p¨q ˘‰s,t ˇˇď N ÿ j"0 ˇˇ"Γ `ω, Xpωq, Y p¨q ˘‰t 1 j ,t 1 j`1 ˇď 2γ N ÿ j"0 w `t1 j , t 1 j`1 , ω ˘1{p ď 2γ ˜N ÿ j"0 wpt 1 j , t 1 j`1 , ωq ¸1{p `N `1˘p p´1q{p ď 2γ wps, t, ωq 1{p `N `1˘p p´1q{p ,
where we let t 1 i " maxps, minpt, t i qq and where used the super-additivity of w in the last line. In the same way, 

ˇˇδ x " Γ `ω, Xpωq, Y p¨q ˘‰s,t ˇˇď N ÿ j"0 ˇˇδ x " Γ `ω, Xpωq, Y p¨q ˘‰t 1 j ,t
δ µ F s pω, ¨qW K K s,t p¨, ωq ‰ " N ÿ j"0 ż t 1 j`1 t 1 j F r pω, ¨qdW r pωq ´Fs pω, ¨qW s,t ´δx F s pω, ¨qW s,t pωq ´E" δ µ F s pω, ¨qW K K s,t p¨, ωq ‰ (3.9) " N ÿ j"0 ! R Γ t 1 j ,t 1 j`1
pωq ``F t 1 j pω, ¨q ´Fs pω, ¨q˘W

t 1 j ,t 1 j`1 pωq `δx F t 1 j pω, ¨qW t 1 j ,t 1 j`1 pωq `E" δ µ F t 1 j pω, ¨qW K K t 1 j ,t 1 j`1 p¨, ωq ‰ ) ´δx F s pω, ¨qW s,t pωq ´E" δ µ F s pω, ¨qW K K s,t p¨, ωq ‰ ,
where δ x F r pω, ¨q and δ µ F r pω, ¨q stand here for the x and µ-derivatives of the ω controlled path `Fr pω, ¨q˘0 ďrďT .

We recall that the product δ x F s pω, ¨q W s,t pωq is understood as the result of the action of an element of `δx F i,j s ˘kpω, ¨q`W s,t pωq ˘k,j ; a similar notation is used for δ µ F. Above, F i,s pω, ¨q is an m dimensional vector obtained by considering the i th line in the d ˆm matrix pF i,j s pω, ¨qq 1ďiďd,1ďjďm , and δ x F i,s pω, ¨q is an m ˆm matrix.

R d b R m b R m onto an element of R m b R m , i.e.,
The most difficult term to handle in (3.9) is ř N j"0 `Ft 1 j pω, ¨q ´Fs pω, ¨q˘W t 1 j ,t 1 j`1 pωq. We first notice that the increments F t 1 j pω, ¨q ´Fs pω, ¨q, for j " 0, ¨¨¨, N, can be bounded by

ř j´1 i"0 `|X t 1 i`1 pωq ´Xt 1 i pωq| `@Y t 1 i`1 p¨q ´Yt 1 i p¨q D 2 ˘, since F is 1-Lipschitz continuous. Then, |X t 1 i`1 pωq ´Xt 1 i pωq| is less than }Xpωq} rt 1 i ,t 1 i`1 s,w,p wpt 1 i , t 1 i`1 , ωq 1{p and, following Lemma 9, xY t 1 i`1 p¨q ´Yt 1 i p¨qy 2 ď 2 @ }Y p¨q} rt 1 i ,t 1 i`1 s,w,p D 8 wpt 1 i , t 1 i`1 , ωq 1{p .
Invoking the first bound in (3.6) -this is the rationale for it-together with (3.7), we deduce that the sum ř N j"0 `Ft 1 j pω, ¨q ´Fs pω, ¨q˘W

t 1 j ,t 1 j`1 pωq is bounded by 3γ L 1{4 N ÿ j"0 ˜N ÿ i"0 wpt 1 i , t 1 i`1 , ωq 1{p ¸wpt 1 j , t 1 j`1 , ωq 1{p ď 3 γ L 1{4 pN `1q 2pp´1q{p wps, t, ωq 2{p .
In order to proceed with the other terms in (3.9), we note that since The other terms in the last two lines of (3.9) are easily handled using the above bound. As for the remainder term R Γ

t 1 j ,t 1 j`1
pωq, it can be estimated by means of (3.8). Finally, one can find a constant C γ depending only on γ such that ˇˇR Γ s,t pωq ˇˇď C γ `1 `L1{4 ˘pN `1q 2pp´1q{p wps, t, ωq 2{p . Changing the value of C γ from line to line, we end up with

› › ›Γ `ω, Xpωq, Y p¨q ˘› › › 2 r0,T s,w,p ď C γ pN `1q 2pp´1q{p , Γ `ω, Xpωq, Y p¨q ˘ 2 r0,T s,w,p ď C γ `1 `?L ˘pN `1q 2pp´1q{p ,
which proves the bound (3.4) by choosing the sequence pt i q i"0,¨¨¨,N `1 " `τi p0, T, ω, 1{p4Lqq ˘i"0,¨¨¨,N`1 defined in (1.12) and N " N `r0, T s, ω, 1{p4Lq ˘.

' Assume now that Xpωq is the realization of a random controlled path Xp¨q " pXpω 1 qq ω 1 PΩ 1 satisfying the bound (3.3) for any ω 1 , for the ω 1 -dependent partition pt i q i"0,¨¨¨,N `1. Then, integrating with respect to ω the conclusion of the second point we get

A› › ›Γ `¨, Xp¨q, Y ˘› › › r0,T s,w,p E 2 8 ď C γ A N `r0, T s, ¨, 1{p4Lq ˘`1 E 2pp´1q{p 8 , A Γ `¨, Xp¨q, Y ˘ r0,T s,w,p E 2 8 ď C γ `1 `?L ˘AN `r0, T s, ¨, 1{p4Lq ˘`1 E 2pp´1q{p 8 .
We get the conclusion of the statement if one assumes that

A N `r0, T s, ¨, 1{p4Lq ˘`1 E 2pp´1q{p 8 ď 2,
by choosing L such that 2 C γ ď ? L and 2 C γ p1 `?Lq ď L.

Remark that if @ N `r0, 1s, ¨, 1{p4Lq ˘`1 D 8 is finite, then we can choose T ď 1 small enough such that the condition @ N `r0, T s, ¨, 1{p4Lq ˘`1 D 2pp´1q{p 8
ď 2 is satisfied. (Since N `r0, ts, ω, 1{p4Lq ˘converges to 0 as t OE 0, for any ω P Ω, the result follows indeed from Lebesgue's dominated convergence theorem.)

-Contractive Property of Γ

15. Proposition -Let F satisfy Regularity assumptions 1 and Regularity assumptions 2 with Λ " 1. Consider two ω-controlled paths Xpωq and X 1 pωq, defined on a time interval r0, T s, together with two random controlled paths Y p¨q and Y 1 p¨q satisfying

ˇˇδ x Xpωq ˇˇ_ ˇˇδ x X 1 pωq ˇˇ_ @ δ x Y p¨q D 8 _ @ δ x Y 1 p¨q D 8 ď 1, (3.10) 
together with the size estimates

@ }Y p¨q} r0,T s,w,p D 2 8 ď a L 0 , @ ~Y p¨q~r 0,T s,w,p D 2 8 ď L 0 , @ }Y 1 p¨q} r0,T s,w,p D 2 8 ď a L 0 , @ ~Y 1 p¨q~r 0,T s,w,p D 2 8 ď L 0 , (3.11) 
and Xpωq

2 rt 0 i ,t 0 i`1 s,w,p ď a L 0 , X 1 pωq 2 rt 0 i ,t 0 i`1 s,w,p ď a L 0 , (3.12) 
for i P t0, ¨¨¨, N 0 u, for L 0 given by Proposition 14, and N 0 " N `r0, T s, ω, 1{p4L 0 q given by (1.13), and for the sequence `t0

i " τ i p0, T, ω, 1{p4L 0 qq ˘i"0,¨¨¨,N 0 `1 given by (1.12). Then, we can find a constant γ depending on L 0 such that, for any partition pt i q i"0,¨¨¨,N refining pt 0 i q i"0,¨¨¨,N 0 and satisfying wpt i , t i`1 , ωq ď 1{p4Lq for some L ě L 0 , we have

ż ẗ i F `Xr pωq, Y r p¨q ˘dW r pωq ´ż ẗ i F `X1 r pωq, Y 1 r p¨q ˘dW r pωq rt i ,t i`1 s,w,p ď γ wp0, t i , ωq 1{p `1 `1 4L ˘´ ∆Xpωq r0,t i s,w,p `@~∆Y p¨q~r 0,T s,w,p D 8 γ 4L 
´ ∆Xpωq rt i ,t i`1 s,w,p `@~∆Y p¨q~r 0,T s,w,p D 8 ¯, where ∆X t pωq :" X t pωq ´X1 t pωq, ∆Y t p¨q :" Y t p¨q ´Y 1 t p¨q, t P r0, T s.

Proof -We get the conclusion after four intermediate steps. Proceeding as in the proof of stability, we consider a subdivision pt i q i"0,¨¨¨,N `1 of the interval r0, T s such that wpt i , t i`1 , ωq ď 1{p4Lq, for a frozen value of ω P Ω. The value of L ě L 0 will be fixed later on. We can assume without any loss of generality that the partition pt i q i"0,¨¨¨,N `1 refines the partition `t0 i " τ i p0, T, ω, 1{p4L 0 qq ˘i"0,¨¨¨,N 0 `1, where N 0 pωq " N `r0, T s, ω, 1{p4L 0 q ˘. Like in the first step of the proof of Proposition 14, we start from the estimate

ż ẗ i F `Xr pωq, Y r p¨q ˘dW r pωq ´ż ẗ i F `X1 r pωq, Y 1 r p¨q ˘dW r pωq rt i ,t i`1 s,w,p ď γ ´ˇX t i pωq ´X1 t i pωq ˇˇ`}Y t i p¨q ´Y 1 t i p¨q} 2 γ wpt i , t i`1 , ωq 1{p F `Xpωq, Y p¨q ˘´FpX 1 pωq, Y 1 p¨q ˘ ‹,rt i ,t i`1 s,w,p , (3.13) 
for a universal constant γ ě 1.

The first point is to bound the quantity F `Xpωq, We now use the following three facts. First, we recall once again that X 0 pωq " X 1 0 pωq and Y 0 p¨q " Y 1 0 p¨q; second, we know from Regularity assumptions 1 that, for any x P R d and Z P L 2 pΩ, F, P; R d q, the quantities |B x Fpx, Zq| and @ ∇ Z Fpx, Zqy 2 are bounded by 1; last, the two mappings px, Step 2 -We now handle the Gubinelli derivative δ x r∆Fpω, ¨qs. We start from the algebraic identity where we used the Hölder inequality

Y p¨q ˘´F `X1 pωq, Y 1 p¨q ˘ ‹,rt i ,t i`1
Zq Þ Ñ B x Fpx, Zq and px, Zq Þ Ñ ∇ Z Fpx,
δ x r∆Fpω, ¨qs t " " B x F `Xt pωq, Y t p¨q ˘´B x F `X1 t pωq, Y 1 t p¨q ˘‰ δ x X t pωq `Bx F `X1 t pωq, Y
E " ˇˇ∆δ x Y t p¨q ˇˇ4{3 ˇˇ∇ Z F `X1 t pωq, Y 1 t p¨q ˘ˇ4 {3 ı 3{4 ď E " ˇˇ∆δ x Y t p¨q ˇˇ4 ı 1{4 E " ˇˇ∇ Z F `X1 t pωq, Y 1 t p¨q ˘ˇ2 ı 1{2 ,
with exponents 3 and 3{2.

' Variation of B µ r∆Fpω, ¨qs. Using again Hölder inequality with exponents 3 and 3{2, we get 

A " δ µ r∆Fpω, ¨qs ‰ s,t E 4{3 ď @ rδ x Y p¨qs s,t D 4 ´|∆X s pωq| `@∆Y s p¨q D 2 Ā" ∇ Z F `Xpωq, Y p¨q ˘´∇ Z F `X1 pωq, Y 1 p¨q ˘‰s,t E 4{3 `@r∆δ x Y p¨qs s,t D 4 `@∆δ x Y s p¨q D 4 A " ∇ Z F `X1
D 8 ¯).
As for the second term in (3.15), we write 

" ∇ Z F `Xpωq, Y p¨q ˘´∇ Z F `X1 pωq, Y 1 p¨q ˘‰s,t in the form " D µ F `Xpωq, Y p¨q ˘`Y p¨q ˘´D µ F `X1 pωq, Y 1 p¨q ˘`Y
) dλ,
where the symbol " is used to denote independent copies of the various random variables and where, as before, we used the notation (2.10), with an obvious analogue for the processes tagged with a prime or a tilde. By using Hölder inequality with exponents 3 and 3/2, we get

A " ∇ Z F `Xpωq, Y p¨q ˘´∇ Z F `X1 pωq, Y 1 p¨q ˘‰s,t E 4{3 ď γ ! ˇˇ∆X s,t pωq ˇˇ`@∆Y s,t p¨q D 4 `|X s,t pωq| ´|∆X s pωq| `@∆Y s p¨q D 2 `ˇ∆ X s,t pωq ˇˇ`@∆Y s,t p¨q D 2 @Y s,t p¨q D 4 ´ˇ∆ X s pωq ˇˇ`@∆Y s p¨q D 2 `ˇ∆ X s,t pωq ˇˇ`@∆Y s,t p¨q D 2 ¯),
where, to get the first line, we used the fact that B x D µ F and B z D µ F and the function

R d ˆP2 pR d q Q px, µq Þ Ñ ż R d ż R d ˇˇD 2 Fpx, µqpz, z 1 q ˇˇ2 µpdzqµpdz 1 q,
are bounded by Λ " 1. We end up with the same bound as in the first and second steps, namely

@ δ µ r∆Fpω, ¨qs D rt i ,t i`1 s,w,p,4{3
ď γ ´~∆Xpωq~r t i ,t i`1 s,w,p `@~∆Y p¨q~r t i ,t i`1 s,w,p D 8 γ wp0, t i , ωq 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p D 8 ¯.

Step 4 -We use (2.11) to write the remainder term R ∆F in the form

R ∆F s,t " ´Bx F `Xs pωq, Y s p¨q ˘´B x F `X1 s pωq, Y 1 s p¨q ˘¯R X s,t pωq `Bx F `X1 s pωq, Y 1 s p¨q ˘´R X s,t pωq ´RX 1 s,t pωq Ē"´∇ Z F `Xs pωq, Y s p¨q ˘´∇ Z F `X1 s pωq, Y 1 s p¨q ˘¯R Y s,t p¨q ı `E" ∇ Z F `X1 s pωq, Y 1 s p¨q ˘´R Y s,t p¨q ´RY 1 s,t p¨q ¯ı ` (2) 
´(2') `( 3) ´(3') `( 5) ´(5'), with

:" 

ż 1 0 ! B x F
ż 1 0 ! B x F ´Xpλq1 s;ps,tq pωq, Y 1 s p¨q ¯´B x F `X1 s pωq, Y 1 s p¨q ˘)X 1 s,t pωq dλ, (5) 
:"

ż 1 0 A! ∇ Z F `Xs pωq, Y pλq s;ps,tq p¨q ˘´∇ Z F `Xs pωq, Y s p¨q ˘)Y s,t p¨q E dλ (5') :" ż 1 0 A! ∇ Z F `X1 s pωq, Y pλq1 s;ps,tq p¨q ˘´∇ Z F `X1 s pωq, Y 1 s p¨q ˘)Y 1 s,t p¨q E dλ.
We start with the analysis of the first fourth lines in R ∆F . Proceeding as before, the first line is less than ˇˇ"B x F `Xs pωq, Y s p¨q ˘´B x F `X1 s pωq, Y 1 s p¨q ˘ıR X s,t pωq ˇď γ wps, t, ωq 2{p ! wp0, t i q 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p D 8 ∆Xpωq~r t i ,t i`1 s,w,p `@~∆Y p¨q~r t i ,t i`1 s,w,p D 8 ¯).

We also have ) .

ˇˇB x F `X1 s pωq, Y
The difference (3) ´(3') can be handled in the same way. We end up with the term (5) ´(5'). As Y s,t and Y 1 s,t may be estimated in L 4 , it suffices to control both ) ,

(
which completes the proof.

-Well-posedness

We first prove a well-posedness result in small time from which our global in time result, Theorem 1, follows. Recall from (1.7) and (1.8) the definition of wp0, T q, and from Definition 12 the fact that the map Γ depends on X 0 pωq; recall also from Lemma 13 that there is no loss of generality in assuming Λ " 1 in (2.7) -this explains the bound for B x Xpωq in the statement below.

16. Theorem -Let F satisfy Regularity assumptions 1 and Regularity assumptions 2 with Λ " 1. Assume there exists a positive time horizon T such that the random variables wp0, T, ¨q and `N `r0, T s, ¨, α ˘˘αą0 have 'sub' and super exponential tails respectively P `wp0, T, ¨q ě t ˘ď c 1 exp `´t ε 1 ˘,

P `N pr0, T s, ¨, αq ě t ˘ď c 2 pαq exp `´t 1`ε 2 pαq ˘, (3.17) 
for some positive constants c 1 and ε 1 , and possibly α-dependent positive constants c 2 pαq and ε 2 pαq. Then, there exist a positive random variable A satisfying

A Ap¨q N pr0,T s,¨,1{p4Lqq E 1 ă 8,
together with three positive reals L 0 , L and η with the following property. For any 0 ď S ď T such that

A N `r0, Ss, ¨, 1{p4L 0 q ˘`1 E 2pp´1q{p 8 ď 2, (3.18) 
and A Ap¨q N pr0,Ss,¨,1{p4Lqq

E 1 ď η, (3.19) 
and for any d-dimensional random square-integrable variable X 0 , there exists a random controlled path Xp¨q " pXpωqq ωPΩ defined on the time interval r0, Ss satisfying the estimates

@ δ x Xp¨q D 8 ď 1,
and A ~Xp¨q~r 0,Ss,w,p

E 2 8 ă 8,
such that, for every ω P Ω, the paths Xpωq and Γpω, Xpωq, Xp¨qq coincide on r0, Ss. Any other random controlled path X 1 p¨q with X 1 0 " X 0 almost surely, and such that the paths X 1 pωq and Γ `ω, X 1 pωq, X 1 p¨q ˘coincide almost surely, satisfies P ´~Xp¨q ´X1 p¨q~‹ ,r0,Ss,w,p " 0 ¯" 1.

Proof -We construct a fixed point of the map Γ, in the sense of Definition 12, as the limit of the following Picard sequence `Xn`1 pωq; δ x X n`1 pωq; 0 ˘:" Γ ´ω, `Xn pωq; δ x X n pωq; 0 ˘, `Xn pω 1 q; δ x X n pω 1 q; 0 ˘ω1 PΩ ¯, started from ´X0 pωq; B x X 0 pωq; 0 ¯" `X0 pωq; 0; 0 ˘, for each ω P Ω. Importantly, we deduce from the tail estimates (3.17) that Proposition 14 applies iteratively: Following the discussion that comes right after the statement of Proposition 14, each X n p¨q " pX n pωqq ωPΩ , n ě 1, is a random controlled trajectory.

Step 1. Instead of working with S such that @ N pr0, Ss¨, 1{p4L 0 qq `1D 2pp´1q{p 8 ď 2, we can assume, using (3.17), that @ N pr0, T s, ¨, 1{p4L 0 qq `1D 2pp´1q{p

X n and X n´1 satisfy the esimates (3.11) ) ,

for any n ě 1 and for a sequence pt i q i"0,¨¨¨,N as in the statement of Proposition 15. We start with the case i " 0. The above bound yields, for all n ě 1, We proceed with a similar computation when i ě 1. We have, for n ě 1,

pX n`
pX n`1 ´Xn qpωq rt i ,t i`1 s,w,p ď ´γ 4L ¯n X 1 pωq rt i ,t i`1 s,w,p `n ÿ k"1 ´γ 4L ¯n`1´k " γwp0, t i , ωq 1{p ´1 `1 4L ¯ pX k ´Xk´1 qpωq r0,t i s,w,p ı `n ÿ k"1 ´γ 4L ¯n`1´k " γ ! 1 4L `wp0, t i , ωq 1{p `1 `1 4L ˘)
ˆA~pX k ´Xk´1 qp¨q~r 0,T s,w,p

E 8 ı .
Following the second bullet point in the proof of Proposition 

ď γ 2 ζpωq ´3γ 4L ¯n´1 `n`1 ÿ k"1 `1 3 ˘n`1´k ¯ X 1 pωq r0,t 2 s,w,p `γ2 ζpωq ´γ 4L ¯n`1 n ÿ i"1 ´3γ 4L ¯1´i A ~pX i ´Xi´1 qp¨q~r 0,T s,w,p E 8 n ÿ k"i 3 k `γ2 ζpωq n ÿ k"1 ´γ 4L ¯n`1´k A ~pX k ´Xk´1 qp¨q r0,T s,w,p E 8 .
Therefore, using the bound 

ř n k"i 3 k ď 3 n`1
`ci pωq n ÿ k"1 ´3γ 4L ¯n`1´k A ~pX k ´Xk´1 qp¨q~r 0,T s,w,p E 8 ,
as long as t i ď T .

