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ABSTRACT
Complex Event Processing (CEP) deals with matching a stream

of events with the query patterns to extract complex matches.

These matches incrementally emerge over time while the par-

tial matches accumulate in the memory. The number of partial

matches for expressive CEP queries can be polynomial or expo-

nential to the number of events within a time window. Hence,

traditional strategies result in an extensive memory and CPU

utilisation. In this paper, we revisit the CEP problem through

the lens of complex queries with expressive operators (skip-till-

any-match and Kleene+). Our main result is that traditional

approaches, based on the partial matches’ storage, are ineffi-

cient for these types of queries. We advise a simple yet efficient

recomputation-based technique that experimentally outperforms

traditional approaches on both CPU and memory usage.

1 INTRODUCTION
Complex Event Processing (CEP) matches a sequence of events

within a stream against a complex query pattern that specifies

constraints on the extent, order, values, and quantification of

the matching events. Most of the CEP systems incrementally

produce matched patterns, where partial matches are stored and

then computed to avoid the recomputation cost [11, 14]. That

is, with the arrival of an event, a CEP system (i) can generate a

new partial match by matching incoming event with the prefix

of the defined query pattern; (ii) checks with the existing partial

matches if the incoming event can be part of them or complete

them. The number of partial matches for such strategy can be

polynomial or exponential to the number of events within a

window [1, 9, 14]: some partial matches lead to the complete

matches while others fail. This results in extensive memory and

CPU utilisations. In the following, we present a real-world CEP

query to showcase the issues of incrementally processing partial

matches.

Example 1. A stock market application processes thousands

of financial transactions per second to detect patterns that sig-

nify emerging profit opportunities. An example of such a pattern,

called V-shaped pattern [12, 14], is described in Query 1 using the

syntax from SASE [13]. Query 1 detects an increasing and then de-

creasing pattern per company. Hence, the price of the events must

first increase from an initial value (a.price < b.price), then the

events should show an uptrend (b.price < NEXT(b.price)) using
the Kleene+ operator, and then the price of the matched events

should decrease such that it is less than the first reported in-

crease (c.price < FIRST(b.price)). All the matched events should

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

c1b2b1a2a1

time

Window

(a1, b1, c1)

(a1, b2, c1)

(a1, b1,b2, c1)

(a2, b1, c1)

(a2, b2, c1)

(a2, b1,b2, c1)

(a) (b)

Figure 1: (a) Partial matches for Query 1 over the event stream, (b)
complete matches for the Query 1

be within a window of size 30 minutes which slides every 2
minutes.

Query 1. PATTERN SEQ (a, b+, c)WHERE [companyID]

AND a.price < b.price AND
b.price < NEXT(b.price) AND c.price < FIRST(b.price)

WITHIN 30 minutes SLIDE 2 minutes

To reveal all the profit opportunities, Query 1 detects all the

combinations of patterns using an operator called as skip-till-
any-match event selection strategy in the literature [1, 12, 14].

This operator assists in ignoring the local price fluctuations to

preserve opportunities for detecting longer and thusmore reliable

patterns. Fig. 1 shows the evaluation of Query 1 over an event

stream. From Fig. 1 (a), before the arrival of an event c1, six
partial matches (shown with the connected lines) for a1 and a2
are produced, and one for each b1 and b2. Note that the prefix
of the Query 1 is highly unselective ( a.price < b.price) and any

event can start a partial match. Consequently, there can be a large

number of partial matches that would not produce full matches,

which result in wasted computation. The complete set of matches,

after the arrival of a trigger event c1 are shown in Fig. 1 (b).

State of the art and limitations. The issues with a large num-

ber of partial matches and their effect on the memory and CPU

resources have been acknowledged in the literature [1, 9, 12, 14].

The usual remedy proposed for such issues is to factorise the

commonalities between the partial matches that originate from

the same set of events [12, 14]. Hence, the query evaluation is

broken into two phases. The first phase tracks the commonali-

ties between the partial matches and compresses them using an

additional data structure, e.g. an events graph. The second phase

constructs the complete matches while decompressing the set

of common partial matches, e.g. through depth-first-search. This
strategy can reduce the memory requirements from exponential

to polynomial, at the cost of the compression/decompression

operations. Moreover, since a sub-partial match can be part of



multiple complete matches, this strategy recomputes common

sub-partial matches for each match that contains one. This results

in redundant computations, and the high cost of maintaining ad-

ditional structure and reconstruction of the matches remains

quite significant. For instance, in Fig.1 (a), all the partial matches

are kept – and computed – even if a trigger event, i.e. c1, never ar-
rives within a window. Finally, due to the high space complexity,

these systems spend a considerable amount of time in repeated

memory allocation and reclamation with the expiration of a win-

dow.

Contributions.This paper initiates the study of a recomputation-

based CEP that addresses the following two main points.

• Since storing partial matches is expensive, only events

should be stored in a window. This reduces the memory

cost from polynomial or exponential to linear

• The matches should be recomputed only when the trigger

events’ arrive and results should be directly stored on the

disk. Hence, redundant computations are not performed

and only the subsets of events are processed to produce the

matches. Furthermore, sincematches are directly stored on

the disk, repeated in-memory allocation and reclamation

operations are avoided.

In theory, both recomputation and incremental evaluation tech-

niques have the same worst-case run-time cost. However, in

practice, recomputation process provides the following proper-

ties: (