Step 3. Noting that we can take the number of points N in the statement of Theorem 15 less than N 0 `r0, T s, ω, 1{p4L 0 q ˘`N 0 `r0, T s, ω, 1{p4Lq ˘ď 2N `r0, T s, ω, 1{p4L 0 q ˘, where we recall the definition (1.13) of N `r0, T s, ω, 1{p4Lq ˘, we deduce that

pX n`1 ´Xn qpωq r0,T s,w,p ď ´3γ 2 ζpωq ¯2Npω,1{p4Lqq ´3γ 4L ¯n X 1 pωq r0,T s,w,p `´3γ 2 ζpωq ¯2Npω,1{p4Lqq n ÿ k"1 ´3γ 4L ¯n`1´k A ~pX k ´Xk´1 qp¨q~r 0,T s,w,p E 8 , (3.21) 
where we let N `ω, 1{p4Lq ˘:" N `r0, T s,ω, 1{p4Lq ˘. It follows from the assumed tail behaviour of the random variables N `¨, 1{p4Lq ˘and wp0, T, ¨q that we have, for a ą 1 and any integer k the upper bound

P ´ ω P Ω : ζ 2N pω,1{p4Lqq pωq ě a ( ¯ď P `N p¨, 1{p4Lqq ě k ˘`P `ζ2 ě a 1{k ď c exp `´k 1`ε 2 ˘`c exp ˜´a ε 1 {p2kq c ¸, (3.22) 
for a constant c ě 1 depending on L and with ε 2 " ε 2 p1{p4Lqq. Choosing k " pln aq 1{p1`ε 2 {2q then gives

@ P Nzt0u, P ´!ω P Ω : ζ 2N pω,1{p4Lqq pωq ě a )¯ď C a ´ ,
for a constant C depending on , from which we deduce that

A `3γ 2 ζ ˘2Np¨,1{p4Lqq E 16 ă 8.
Set now A :" p3γ 2 ζq 2N p¨,1{p4Lq . Importantly, A depends on the time horizon T through γ, ζ and N p¨, 1{4Lq (and this on L as well). In order to emphasize the dependance upon the time argument, we expand the notation and write

A T :" p3γ 2 T ζ T q 2N pr0,T s,¨,1{p4Lqq .
Clearly, 

A S ď p3γ 2 T ζ T q 2N pr0,
E 8 n ÿ k"i`1 ´3γ 4L ¯pk´iq{2 ď `1 `δpSq ˘´3γ 4L ¯n{2 n ÿ k"0 ´3γ 4L ¯k{2 A X 1 p¨q r0,Ss,w,p E 16 `1 `δpSq 1 ´a3γ{p4Lq ´3γ 4L ¯1{2 n ÿ i"0 ´3γ 4L ¯pn´iq{2 A pX i`1 ´Xi qp¨q r0,Ss,w,p E 8 .
Without any loss of generality, we can assume that 3γ{p4Lq ď 1{16, so ¯n´i .

As we can assume that 3γ ă 4La, we can change the value of C and get pX n`1 ´Xn qpωq r0,Ss,w,p ď `3γ 2 ζpωq ˘2Npr0,T s,ω,1{4Lq ´3γ 4L ¯n X 1 pωq r0,T s,w,p `C`3 γ 2 ζpωq ˘2Npr0,T sω,1{4Lq a n @ ~X1 p¨q~r 0,Ss,w,p D 16 .

(3.23)

In order to conclude, we notice the following two facts. First, the above estimate remains true if we replace pX n`1 ´Xn qpωq r0,Ss,w,p by pX n`1 ´Xn qpωq ‹,r0,Ss,w,p in the left-hand side. Second, Proposition 14 guarantees that @ ~X1 p¨q~r 0,Ss,w,p D 16 ă 8. Using a Cauchy like argument, we deduce that, for any ω P Ω, the sequence `Xn pωq, B x X n , R X n ˘ně0 is convergent for the norm ~¨~‹ ,r0,Ss,w,p . Using Proposition 15, the limit is a fixed point of Γ as required.

Uniqueness -Let `X1 p¨q; δ x X 1 p¨q; 0 ˘stand for another fixed point of Γ, with .

δ x X 1 pωq " F `X1 pωq, X 1 p¨q ˘, ω P Ω,
Taking the L 8 norm, we deduce that uniqueness holds in small time.

Applying iteratively Theorem 16 along a sequence of times pS 0 " 0, ¨¨¨, S " T q satisfying A N prS j´1 , S j s, ¨, 1{p4L 0 qq `1E 2pp´1q{p 8 ď 2, and

A Ap¨q N prS j´1 ,S j s,¨,1{p4Lqq E 1 ď η,
the mean field rough differential equation is seen to have a unique solution defined on the whole interval r0, T s. This is Theorem 1.

-Uniqueness in Law on Strong Rough Set-Ups

Since the solution given by Theorem 16 is constructed by Picard iteration on each interval rS j´1 , S j s, for j " 1, ¨¨¨, , we should expect its law to be somehow independent of the probability space used to build the rough set-up W . However, although it seems to be a relevant concept in our context, uniqueness in law requires some care as the rough set-up explicitly depends upon the underlying probability space pΩ, F, Pq; recall indeed that the random variables Ω Q ω Þ Ñ W K K pω, ¨q and Ω Q ω Þ Ñ W K K p¨, ωq are not only defined on pΩ, F, Pq but also take values in L q pΩ, F, P; R m q. The fact that the arrival spaces of both random variables explicitly depend upon the probability space is a serious drawback to get a form of weak uniqueness. It is thus relevant to identify the canonical information in the rough set-up that is needed to determine the law of the solution. To do so, we keep track of the information required at each step of the Picard iteration used in the proof of Theorem 16. To this end, recall from the estimate (2.3) on rough integrals the expansion

X n`1 t i pωq " X 0 pωq `i ÿ j"1 F `Xn t j´1 pωq, X n t j´1 p¨q ˘Wt j´1 ,t j pωq `i ÿ j"1 B x F `Xn t j´1 pωq, X n t j´1 p¨q ˘´F `Xn t j´1 pωq, X n t j´1 p¨q ˘Wt j´1 ,t j pωq ī ÿ j"1 A D µ F `Xn t j´1 pωq, X n t j´1 p¨q ˘`X n t j´1 p¨q ˘´F `Xn t j´1 p¨q, X n t j´1 p¨q ˘WK K t j´1 ,t j p¨, ωq ¯E `i ÿ j"1
S n`1 t j´1 ,t j pωq;

it holds true for any subdivision 0 " t 0 ă ¨¨¨ă t K " T , the last term converging to 0 as the step size of the subdivision tends to 0. Hence, if we assume that the Cpr0, T s; R d q-valued random variable X n p¨q is measurable with respect to the σ-field generated by some variable Θ n with values in an auxiliary Polish space S n , we have that X n`1 pωq is the image, by a measurable function, of ´X0 pωq, W pωq, Wpωq, Θ n pωq, L `Θn p¨q, W K K p¨, ωq ˘¯.

The random variable right above takes values in

R d ˆC`r 0, T s; R m ˘ˆC `ST 2 ; R m b R m ˘ˆS n ˆP´S n ˆC`S T 2 ; R m b R m ˘¯,
the last factor being equipped with the standard topology of weak convergence.

Noticing that S 0 can be chosen as t0u and Θ 0 p¨q as Θ 0 p¨q " 0, this defines a countable sequence of Polish space-valued random variables; basically, the law of the whole sequence suffices to determine the law of the solution to (0.2).

Although this approach could be made entirely rigorous to address uniqueness in law in the upmost general framework, all the examples we have enter in fact a simpler setting. Somehow, the problem we face with weak uniqueness is the same as the one we encountered in the example of a rough set-up given by Proposition 4. The difficulty is indeed to reconstruct the iterated integral W K K pω 1 , ωq from the observation of W pωq, W pω 1 q and Wpωq; in the proof of Proposition 4, this is made at the price of an extra source of randomness. When addressing weak uniqueness, this extra source of randomness has to be identified in a canonical way; this is exactly what the above iterative procedure, based on the sequence pΘ n q ně0 , does. Interestingly (and fortunately), all this cumbersome construction becomes trivial when W K K pω 1 , ωq can be (almost surely) written as the image of `W pωq, W pω 1 q ˘by a measurable function. In that case, there is no need of an extra source of randomness. Equivalently, all the `Θn , S n ˘ně1 can be chosen as `Θn " pX 0 , W n , W n q, S n " R d Ĉpr0, T s; R m q ˆCpS T 2 ; R m b R m q ˘ně1 . Indeed, L `WK K p¨, ωq ˘writes, for almost every ω P Ω, as the image of W pωq by a measurable function. Importantly, both Examples 3 and 5 fall within this case. More generally, in the framework of Proposition 4, we can write W 2,1 as the almost sure image of `W 1 , W 2 ˘by a measurable function from C `r0, T s; R m ˘2 into C `ST 2 ; R m b R m ˘, when, for almost every ξ P Ξ, the quantity W 2,1 pξq can be approximated by the iterated integral of mollified versions of W 1 pξq and W 2 pξq, provided the mollification procedure defines a measurable map from Cpr0, T s; R m q into itself. This is for instance the case with linear interpolation or convolution by a smooth kernel. 17. Proposition -Within the framework of Proposition 4, define, for

1 ď i ď 2,
and for all n ě 0, the linear interpolation W i,n of W i at dyadic points `tk n " kT {2 n ˘k"0,¨¨¨,2 n ´1 of r0, T s, namely, set W i,n t pξq "

2 n ´1 ÿ k"0 ˆW i t k n pξq `W i t k n ,t k`1 n pξq 2 n pt ´tk n q T ˙1rt k n ,t k`1 n q ptq.
If for Q-almost every ξ P Ξ, for all ps, tq P S T 2 , W 

; R m q 2 into C `ST 2 ; R m b R m such that Q ´!ξ P Ξ : W 2,1 pξq " I `W 2 pξq, W 1 pξq ˘)¯" 1.
The scope of Proposition 17 is limited to so-called geometric rough paths, but the underlying principle is actually more general. This prompts us to introduce the following definition.

18. Definition -A rough set-up, as defined in Section 1, is called strong if there exists a measurable mapping

I from C `r0, T s; R m ˘2 into C `ST 2 ; R m b R m ˘such that P b2
´ pω, ω 1 q P Ω 2 : W K K pω, ω 1 q " I `W pωq, W pω 1 q ˘(¯" 1.

(3.24)

So, Proposition 17 provides a typical instance of strong set-up, which covers in particular Examples 3 and 5. However, it is worth mentioning that strong setups may not fall within the scope of Proposition 17, since the latter is limited to geometric rough paths. This is for instance the case if in Proposition 4 we take W 1 p¨q and W 2 p¨q to be two independent Brownian motions and W 2,1 p¨, ¨q to be the Itô integral between W 2 p¨q and W 1 p¨q rather than their Stratonovich integral. Also, we refer the reader to Deuschel and al. [START_REF] Deuschel | The enhanced Sanov theorem and propagation of chaos[END_REF] for a related use of the notion of strong set-up, although the terminology strong does not appear therein.

Proposition 4 sheds a light on the rationale for the word strong in Definition 18. Here strong has the same meaning as in the theory of strong solutions to stochastic differential equations: The second level W 2,1 of the rough-path is a measurable function of pW 2 , W 1 q. In contrast, the general set-up considered in the statement of Proposition 4 may not be strong as W 2,1 may carry, in addition to pW 1 , W 2 q, an additional external independent randomization. If this additional randomization is not trivial, the set-up should be called weak. An instance is given by the collection of real-valued rough paths:

W 1 pξq " W 2 pξq " 0, W 1,1 pξq " 0, W 2,1
s,t pξq " apξqpt ´sq, ps, tq P S T 2 , for ξ in a probability space pΞ, G, Qq, where a is a real-valued random variable on pΞ, G, Qq. If the support of a does not reduce to one point, then the set-up induced by `W 1 p¨q, W 2 p¨q, W 1,1 p¨q, W 1,2 p¨q ˘is strictly weak. We now have all the ingredients to formulate a weak uniqueness property.

19. Theorem -Let X 0 p¨q :" `X0 pωq ˘ωPΩ and X 1 0 p¨q :" `X1 0 pωq ˘ωPΩ 1 and W p¨q :" `W pωq, Wpωq, W K K pω, ω 1 q ˘ωPΩ,ω 1 PΩ ,

W 1 p¨q :" `W 1 pωq, W 1 pωq, W K K,1 pω, ω 1 q ˘ωPΩ 1 ,ω 1 PΩ 1 ,
be two square integrable initial conditions and two strong rough set-ups with the same parameters m, p and q, defined on two probability spaces pΩ, F, Pq and pΩ 1 , F 1 , P 1 q, and such that the random variables

Ω 2 Q pω, ω 1 q Þ Ñ `X0 pωq, W pωq, Wpωq, W K K pω, ω 1 q ˘, pΩ 1 q 2 Q pω, ω 1 q Þ Ñ `X1 0 pωq, W 1 pωq, W 1 pωq, W K K,1 pω, ω 1 q ˘,
have the same law on R d ˆCpr0, T s; R m q ˆCpS T 2 ; R m b R m q ˆCpS T 2 ; R m b R m q. Then, the corresponding two solutions `Xpωq ˘ωPΩ and `X1 pωq ˘ωPΩ 1 to (0.2) have the same law on Cpr0, T s; R m q.

As the two set-ups have the same law, we can use the same mapping I in the representations (3.24) of W K K and of W K K,1 .

-Continuity of the Itô-Lyons Map

As expected from a robust solution theory of differential equations, we have continuity of the solution with respect to the parameters in the equation, most notably the rough set-up itself. The next statement quantifies that fact. 20. Theorem -Let F satisfy the same assumptions as in Theorem 16. Given a time interval r0, T s and a sequence of probability spaces pΩ n , F n , P n q, indexed by n P N, let, for any n, X n 0 p¨q :" pX n 0 pω n qq ωnPΩn be an R d -valued square-integrable initial condition and W n p¨q :" ´W n pω n q, W n pω n q, W n,K K pω n , ω 1 n q ¯ωn,ω 1

n PΩn be an m-dimensional rough set-up with corresponding control w n and local accumulated variation N n , for fixed values of p P r2, 3q and q ą 8. Assume that ' for positive constants ε 1 , c 1 and pε 2 pαq, c 2 pαqq αą0 , the tail assumption (3.17) hold for w n and N n , for all n ě 0; ' associating v n with each W n p¨q as in (1.7), the functions `ST 2 Q ps, tq Þ Ñ xv n ps, t, ¨qy 2q ˘ně0 are uniformly Lipschitz continuous; Assume also that there exist, on another probability space pΩ, F, Pq, a square integrable initial condition X 0 p¨q with values in R d and a strong rough set-up W p¨q :" ´W pωq, Wpωq, W K K pω, ω 1 q ¯ω,ω 1 PΩ with values in R m , such that ' The collection `Pn ˝p|X n 0 p¨q| 2 q ´1˘n ě0 is uniformly integrable. ' The law under the probability measure P b2 n of the random variable Ω 2 n Q pω n , ω 1 n q Þ Ñ `Xn 0 pω n q, W n pω n q, W n pω n q, W K K n pω n , ω 1 n q ˘, seen as a random variable with values in Cpr0, T s; R m q ˆ CpS T 2 ; R m b R m q ( 2 , converges in the weak sense to the law of

Ω 2 Q pω, ω 1 q Þ Ñ `X0 pωq, W pωq, Wpω n q, W K K pω, ω 1 q ˘.
Then, W p¨q satisfies the requirements of Theorem 16 for some p 1 P pp, 3q and q 1 P r8, qq. Moreover, if X n p¨q, resp. Xp¨q, is the solution of the mean field rough differential equation driven by W n p¨q, resp. W p¨q, then X n p¨q converges in law to Xp¨q on Cpr0, T s; R d q.

The rationale for the framework and the assumptions used in the statement of Theorem 20 is two-fold. First, it allows for a proof based on compactness arguments; in particular, the proof completely bypasses any lengthy stability estimate of the paths with respect to the rough structure, which, in our extended framework, would be especially cumbersome. Also, this compactness argument is pretty interesting in itself and complements quite well Subsection 3.4 on weak uniqueness; noticeably, it allows the set-ups to be supported by different probability spaces. Second, our formulation of the continuity of the Itô-Lyons map turns out to be well-fitted to the applications we have in mind, see the next section.

The assumption that the limiting rough set-up is strong is tailored-made to the compactness arguments we use below; indeed, our strategy is to prove that the sequence of laws induced by the solutions to the equations (0.2), when driven by the pW n p¨qq ně0 's, are tight. Even if this procedure is quite simple, it also requires to pass to the weak limit along the laws of the rough set-ups pW n p¨qq ně0 and identify the limiting law. As explained in Subsection 3.4, this is much easier to come when the set-ups are strong; hence the assumption.

Proof -Throughout the proof, we call p P r2, 3q and q ą 8 the fixed indices used to define the set-ups and, in particular, to control the variations in the definition (3.17) of each w n , n ě 0. This is important because, at some points of the proof, we will use other values p 1 ą p and q 1 ă q.

Step 1. This step is dedicated to the proof of several key properties on the tightness of the sequence pW n p¨qq ně0 .

1a. For any n ě 0, we introduce the modulus of continuity of pW n p¨q, W n p¨q, W n,K K p¨qq, namely we let, for any δ ą 0,

ς n `δ, ω n , ω 1 n ˘:" sup |s´t|ďδ |W n t pω n q ´W n s pω n q| `sup |s´t|`|s 1 ´t1 |ďδ ˇˇW n s 1 ,t 1 pω n q ´Wn s,t pω n q ˇšup |s´t|`|s 1 ´t1 |ďδ ˇˇW n,K K s 1 ,t 1 pω n , ω 1 n q ´Wn,K K s 1 ,t 1 pω n , ω 1 n q ˇˇ,
where pω n , ω 1 n q P Ω 2 n . Since the laws of the processes pW n p¨q, W n p¨q, W n,K K p¨, ¨qq ně0 are tight in the space Cpr0, T s; R m q ˆ CpS T 2 ; R m b R m q ( 2 , we deduce that @ε ą 0, lim

δOE0 sup ně0 P b2 n ´ pω n , ω 1 n q P Ω 2 n : ς n `δ, ω n , ω 1 n ˘ě ε ( ¯" 0.
1b. We now prove that, for any q 1 P r8, qq, the laws of the processes `Ωn Q ω n Þ Ñ xW n,K K pω n , ¨qy q 1 ˘ně0 are tight, and similarly for the laws of the processes `Ωn Q ω n Þ Ñ xW n,K K p¨, ω n qy q 1 ˘ně0 .

Obviously, we have, for any

ω n P Ω n , sup ps,tqPS T 2 Þ Ñ @ W n,K K s,t pω n , ¨qD q ď w n p0, T, ω n q.
By the first bullet point in the assumption, the tails of the right-hand side are uniformly dominated. So,

lim AÑ8 sup ně0 P ´ ω n P Ω n : sup ps,tqPS T 2 @ W n,K K s,t pω n , ¨qD q ě A ( ¯" 0,
which is one first step in the proof of tightness.

For any a ą 0, we now consider the following event:

E n pδ, aq :"

! ω n P Ω n : P n ´ ω 1 n P Ω n : ς n pδ, ω n , ω 1 n q ě ε ( ¯ě a ) .
By Markov's inequality and then Fubini's theorem,

P n `En pδ, aq ˘ď a ´1P b2 n ´ pω n , ω 1 n q P Ω 2 n : ς n pδ, ω n , ω 1 n q ě ε ( ¯.
Clearly, for any ε ą 0, we can find a collection of positive reals pa ε pδqq δą0 such that lim δOE0 a ε pδq " 0, and lim δOE0 P n ´En `δ, a ε pδq ˘¯" 0.

Take now

ω n P E n pδ, a ε pδqq A such that sup ps,tqPS T 2 @ W n,K K s,t pω n , ¨qD q ď A,
for a given A ą 0. Then, for any q 1 P r8, qq and ps, tq, ps 1 , t

1 q P S T 2 , ˇˇ@W n,K K s 1 ,t 1 pω n , ¨qD q 1 ´@W n,K K s,t pω n , ¨qD q 1 ˇˇď A W n,K K s 1 ,t 1 pω n , ¨q ´Wn,K K s,t pω n , ¨qE q 1 ď ε `Aa ε pδq 1´q 1 {q .
For A fixed and δ small enough, the right-hand side is less than 2ε. We easily deduce that @ε ą 0, lim

δOE0 sup ně0 P n ˆ!ω n P Ω n : ˇˇ@W n,K K s 1 ,t 1 pω n , ¨qD q 1 ´@W n,K K s,t pω n , ¨qD q 1 ˇˇě ε ) ˙" 0.
Of course, we can proceed in a similar way for `Ωn Q ω n Þ Ñ xW n,K K p¨, ω n qy q 1 ˘ně0 . In fact, the same argument shows that the deterministic functions `xW n p¨qy q 1 ˘ně0 and `⟪W n,K p¨, ¨q⟫ q 1 ˘ně0 are relatively compact in Cpr0, T s; Rq and CpS T 2 ; Rq. 1c. For each of the following family of processes, we know that the corresponding family of laws is tight in CpS T 2 ; Rq and that the associated family of p-variations over r0, T s has tight laws in R (because of the first item in the assumption):

' ´Ωn Q ω n Þ Ñ `|pW n t ´W n s qpω n q| ˘ps,tqPS T 2 ¯ně0 ; ' ´Ωn Q ω n Þ Ñ `|W n s,t pω n q| ˘ps,tqPS 2 T ¯ně0 ; ' ´Ωn Q ω n Þ Ñ `@W n,K K s,t pω n , ¨qD q 1 ˘ps,tqPS 2 T ¯ně0 ; ' ´Ωn Q ω n Þ Ñ `@W n,K K s,t p¨, ω n q D q 1 ˘ps,tqPS 2 T ¯ně0
.

As a consequence, we can apply Lemma 21 below, with any p 1 P pp, 3q instead of p itself, and with Z n s,t pωq equal to one the above process. We proceed similarly with the deterministic sequences

' ´`z n s,t " @ pW n t ´W n s qp¨q D q 1 ˘ps,tqPS T 2 ¯ně0 ; ' ´`z n s,t " ⟪W n,K K s,t p¨, ¨q⟫ q 1 ˘ps,tqPS T 2 ¯ně0
.

We deduce that, for any p 1 P pp, 3q, the sequence of probability measures

´P ˝pS T 2 Q ps, tq Þ Ñ v n,1 ps, t, ¨qq ´1¯n ě0
is tight in CpS 2 T ; Rq and that @ε ą 0, lim

δÑ0 sup ně0 P n ˜sup ps,tqPS T 2 :t´sďδ v n,1 ps, t, ¨q ą ε ¸" 0,
where v n,1 is associated with W n p¨q through (1.7) and where we put a prime in the notation to emphasize the fact that we use the pair of parameters pp 1 , q 1 q instead of pp, qq.

1d. Obviously, v n,1 ps, t, ¨q ď pv n ps, t, ¨qq p 1 {p . Since p 1 {p ď 2 and ' the tails of w n ě v n decay faster than any polynomial function, uniformly in n ě 0;

' the function S T 2 Q ps, tq Þ Ñ xv n ps, t, ¨qy 2q is Lipschitz continuous, uniformly in n ě 0; we deduce that ps, tq Þ Ñ xv n,1 ps, t, ¨qy q is Lipschitz continuous, uniformly in n ě 0. Hence, @ε ą 0, lim δÑ0 sup ně0 P n ˜sup ps,tqPS T 2 :t´sďδ w n,1 ps, t, ¨q ą ε ¸" 0, where, as above, we put a prime in the notation w n,1 to emphasize the fact that the rough set-up is driven by the parameters pp 1 , q 1 q. Importantly, we deduce from the bound pv n,1 p0, T, ¨qq 1{p 1 ď pv n p0, T, ¨qq 1{p that, similar to w n and N n (the latter is associated with w n through (1.13)), the function w n,1 and the corresponding local accumulated variation N n,1 (given by (1.13) with " w n,1 ) satisfy the tail assumption (3.17), uniformly in n ě 0. The bound on the tails of N n,1 is easily obtained by comparison with the tails of N n .

Step 2.

2a. The next step is to observe, as a corollary of the proof of Theorem 16, that there exist a constant C and a real S ą 0 such that, for all n ě 0, A ~Xn p¨q~r 0,Ss,w n,1 ,p

1 E 8 ď C.
The fact that C and S can be chosen independently of n is a consequence of the fact that the tails of N n and w n are controlled uniformly in n ě 0. Here S is chosen small enough so that the two constraints (3.18) and (3.19) appearing in the statement are satisfied, uniformly in n ě 0.

2b. Arguing as in the derivation of Theorem 1 from the statement of Theorem 16, we can iterate the argument and construct a sequence of deterministic times 0 " S 0 ă S " S 1 ă . . . ă S K " T , for some deterministic K ě 1, such that, for all n ě 0 and all j P t0, ¨¨¨, K ´1u, A ~Xn p¨q~r S j ,S j`1 s,w n,1 ,p

1 E 8 ď C.
Up to a modification of the constant C, we deduce that, for all n ě 1, A ~Xn p¨q~r 0,T s,w n,1 ,p

1 E 8 ď C.
Recalling that `Pn ˝p|X n 0 p¨q| 2 q ´1˘n ě0 is uniformly integrable, it is easily checked that `Pn ˝psup 0ďtďT |X n t p¨q| 2 q ´1˘n ě0 is also uniformly integrable. 2c. As another result of the previous step, for any ε ą 0, we can find a ą 0 such that sup ně0 P n ´~X n p¨q~r 0,T s,w n,1 ,p 1 ą a ¯ď ε, from which, together with 1d, we deduce that @a ą 0, Dε ą 0 : sup ně0 P n ´@ps, tq P S T 2 , |X n s,t | p 1 ą aw n,1 ps, tq ¯ď ε.

Combining with the conclusion of the first step, this yields @ε ą 0, lim

δÑ0 sup ně0 P n ˜sup ps,tqPS T 2 :t´sďδ |X n s,t | ą ε ¸" 0.
From the conclusion of 2b, the sequence `Pn ˝pX n p¨qq ´1˘n ě0 is tight in C `r0, T s; R d ˘.

Step 3. ' the family of distributions `Pn ˝pW n q ´1p¨q ˘ně0 is tight in C `ST

2 ; R m b R m ˘;
' the family

ˆPb2 n ˝´Ω 2 n Q pω n , ω 1 n q Þ Ñ W n,K K pω n , ω 1 n q P CpS T 2 ; R m b R m q ¯´1 ˙ně0 is tight in C `ST 2 ; R m b R m ˘;
' the family

ˆPn ˝´v n,1 pω n q : Ω n Q ω n Þ Ñ `ST 2 Q ps, tq Þ Ñ v n,1 ps, t, ω n q ˘P CpS T 2 ; Rq ¯´1 ˙ně0 is tight in C `ST 2 ; R ˘;
3b. By Skorokhod's representation theorem, we can find an auxiliary Polish probability space `p Ω, p F, p P ˘, such that, up to a subsequence, the following convergence holds for p P-almost every p ω P p Ω. We have

lim nÑ8 ´x W n,1 pp ωq, x W n,2 pp ωq, x W n,1,1 pp ωq, x W n,2,1 pp ωq, p v n,1,1 pp ωq, p v n,2,1 pp ωq, p X n,1 pp ωq, p X n,2 pp ωq " ´x W 1 pp ωq, x W 2 pp ωq, x W 1,1 pp ωq, x W 2,1 pp ωq, p v 1,1 pp ωq, p v 2,1 pp ωq, p X 1 pp ωq, p X 2 pp ωq ¯, (3.25) 
where `x W n,1 , x W n,2 , x W n,1,1 , x W n,1,2 , p v n,1,1 pp ωq, p v n,2,1 pp ωq, p X n,1 pp ωq, p X n,2 pp ωq ˘has the same law as the random variable

Ω 2 n Q pω n , ω 1 n q Þ Ñ ´W n pω n q, W n pω 1 n q, W n pω n q, W n,K K pω n , ω 1 n q, v n,1 pω n q, v n,1 pω 1 n q, X n pω n q, X n pω 1 n q ¯, which takes values in Cpr0, T s; R m q ( 2 ˆ CpS T 2 ; R m b R m q ( 2 ˆ Cpr0, T s; R d q ( 2 ˆ CpS T 2 ; Rq ( 2 ,
and where

`x W 1 p¨q, x W 2 p¨q, x W 1,1 p¨q, x W 2,1 p¨q, X 1 0 p¨q ˘has the same law as the random variable Ω 2 Q pω, ω 1 q Þ Ñ ´W pωq, W pω 1 q, Wpωq, W K K pω 1 , ωq, X 0 pωq ¯. (3.26)
3c. At this point of the proof, the difficulty is that `x W 1 p¨q, x W 2 p¨q, x W 1,1 p¨q, x W 2,1 p¨q does not form a rough set-up. Still, we have the following two properties. First, using the fact that the limiting set-up is strong, we have

p P ´!p ω P p Ω : W 2,1 pp ωq " I `W 2 pp ωq, W 1 pp ωq ˘)¯" 1,
for a measurable mapping I : Cpr0, T s; R m q 2 Ñ CpS T 2 ; R m b R m q, which follows from the identification with the law of (3.26). Also, passing to the limit in Chen's relations satisfied by each W n , we have, for p P almost every p ω P p Ω, and all 0 ď r ď s ď t ď T ,

x W 1,1 r,t pp ωq " x W 1,1 r,s pp ωq `x W 1,1 s,t pp ωq `x W 1 r,s pp ωq b x W 1 s,t pp ωq, x W 2,1 r,t pp ωq " x W 2,1 r,s pp ωq `x W 2,1 s,t pp ωq `x W 2 r,s pp ωq b x W 1 s,t pp ωq.
By preservation of independence under weak limit, p x W 2 , p X 2 q is independent of 

`x W 1 , x W 1,1 , p X 1 , p v 1,
; R m q, C `ST 2 ; R m b R m ˘, C `ST 2 ; R ˘and Cpr0, T s; R d q such that p P ´!p ω P p Ω : `x W , p W, p v 1 , p X ˘pp ωq " `W 1 , W 1,1 , p v 1,1 , p X 1 ˘pp ωq )¯" 1; ' a random variable p W K K p¨, ¨q from `p Ω 2 , p F b2 , p P b2 ˘into C `ST 2 ; R m b R m ˘such that p P b2 ´!pp ω, p ω 1 q P p Ω 2 : p W K K pp ω, p ω 1 q " I `x W pp ωq, x W pp ω 1 q ˘)¯" 1; (3.27)
the rough set-up x W p¨q :" `x W p¨q, p Wp¨q, p W K K p¨, ¨q˘s atisfying (1.4) with probability 1 and p

Ω 2 Q pp ω, p ω 1 q Þ Ñ `x W pp ωq, x W pp ω 1 q, p Wpp ωq, p W K K pp ω 1 , p ωq, p v 1 pp ωq, p v 1 pp ω 1 q, p Xpp ωq, p Xpp ω 1 q ˘hav- ing the same law as `x W 1 p¨q, x W 2 p¨q, x W 1,1 p¨q, x W 2,1 p¨q, p v 1,1 p¨q, p v 2,1 p¨q, p X 1 p¨q, p X 2 p¨q ˘on the product space C `r0, T s; R m ˘(2 ˆ C `ST 2 ; R m b R m ˘(2 ˆ C `ST 2 ; R ˘(2 ˆ C `r0, T s; R d ˘(2 .
3d. We now check that x W p¨q satisfies the required regularity properties.

We start with the variations of x W pp ωq, x x W p¨qy q 1 , p Wpp ωq, x p W K K pp ω, ¨qy q 1 , x p W K K p¨, p ωqy q 1 and ⟪ p W K K p¨, ¨q⟫ q 1 . To do so, we recall that, for almost every p ω P p Ω, v1 pp ωq is the limit of vn,1 pp ωq. By passage to the limit, v1 inherits the super-additive property of the pv n,1 q ně0 's and its tails satisfy (uniformly in n ě 0) a bound similar to that satisfied by the pv n q ně0 's in the first item of the assumption, see 1d. Also, S T 2 Q ps, tq Þ Ñ xv 1 ps, t, ¨qy q 1 is Lipschitz.

Using once more the passage to the limit, we get that, for almost every ω P p Ω, for any ps, tq P S T 2 , | x W s,t pp ωq| p 1 ď v 1 ps, t, ωq, from which we deduce that the p 1 -variation of x W pp ωq is dominated (in an obvious sense) by p v 1 . A similar augment applies for x x W pp ωqy q 1 , p Wpp ωq and ⟪ p W K K p¨, ¨q⟫ q 1 .

It thus remains to handle

@ p W K K pp ω, ¨qD q 1 and @ p W K K p¨, p ωq D q 1 . Observe first from Fatou's lemma that ⟪ sup ps,tqPS T 2 ˇˇp W K K s,t p¨, ¨qˇˇ⟫ q 1 ă 8.
(3.28)

Hence, arguing as in the presentation of a rough set-up, see Section 1, we can consider

p Ω Q p ω Þ Ñ x W K K pp ω, ¨q1 txsup tPr0,T s | ŴK K pω,¨q|y q 1 ă8u , and p Ω Q p ω Þ Ñ x W K K p¨, p ωq1 txsup tPr0,T s | ŴK K p¨,ωq|y q 1 ă8u ,
as random variables with values in the spaces C `ST 2 ; R m b L q p p Ω, p F, p P; R m q ˘, and C `ST 2 ; L q p p Ω, p F, p P; R m q b R m ˘.

Continuity of the preceding two paths follows from the fact that x W K K has continuous paths and from the bound (3.28), which makes licit the application of Lebesgue's dominated convergence theorem to prove continuity. In order to control the variations, we proceed as follows. For any non-negative valued bounded continuous function g on Cpr0, T s; R m q ˆCpS T 2 ; Rq and for every ps, tq P S T 2 , we have

ż p Ω " g `x W pp ωq, p v 1 pp ωq ˘@x W K K s,t pp ω, ¨qD q 1 q 1 ı d p Ppp ωq " ż p Ω 2 " g `x W pp ω 1 q, p v 1 pp ω 1 q ˘`x W K K s,t pp ω 1 , p ωq ˘q1 ı d p P b2 pp ω, p ω 1 q " lim nÑ8 ż Ω 2 n " g `W n pω 1 n q, v n,1 pω 1 n q ˘`W n,K K s,t pω n , ω 1 n q ˘q1 ı dP b2 n pω 1 n , ω n q,
where we used Fubini's theorem to pass from the first to the second line together with (3.25) to pass from the second to the third line. Now, we use the very definition of v n,1 and the second item in the assumption to deduce that

ż p Ω " g `x W pp ωq, p v 1 pp ωq ˘xx W K K s,t pp ω, ¨qD q 1 q 1 ı d p Ppp ωq ď lim nÑ8 ż Ωn " g `W n pω n q, v n,1 pω n q ˘`v n,1 ps, t, ω n q ˘q1 {p 1 ı dP n pω n q " ż p Ω " g `x W pp ωq, p v 1 pp ωq ˘`v n,1 ps, t, p ωq ˘q1 ı d p Ppp ωq. Recalling from (3.27) that p Ω Q p ω Þ Ñ x x W K K s,t pp ω, ¨qD q 1 {p 1 is σt x W p¨qu-measurable, we get,
for any ps, tq P S T 2 and for almost every p ω P p Ω,

x x W K K s,t pp ω, ¨qD p 1 q 1 ď v n,1 ps, t, p ωq.
By continuity, this holds for almost every p ω P p Ω, for all ps, tq P S T 2 . The same holds for x x W K K s,t p¨, p ωq D q 1 . Associating with the rough set-up x W a (random) control function s v 1 through the definition (1.7) with pp, qq replaced by pp 1 , q 1 q, we deduce that, for p P-almost every p ω P p Ω, for all ps, tq P S T 2 , s v 1 ps, t, p ωq is less than p v 1 ps, t, p ωq.

Modifying the definition of the set-up on the possibly non-empty null event where one of the aforementioned properties fails (see the proof of Proposition 4 for details), we can assume without any loss of generality that, for any p ω P p Ω, the variation of x W pp ωq is dominated by p v 1 pp ωq and that the latter is finite for all p ω P p Ω. Also, we can assume that Chen's relationship, see (1.4), is satisfied for every p ω P p Ω.

3e. We let p w 1 ps, t, p ωq :" p v 1 ps, t, p ωq `Cpt ´sq, where C is the Lipschitz constant in the second item of the assumption. Clearly, p w 1 satisfies the first tail estimate in (3.17). Moreover, if we associate with p w 1 the (random) local accumulation p N 1 p¨, αq :" N p w 1 pr0, T s, αq as in (1.13), then, by lower semicontinuity of the local accumulation (see [START_REF] Deuschel | The enhanced Sanov theorem and propagation of chaos[END_REF]Lemma 4.2]), p N 1 p¨, αq satisfies the second tail estimate in (3.17). Obviousy, the same holds for the counter s N 1 p¨, αq associated with s v 1 p¨q. This completes the proof of the fact that x W p¨q satisfies all the requirements of Theorem 16.

Step 4.

4a. For each n ě 0, we define δ x p X n p¨q and R In order to pass to the limit in the measure argument of F, we use the fact that, for any t P r0, T s, pLpX n t qq ně0 converges in the weak sense to Lp p X t q. By the uniform integrability property 2b, the convergence also holds in 2-Wasserstein distance d 2 . By continuity of F with respect to d 2 , we easily conclude. 4b. By the second step, the sequence `Pn ˝p~X n p¨q~r 0,T s,w n,1 ,p 1 q ´1˘n ě0 is tight in R, where, without any loss of generality, we take w n,1 ps, t, ω n q " v n,1 ps, t, ω n q `Cpt ´sq, for the same C as in 3e.

So, using the fact that P n ˝`X n p¨q, δ x X n p¨q, R X n p¨q, v n,1 p¨q ˘´1 has, for each n ě 0, the same law as p x W is to emphasize the rough set-up upon which the map Γ in Definition 12 is constructed. To do so, we recall from (2.3) the expansion

P ˝`p X n p¨q, δ x p X n p¨q, p R p X n p¨q, p v n,
X n t i pω n q " X n 0 pω n q `i ÿ j"1
F `Xn t j´1 pω n q, LpX n t j´1 q ˘W n t j´1 ,t j pω n q `i ÿ j"1 B x F `Xn t j´1 pω n q, LpX n t j´1 q ˘´F `Xn t j´1 pω n q, LpX n t j´1 q ˘Wn t j´1 ,t j pω n q ¯(3.29)

`i ÿ j"1 A D µ F `Xn t j´1 pω n q, LpX n t j´1 q ˘`X n t j´1 p¨q ˘´F `Xn t j´1 p¨q, LpX n t j´1 q ˘Wn,K K t j´1 ,t j p¨, ω n q ¯E `i ÿ j"1
S n t j´1 ,t j pω n q, that holds true for any ω n P Ω n , any n ě 0 and any subdivision 0 " t 0 ă t 1 ă ¨¨¨ă t K " T , with K ě 1, and with (see Theorem 10, Proposition 11 and 2b)

ˇˇS n t j´1 ,t j pω n q ˇˇď C ´1 `~X n pω n q~2 r0,T s,w n,1 ,p ¯wn,1 pt j´1 , t j , ω n q 3{p 1 .
In order to pass to the limit in (3.29), we consider a non-negative valued bounded continuous function g on Cpr0, T s; R m q ˆCpS T 2 ; R m b R m q ˆCpS T 2 ; Rq ˆCpr0, T s; R d q. We then multiply both sides of (3.29) by g `W n pω n q, W n pω n q, v n,1 pω n q, X n pω n q ˘and integrate ω n with respect to P n . It is absolutely obvious that

lim nÑ8 E n " g `W n p¨q, W n p¨q, v n,1 p¨q, X n p¨q ˘Xn t i p¨q ı " p E " g `x W p¨q, p Wp¨q, p v n,1 p¨q, p Xp¨q ˘p X t i p¨q ı ,
and similarly with t i replaced by 0. In the same way,

lim nÑ8 E n " g `W n p¨q, W n p¨q, v n,1 p¨q, X n p¨q ˘F`X n t j´1 p¨q, LpX n t j´1 q ˘W n t j´1 ,t j p¨q ı " p E " g `x W p¨q, p Wp¨q, p v 1 p¨q, p Xp¨q ˘F`p X t j´1 p¨q, Lp p X t j´1 q ˘x W t j´1 ,t j p¨q ı ,
and similarly for the terms on the second line. As for the fifth term in the right-hand side, we have

lim sup nÑ8 E n " g `W n p¨q, W n p¨q, v n,1 p¨q, X n p¨q ˘Sn t j´1 ,t j p¨q ı ď C lim sup nÑ8 E n " g `W n p¨q, W n p¨q, v n,1 p¨q, X n p¨q ˘´1 `~X n p¨q~2 r0,T s,w n,1 ,p
wn,1 pt j´1 , t j , ¨q3{p 1 ı .

Transferring the right-hand side into an expectation on p p Ω, p F, p Pq and using obvious uniform integrability properties, see 2b, we deduce from 4b that lim sup

nÑ8 E n " g `W n p¨q, W n p¨q, v n,1 p¨q, X n p¨q ˘|S n t j´1 ,t j p¨q| ı ď C p E " g `x W p¨q, p Wp¨q, p v 1 p¨q, p Xp¨q ˘´1 `lim nÑ8 ~Xn p¨q~2 r0,T s,w n,1 ,p ¯w1 pt j´1 , t j , ¨q3{p 1 ı .
Of course, the most difficult term to treat in (3.29) is the fourth one in the right-hand side. This can be done by using Fubini's theorem: ż Ωn dP n pω n q " g `W n pω n q, W n pω n q, v n,1 pω n q, X n pω n q ȂD µ F `Xn t j´1 pω n q, LpX n t j´1 q ˘`X n t j´1 p¨q ˘´F `Xn t j´1 p¨q, LpX n t j´1 q ˘Wn,K K t j´1 ,t j p¨, ω n q ¯Eı " ż

Ω 2 n dP b2 n pω n , ω 1 n q " g `W n pω n q, W n pω n q, v n,1 pω n q, X n pω n q Dµ F `Xn t j´1 pω n q, LpX n t j´1 q ˘`X n t j´1 pω 1 n q ˘´F `Xn t j´1 pω 1 n q, LpX n t j´1 q ˘Wn,K K t j´1 ,t j pω 1 n , ω n q ¯ı " p E " g `x W n,1 p¨q, p W n,1 p¨q, p v 1,n,1 p¨q, p X n,1 p¨q Dµ F `p X n,1 t j´1 p¨q, LpX n t j´1 q ˘`p X n,2 t j´1 p¨q ˘´F `p X n,2 t j´1 p¨q, LpX n t j´1 q ˘p W n,2,1 t j´1 ,t j p¨q ¯ı.
We now use (3.25) in order to pass to the limit. The only slight difficult is that we must ensure that the regularity conditions satisfied by D µ F are compatible with the almost sure convergence property (3.25). Recall indeed that the continuity property Regularity assumptions 1 is formulated in L 2 ; at first sight, it seems needed to assume that the pair p p X n,2 t j´1 p¨q, p X 2 t j´1 p¨qq is independent of p p X n,1 t j´1 p¨q, p X 1 t j´1 p¨qq in order to take full advantage of it. In fact, we can overcome this difficulty by invoking [9, Proposition 5.36], which basically asserts that the mapping v Þ Ñ D µ Fpx, µqpvq is Lipschitz continuous, uniformly in x and µ, see Section 5.3.4 for more details. The latter guarantees that, for almost every p

ω P p Ω, lim nÑ8 D µ F `p X n,1 t j´1 pp ωq, LpX n t j´1 q ˘`p X n,2 t j´1 pp ωq ˘" D µ F `p X 1 t j´1 pp ωq, Lp p X t j´1 q ˘`p X 2 t j´1 pp ωq ˘.
So, the limit of the summand on the fourth line of (3.29) is

p E " g `x W 1 p¨q, p W 1 p¨q, p v 1,1 p¨q, p X 1 p¨q Dµ F `p X 1 t j´1 p¨q, Lp p X 1 t j´1 q ˘`p X 2 t j´1 p¨q ˘´F `p X 2 t j´1 p¨q, Lp p X 1 t j´1 q ˘p W 2,1
t j´1 ,t j p¨q ¯ı, and our reconstruction of the limiting set-up permits to rewrite it in the form

ż p Ω d p Ppp ωq " g `x W pp ωq, p Wpp ωq, p v 1 pp ωq, p Xpp ωq ȂD µ F `p X t j´1 pp ωq, Lp p X t j´1 q ˘`p X t j´1 p¨q ˘´F `p X t j´1 p¨q, Lp p X t j´1 q ˘p W K K t j´1 ,t j p¨, ωq ¯Eı .
Importantly, since the limiting set-up is strong, the term in bracket in the last line is σt x W , p Xu-measurable.

5c. Let now

J pp ωq :" p X t i pp ωq ´p X 0 pp ωq ´i ÿ j"1 F `p X t j´1 pp ωq, Lp p X t j´1 q ˘x W t j´1 ,t j pp ωq ´i ÿ j"1 B x F `p X t j´1 pp ωq, Lp p X t j´1 q ˘´F `p X t j´1 pp ωq, Lp p X t j´1 q ˘p W t j´1 ,t j pp ωq ī ÿ j"1 A D µ F `p X t j´1 pp ωq, Lp p X t j´1 q ˘`p X t j´1 p¨q ˘´F `p X t j´1 p¨q, Lp p X t j´1 q ˘p W K K t j´1 ,t j p¨, p ωq ¯E.
By the conclusion of 5b, it is σt x W , p W, p Xu-measurable and it satisfies, for any g as in the previous step,

p E " g `x W p¨q, p Wp¨q, p v 1 p¨q, p Xp¨q ˘p J p¨q ‰ ď p E " g `x W p¨q, p Wp¨q, p v 1 p¨q, p Xp¨q ˘´1 `lim nÑ8 ~Xn p¨q~2 r0,T s,w n,1 ,p ¯i ÿ j"1 p w 1 pt j´1 , t j , ¨q3{p 1 ı .
Therefore, for p P-almost every p ω,

J pp ωq ď C ´i ÿ j"1 p w 1 pt j´1 , t j q 3{p 1 ¯p E " lim nÑ8 ~Xn p¨q~2 r0,T s,w n,1 ,p | σ x W , p W, p v 1 , p X ( ı .
By the super-additivity property of p w 1 , this suffices to identify p X t pp ωq with p X 0 pp ωq şt 0 Fp p X s pωq, p X s p¨qqd x W s pωq. Note that this is true although the functionals p v 1 pp ωq and p w 1 pp ωq that control the variations of p X are not associated with x W pp ωq through (1.7); the sole fact that p v 1 pp ωq dominates s v 1 pp ωq (which is associated with x W pp ωq through (1.7)) suffices.

Again, the sole domination of s v 1 pp ωq by p v 1 pp ωq, the latter satisfying the required tail properties in Theorem 16, suffices to duplicate the uniqueness argument. In words, p Xp¨q is the solution to the mean field rough equation driven by x W and, by uniqueness in law, p

Xp¨q has the same law as Xp¨q.

We used the following lemma in the proof of Theorem 20.

21.

Lemma -For a separable Banach space pE, | ¨|q, call C p´var 0 pS T 2 ; Eq the space of continuous paths G from S T 2 into E that are null on the diagonal, i.e. G t,t " 0 for all t P r0, T s, and have a finite p-variation, i.e. }G} p r0,T s,p´var " sup

0ďt 1 㨨¨ăt N "T N ´1 ÿ i"0 |G t i ,t i`1 | p ă 8.
For each n ě 0, let `Zn " pZ n s,t q s,tPS T 2 ˘ně0 be a process defined on pΩ n , F n , P n q with trajectories in C p´var `ST 2 ; E ˘. Assume that ' the family of distributions `Pn ˝pZ n q ´1˘n ě0 is tight in CpS T 2 ; Eq; ' the family of distributions `P ˝p}Z n } r0,T s,p´var q ´1˘n ě0 is tight in R. Then, for p 1 ą p ' the family of distributions `P ˝pS T 2 Q ps, tq Þ Ñ }Z n } rs,ts,p 1 ´var P Rq ´1˘n ě0 is tight in CpS T 2 ; Rq. In particular, for any ε ą 0, there exists δ ą 0, such that P ˜sup ps,tqPS T 2 :t´sďδ }Z n } rs,ts,p 1 ´var ą ε ¸ă ε;

Proof -Take a compact subset K of CpS T 2 ; Eq and a sequence pz n q ně0 with values in K such that sup ně1 }z n } r0,T s,p´var ă 8.

Up to a subsequence, the sequence pz n q ně0 converges in CpS T 2 ; Eq. Obviously, the limit z is in C p´var 0 pS T 2 ; Eq. Now, by the same argument as in the proof of Proposition 5.5 in [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF], we have

N ´1 ÿ i"0 |pz n ´zq t i ,t i`1 | p 1 ď sup ps,tqPS T 2 |pz n ´zq s,t | p 1 ´p N ´1 ÿ i"0 |pz n ´zq t i ,t i`1 | p ,
for any subdivision 0 " t 0 ă ¨¨¨ă t N " T . Taking the supremum over such subdivisions, we deduce that pz n q ně0 converges to z in C p 1 ´var 0 pS T 2 ; Eq, which proves that lim sup Hence the family pS T 2 Q ps, tq Þ Ñ }z} rs,ts,p 1 ´var q zPK is relatively compact for the uniform topology. In particular, it is equicontinuous. Using the fact that }z} rt,ts,p 1 ´var " 0 for each t P r0, T s, we deduce that lim δOE0 sup |t´s|ďδ }z} rs,ts,p 1 ´var " lim δOE0 sup |t´s|ďδ ˇˇ}z} rs,ts,p 1 ´var ´}z} rt,ts,p 1 ´var ˇˇ" 0. This proof is easily completed.

-Particle System and Propagation of Chaos

We now have all the ingredients to write down our limiting mean field rough differential equation as the limit of a system of particles driven by rough signals.

-Empirical Rough Set-Up

Loosely speaking, the finite particle system associated with (0.1) has the form

X i t pωq " X i 0 pωq `ż t 0 F `Xi s pωq, µ n s pωq ˘dW i s pωq, t ě 0, (4.1) 
for 1 ď i ď n, where pX i 0 p¨qq 1ďiďn is a collection of R d -valued independent and identically distributed variables with the same distribution as X 0 in the statement of Theorem 16 and `W i 0 p¨q ˘1ďiďn is a collection of R m -valued independent and identically distributed processes with the same distribution on the space of continuous functions as W p¨q in Theorem 16. All of them are constructed on a single probability space pΩ, F, Pq. Obviously, equation (4.1) must be understood as a rough differential equation driven by an pn ˆmq-dimensional signal `W 1 pωq, ¨¨¨, W n pωq ˘, and with `X1 pωq, ¨¨¨, X n pωq ˘as pn ˆdq-dimensional output. This requires that we lift `W 1 pωq, ¨¨¨, W n pωq ˘into an enhanced rough set-up W pnq pωq. In order to do so, it suffices to define the various iterated integrals. Without any loss of generality, we can assume that, instead of `W 1 p¨q, ¨¨¨, W n p¨q ˘, we have in fact n independent copies `W i p¨q, W i p¨q ˘1ďiďn of the pair `W p¨q, Wp¨q ˘, where Wpωq is the iterated integral of W pωq, see Section 1 for details; and, in fact we assume that `Xi 0 p¨q, W i p¨q, W i p¨q ˘1ďiďn are n independent copies of `X0 p¨q, W p¨q, Wp¨q ˘. For sure, W i pωq is understood as the iterated integral of W i pωq. However, this does not suffice as we also need to define the iterated integrals of W j pωq with respect to W i pωq, for j " i. We do so under the additional assumption that W is a strong set-up, namely under the assumption that there is a measurable map giving W i,j pωq from W i pωq and W j pωq, W i,j pωq " I `W i pωq, W j pωq ˘, i " j, see Definition 18. If we require P b2 `tpω, ω 1 q : }W K K pω, ω 1 q} r0,T s,p{2´var ă 8u ˘in Definition 18, then it is pretty clear that, for almost every ω P Ω, W pnq pωq " ´`W i pωq ˘1ďiďn , `Wi,j pωq ˘1ďi,jďn ":

´W pnq pωq, W pnq pωq ¯,
is a rough path, with the convention that W i,i pωq " W i pωq, for i P t1, ¨¨¨, nu. As explained in Proposition 4, we may change the definition of the whole collection `pW i pωqq 1ďiďn , pW i,j pωqq 1ďi,jďn ˘on a P-null set so that W pnq is in fact a rough path for any ω P Ω.

' The striking fact of the analysis was already noticed by Cass and Lyons in their seminal work [START_REF] Cass | Evolving communities with individual preferences[END_REF]. The quantity W pnq pωq may be seen as a rough set-up defined on a finite probability space for any fixed ω P Ω; we call it the empirical rough set-up. To make it clear, observe that, throughout Section 1, the rough structure is supported by the probability space pΩ, F, Pq itself. Here, ω is fixed, and we see the probability space as ˜ 1, ¨¨¨,

where Ppt1, ¨¨¨, nuq denotes the collection of subsets of t1, ¨¨¨, nu. The reader may object that such a probability space is not atomless whilst we explicitly assumed pΩ, F, Pq to be atomless in the introduction; actually, the reader must realize that, in the paper, the atomless property is just used to guarantee that, for any probability measure µ on a given Polish space S, the probability space pΩ, F, Pq carries an S-valued random variable with µ as distribution. So, it is not a hindrance that t1, ¨¨¨, nu is finite. Hence, in comparison, with (1.3), the role played by ω P Ω is played by i P t1, ¨¨¨, nu and the matrix (1.3) must read

˜Wi,i s,t pωq W i,' s,t pωq W ',i s,t pωq W ',' s,t pωq ¸0ďsďtďT , (4.2) 
where W i,' s,t pωq is understood as t1, ¨¨¨, nu Q j Þ Ñ W i,j s,t pωq, W ',i s,t pωq as t1, ¨¨¨, nu Q j Þ Ñ W j,i s,t pωq and W ',' s,t pωq as t1, ¨¨¨, nu Q pi, jq Þ Ñ W i,j s,t pωq. In the same spirit, the variation function v in (1.7) is

v i,n ps, t, ωq :" › › W i pωq › › p rs,ts,p´var `pnq v W ' pωq w p q;rs,ts,p´var `› › W i pωq › › p{2 rs,ts,p{2´var
`pnq v W i,' pωq w p{2 q;rs,ts,p{2´var

`pnq v W ',i pωq w p{2 q;rs,ts,p{2´var

`pnq vv W ',' pωq ww p{2 q;rs,ts,p{2´var ,

where we used the notations

pnq pX ' q q " ˆ1 n n ÿ j"1 |X j | q ˙1{q , pnq ppX ',' qq q " ˆ1 n 2 n ÿ j,k"1 |X j,k | q ˙1{q ,
the corresponding p-variation being defined as in (1.5) and (1.6). In order to check that W pnq pωq defines a rough set-up, it remains to check that it satisfies (1.8).

To do so, we now let

› › W i pωq › › rs,ts,p1{pq´Hölder " sup rs 1 ,t 1 sĂrs,ts |W i t 1 pωq ´W i s 1 pωq| |t 1 ´s1 | 1{p › › W i pωq › ›
rs,ts,p2{pq´Hölder " sup rs 1 ,t 1 sĂrs,ts

|W i s 1 ,t 1 pωq| |t 1 ´s1 | 2{p , › › W i,j pωq › › rs,ts,p2{pq´Hölder " sup rs 1 ,t 1 sĂrs,ts |W i,j s 1 ,t 1 pωq| |t 1 ´s1 | 2{p ,
stand for the standard Hölder semi-norms of the rough path, see e.g. Theorem 11.9 in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF]. Then, we can find a universal positive constant c such that 

v i,
`› › W K K p¨, ¨q› › pq{2 r0,T s,p2{pq´Hölder ı 1{q , (4.5) 
for a new value of the constant c. Observe that, in order to derive (4.5), the law of large numbers can be directly applied to each of the first five terms in the right-hand side of (4.4), since each of them can be put in the form J `W i pωq ˘, for a suitable form of the functional J . Differently, the last term in (4.4) requires a modicum of care as it reads

1 n 2 n ÿ j,k"1 J `W j pωq, W k pωq ˘. (4.6) 
Still, we let the reader check that, provided that the summand in the above righthand side is integrable, the limit is ErJ pW j p¨q, W k p¨qqs. Hence (4.5). Now, if the right-hand side of (4. Example 1 -Assume that the index q used in (1.7) satisfies the inequality q ą 1 1 ´p{3 , and that, for some constant K T ě 0, xvps, t, ¨qy q ď K T pt ´sq for ps, tq P S T 2 . Then, we get the bounds

E " |pW t ´Ws qp¨q| pq ‰ ď K T |t ´s| q , E " |W s,t p¨q| pq{2 ‰ ď K T |t ´s| q , E b2 " |W K K s,t p¨, ¨q| pq{2 ı ď K T |t ´s| q .
(We write here and below E b2 for the expectation operator with respect to P b2 .) By Kolmogorov's criterion for rough paths, Theorem 3.1 in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF], we deduce that W has paths that are p1 ´1{qq{p ą 1{3-Hölder continuous. Similarly, W and W K K have paths that are 2p1 ´1{qq{p ą 2{3-Hölder continuous and

E b2 " › › W p¨q › › pq r0,T s,p1{p 1 q´Hölder `› › Wp¨q › › pq{2 r0,T s,p2{p 1 q´Hölder `› › W K K p¨, ¨q› › pq{2 r0,T s,p2{p 1 q´Hölder ı ă 8.
So, the empirical rough set-up satisfies the required conditions provided we replace p by p 1 and xvps, t, ¨qy qp 1 {p ď K T pt ´sq, for all ps, tq P S T 2 . Example 2 -Another instance is given by Example 5. With the same notation as therein, }W p¨q} r0,T s,p1{pq´Hölder has Gaussian tails and }Wp¨q › › r0,T s,p2{pq´Hölder and }W K K p¨, ¨q› › r0,T s,p2{pq´Hölder have exponential tails; see Theorem 11.9 in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF]. This suffices to conclude.

' Now that we have defined the empirical rough set-up, we must make clear the meaning given to the rough differential equation (0.2) in Definition 12 when the rough set-up therein is precisely the empirical rough set-up. We call the corresponding rough differential equation the empirical rough differential equation.

For a given ω P Ω, the probability space that carries the empirical rough-set up is `t1, ¨¨¨, nu, Ppt1, ¨¨¨, nu, 1 n ř n i"1 δ i ˘. Despite the fact it is not atomless, whilst pΩ, F, Pq is, Theorem 16 applies and guarantees existence and uniqueness of a solution to the empirical rough differential equation must. In this regard, observe that the square integrability requirement on the initial condition takes the simple form

1 n n ÿ i"1 |X i 0 pωq| 2 ă 8,
which is obviously satisfied (at least for ω in a full event). The solution reads in the form of a n-tuple X pnq pωq " pX i pωqq 1ďiďn in Cpr0, T s; R d q n . Each X i pωq is controlled, in standard Gubinelli's sense, by the enhanced rough path `W i pωq, W i pωq ˘. The coefficient driving the equation for X i pωq reads F ´Xi t pωq, X θnp¨q t pωq ¯, t P r0, T s, where θ n p¨q is a uniformly distributed random variable on the probability space `t1, ¨¨¨, nu, Ppt1, ¨¨¨, nu,

1 n ř n i"1 δ i ˘.
Here the dot in the notation X θnp¨q t pωq refers to the current element in t1, ¨¨¨, nu. As a result, the law of X θnp¨q t pωq must be understood as the empirical distribution µ n t pωq.

The key fact in our analysis lies in the interpretation of the two Gubinelli derivatives δ x rFpX i pωq, X θnp¨q pωqqs and δ µ rFpX i pωq, X θnp¨q pωqqs in Proposition 11. First, it is elementary to check that

δ x ´F`X i pωq, X θnp¨q pωq ˘¯t " B x F `Xi t pωq, X θnp¨q t pωq ˘δx X i t pωq " B x F `Xi t pωq, µ n t pωq ˘δx X i t pωq, (4.7) 
where δ x X i pωq is the standard derivative of X i pωq with respect to `W i pωq, W i pωq ˘. More interestingly, we have as the mesh of the dissection 0 " t 0 ă ¨¨¨ă t K " t tends to 0. This allows to compare the latter quantity with (4.1) if we intepret the integral with respect to W i pωq as a rough integral with respect to W pnq pωq, and consider the leading coefficient FpX i t pωq, µ n t pωqq as a standard Euclidean function of the tuple X pnq t pωq " `X1 t pωq, ¨¨¨, X n t pωq ˘and if we understand the integral therein as the integral with respect to the rough driver W pnq pωq. Indeed, under the standing Regularity assumptions 1 and 2, the function

δ µ ´F`X i pωq,
f i : pR d q n Q `x1 , ¨¨¨, x n ˘Þ Ñ F ˜xi , 1 n n ÿ k"1
x k is C 2 with Lipschitz derivatives and

B x j f i `x1 , ¨¨¨, x n ˘" 1 n D µ F ˜xi , 1 n n ÿ k"1
x k ¸px j q, for j " i, and

B x i f i `x1 , ¨¨¨, x n ˘" B x F ˜xi , 1 n n ÿ "1 x ¸`1 n D µ F ˜xi , 1 n n ÿ k"1
x k ¸px i q;

see Chapter 5 in [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF]. Therefore, (4.1) is uniquely solvable in the classical sense and the above formulas for the derivatives show that the rough integral therein may be approximated by the same Riemann sum as in (4.9). This proves that the solution to (4.1), when the latter is understood as a rough differential equation driven by the enhanced setting above pW 1 pωq, ¨¨¨, W n pωqq, coincides with the solution of the empirical version of (0.2), when the latter is understood as a mean field rough differential equation driven by the empirical rough set up.

-Propagation of Chaos

We now have all the ingredients to prove that the solution to (4.1) converges, in some sense, to the solution of the rough mean field equation (0.2) when the rough set-up is interpreted as originally explained in Section 1. This should read as propagation of chaos. The statement takes the following form.

22. Theorem -On top of the assumptions of Theorem 16, assume that the rough set-up W is strong. Assume also that ' there exists a real ε 1 ą 0 such that

E " exp ´› › W p¨q} ε 1 r0,T s,p1{pq´Hölder ¯ı `E" exp ´› › Wp¨q} ε 1 {2 r0,T s,p2{pq´Hölder ¯ı `Eb2 " exp ´› › W K K p¨, ¨q} ε 1 {2 r0,T s,p2{pq´Hölder ¯ı ă 8.
' for almost every ω P Ω, for any α ą 0, there exists a constant ε 2 ą 0 such that, for all n ě 1,

sup ně1 1 n n ÿ i"1
exp ´N i,n p0, T, ω, αq 1`ε 2 ¯ă 8,

where N i,n p0, T, ω, αq is defined as the local accumulation N i,n pr0, T s, ω, αq :" N pr0, T s, αq, when ps, tq " v i,n p ps, t, ωq, see (1.13). Then, for almost every ω P Ω,

1 n n ÿ i"1 δ X i,pnq pωq Ñ L `Xp¨q ˘,
where X pnq pωq is the solution to (4.1) and Xp¨q is the solution to (0.2), the convergence being the convergence in law on C `r0, T s; R d ˘. Moreover, for any fixed k ě 1, the law of `X1,pnq p¨q, ¨¨¨, X k,pnq p¨q ˘:" X pnq p¨q converges to L `Xp¨q ˘bk .

Strangely enough, and somewhat disappointingly, we did not manage to provide a generic simple condition on the limiting set-up W that forces the empirical set-ups to satisfy the estimate of the second item in the assumptions right above. Still, as pointed out in Theorem 23 below, we can check by hand that this condition is indeed satisfied in the Gaussian case, see Example 5 and the subsequent Theorem 6, which serve us as a benchmark throughout the article. The main difficulty in proving Theorem 22 is in controlling the accumulated local variation of the empirical rough set-up.

Proof -

The key tool for passing to the limit is the continuity Theorem 20. To make the notations clear, we write X i,pnq 0 for X i , W i,pnq for W i , W i,pnq for W i and W i,j,pnq for W i,j .

Step 1. As a starting point, observe that, from the law of large numbers, for any real-valued bounded and measurable function f on

R d ˆCp´var `r0, T s; R m ˘ˆ! C 2 p{2´var `ST 2 ; R m b R m ˘)2 ,
for almost every ω P Ω, we have (see (4.6))

lim nÑ8 1 n 2 n ÿ i,j"1 f ´Xi,pnq 0 pωq, W i,pnq pωq, W i,pnq pωq, W i,j,pnq pωq " E " f `X0 p¨q, W p¨q, Wp¨q, W K K p¨, ¨q˘ı .
In fact, for p 1 ą p, the spaces C p´var pr0, T s; R m q and C p{2´var pS T 2 ; R m b R m q embed in Polish subspaces C 0 p 1 ´var pr0, T s; R m q and C 0 p 1 {2´var pS T 2 ; R m b R m q of C p 1 ´var pr0, T s; R m q and C p 1 {2´var pS T 2 ; R m bR m q, respectively; see for instance [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF]Proposition 5.38]. The above is true for any real-valued bounded and continuous function f on

R d ˆC0 p´var `r0, T s; R m ˘ˆ C 0 p{2´var pS T 2 ; R m b R m q ( 2 .
By choosing f in a countable convergence determining class, we deduce that, there exists a full subset E Ă Ω, whose precise definition may change from line to line as long as E remains of probability 1, and such that, for any ω P E, the sequence of probability measures

π n pωq " ˜1 n 2 n ÿ i,j"1 δ pX i,pnq 0 
pωq,W i,pnq pωq,W i,pnq pωq,W i,j,pnq pωqq ¸ně1 converges in the weak sense to pX 0 p¨q, W p¨q, Wp¨q, W K K p¨, ¨qq on R d ˆC`r 0, T s; R m ˘ˆ CpS T

2 ; R m b R m q ( 2 .
Step 2. Our strategy now relies on Theorem 20. The third item in the statement is a consequence of the law of large numbers. As for the fourth item, it follows directly from the previous strep.

We now have a look at v 

-Rate of Convergence

The goal of this subsection is to elucidate the rate of convergence in the convergence result stated in Theorem 22. Note the use of the Wasserstein W 1 -distance in the regularity assumption required from F in the statement.

24. Theorem -On top of the assumption of Theorem 22, assume that ' The first and second order derivatives of F, px, µq Þ Ñ B x Fpx, µq, px, µ, zq Þ Ñ D µ Fpx, µqpzq, px, µ, zq Þ Ñ B x D µ Fpx, µ, zq and px, µ, z, z 1 q Þ Ñ D 2 µ Fpx, µ, z, z 1 q, are bounded on the whole space and are Lipschitz continuous with respect to all the variables, the Lipschitz property in the direction µ being understood with respect to the W 1 -Wasserstein distance;

' for any α ą 0, there exists a constant ε 2 ą 0 such that, for any n ě 1, for any p 1 P p1{3, 1{pq, and any random variables τ, τ 1 : Ω Ñ r0, T s, with Ppτ ă τ 1 q " 1, we have

sup ně1 sup 1ďiďn E » -exp " ˜p N i,n `rτ, τ 1 s, ω, α τ1 ´τ ¸1`ε 2  fi fl ă 8,
where p N i,n `rτ, τ 1 s, ω, α ˘is defined as the local accumulation p N i,n `rτ, τ 1 s, ω, α ˘:" N `rτ, τ 1 s, α when " p w i,n p 1 with p w i,n p 1 ps, t, ωq :" w i,n p 1 ps, t, ωq `p v i,n p 1 ps, t, ωq `pnq v p v ',n p 1 pωq w q;rs,ts,1´var `pt ´sq, w i,n p 1 ps, t, ωq :" v i,n p 1 ps, t, ωq `pnq v v ',n p 1 pωq w q;rs,ts,1´var , p v i,n p 1 ps, t, ωq " @ W i,K K pω, ¨qD p 1 {2 q;rs,ts,p 1 {2´var `@W i,K K p¨, ωq D p 1 {2 q;rs,ts,p 1 {2´var .

Then, for any r ě 1, there exists an exponent qprq ě 8 such that, if q ě qprq, with q as in Section 1, and X 0 p¨q is in L qprq , then

sup 1ďiďn E " sup 0ďtďT ˇˇX i t ´Xi,pnq t ˇˇr  1{r ď Cη n ,
for a constant C independent of n, and

η n " n ´1{2 if d " 1, η n " n ´1{2 lnp1 `nq if d " 2 and η n " n ´1{d if d ě 3.
Let us make a few remarks on this statement before embarking on its proof. ' We refer to [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF]Chapter 5] for examples of a function F satisfying the first item in the assumptions of the statement.

' The rate which is obtained corresponds to the usual rate for the convergence in the 1-Wasserstein distance of an empirical sample of independent, identically distributed, random variables toward the limiting common distribution.

' As before, Theorem 24 applies when W is a continuous centered Gaussian process defined over some finite interval r0, T s with independent components and with a covariance function that is of finite -two dimensional variation for some P r1, 3{2q, see Theorem 22. The proof is pretty similar to that of Theorem 22 given in Appendix. In order to check the second item in the statement, the trick is to notice that all the bounds we have for the local accumulation on r0, T s depend linearly on T . Put differently, we can provide bounds for quantities of the form N pr0, T s, ¨, αq{T , where denotes the corresponding function in hand. In order to do so, we can treat separately the local accumulation associated to each of the terms entering the definition of p w i,n p 1 , see (A.1). As for v i,n p 1 , the computations fit exactly those performed in the proof of Theorem 22. As for vi,n p 1 , the proof derives from Theorem 6. In order to handle the local accumulations associated to S T 2 Q ps, tq Þ Ñ pnq vv v ',n p 1 pωq ww q;rs,ts,1´var and S T 2 Q ps, tq Þ Ñ pnq vv p v ',n p 1 pωq ww q;rs,ts,1´var , it is necessary to slightly adapt the proof of Theorem 22; the arguments are left to the reader. For sure, the local accumulation associated to the additional t ´s in p w i,n p 1 ps, t, ωq is easily taken.

' By inspecting the proof of the theorem, we could make explicit the value of qprq, but we feel that it would not be so useful.

Proof -The proof consists in a variation of Sznitman's original coupling argument, see [START_REF] Sznitman | Topics in propagation of chaos[END_REF]. To do so, we recall that, on the probability space pΩ, F, Pq, the pairs `W 1 p¨q, W 1 p¨q ˘, ¨¨¨, `W n p¨q, W n p¨q ˘are n independent copies of `W p¨q, Wp¨q ˘. For each i P t1, ¨¨¨, nu, the pair `W i p¨q, W i p¨q ˘is completed into a rough set-up W i p¨q :" `W i p¨q, W i p¨q, W i,K K p¨, ¨q˘, with

W i,K K pω, ω 1 q " I `W i pωq, W i pω 1 q ˘, pω, ω 1 q P Ω 2 .
Here we put a bar on the symbol W i in order to distinguish it from the finitedimensional rough set-up W pnq pωq that lies above `W 1 pωq, ¨¨¨, W n pωq ˘. The secondorder level of W pnq is made of pW i q 1ďiďn and of `Wi,j " IpW i , W j q ˘1ďi "jďn , see (4.2). To make the notations more homogeneous, we write W i,i pωq for W i pωq.

We also consider n independent copies `X1 0 p¨q, ¨¨¨, X n 0 p¨q ˘of the initial condition X 0 p¨q, the two n-tuples `W 1 p¨q, ¨¨¨, W n p¨q ˘and `X1 0 p¨q, ¨¨¨, X n 0 p¨q ˘being assumed to be independent. With each pX i 0 p¨q, W i p¨qq, we associate the corresponding solution X i p¨q to the mean field equation (0.2). Of course, the n-tuples

Ω Q ω Þ Ñ `Xi 0 pωq, W i pωq, W i pωq, W i,K K p¨, ωq, X i pωq ˘1ďiďn are independent, where Ω Q ω Þ Ñ `Wi,K K t p¨, ωq ˘0ďtďT 
is considered as a process with values in L q pΩ, F, P; R d q. We then let µ n t pωq "

1 n n ÿ i"1 δ X i t pωq , t P r0, T s, ω P Ω.
Observe that, for each i P t1, ¨¨¨, nu and any ω P Ω, we can define the integral process

ˆż t 0 F `Xi s pωq, µ n s pωq ˘dW i,pnq s pωq ˙0ďtďT ,
where the label i in the notation W i,pnq pωq is here to indicate that the integral only involves `W i pωq, pW j,i pωqq 1ďjďn ˘. So, the symbol W i,pnq pωq must be understood as `W i pωq, pW j,i pωqq 1ďjďn ˘. The fact that the integral may be defined with respect to `W i pωq, pW j,i pωqq 1ďjďn ˘follows from the fact that X j pωq, for each j P t1, ¨¨¨, nu and each ω P Ω, is controlled by the variations of the sole W j pωq.

Step 

δ x F i t pωq :" B x F ´Xi t pωq, LpX t q ¯F`X i t pωq, LpX t q ˘, δ µ F i t pω, ¨q :" D µ F ´Xi t pωq, LpX t q ¯`X t p¨q ˘F`X t p¨q, LpX t q ˘, (4.14) 
where Xp¨q is the solution to the mean field equation (0.2) when driven by W p¨q " `W p¨q, Wp¨q, W K K p¨, ¨q˘. We also let Given these definitions, and for a subdivision ∆ " ts " t 0 ă t 1 ă ¨¨¨ă t K " tu, set

δ x F i,
I i,∆ s,t pωq :" K´1 ÿ k"0 ! F i t k pωqW i t k ,t k`1 pωq `δx F i t k pωqW i t k ,t k`1 pωq `E" δ µ F i t k pω, ¨qW i,K K t k ,t k`1 p¨, ωq ‰ ) , I i,n,∆ s,t pωq :" K´1 ÿ k"0 ! F i,n t k pωqW i t k ,t k`1 pωq `δx F i,n t k pωqW i t k ,t k`1 pωq `1 n n ÿ j"1 δ µ F i,j,n t k pωqW j,i t k ,t k`1 pωq
) .

We denote the summand in the first sum by I i,B tt k ,t k`1 u pωq and the summand in the second sum by I i,n,B tt k ,t k`1 u pωq. By Lemma 25 proved in Appendix A.3, we can find, for any ě 8, a constant C and an exponent 1 ě q independent of n and K such that, when X 0 p¨q P L 1 , it holds for any k P t1, ¨¨¨, K ´1u,

A! I i,n,∆ s,t p¨q ´Ii,n,∆ 1 s,t p¨q ) ´!I i,∆ s,t p¨q ´Ii,∆ 1 s,t p¨q )E ď Cη n ⟪w `pt k´1 , t k`1 , ¨, ¨q⟫ 3{p 1 , 
where ∆ 1 :" ∆ztt k u and w `ps, t, ω, ω 1 q :" wps, t, ωq `}W K K pω, ω 1 q} p{2 rs,ts,p{2´var . Following (4.4), we know that the right hand side is less than To simplify the notations, we just write X i for X i,pnq and W i for W i,pnq . We then apply Proposition 15 with

Cη n " @ }W p¨q} r0,T s,p1{pq´Hölder D p 1 `@}Wp¨q › › r0,T s,p2{pq´Hölder D 1{2 p 1 `⟪}W K K p¨, ¨q› › r0,T s,p2{pq´Hölder ⟫ 1{2 p 1 ı 3 pt k`1 ´tk q 3{p ,
`Xpωq, Y p¨q ˘" `Xi pωq, X ' pωq ˘, `X1 pωq, Y 1 p¨q ˘" `Xi pωq, X ' pωq ˘, (4.19) 
the underlying set-up being understood as the empirical rough set-up for a given realization ω. The difficulty here is that the variations of these two solutions are controlled by two different functionals w, see (2.1). This is the rationale for introducing p w i,n p 1 in (4.13). Obviously, p w i,n p¨, ¨, ωq (we remove the index p 1 for simplicity) is not the natural control functional associated with W i pωq, but it is greater than w .

i,
This yields to the following global bound:

E i,n τ `1 pωq ď ÿ k"0 K i,n k, pωq κ i,n k pωq " ζ i,n k pωqΘ n k pωq `θi,n pωq `pnq vv E ',n τ k pωq ww 8  , (4.26) 
with

K i,n k, pωq :" ´1 ź j"k κ i,n j pωq, K i,n , pωq " 1.
Observe that

K i,n k, pωq ď c 2p ´kq ´1 ź j"k `1 `p w i,n p0, T, ωq 1{p 1 ˘"c 2 `1 `ζi,n j pωq ˘‰ p N i,n j pωq ď c 2p ´kq`2 p N i,n k, pωq `1 `p w i,n p0, T, ωq 1{p 1 ˘ ´k`p N i,n k, pωq ,
with the shortened notation p N i,n k, pωq :" p N i,n `rτ k , τ s, ω, 1{p4Lq ˘, and that

K i,n k, pωqκ i,n k pωq ď c 2p `1´kq`4 p N i,n k, pωq ´1 `p w i,n p0, T, ωq 1{p 1 ¯ `1´k`2 p N i,n k, pωq ě pac 4 q ´A˙.
We now introduce the function

f pxq " exp `lnpxq 1`ε ˘, x ą 1;
it is non-decreasing on r1, 8q and convex on re, 8q. By Markov inequality, for c ą 1,

P ˆδ ď 1 A ď exp ´´`l nrpac 4 q ´32A s ˘1`ε 1 2 ¯E" f ˆ1 n n ÿ i"1 e " c 2 ´1 `p w i,n p0, T, ¨q1{p 1 ¯ı32 p N i,n {δ ˙ ď exp ´´`l nrpac 4 q ´32A s ˘1`ε 1 2 ¯1 n n ÿ i"1 E " f ˆe" c 2 ´1 `p w i,n p0, T, ¨q1{p 1 ¯ı32 p N i,n {δ ˙,
where 1 `ε1 2 ă p1 `ε2 q{p1 `ε2 {2q, where ε 2 is such that that p N i,n p¨q{δ p¨q has Weibull tails with shape parameter 1{2p1 `ε2 q, uniformly in n, ě 1, and ε " ε 1 2 in the definition of f . Therefore, following (3.22) again,

P ˆδ ď 1 A ˙ď C exp ´´`´3 2 lnpac 4 q ˘1`ε 1 2 A 1`ε 1 2 ¯.
six terms. To make it clear, we have the following property. If, for a given threshold α ą 0 and for any two continuous functions v

1 : S T 2 Ñ R `and v 2 : S T 2 Ñ R `, set N i pαq :" N v i `r0, T s, α ˘,
for 1 ď i ď 2; see (1.13) for the original definition. Then

max ´N1 ´α 2 ¯, N 2 ´α 2 ¯¯ě N pαq 2 . (A.1)
For sure, the result is true with the first and third terms in (1.7) as this fits the original property established in [START_REF] Cass | Integrability and tail estimates for Gaussian rough differential equations[END_REF]. Also, it is obviously true for the second and sixth terms since they are completely deterministic. Hence, the only difficulty is to control the local accumulation associated with the fourth and fifth terms.

The strategy is as follows. As we work with Gaussian rough paths, the set-up, as defined in Section 1, is strong. So, we can transfer it to any arbitrarily fixed probability space (provided that the letter is rich enough). Hence, we can choose Ω as the canonical path space W, see the notation used in the statement of Theorem 6.

We denote by W pω, ω 1 q the enhanced Gaussian rough path associated to `W pωq, W 1 pω 1 q ȃlong the lines of Example 5, for P b2 -almost every pω, ω 1 q P Ω 2 . To make it clear, the second level of W pω, ω 1 q reads W r2s pω, ω 1 q :" ˆWpωq I `W pωq, W 1 pω 1 q Ȋ`W 1 pω 1 q, W pωq ˘Wpω 1 q ˙, where I is as in Definition 18, and where we used the same symbol W as in Section 1 for the enhanced path although the meaning here is not exactly the same. Here, W pω, ω 1 q is a function of both ω and ω 1 and takes values in R 2m 'pR 2m q b2 . Following Section 3 in [START_REF] Cass | Integrability and tail estimates for Gaussian rough differential equations[END_REF], see also (11.5) in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF], we define, for h ' k P H ' H the translated rough path pT h'k W qpω, ω 1 q. We then recall that, with probability 1 under P b2 , T h'k W pω, ω 1 q " W pω `h, ω 1 `kq.

Following the argument given in Proposition 6.2 in [START_REF] Cass | Integrability and tail estimates for Gaussian rough differential equations[END_REF], see also Theorem 11.4 in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF], we have, for any h P H and any ps, tq P S T 2 , W pω, ω 1 q p rs,ts,p´var ď c

´ T h'0 W pω, ω 1 q p rs,ts,p´var `}h} p rs,ts, ´var

¯,

where we recall that 1{p `1{ ą 1 and c only depends on p and , and where W pω, ω 1 q rs,ts,p´var " }pW, W 1 qpω, ω 1 q} rs,ts,p´var `b}W r2s pω, ω 1 q} rs,ts,pp{2q´var , and similarly for T h'0 W pω, ω 1 q rs,ts,p´var . Taking the power q, allowing the constant c to depend on q and integrating with respect to ω 1 , we get 

A }W K K pω, ¨q} p{2 

¯.

We now recall the notation W pω, ω 1 q rs,ts,p1{pq´Hölder " }pW, W 1 qpω, ω 1 q} rs,ts,p1{pq´Hölder

`b}W p2q pω, ω 1 q} rs,ts,p2{pq´Hölder , for the standard Hölder semi-norm of the rough path, see Theorem 11.9 in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF]. Then, A }W K K pω, ¨q} rs,ts,pp{2q´var E p{2 q ď c ´A}T h'0 W pω, ¨q} p r0,T s,p1{pq´Hölder E q pt ´sq `}h} p rs,ts, ´var ¯.

Therefore,

A W K K pω, ¨qE p{2 
q;rs,ts,pp{2q´var ď c ´A}T h'0 W pω, ¨q} p r0,T s,p1{pq´Hölder E q pt ´sq `}h} p rs,ts, ´var ¯.

Observe that if the left-hand side is equal to or less than α, we can easily replace }h} p rs,ts, ´var by }h} rs,ts, ´var up to a modification of the constant c. Since ď p, this is obviously the case when }h} rs,ts, ´var ď 1. When }h} rs,ts, ´var ě 1, we can easily modify the constant c in order to preserve the inequality. Define now N pr0, T s, ω, αq :" N pr0, T s, αq, when ps, tq "

A W K K pω, ¨qE p{2 
q;rs,ts,pp{2q´var

.

Then,

N pr0, T s, ω, αqα ď c ´A}T h'0 W pω, ¨q} p r0,T s,p1{pq´Hölder E q T `}h} r0,T s, ´var ¯.
By Proposition 11.2 in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF], we get N pr0, T s, ω, αqα ď c ´A}T h'0 W pω, ¨q} p r0,T s,p1{pq´Hölder

E q T `}h} H T ¯,
where } ¨}H is the standard norm on the reproducing Hilbert space H, see again for instance Appendix D in [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF]. We then conclude by recalling that the quantity ⟪}W p¨, ¨q} p r0,T s,p1{pq´Hölder ⟫ q is finite, by observing that the set

E :" ! pω, ω 1 q P Ω 2 : T h'0 W pω, ω 1 q " W pω `h, ω 1 q, h P H ) ,
is of full P b2 -probability measure, see Theorem 11.9 in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF], and then by invoking Theorem 11.7 in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF].

As for the conclusion of the statement (the fact that the tails of wp0, T q satisfy the required decay), it suffices to duplicate the convexity argument used in (4.11) and (4.12).

A.2 -Proof of Theorem 23

Theorem 23 asserts that the assumptions of Theorem 22 ensuring propagation of chaos for the interacting particle system associated with the mean field rough differential equation (0.2) are satisfied in the Gaussian framework specified in its statement. We only prove here that we can control the empirical local accumulation as the other requirements in the statement of Theorem 22 are easily checked. Following the proof of Theorem 6 in Subsection A.1, we may focus on the local accumulation of each of the various terms in (4.3).

Step 1. The first step is to consider the local accumulation Ñ i `r0, T s, ω, α ˘asso- ¯ı, which suffices to complete the proof for the first and third terms in (4.3).

ciated
Step 2. We now focus on the local accumulation of the fourth and fifth terms in (4.3).

We use the same notation as in Subsection 4.1 and proceed as in the proof of Theorem 6. Consider the Gaussian process pW 1 , ¨¨¨, W n q, with abstract Wiener space `Wn , H 'n , P bn ˘. As before, we call, for ω " pω i q n i"1 P Ω n and for h " ' n i"1 h i P H 'n set T h W pnq pωq " T ' n i"1 h i W pnq pωq for the translated rough path along h. Then, › › W i,j pωq › › p{2 rs,ts,pp{2q´var ď c ´› › pT h Wq i,j pωq › › p{2 rs,ts,pp{2q´var `› › pT h W q i pωq › › p rs,ts,p´var `› › pT h W q j pωq › › p rs,ts,p´var `}h i } p rs,ts, ´var `}h j } p rs,ts, ´var ¯.

Importantly, the constant c is independent of n. Below, it is allowed to increase from line to line as long as it remains independent of n. So, at least in the case when the left-hand side is less than or equal to α. In fact, the above inequality must be considered as an inequality on the smaller space `Wn´1 , H 'pn´1q , P bpn´1q ˘containing the pn ´1q-tuple `ω1 , ¨¨¨, ω i´1 , ω i`1 , ¨¨¨, ω n ˘, which we denote by ω ´i, while the value of ω i is frozen. In particular, since h i " 0, the vector h can be identified with h ´i " ph 1 , ¨¨¨, h i´1 , h i`1 , ¨¨¨, h n q and }h} H 'n is then equal to }h i´1 } H 'n . As before, take now, τ and τ `1 such that pnq $ % W i,' τ ,τ `1 pωq , -p{2 q " α.

Then `n´ {p2qq }h ´i} H 'pn´1q pt `1 ´t q.

So, we get, with probability 1 N i,n,K K `r0, T s, ω, α ˘ď N i,n ´r0, T s, ω `h´i , α 2c ¯`n ´ {p2qq }h ´i} H 'pn´1q T, (A.4)

where N i,n is the full-fledged local accumulation defined in the statement of Theorem 22.

The important point here is that N i,n `r0, T s, ¨, α{p2cq ˘has Weibull tails with shape parameter 2{ , uniformly in n ě 1, as a consequence of the first step, the second step and fourth step below -the fourth step is actually a duplication of the second step. Hence, there exist a positive constant a and a non-negative constant C such that E " exp ˆa" N i,n ´r0, T s, ¨, α 2c ¯ı2{ ˙ ď C.

Set

f pω i q " inf " r ą 0 : P bpn´1q ´ω´i : N i,n ´r0, T s, pω ´i, ω i q, α 2c ¯ą r ¯ď 1 2

* .

In the right-hand side, we wrote ω under the form pω ´i, ω i q to specify the fact the random variable is seen on the smaller space W n´1 . For any A ą 0, ! ω i : f pω i q ě A ) Ă " ω i : P bpn´1q ´ω´i : N i,n ´r0, T s, pω ´i, ω i q, α 2c ¯ě A ¯ě 1 2 * Ă " ω i : E bpn´1q " exp ´a´N i,n `r0, T s, p¨, ω i q ˘¯2{ ¯ı ě 1 2 exp `aA 2{ ˘* .

So, P `f ě A ˘ď 2 exp `´aA 2{ ˘, from which we deduce that f has Weibull tails with shape parameter 1 ą 1, uniformly in n.

Returning to (A.4) and subtracting f pω i q to both sides, we get ´N i,n,K K `r0, T s, ω, α ˘´f pω i q ¯ď ´N i,n ´r0, T s, ω `h´i , α 2c ¯´f pω i q ¯``n ´ {p2qq › › h ´i› › H 'pn´1q T. Now, we can apply Theorem 11.7 in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF] with a " 0 and p a ě 0 on the smaller space W n´1 containing ω ´i. We deduce that there exist a ą 0 and C ě 0, independent of n, such that

E bpn´1q " exp ˆan 1{q
´"N i,n,K K `r0, T s, p¨, ω i q, α ˘´f pω i q ı `¯2{

˙ ď C.

Taking expectation and rewriting gpω i q in the form f pW i pωqq, we get

E bn " exp ˆan 1{q
´"N i,n,K K `r0, T s, ¨, α ˘´f pW i p¨qq It suffices to duplicate the first step to conclude, this time with the random variables `f pW i q ˘i"1,¨¨¨,n which have Weibull tails with shape parameter 1 ą 1, uniformly in n. Assuming without of loss of generality that 1 ě , we complete the proof by Cauchy-Schwarz inequality together with the fact that ´N i,n,K K `r0, T s, ω, α ˘¯2{ 1 ď C ´"N i,n,K K `r0, T s, ω, α ˘´f pW i p¨qq ˘ı`¯2

{ 1
`C´f pW i p¨qq ˘¯2{ 1 .

Step 4. We now turn to the local accumulation of the second and sixth terms in (4.3). Proceeding as the second step, we get 

*

pt ´sq, at least when the left-hand side is less than or equal to α. Importantly, the coefficient in front of }h} H 'n holds for all h. So, the context is simpler than in the two previous steps. We then conclude as in the second step as for the tails and, using the additional n ´ {p2qq , we can implement the same Borel-Cantelli argument as in the third step.

A.3 -An Auxiliary Estimate

We prove in this appendix an auxiliary estimate that was used in Step 1 of the proof of Theorem 24; this is where the convergence rate η n for the propagation of chaos appears. Recall the definition of the terms I i,n,B tr,su p¨q and I i,B tr,su p¨q, given after equation (4.15) in Step 1 of the proof of Theorem 24.

25. Lemma -Fix ě 8. Then, there exist an exponent 1 and a constant c such that, if X 0 p¨q is 1 -integrable, then, for any n ě 1, i P t1, ¨¨¨, nu and 0 ď r ď s ď t ď T , , where pη n q ně1 is as in the statement of Theorem 24 and w `pr, t, ω, ω 1 q :" wpr, t, ωq `}W K K pω, ω 1 q} p{2 rr,ts,p{2´var .

A! I i,
Proof -Throughout the proof, we use the following notations. For each i P t1, ¨¨¨, nu, we call w i the control associated with W i p¨q through (1.8). For j P t1, ¨¨¨, nu, we also let w i,j ps, t, ωq :" › › W i,j pωq › › p rs,ts,p´var . We also make an intense use of Lemma 26 below, giving the convergence rate of the empirical measure of a sample of independent, identically distributed random variables towards their common law. By (3.4), we know that, under the standing assumption, sup 0ďtďT ˇˇX t p¨q ˇˇand Xp¨q r0,T s,w,p are in L ρ as soon as X 0 p¨q is in L ρ . We then compute `c n ´1{2 @ ~Xp¨q~r 0,T s,w,p D 3 ⟪w `pr, t, ¨, ¨q⟫ term in the right-hand side of (A.7)

! I i,
ˇˇ"B x F ´Xi r pωq, µ n r pωq ¯´B x F ´Xi r pωq, LpX r q ¯ı R X i r,s pωq ˇď c W 1 ´µn r pωq, LpX r q ¯~X i p¨q r0,T s,w i ,p w i pr, s, ωq 2{p .

Then, we must recall that, in the first line of the right-hand side in (A.6), the difference R F i,n r,s pωq´R F i r,s pωq is multiplied by W i s,t pωq, which is less than w i ps, t, ωq 1{p . In other words, we must multiply both sides in the above inequality by w i pr, t, ωq 1{p . By Cauchy Schwarz inequality, the L norm of the resulting bound is less than c @ W 1 pµ n r p¨q, LpX r q D 3 @ ~Xp¨q r0,T s,w,p D 3 @ wpr, t, ¨qD 3{p 6 . The second term that we have to handle corresponds to the second term in the right-hand side of (A.7). With an obvious definition for R X p¨q, it reads where S i,n r,s `ω, |R X ' r,s pωq| ˘is the n-empirical mean of n random variables that are dominated by `|R X j r,s pωq| ˘j"1,¨¨¨,n and n ´1 of which are conditionally centered and conditionally independent given the realization of the path pX i , W i , W i q. Hence, the L norm of the right-hand side, after multiplication as before by w i ps, t, ωq 1{p , is less than c ´AW 1 ´µn r p¨q, LpX r q ¯E3 `n´1{2 ¯@~Xp¨q~r 0,T s,w,p D 6 @ wpr, t, ¨qD 3{p 6 .

As for the third term in the right-hand side of (A.7), it fits exactly, up to the additional factor X i r,s pωq, the analysis provided in the first step. So we get as an upper bound for its L norm, after multiplication by w i ps, t, ωq 1{p , the quantity

c ˆż 1 0 ż 1 0 A W 1
´µn,pλλ 1 q r;pr,sq p¨q, L `Xpλλ 1 q r;pr,sq ˘¯E 3 dλdλ 1 ˙@~Xp¨q~r 0,T s,w,p D 2 6 @ wpr, t, ¨qD 3{p 6 `c n ´1{2 @ ~Xp¨q~r 0,T s,w,p D 2 6 @ wpr, t, ¨qD 3{p 6 . Following Step 2, we get exactly a similar bound for the fourth term in the right-hand side of (A.7). Applying once again Lemma 26 completes the proof.

26. Lemma -There exists a real q d ě 1 such that, for any q ě q d and any probability measure µ on R d satisfying M q pµq :" `şR d |x| q µpdxq ˘1{q ă 8, it holds E " W 1 `µn p¨q, µ ˘q{2 ı 2{q ď c q,d M q pµq η n ,

Fpx, µq " ż f px, yqµpdyq for some fuction f of class C 2 b

 2 (meaning that f is bounded and has bounded derivatives of order 1 and 2), or with Fpx, µq " g ˆx, ż R d yµpdyq ˙ for some function g of class C 2 b .

, ż y 2

 2 is bounded by Λ and Λ-Lipschitz continuous. The two functions Fpx, µq " ż f px, yqµpdyq for some fuction f of class C 2 b , and Fpx, µq " g ˆx, ż yµpdyqµpdyq ḟor some function g of class C 2 b

3a.'

  As a consequence of the assumptions of Theorem 20 and of Step 2, we have the following tightness properties: The families of distributions `Pn ˝pW n p¨qq ´1˘n ě0 and `Pn ˝pX n p¨qq ´1˘n ě0 are tight in C `r0, T s; R m ˘and in C `r0, T s; R d ˘;

2 ˇˇ}z

 2 n } rs,ts,p 1 ´var ´}z} rs,ts,p 1 ´var ˇˇď lim sup nÑ8 sup ps,tqPS T 2 }z n ´z} rs,ts,p 1 ´var ď lim nÑ8 }z n ´z} r0,T s,p 1 ´var " 0.

  pT h W q i pωq › › p rs,ts,p´var `› › h i › › p rs,ts, ´var

  i,n,K K `r0, T s, ¨, α ˘´f pW i p¨qqı `¯2{ ˙˙n 1{q  ď C.Therefore, for anyA ě 1, n,K K `r0, T s, ω, α ˘´f pW i p¨qq ˘ı`¯2 { ˙ě A ˙ď CA ´n1{q ,and by Borel-Cantelli lemma, we deduce that, with probability 1, there exists a rank n 0 such that for n ě n 0 , n,K K `r0, T s, ω, α ˘´f pW i p¨qq ˘ı`¯2 { ˙ď A.

  {p2qq }h} H 'n

  ´Xi r pωq, µ n r pωq ¯`X j r pωq ˘RX j r,s pωq ´AD µ F ´Xi r pωq, LpX r q ¯`X r p¨q ˘RX r,s p¨q E ˇˇˇˇ.Proceeding exactly as in the first step, we get ´Xi r pωq, µ n r pωq ¯`X j r pωq ˘RX j r,s pωq ´AD µ F ´Xi r pωq, LpX r q ¯`X r p¨q ˘RX r,s p¨q ´ω, ˇˇR X ' r,s pωq ˇˇ¯ˇˇˇ,

  1 . ' The function u is said to be of class C 1 on some open set O of P 2 pEq if its canonical lift is of class C 1 in some open set of L 2 projecting onto O. It is then of class C 1 in the whole fiber in L 2 above O. If u is of class C 1 , then ∇ Z U is σpZq-measurable and given by an LpZq-dependent function Du from E to E k such that ∇ Z U " pDuqpZq;

  Using the Lipschitz property of F and Lemma 9, we have ˇˇ"F `Xpωq, Y p¨q ˘‰s,t ˇˇ" ˇˇ"F `Xpωq, Y p¨q ˘‰t ´"F `Xpωq, Y p¨q ˘‰s ˇď Λ ´ˇX s,t pωq ˇˇ`@Y s,t p¨q D Last, since ∇ Z F is a Lipchitz function of its second argument,

	(5) ď Λ	@	Y s,t p¨q D 2 2 ď 4Λ	@	~Y p¨q~r 0,T s,w,p	D 2 4 wps, t, ωq 2{p .

p¨q ˘¯, are all bounded above by ΛM . ' Variation of FpXpωq, Y p¨qq. 2 ď 2Λ ´~Xpωq~r 0,T s,w,p `@~Y p¨q~r 0,T s,w,p D 4 ¯wps, t, ωq 1{p , ' Variation of δ x `FpXpωq, Y p¨qq ˘and δ µ `FpXpωq, Y p¨qq ˘. The Lipschitz properties of B x F and ∇ Z Fpx, ¨q also give ˇˇδ x " F `Xpωq, Y p¨q ˘‰s,t ˇˇď 2ΛM ´~Xpωq~r 0,T s,w,p `@~Y p¨q~r 0,T s,w,p D 4 ¯wps, t, ωq 1{p `Λ ~Xpωq ~r0,T s,w,p wps, t, ωq 1{p , and, applying Hölder's inequality with exponents 3{2 and 3, A δ µ " F `Xpωq, Y p¨q ˘‰s,t E 4{3 ď 2Λ @ δ x Y t p¨q D 8 ´~Xpωq~r 0,T s,w,p `x~Y p¨q~r 0,T s,w,p y 4 ¯wps, t, ωq 1{p `Λ xδ x Y s,t p¨qy 4 ď 2ΛM ´~Xpωq~r 0,T s,w,p `x~Y p¨q~r 0,T s,w,p y 4 ¯wps, t, ωq 1{p `2Λ @ ~Y p¨q~r 0,T s,w,p D 8 wps, t, ωq 1{p . ' Remainder (2.11). The first two terms in (2.11) are less than Λ ~X~r 0,T s,w,p wps, t, ωq 2{p `Λ @ R Y s,t p¨q D 2 ď Λ~X~r 0,T s,w,p wps, t, ωq 2{p `Λ @ ~Y p¨q~r 0,T s,w,p wps, t, ¨q2{p D 2 ď Λ~X~r 0,T s,w,p wps, t, ωq 2{p `Λ @ ~Y p¨q~r 0,T s,w,p D 4 @ wps, t, ¨qD 2{p 4 ď Λ ~X~r 0,T s,w,p wps, t, ωq 2{p `2Λ @ ~Y p¨q~r 0,T s,w,p D 4 wps, t, ωq 2{p , from Lemma 9. We also have ˇˇ(2) ˇˇď Λ ˇˇX s,t pωq ˇˇ@ Y s,t p¨q D 2 ď 2Λ Xpωq r0,T s,w,p @ ~Y p¨q~r 0,T s,w,p D 4 wps, t, ωq 2{p . and ˇˇ(3) ˇˇď Λ ˇˇX s,t pωq ˇˇ2 ď Λ Xpωq 2 r0,T s,w,p wps, t, ωq 2{p .

  Xr pωq, Y r p¨q ˘dW r pωq rt i ,t i`1 s,w,p

	Then	ż ẗ i	F `ď 2γ.	(3.8)
	Hence,					
	ż ẗ i	F `Xr pωq, Y r p¨q ˘dW r pωq	rt i ,t i`1 s,w,p 2	ď 4γ 2 ă	?	L,
				? L.			(3.7)

s,w,p ď if L ą 16γ 4 , in which case Γ `ω, Xpωq, Y p¨q ˘satisfies (3.3).

  as an element of R d with i th coordinate `δx F s pω, ¨qW s,t pωq ˘i " δ x F i,s pω, ¨qW s,t pωq "

	m
	ÿ
	j,k"1

  As ˇˇr∆Fpω, ¨qs t i ˇˇď `|∆X t i pωq| `x|∆Y t i p¨q|y 2 ˘, we have from Lemma 9 and from the two identities ∆X 0 pωq " 0 and ∆Y 0 p¨q " 0 ˇˇr∆Fpω, ¨qs t i ˇˇď 2wp0, t i , ωq 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p D

	"	∆Fpω,	¨q‰	s,t
	"	ż 1 0	! B x F ´Xpλq s;ps,tq pωq, Y	pλq1 s;ps,tq p¨q ¯X1 s,t pωq ) dλ
		`ż 1 0	E	! ∇ Z F	´Xpλq s;ps,tq pωq, Y

s,w,p . Step 1. We first analyse the term ∆Fpω, ¨q :" F `Xpωq, Y p¨q ˘´F `X1 pωq, Y 1 p¨q :" ´F`X t pωq, Y t p¨q ˘´F `X1 t pωq, Y 1 t p¨q ˘¯0ďtďT . ' Initial condition of ∆Fpω, ¨q -4 ¯. ' Variation of ∆Fpω, ¨q. Using the notations (2.10) together with similar ones for the processes tagged with a prime, we have pλq s;ps,tq p¨q ¯Xs,t pωq ´Bx F ´Xpλq1 s;ps,tq pωq, Y pλq s;ps,tq p¨q ¯Ys,t p¨q ´∇Z F ´Xpλq1 s;ps,tq pωq, Y pλq1 s;ps,tq p¨q ¯Y 1 s,t p¨q ) dλ.

  Zq are 1-Lipschitz continuous. Hence, we get, for a new value of the universal constant γ, and for s, t in the interval rt i , t i`1 s, the estimate ˇˇr∆Fpω, ¨qs s,t ˇˇď ˇˇ∆X s,t pωq ˇˇ`@∆Y s,t p¨q D :" γ wps, t, ωq 1{p ´~Xpωq~r t i ,t i`1 s,w,p `@~Y p¨q~r t i ,t i`1 s,w,p D wp0, t i , ωq 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p , ωq 1{p ´~∆Xpωq~r t i ,t i`1 s,w,p `@~∆Y p¨q~r t i ,t i`1 s,w,p ¨q} rt i ,t i`1 s,w,p ď γ ´~∆Xpωq~r t i ,t i`1 s,w,p `@~∆Y p¨q~r t i ,t i`1 s,w,p

	wpt
	D		
	4		
				¯.
	i , t i`1 D	4
	It follows that we have		
	› ∆Fpω, D ›	4	γ´~X
	pωq~r t i ,t i`1 s,w,p `@~Y p¨q~r t i ,t i`1 s,w,p	D	4 ¯ˆ(b 2 ).
	Allowing the constant γ to depend on L 0 and using (3.11) and (3.12), we get

2 `´|X s,t pωq| `@Y s,t p¨q D 2 !|∆X s pωq| `x∆Y s p¨qy 2 `|∆X s,t pωq| `@∆Y s,t p¨q D 2 ) ď (a) `(b), where (a) :" γ wps, t, ωq 1{p ´~∆Xpωq~r t i ,t i`1 s,w,p `@~∆Y p¨q~r t i ,t i`1 s,w,p D 4 ¯, and (b) " (b 1 ) ˆ(b 2 ) with (b 1 ) 4 (b 2 ) :" › › ∆Fpω, ¨q} rt i ,t i`1 s,w,p ď γ ´~∆Xpωq~r t i ,t i`1 s,w,p `@~∆Y p¨q~r t i ,t i`1 s,w,p D 4 γ wp0, t i , ωq 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p D 4 ¯.

  1 t p¨q ˘∆δ x X t pωq. Observing by linearity that ∆δ x Xpωq " δ x ∆Xpωq, the third term is seen to be less than wps, t, ωq 1{p ~∆Xpωq~r t i ,t i`1 s,w,p . The term ˇˇ∆δ x X s pωq ˇˇˇˇr B x FpX 1 pωq, Y 1 p¨qqs s,t ˇˇmay be bounded above by γ wps, t, ωq 1{p ´wp0, t i , ωq 1{p ~∆Xpωq~r 0,t i s,w,p `wpt i , t i`1 , ωq 1{p ~∆Xpωq~r t i ,t i`1 s,w,pwhere we used again (3.11) and (3.12). Now, the first term in(3.14) is less than γ wps, t, ωq 1{p ~X~r t i ,t i`1 s,w,p ˆ!wp0, t i , ωq 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p D , ωq 1{p ´~∆Xpωq~r t i ,t i`1 s,w,p `@~∆Y p¨q~r t i ,t i`1 s,w,p , ωq 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p D

	' Initial condition of δ x (3.10), we obtain the estimate " ∆Fpω, ˇˇδ x " ∆Fpω, ¨q‰ ' Variation of B x " ∆Fpω, ¨q‰ . Similarly, ¨q‰ . Combining Regularity assumptions 1 and ˇˇδ x " ∆Fpω, ¨q‰ 4 ¯). Hence, by (3.12), ˇˇrδ x Xpωqs s,t ˇˇ´| ∆X s pωq| `x|∆Y s p¨q|y 2 ď γ wps, t, ωq 1{p ! wp0, t i 4 ∆Xpωq~r t i ,t i`1 s,w,p `@~∆Y p¨q~r t i ,t i`1 s,w,p D 4 ¯). So, the final bound for › › δ x " ∆Fpω, ¨q‰› › rt " ∆Fpω, ¨q‰ , for which we have " s,t ˇˇď ˇˇrδ D δ µ " ∆Fpω, ¨q‰ t " ∇

t i ˇˇď ˇˇδ x ∆X t i pωq ˇˇ`ˇˇ∆X t i pωq ˇˇ`@∆Y t i p¨q D 2 ď γ wp0, t i , ωq 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p D 4 ¯. x Xpωqs s,t ˇˇ´| ∆X s pωq| `@∆Y s p¨q D 2 "B x F `Xpωq, Y p¨q ˘´B x F `X1 pωq, Y 1 p¨q ˘‰s,t ˇ" ∆δ x Xpωq ‰ s,t ˇˇ`ˇˇ∆δ x X s pωq ˇˇˇˇˇ" B x F `X1 pωq, Y 1 p¨q ˘‰s,t ˇˇ. (3.14) The second term in the right-hand side is handled as r∆Fpω, ¨qs s,t in the first step, with s and t in rt i , t i`1 s. X1 pωq~r t i ,t i`1 s,w,p `@~Y 1 p¨q~r t i ,t i`1 s,w,p D 4 ď γ wps, t, ωq 1{p ´wp0, t i , ωq 1{p ~∆Xpωq~r 0,t i s,w,p `~∆Xpωq~r t i ,t i`1 s,w,p ¯, 4 wpt i , t i`1 i ,t i`1 s,w,p is γ ´~∆Xpωq~r t i ,t i`1 s,w,p `@~∆Y p¨q~r t i ,t i`1 s,w,p D 4 γ wp0, t i , ωq 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p D 4 ¯, which yields the same bound as in the first step. Step 3 -We now handle the other Gubinelli derivative δ µ Z F `Xt pωq, Y t p¨q ˘´∇ Z F `X1 t pωq, Y 1 t p¨q ˘ı δ x Y t p¨q `∇Z F `X1 t pωq, Y 1 t p¨q ˘∆δ x Y t p¨q. ' Initial condition of δ µ " ∆Fpω, ¨q‰ . Proceeding as before, A δ µ r∆Fpω, ¨qs t i E 4{3 ď ˇˇ∆X t i pωq ˇˇ`@∆Y t i p¨q D 4 `@δ x ∆Y t i p¨q D 4 ď γ wp0, t i , ωq 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p D 8 ¯,

  Thanks to Lemma 9, the third term is less than 2wps, t, ωq 1{p @ ~∆Y p¨q~r t i ,t i`1 s,w,p D 8 . As for the fourth term, we have @ ∆δ x Y s p¨q D Observing as before that ∆δ x Y p¨q " δ x ∆Y p¨q, the third term in (3.15) is seen to be less than 2wps, t, ωq 1{p @ ~∆Y p¨q~r t i ,t i`1 s,w,p D 8 . We now handle the first term in (3.15). Proceeding as in the second step, we have @ rδ x Y p¨qs s,t D 4 ´|∆X s pωq| `@∆Y s p¨q

	A					E	
	4	"	∇ Z F `Xpωq, Y p¨q ˘‰s,t	2
	ď γwps, t, ωq 1{p ´~∆Xpωq~r t i ,t i`1 s,w,p `@~∆Y p¨q~r t i ,t i`1 s,w,p	D	4	!wp0,
	t i , ωq 1{p @	~∆Y p¨q~r 0,t i s,w,p	D	8 `@~∆Y p¨q~r t i ,t i`1 s,w,p	D	8	)
	ď γ wps, t, ωq 1{p ´wp0, t i , ωq 1{p @	~∆Y p¨q~r 0,t i s,w,p	D	8 `@~∆Y p¨q~r t i ,t i`1 s,w,p	D	8	¯,
	where we used (3.11).			
								ď
						D
							2
	γ wps, t, ωq 1{p	! wp0, t		
								(3.15)
								.
								2

pωq, Y 1 p¨q ˘‰s,t E i , ωq 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p D 4 ∆Xpωq~r t i ,t i`1 s,w,p `@~∆Y p¨q~r t i ,t i`1 s,w,p

  1 p¨q ˘‰s,t and then expand it as

	ż 1 0	! B x D µ F ´Xpλq s;ps,tq pωq, Y s;ps,tq p¨q ¯´Y pλq s;ps,tq p¨q ¯Xs,t pωq pλq
		´Bx D µ F ´Xpλq1 s;ps,tq pωq, Y s;ps,tq p¨q ¯´Y pλq1 s;ps,tq p¨q ¯X1 pλq1 s,t pωq ) dλ
	`ż 1 0	! B z D µ F ´Xpλq s;ps,tq pωq, Y
					pλq1 s;ps,tq p¨q ¯Y 1 s,t p¨q ) dλ
	`ż 1 0	Ẽ! D 2 µ F ´Xpλq s;ps,tq pωq, Y s;ps,tq p¨q ¯´Y pλq s;ps,tq p¨q, pλq	Ỹ pλq s;ps,tq ¯Ỹ s,t p¨q
		´Ẽ	! D 2 µ F	´Xpλq1 s;ps,tq pωq, Y s;ps,tq p¨q ¯´Y pλq1 s;ps,tq p¨q, pλq1	Ỹ pλq1 s;ps,tq ¯Ỹ 1 s,t p¨q

pλq s;ps,tq p¨q ¯´Y pλq s;ps,tq p¨q ¯Ys,t p¨q ´Bz D µ F ´Xpλq1 s;ps,tq pωq, Y pλq1 s;ps,tq p¨q ¯´Y

  F `Xs pωq, Y s p¨q ˘´∇ Z F `X1 s pωq, Y 1 s p¨q ˘¯R Y s,t p¨q ıˇˇď γ wps, t, ωq 2{p! wp0, t i q 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p D

	Similarly,			
		ˇˇE	"´∇			
							∆Xpωq~r
							8
							t i ,t i`1 s,w,p `@~∆Y p¨q~r t i ,t i`1 s,w,p	D	8 ¯),
	and				
	ˇˇE	" ∇ Z F `Xs pωq, Y s p¨q ˘´R Y s,t p¨q ´RY 1 s,t p¨q ¯ıˇˇˇď	2wps, t, ωq 2{p @	~∆Y p¨q~r t i ,t i`1 s,w,p	D	8 .
	Now, ˇˇ(2) ´(2') ˇˇis bounded above by
		γ wps, t, ωq 2{p ∆Xpωq rt i ,t i`1 s,w,p
			`γ wps, t, ωq 1{p	ż 1 0	ż 1 0	ˇˇA∇ Z B x F	´Xpλq s;ps,tq pωq, Y

1 s p¨q ˘´R X s,t pωq ´RX 1 s,t pωq ¯ˇˇď wps, t, ωq 2{p ~∆Xpωq~r t i ,t i`1 s,w,p . Z pλq s;ps,tq p¨q ¯Ys,t p¨q E ´A∇ Z B x F ´Xpλq1 s;ps,tq pωq, Y pλq1 s;ps,tq p¨q ¯Y 1 s,t p¨q Eˇˇˇd λdλ 1 , so ˇˇ(2) ´(2') ˇˇis bounded above by γ wps, t, ωq 2{p ∆Xpωq rt i ,t i`1 s,w,p `γ wps, t, ωq 2{p ! wp0, t i , ωq 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p D 8 ¯ ∆Xpωq rt i ,t i`1 s,w,p `@~∆Y p¨q~r t i ,t i`1 s,w,p D 8

  ,tq p¨q ¯´D µ F ´Xs pωq, Y s p¨q ¯`Y s p¨q , ωq 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p D ∆Xpωq rt i ,t i`1 s,w,p `@~∆Y p¨q~r t i ,t i`1 s,w,p D , ωq 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p D ∆Xpωq rt i ,t i`1 s,w,p `@~∆Y p¨q~r t i ,t i`1 s,w,p D

	third step, we obtain that	@	(5a)-(5a')	D	L 4{3 is bounded above by
	γ wps, t, ωq 1{p @	~∆Y p¨q~r t i ,t i`1 s,w,p	D	8
	`γ wps, t, ωq 1{p	! wp0, t i 8	) .
	and end up with the bound
	› › ›R ∆F pωq › › › rt i ,t i`1 s,w,p{2		ď γ	! wp0, t i 8	) .
	Conclusion. Plugging the conclusion of the previous steps into equation (3.13), we
	get						
	ż ẗ i						
								8
						@	(5a)	D	L 4{3 ď	@	(5a) D	L 2 ď γ wps, t, ωq 1{p ,
	In order to estimate (5a)-(5a'), we rewrite (5a) in the form
	(5a) " D µ F ´Xs pωq, Y s;ps,tq p¨q ¯´Y pλq s;ps" pλq
	λ	ż 1 0	B z D µ F ´Xs pωq, Y s;ps,tq p¨q ¯´Y pλλ 1 q s;ps,tq p¨q ¯Ys,t p¨qdλ 1 pλλ 1 q
		`λ ż 1 0	r E	" D 2 µ F ´Xs pωq, Y s;ps,tq p¨q ¯´Y pλλ 1 q s;ps,tq p¨q, r pλλ 1 q Y s;ps,tq p¨q ¯r Y s,t p¨q pλλ 1 q ı dλ 1 ,

5a) :" ∇ Z F `Xs pωq, Y pλq s;ps,tq p¨q ˘´∇ Z F `Xs pωq, Y s p¨q ȃnd (5a) ´(5a') :" ´∇Z F `Xs pωq, Y pλq s;ps,tq p¨q ˘´∇ Z F `Xs pωq, Y s p¨q ˘∇ Z F `X1 s pωq, Y pλq1 s;ps,tq p¨q ˘´∇ Z F `X1 s pωq, Y 1 s p¨q ˘¯, in L 4{3 . We have first with the symbol " used to denote independent copies of various random variables. Then, using Hölder inequality with exponents 3 and 3{2 as in the first lines of the 8 ¯ 8 ¯ F `Xr pωq, Y r p¨q ˘dW r pωq ´ż ẗ i F `X1 r pωq, Y 1 r p¨q ˘dW r pωq rt i ,t i`1 s,w,p ď γ ´ˇX t i pωq ´X1 t i pωq ˇˇ`› › Y t i p¨q ´Y 1 t i p¨q › › 2 γ wpt i , t i`1 , ωq 1{p FpXpωq, Y p¨qq ´FpX 1 pωq, Y 1 p¨qq ‹,rt i ,t i`1 s,w,p ď γ wp0, t i , ωq 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p D 8 γ wpt i , t i`1 , ωq 1{p !´~∆ Xpωq~r t i ,t i`1 s,w,p `@~∆Y p¨q~r t i ,t i`1 s,w,p D 8 wp0, t i , ωq 1{p ´~∆Xpωq~r 0,t i s,w,p `@~∆Y p¨q~r 0,t i s,w,p D 8 ¯). (3.16) Choosing the subdivision such that wpt i , t i`1 , ωq 1{p ď 1{p4Lq, we finally get ż ẗ i F `Xr pωq, Y r p¨q ˘dW r pωq ´ż ẗ i F `X1 r pωq, Y 1 r p¨q ˘dW r pωq rt i ,t i`1 s,w,p ď γ wp0, t i , ωq 1{p ˆ1 `1 4L ˙´ ∆Xpωq r0,t i s,w,p `@~∆Y p¨q~r 0,T s,w,p D 8 γ 4L ! ~∆Xpωq~r t i ,t i`1 s,w,p `@~∆Y p¨q~r 0,T s,w,p D

  and (3.12). Hence, by Proposition 15, the quantity pX n`1 ´Xn qpωq rt i ,t i`1 s,w,p , is bounded above by

	γ wp0, t i , ωq 1{p ´1	`1 4L	¯!	pX n ´Xn´1 qpωq r0,t i s,w,p
						`A~pX n ´Xn´1 qp¨q~r 0,T s,w,p	E	8	)
	`γ 4L	!	pX n ´Xn´1 qpωq rt i ,t i`1 s,w,p `A~pX n ´Xn´1 qp¨q~r 0,T s,w,p	E	8

  1 ´Xn qpωq r0,t 1 s,w,p

		ď	3γ 4L	!	pX n ´Xn´1 qpωq r0,t 1 s,w,p `A~pX n ´Xn´1 qp¨q~r 0,T s,w,p	E	8	) ,
	so we have, for any n ě 1,					
	pX n`1 ´Xn qpωq r0,t 1 s,w,p					
	ď	´3γ 4L	¯n	X 1 pωq r0,t 1 s,w,p	`n ÿ k"1 ´3γ 4L	¯n`1´k A	~pX k ´Xk´1 qp¨q~r 0,T s,w,p	E	8	.	(3.20)

  We here assumed that L was chosen big enough to have 3γ ă 4L. The above inequality may be summed up into pX n`1 ´Xn qpωq r0,t 2 s,w,p ď c 2 pωqComparing the previous estimate of pX n`1 ´Xn qpωq r0,t 2 s,w,p with (3.20) and iterating over the time index t i from the conclusion of the first step, we obtain pX n`1 ´Xn qpωq r0,t i s,w,p ď c i pωq

	{2, we deduce X 1 pωq r0,t 2 s,w,p pX n`1 ´Xn qpωq r0,t 2 s,w,p ď 3γ 2 ζpωq ´3γ 4L ¯n `3γ 2 ζpωq n ÿ i"1 ´3γ 4L ¯n`1´i A 4L ¯n X 1 pωq r0,t 2 s,w,p `c2 pωq n ÿ i"1 ´3γ 4L ¯n`1´i A ~pX i ´Xi´1 qp¨q~r 0,T s,w,p where c 2 pωq: " 3γ 2 ζpωq. Set now c i pωq :" `3γ 2 ζpωq ˘i´1 . ~pX ´3γ ´3γ 4L ¯n X 1 pωq r0,t i s,w,p	E	8	,

i ´Xi´1 qp¨q~r 0,T s,w,p E 8 .

  Ss,¨,1{p4Lqq , since γ T and ζ T are greater than 1. Since the quantity N `r0, Ss, ¨, 1{p4Lq ˘tends to 0 as S tends to 0, we have Hence, taking the L 8 norm in (3.21) with T replaced by S, there is a quantity δpSq with zero limit as S goes to 0 such that

						lim SOE0	A	`3γ 2 T ζ T	˘2Npr0,Ss,¨,1{p4Lqq	E	16	" 1,
	so						
								lim SOE0	@	A S	D	16 " 1.
			A	~pX n`1 ´Xn qp¨q~r 0,Ss,w,p	E	8
			ď `1 `δpSq ˘´3γ 4L	¯nA	X 1 p¨q r0,Ss,w,p	E	16
				``1 `δpSq ˘n ÿ i"1 ´3γ 4L	¯n`1´i A	pX i ´Xi´1 qp¨q r0,Ss,w,p	E	8
			" `1 `δpSq ˘´3γ 4L	¯nA	X 1 p¨q r0,Ss,w,p	E	16
				``1 `δpSq ˘n´1 ÿ i"0 ´3γ 4L	¯n´i A	pX i`1 ´Xi qp¨q r0,Ss,w,p	E	8	,
	so we have					
	n ÿ k"0	´3γ 4L	¯pn´kq{2 A	pX k`1 ´Xk qp¨q r0,Ss,w,p	E	8
	ď `1 `δpSq ˘n ÿ k"0	´3γ 4L	¯pn´kq{2 ´3γ 4L	¯kA	X 1 p¨q r0,Ss,w,p	E	16
	``1 `δpSq ˘n´1 ÿ i"0 ´3γ 4L	¯pn´iq{2 A	pX i`1 ´Xi qp¨q r0,Ss,w,p

  1 ˘. Following the proof of Proposition 4, in a simpler setting here since the limiting rough set-up is strong, we can find:

	' four random variables x W p¨q, p Wp¨q, p v 1 p¨q and p Xp¨q from `p Ω, p F, p P ˘into the spaces
	Cpr0, T s

  pp ωq " p X t pp ωq ´p X s pp ωq ´δx p X s pp ωq x W s,t pp ωq, ps, tq P S T

			p X n	p¨q as
	δ x p X n t pp ωq " F `p X n t pp ωq, LpX n t q ˘, t P r0, T s, p ω P p Ω,
	p R s,t pp ωq " p p X n X n t pp ωq ´p X n s pp ωq ´δx p X n s pp ωq x W n s,t pp ωq, ps, tq P S T 2 , p ω P p Ω,
	from which we easily deduce that `δx p X n p¨q, p R	p X n	p¨q ˘ně0 converges with probability
	to 1 to `δx p Xp¨q, p R	p X p¨q ˘defined as
	δ x p X t pp ωq :" F `p X t pp ωq, Lp p X t q ˘, t P r0, T s, p ω P p Ω,
	p R	p X s,t 2 , p ω P p Ω.

  In order to conclude, it remains to identify `p Xpp ωq; F `p Xpp ωq, p

	p X n w 1 ,p 1 ď lim ~p Xpp ωq~r 0,T s, p nÑ8 p¨q, we deduce that, for p P-almost every ~Xn pp ωq~r 0,T s, p w n,1 ,p 1 , which shows in particular by Fatou's lemma, see step 2b, that p ω P p Ω, A ~p Xp¨q~r 0,T s, p w p 1 ,p 1 E 8 ă 8. Although p v 1 pp ωq (and thus p w 1 pp ωq) is not associated with x W pp ωq through (1.7), we shall say that, for almost every p ω P p Ω, p Xpp ωq is an p ω-controlled trajectory for the rough set-up W p¨q. Step 5. 5a. So far, we have constructed `p Xpp ωq; F `p Xpp ωq, p Xp¨q ˘; 0 ˘as an p ω-controlled trajec-tory for the limit rough set-up W p¨q, but for p ω in a full event p Ω 1 Ă p Ω. For free, we can modify the definition of p pXpp ωq for p ω P p Ωz p Ω 1 and define δ x p Xpp ωq accordingly so P almost every p ω P p Ω, with Γ x W ´p Xpp ωq; F `p Xpp ωq, p Xp¨q ˘; 0 ¯, that `p Xpp ωq; δ Xp¨q ˘; 0 ˘, for p where the index x W in Γ

1 

p¨q ˘´1 , we can assume that the sequence `~p X n p¨q~r 0,T s, p w n,1 ,p 1 ˘ně0 is almost surely convergent, where p w n,1 ps, t, p ωq " p v n,1 ps, t, p ωq `Cpt ´sq. Moreover, by identity in law of `W n p¨q, X n p¨q ˘under P n and of `x W n p¨q, p X n p¨q ˘under p P, we have, for p P-almost every p ω P p Ω, for any ps, tq P S T 2 , | p X n s,t pp ωq| ď p X n pp ωq r0,T s, p w n,1 ,p 1 `p w n,1 ps, t, p ωq ˘1{p 1 . By 3c, we get, for p P-almost every p ω P p Ω, for all ps, tq P S T 2 , | p X s,t pp ωq| ď ´lim nÑ8 p X n pp ωq r0,T s, p w n,1 ,p 1 ¯`p w 1 ps, t, p ωq ˘1{p 1 , Proceeding similarly for δ x p X n p¨q and R x p Xpp ωq; 0 ˘is an p ω-controlled trajectory for any p ω. Then, the collection `p Xpp ωq ˘p ωP p Ω forms a random controlled trajectory. 5b.

  [START_REF] Bailleul | Limit theorems for systems of mean field rough differential equations[END_REF]. The first step is to compare What makes the proof non-trivial is the fact that the rough set-ups used in the first and the second integrals are not the same. So, in order to compare the two of them, we need to come back to the original constructions of the two integrals. To simplify notations, and for 0 ď t ď T , set

	ż t	F `Xi s pωq, LpX s q ˘dW	i s pωq and	ż t	F `Xi s pωq, µ n s pωq ˘dW i,pnq s	pωq,
	0				0	
	for t P r0, T s. F	i t pωq :" F `Xi t pωq, LpX t q	ȃnd
		F i,n t pωq :" F `Xi t pωq, µ n t pωq ˘.
	For sure,	`F i t pωq ˘0ďtďT is ω-controlled by W	i	pωq and the collection indexed by
	ω P Ω is a random path controlled by W	i , see Definition 8 for a reminder. The
	corresponding Gubinelli derivatives are denoted by `δx F Proposition 11. Similarly, pF i,n t pωqq 0ďtďT is controlled by W i,pnq pωq and Gubinelli i t pωq, δ µ F i t pω, ¨q˘0 ďtďT , see derivatives are denoted by `δx F i,n t pωq, `δµ F i,j,n t pωq ˘1ďjďn ˘0ďtďT , see Subsection 4.1.
	To make it clear, set				

  but by assumption all the expectations are finite. Now we can choose t k such that |t k`1 ´tk | ď 2|t ´s|{K. We get the constant C being allowed to increase from line to line as long as it remains independent of n and K. Letting t p1q " t k and applying iteratively the above bound to a sequence of meshes of the form ∆ztt p1q u, ∆ztt p1q , t p2q u, . . . , and then letting K tend to 8, we deduce that Cη n , for a new value of the constant C. Observe now that the empirical control associated with our empirical rough set-up and with the exponent p 1 reads

	such that				
						ˇˇˇż	t	F i,n r pωqdW i,pnq r	´ż t	F	i r pωqdW	i r pωq ˇˇˇď θ i,n pωqpt ´sq 1{p 1 ,
								s			s
						ˇˇ"F i,n pωq	´F i	pωq ı s,t	ˇˇď θ i,n pωqpt ´sq 1{p 1 ,	(4.17)
						ˇˇR s,t ş F i,n dW i,pnq	pωq	´Rş F i dW i s,t	pωq ˇˇď θ i,n pωqpt ´sq 2{p 1 ,
	A! I i,n,∆ s,t p¨q ´Ii,n,∆ 1 s,t with xθ i,n p¨qy ď w i,n p 1 ps, t, ωq :" v i,n p¨q ) ´!I p 1 ps, t, ωq `pnq vv i,∆ s,t p¨q ´Ii,∆ 1 s,t p¨q v ',n )E p 1 pωq	ď Cη n ww q;rs,ts,1´var , ´2pt ´sq K	¯3{p	,
	where we used the same notation as in (4.3). In fact, there is no loss of generality
	in changing the definition of w i,n p 1 into
				w i,n p 1 ps, t, ωq :" v i,n p 1 ps, t, ωq `pnq vv	v ',n p 1 pωq ww	q;rs,ts,1´var `pt ´sq,	(4.18)
	Bż t s which permits to replace pt ´sq 1{p 1 by w i,n F i,n r p¨qdW i,pnq r p¨q ´ż t s F i r p¨qdW i r p¨q ´!I i,n,B ts,tu p 1 ps, t, ωq 1{p 1 in the inequalities (4.17). ´Ii,B ) F ts,tu ď Cη n pt ´sq 3{p . Hence, (4.16) By a straightforward adaptation of the first two steps in the proof of Lemma 25, we ż 0 F i,n r pωqdW i,pnq r ´ż 0 F i r pωqdW i p 1 ,p 1 r0,T s,w i,n r pωq ď θ i,n pωq.
	have in a similar way Step 2. We now make use of Proposition 15 to compare
		ż t	F `Xi,pnq s	A s pωq ˘dW I i,n,B ts,tu ´Ii,B ts,tu pωq, µ n i s pωq and E ď Cη n pt ´sq 1{p , ż t F `Xi s pωq, µ n s pωq ˘dW i,pnq s	pωq,
	0 from which we deduce that A ż t s F i,n r p¨qdW i,pnq r Similarly, following again the proof of the first step in the proof of Lemma 25, we 0 p¨q ´ż t s F i r p¨qdW i r p¨q E ď Cη n pt ´sq 1{p . where µ n s pωq :" n ÿ 1 n j"1 δ X j,pnq s pωq .
	get									
											@" F i,n p¨q	´F i	p¨q ‰	s,t	D	ď Cη n pt ´sq 1{p ,
	and, noting that	
	R s,t ş F i,n dW i,pnq	pωq	
	"	ż t s	F i,n r pωqdW i,pnq r	pωq ´Ii,n,B s,t pωq `δx F i,n s pωqW i s,t pωq	`1 n	n j"1 ÿ	δ µ F i,j,n s	pωqW j,i s,t pωq,
	R s,t ş F	i dW	i	pωq				
	"	ż t	F		i r pωqdW	i r pωq	´Ii,B s,t pωq `δx F	i s pωqW i s,t pωq	`E" δ µ F	i s pω, ¨qW i,K K s,t p¨, ωq	‰ ,
		s								
	we deduce in a similar manner, using in addition (4.16), that
									A	R s,t ş F i,n dW i,pnq	p¨q	´Rş F i dW i s,t	p¨q E	ď Cη n pt ´sq 2{p .

So, fixing i P t1, ¨¨¨, nu, choosing large enough and applying a suitable version of Kolmogorov's theorem (see for instance Theorem 3.1 in

[START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF]

), we can find p 1 P pp, 3q

  n p 1 ps, t, ωq and it satisfies ts is ~¨~r s,ts, p w i,n ,p 1 . Of course the fact that we no longer use the natural control functional prompts us to use the local accumulation p N i,n `r0, T s, ω, α ˘defined in the statement.with (using the fact that c ą 1) κ i,n pωq :" c 2 ´1 `p w i,n p0, T, ωq 1{p 1 ¯"c 2 `1 `ζi,n pωq ˘ı p N i,n pωq`1

	pnq v which suffices to duplicate the proof of Proposition 15 with w i,n p w ',n ps, t, ωq w q ď 2 p w i,n ps, t, ωq, p 1 ps, t, ωq replaced by p w i,n ps, t, ωq. The resulting semi-norm that must be used to control the difference `Xpωq ´X1 pωq, Y p¨q ´Y 1 p¨q ˘" `Xi pωq ´Xi pωq, X ' pωq ´X' pωq ˘on a given interval Eventually, returning to (4.25) and modifying the value of the constant c, we deduce `Xi ´Xi ˘pωq rτ ,τ `1s, p w i,n ,p 1 ď c " c `1 `ζi,n pωq ˘‰ p N i,n pωq`1 ˆζi,n pωq Θ n pωq `θi,n pωq `Ei,n τ `pnq vv E ',n τ pωq ww 8 ˙, rs, ď 2 Θ n pωq. and then
	E i,n τ

`1 pωq ď κ i,n pωq ˆζi,n pωq Θ n pωq `θi,n pωq `Ei,n τ pωq `pnq vv E ',n τ pωq ww 8 ˙,

  ,p{2´var , namely Ñ i pr0, T s, ω, αq :" N `r0, T s, α ˘, We recall from Theorem 6 that each Ñ i `r0, T s, ω, α ˘has Weibull tails with 2{ρ as shape parameter, uniformly in i, in the sense that there exists a ą 0 such that Then, by the L 4 -version of the law of large numbers, which here applies because the variables `r N i pr0, T s, ¨, αq ˘i"1,¨¨¨,n are independent, we get , for a constant C independent of n. By Borel-Cantelli Lemma, we then obtain that, with probability 1, there exists a rank n 0 such that, for any n ě n 0 ,

	with rs,tswhen › › W i pωq › › p rs,ts,p´var `› › W i pωq › › p{2
							ps, tq "	› › W i pωq › › p rs,ts,p´var	`› › W i pωq	› › p{2 rs,ts,p{2´var .
							sup	E	" exp ´a"	r N i pr0, T s, ¨, αq ‰ 2{	¯ı ă 8.	(A.2)
							1ďiďn				
	P ˆω P Ω :	1 n	n ÿ i"1	exp ´a 4	"	r N i pr0, T s, ω, αq	‰ 2{	¯ě 1	`E" exp	´a 4	" N 1 pr0, T s, ¨, αq r	‰ 2{	¯ıď
	C												
	n 2 1 n n ÿ i"1	exp	´a 4	"	r N i pr0, T s, ω, αq	‰ 2{	¯ď 1	`E" exp ´a 4	"	r N 1 pr0, T s, ω, αq	‰ 2{

  , at least one of the two inequalities below holds true Therefore, denoting the left-hand side in the first line by g h,rτ ,τ `1s pωq, we get

	c	" pnq $ % › › pT h Wq i,' pωq › › p{2 rτ ,τ `1s,pp{2q´var	, -	q	`pnq $ %	› › pT h W q ' pωq › › p rτ ,τ `1s,p´var	, -q
		`› › pT h W q i pωq › › p rτ ,τ `1s,p´var	*	ě	α 2	,
	n ´ {p2qq › › h ´i› › H 'pn´1q pτ `1 ´τ q ě	α 2	.	
		pnq $ % W i,' τ ,τ `1 pωq	, -				

p{2 q ď α 1 tg h,rτ ,τ `1s pωqěα{p2cqu

  n,B tr,su p¨q `Ii,n,B ts,tu p¨q ´Ii,n,B tr,tu p¨q

	)	´!I	tr,su p¨q i,B	`Ii,B ts,tu p¨q	´Ii,B tr,tu p¨q	)E
	ď C η					

n ⟪w `pr, t, ¨, ¨q⟫ 3{p 1

  n,B tr,su pωq `Ii,n,B ts,tu pωq ´Ii,n,B tr,tu pωq where, as before, X pλq r;pr,sq pωq " X r pωq `λX r,s pωq. Splitting the last two terms in the above expansion into r,s pωq| ˘j"1,¨¨¨,n and n ´1 of which are conditionally centered and conditionally independent given the realization of the path pX i , W i , W i q. Recalling (1.9) and allowing the value of the constant c to increase from line to line, we obtainˇˇ"G x ´Xi pωq, µ n pωq ¯´G xIn order to conclude for the second term in the right-hand side of (A.6), it suffices to recall from Rosenthal's inequality (applied under the conditional probability given the realization of the path pX i , W i , W i q) that w i pr, s, ωq 1{p `wj pr, s, ωq 1{p `˜1 nObserving that xw j,i ps, t, ¨q2{p y 3 ď ⟪w `pr, t, ¨, ¨q⟫ 2{p 3 -this is the rationale for introducing w `, and taking expectation, we get

	ż R 2d	"ż 1 0 A S i,n D µ G x r,s `¨, |X ´Xi,pλq r;pr,sq pωq, µ ' r,s p¨q| ˘E3 {2 ď c n ´1{2 n,pλq r;pr,sq pωq ¯pyqzdλ A ~Xp¨q~r 0,T s,w,p wpr, s, ¨q1{p  dν n,pλq r;pr,sq pω; y, zq ď c n ´1{2 @ ~Xp¨q~r 0,T s,w,p D 3 @ wpr, t, ¨qD 1{p E 3 {2 3 .
					"ż 1	´Xi,pλq	
	´żR 2d If ρ is large enough, we deduce from Lemma 26 that 0 D µ G x r;pr,sq pωq, L `Xpλq r;pr,sq ˘¯pyqzdλ	dL `Xpλq r;pr,sq , X r,s ˘py, zq
	" A" G x ż R 2d `Xi "ż 1 0 p¨q, µ n p¨q ˘´G x D µ G x ´Xi,pλq r;pr,sq pωq, µ `Xi p¨q, LpXq n,pλq r;pr,sq pωq ¯pyqzdλ ˘ır,s s,t p¨q W i E 	dν	n,pλq r;pr,sq pω; y, zq
	´żR 2d `żR 2d ˆż 1 A 0 `c n ´1{2 @ "ż 1 0 ď c W 1 ´µn,pλq D µ G x r;pr,sq p¨q, L ´Xi,pλq r;pr,sq pωq, L `Xpλq r;pr,sq ˘¯pyqzdλ  `Xpλq r;pr,sq ˘¯E 3 dλ ˙@~Xp¨q~r 0,T s,w,p dν n,pλq r;pr,sq pω; y, zq D 6 @ wpr, t, "ż 1 D µ G x ´Xi,pλq r;pr,sq pωq, L `Xpλq r;pr,sq ˘¯pyqzdλ  dν n,pλq ~Xp¨q~r 0,T s,w,p D 3 @ wpr, t, ¨qD 3{p 3 r;pr,sq pω; y, zq 0 ´żR 2d "ż 1 0 D µ G x ´Xi,pλq r;pr,sq pωq, L `Xpλq r;pr,sq ˘¯pyqzdλ  dL `Xpλq r;pr,sq , X r,s ˘py, zq, ¨qD 3{p 6 ď c η n ´1 `@ sup 0ďuďT |X u p¨q| D 3 ¯@~Xp¨q~r 0,T s,w,p D 2 6 ⟪w `pr, t, ¨, ¨q⟫ 3{p 6 .
	we get						
	ˇˇ"G x	`Xi	pωq, µ n pωq ˘´G x	`Xi	pωq, LpXq	˘ır,s	ˇď j pωq ˘ır,s W j,i s,t pωq ˇď
	c c	ż 1 0 ˆż 1 0 W 1 W 1 ´µn,pλq ´µn,pλq			ç
								fi
	) pωq r0,T s,w j ,p ´!I i,B tr,su pωq `˜1 n ˆ» n ˇˇS i,n r,s `ω, |X ' j ˘ˇˇ, r,s pωq| where S i,n ÿ w k pr, s, ωq 2{p `Ii,B ts,tu pωq n ÿ ~Xk pωq~2 r0,T s,w k ,p ´Ii,B k"1 fi ¸1{2 fl r,s `ω, |X k"1 tr,tu pωq ) ¸1{2 " ´RF i,n r,s pωq ´RF i r,s pωq ¯W i s,t pωq `´δ x F i,n r,s pωq ´δx F i r,s pωq ¯Wi s,t pωq `c ˇˇS i,j,n r,s `ω, |X ' r,s pωq| ˘ˇˇw j,i ps, t, ωq 2{p ,	fl
	`˜1 n A S i,j,n r,s `¨, |X n ÿ j"1 δ µ F i,j,n r,s pωqW j,i s,t pωq ´Xi pωq, LpXq ´E" δ µ F ¯ır,s W i s,t pωq ˇď i ı ¸, r,s pω, ¨qW i,K K s,t p¨, ωq ' r,s p¨q| ˘E3 {2 ď c n ´1{2 @ ~X~r 0,T s,w,p wpr, s, ¨q1{p D 3 {2 r,s pωq :" F i,n where where R F i,n s pωq ´F i,n r pωq ´δx F i,n r pωqW i r,s pωq j"1 n ¸1{2 fi ´1 n n ÿ δ µ F i,j,n r pωqW j r,s pωq, c ż 1 0 W 1 ´µn,pλq r;pr,sq pωq, L `Xpλq r;pr,sq ˘¯dλ ď c n ´1{2 @ ~X~r 0,T s,w,p y 3 @ wpr, t, ¨qy 1{p 3 .
	ÿ r pωq ´δx F ´F i ˆ» -~Xi pωq~r 0,T s,w i ,p R F i r,s pωq :" F i s pωq `˜1 ~Xk pωq~2 r0,T s,w k ,p i r pωqW i r,s pωq ´E" δ µ F fl i r pω, ¨qW r,s p¨q n k"1 fi	ı .	(A.5)
	Following (4.14) and (4.15), we define differentiable functions G x and G µ of their arguments setting δ x F i,n t pωq ": G x `Xi t pωq, µ n t pωq ˘, ˆ» -w i pr, t, ωq 3{p `˜1 n ÿ w k pr, t, ωq 2{p ¸3{2 fl `c ˇˇS i,n r,s `ω, |X ' r,s pωq| A" G µ `Xi p¨q, µ n p¨q ˘`X j p¨q ˘´G µ `Xi p¨q, LpXq ˘`X j p¨q ˘ır,s E W j,i s,t pωq ˘ˇˇw i pr, t, ωq 2{p . n k"1 ď c ˆż 1 0 A W 1 ´µn,pλq r;pr,sq p¨q, L `Xpλq r;pr,sq ˘¯E 3 dλ ˙@~Xp¨q~r 0,T s,w,p D 3{p 6 ⟪w `pr, t, ¨, ¨q⟫ 6
						δ x F

i t pω, ω 1 q ": G x `Xi t pωq, LpX t q ˘, r;pr,sq pωq, L `Xpλq r;pr,sq ˘¯dλ ˆ˜~X i pωq~r 0,T s,w i ,p w i pr, s, ωq 1{p `1 n n ÿ k"1 ~Xk pωq~r 0,T s,w k ,p w k pr, s, ωq 1{p ' r,s pωq| ˘is the n-empirical mean of n random variables that are dominated by `|X j Step 2. By the same argument, we have ˇˇ"G µ ´Xi pωq, µ n pωq ¯`X j pωq ˘´G µ ´Xi pωq, LpXq ¯`X r;pr,sq pωq, L `Xpλq r;pr,sq ˘¯dλ ˙wj,i ps, t, ωq 2{p ˆ» -X i pωq r0,T s,w i ,p ` X

ď 2, with L 0 as in the statement of Proposition 14. We deduce that, at any rank n ě 1, both

ď c.

U.B.O. for their hospitality, part of this work was written there.

, -

, -

By the law of large numbers, the first two lines hold true on a full event if c 1 pε ă ε 1 .

As for the third and fourth lines, we use the following trick. Notice that the function

is convex on rA ε , 8q, for some A ε ą 0. Therefore, Jensen's inequality says that, in order to check the third line, it suffices to prove that

and similarly for the last line. Obviously, under the standing assumption, the latter holds true with probability 1 provided that c 1 pε ă ε 1 . This proves (4.10). In the statement of Theorem 20, this proves the condition related to the tails of w n by a standard application of Markov inequality. The bound on the local accumulation in the first item of Theorem 4.10 is a consequence of the second item in the standing assumption. Indeed, we let the reader check that it suffices to work with the local accumulation associated with v n instead of the local accumulation associated with w n , see if needed the inequality (A.1) in Appendix.

Step 3. Theorem 20 says that, for a fixed ω P E, the solutions associated with the rough set-ups `W pnq pωq ˘ně1 converge in law to the solution associated with the limiting rough set-up, i.e., the empirical law of the solutions associated with the `W pnq ˘ně1 converges to the law of the solution of the mean field equation, which is exactly to say that, for any ω P E,

where Xp¨q is the solution to (0.2). Here, the convergence is the convergence in law on Cpr0, T s; R d q. By Proposition 2.2 in [START_REF] Sznitman | Topics in propagation of chaos[END_REF], we deduce that, for any fixed k ě 1, the law of `X1,pnq , ¨¨¨, X k,pnq ˘converges to L `Xp¨q ˘bk .

As an example of application, we have the following statement, proved in Appendix A.2.

23.

Theorem -Let W be a continuous centered Gaussian process, defined over some finite interval r0, T s. Assume it has independent components. Suppose that the covariance function is of finite -two dimensional variation for some P r1, 3{2q.

Then, for p P p2 , 3q, the conditions of Theorem 22 are satisfied.

By construction of the processes `Xi pωq ˘i"1,¨¨¨,n as the solution of the empirical rough equation, the pair `Xpωq, Y p¨q ˘" `Xi pωq, X ' pωq ˘in (4.19) automatically satisfies the first bound in (3.12) with w " p w i,n ; implicitly, this means that we perform the same construction as in the proof of Theorem 16 using therein the empirical rough-set up and the control functionals `p w i,n

˘i"1,¨¨¨,n . In particular, the sequence of points `t0 " τ p0, T, ω, 1{p4L 0 qq ˘ "0,¨¨¨,N 0 `1 in the statement of Proposition 15 is understood as with respect to p w i,n . Also, by the last part in the statement of Proposition 14, we know that Y p¨q " X ' pωq satisfies condition (3.11) with respect to pnq v ¨w8 if we assume that T satisfies

for a deterministic constant c, independent of n, L 0 and T .

In fact, following (4.4) and using the additional t ´s in the definition (4.13), p w i,n dominates (up to a multiplicative constant) the control w i associated to W i through (1.8). Moreover, we have @ p w i,n ps, t, ¨qD q ď Cpt ´sq, for a constant C independent of i, n, s and t. Although C ě 2, this permits to use p w i,n ps, t, ¨q as control functional when working with the rough set-up W i . This is an important point as it says that the pair `X1 pωq, Y 1 p¨q ˘" `Xi pωq, X ' pωq ˘in (4.19) satisfies the second bound in (3.12) with w " p w i,n . Also, invoking the first line in (3.4) for each i P t1, ¨¨¨, nu, we deduce that Y 1 p¨q " X ' pωq satisfies condition (3.11) with respect to pnq v ¨w8 provided that that (4.20) holds true. Possibly, this requires to work with a larger value of the threshold L 0 in the statement of Proposition 15, but this is not a hindrance.

Then, by Proposition 15, we obtain, for a given L ě L 0 ,

where p w i,n pt k , t k`1 , ωq 1{p 1 " 1{p4Lq as long as k ă N i,n pr0, T s, ω, 1{p4Lqq. The point now is to insert the conclusion of the first step. We get 

In end, `Xi ´Xi ˘pωq r0,T s, p 

(4.23)

Step 3. The key quantity of interest in (4.23) is the multiplicative factor in the second line, which we denote by

In particular, letting

Here comes the key point. The variable ω being frozen, we can choose T small enough, depending on ω, and L large enough, deterministically, such that Ψ n T pωq ď 1{2 and (4.20) holds true. The proof is made clear below. Take it for granted for a while and deduce that

for a new constant c 1 . The above inequality sounds really close to the desired result, except for the fact that it is on a small interval r0, T s only. The purpose is thus to iterate it in order to cover any given time interval.

Step 4. In order to iterate in a proper way, we change our notation: While we keep T for the deterministic time horizon given in the statement, we use the latter τ instead of T in the previous analysis. Put differently, τ will stand for the (random) time horizon such that Ψ τ is small enough. More precisely, we consider a random dissection 0 " τ 0 ă τ 1 ă ¨¨¨ă τ Λ " T of the interval r0, T s by Λ subintervals.

We need to go back to the proof of Proposition 15. Assume indeed that we have an estimate for

for some ď Λ. Then, in order to duplicate the second step, we must consider a new dissection τ " t 0 ă t 1 ă ¨¨¨ă t K " τ `1 of the interval rτ , τ `1s with the property that K " p N i,n `rτ , τ `1s, ω, 1{p4Lq ˘`1 and that p w i,n pt k , t k`1 , ωq " 1{p4Lq if t k ă K. The key point is to apply a relevant version of (3.16), but with τ instead of 0 as initial time. This requires a modicum of care as X i pωq and X i pωq do not coincide at time τ . We let the reader adapt the proof accordingly and check that the following holds true

provided the analogue of (4.20) holds true, namely

Then, proceeding as in the second step,

In the end, we are in the same situation as in (4.21), but with new ζ i,n T and p N i,n T . Here, we let

Following (4.22), we obtain which we rewrite in the form

Now, we can find q 1 prq ě 1 such that, for 1 ď i ď j ď ď Λ, where Λ is the number of subintervals in the dissection 0 " τ 0 ă τ 1 ă ¨¨¨ă τ Λ " T of r0, T s,

{pτ k i`1 ´τk i q , -, -

.

Hence, by Young's inequality

.

Finally,

.

Step 5. Repeating (4.11) and (4.12), we can find a real ε 1 ą 0, independent of n, such that sup i"1,¨¨¨,n E " exp `p w i,n p0, T, ¨qε 1 ˘‰ ď C, for a constant C independent of n. Hence, following (3.22) in the proof of Theorem 16, we deduce that, for any ą 0,

{pτ k p`1 ´τkp q , -, -

for some constant C ,r only depending on r and , the value of which is allowed to increase from line to line.

' We prove below that the number Λ of subintervals in the dissection 0 " τ 0 ă τ 1 ă ¨¨¨ă τ Λ " T of r0, T s has Weibull tails with shape parameter λ ą 1{2, with λ independent of n and the Weibull tails uniformly controlled in n ě 1. Hence, following (3.22) in the proof of Theorem 16, we deduce that, for any ą 0,

Similarly,

Returning to the conclusion of the fourth step and observing that Λ Λ has finite moments of any order since Λ has Weibull tails with shape parameter λ ą 1{2, we deduce that, for a possibly new value of qprq,

where C r only depends on r. It remains to observe that a Λ pωq is equal to a Λ pωq " pnq vv E ',n T pωq ww r , which is less than η n by the conclusion of the first step. Inserting into (4.26), we easily complete the proof.

' We now justify the fact that Λ has Weibull tails. We use the following bound

¯.

For sure, this shows that we can choose δ pωq :" τ `1pωq ´τ pωq small enough such that Ψ n pωq ď 2. Moreover, by Hölder inequality, we obtain, for any a ą 0

¯2.

Call for a while Λ the ω-dependent minimal number of steps such that Ψ Λ pωq ě 2. By (A.1) in appendix, we can prove that Λ has Weibull tails if the local accumulation associated with each of the two terms above have also Weibull tails, with the same shape parameter. As for the term on the last line, this is precisely the assumption we have (whatever the value of a), see the beginning of this step and assume that q ě 32 in (4.3). It thus remains to handle the local accumulation of the term in the penultimate line. So, we can regard δ as if Ψ was exactly equal to the term in the penultimate line. We then observe that, for ac 4 ă 1 and A ą 0,

which shows that Λ has a Weibull tail.

In fact, Λ needs also to take into account the condition

Using again the lower bound (A.1), we can assume that Λ only counts the number of for which the above inequality is actually an equality. Then, we can repeat the same proof as above by using the fact that

and by recalling that

has Weibull tails with shape parameter strictly greater than 1{2, which follows from the convexity of the function r0, `8q Q x Þ Ñ exppx 1`ε q, for ε ą 0. This permits to provide an upper bound for Ppδ ď 1{Aq.

A -Integrability and Auxiliary Estimates

We prove in this appendix a number of auxiliary results that we left aside to keep focused on the main problems at hand. Thus we prove in Appendix A.1 the version of Cass, Litterer and Lyons' integrability estimate on the accumulated local variation of a rough path under the form needed here, Theorem 6. In Appendix A.2, we provide a proof of Theorem 23 showing propagation of chaos for an interacting particle system driven by Gaussian rough paths. Appendix A.3 is dedicated to proving a crucial moment estimate for some quantity of interest in the proof of the convergence rate in the propagation of chaos result, Theorem 24. This is where the convergence rate η n appears.

A.1 -Proof of Theorem 6

We provide here the proof of Theorem 6; this statement allows to use our wellposedness result for the mean field rough differential equation (0.4) when W is some Gaussian or Markovian rough path. We follow the proof of Theorem 11.7 in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF]. Throughout the proof, we use the same notations as in the statement of Theorem 6.

The following statement provides the required analogue of Proposition 6.2 in [START_REF] Cass | Integrability and tail estimates for Gaussian rough differential equations[END_REF].

Recall that vps, t, ωq in (1.7) consists in six different terms. It is an easy exercice to check that it suffices to control the local accumulation associated with each of this And then, proceeding as in the proof of Theorem 6 and applying Proposition 11.2 in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF] together with the fact that p ą 2 , we obtain

at least when the left-hand side is less than or equal to α. Similarly,

q;rs,ts,pp{2q´var ď c

, -

when the left-hand side is less than or equal to α. Define now

when ps, tq " pnq v W i,' pωq w p{2 q;rs,ts,pp{2q´var . Then,

We then apply Theorem 11.7 in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF] but on the space pW bn , H 'n , P bn q. Importantly, we observe that E

, q ı is bounded by a constant c, independent of i and n, which proves that the local accumulation N i,n,K K pr0, T s, ¨, αq has a Weibull distribution with shape parameter 1{ .

Step 3. The fact that N i,n,K K `r0, T s, ¨, α ˘has Weibull tails does not suffice for our purpose. Indeed, differently from the variables Ñ i,n `r0, T s, ¨, α ˘, the variables N i,n,K K `r0, T s, ¨, α ˘are independent, which prevents us from a straightforward application of the law of large numbers as done in the first step. In order to overcome this difficulty, we must revisit the above argument and prove that the variables `N i,n,K K pr0, T s, ¨, αq ˘i"1,¨¨¨,n are in fact nearly independent, in a sense that is made clear below. In order to do so, go back to (A.3) and observe that, since ă 2,

The trick now is to use the additional factor n ´ {p2qq , but to benefit in a full way of this additional decay, we assume that h i " 0, in which case (A.3) becomes

rs,ts,pp{2q´var

, - .

By Lemma 26, we get the same bound as in the first step.

Step 3. We now turn to the last term in the right-hand side of (A.6). It reads as the empirical mean of n random variables, n ´1 of which are conditionally centered and conditionally independent given the realization of the paths pX We conclude as before, by invoking Lemma 26.

Step 4. We now handle the remainders in (A.6). By expanding (A.5) and by using similar notations for the remainders in the expansion of each `Xj ˘j"1,¨¨¨,n , we have Expanding R F i r,s pωq in a similar way, we have to investigate four terms in order to estimate the difference R F i,n r,s pωq ´RF i r,s pωq. The first term corresponds to the first for a constant c q,d depending on q and d, where pη n q ně1 is as in the statement of Theorem 24 and µ n p¨q is the empirical distribution of n independent identically distributed random variables `X1 p¨q, ¨¨¨, X n p¨q ˘of law µ, namely

Proof -Without any loss of generality, we can assume that M q pµq " 1, see the argument in [9, Chapter 5]. Then, by [ n qq 2 ˙`CnpnAη n q ´q{2 . Assuming without any loss of generality that A ě 1, we have lnp2 `A´1 η ´1 n q ď lnp2 `η´1 n q " lnp1 `2η n q ´lnpη n q, which is less than ´2 lnpη n q for n large enough. Given our choice of η n , we have ´lnpη n q " lnpnq{2 ´lnplnp1 `nqq, which is less than lnpnq{2. Hence, modifying the value of the constant c, we get, for A ě 1 and for n large enough, independently of the value of A, we get the bound P ´W1

`µn p¨q, µ ˘ě Aη n ¯ď C exp ˆ´cA 2 lnp1 `nq 2 plnpnqq 2 ˙`CnpnAη n q ´q{2 , which suffices to complete the proof.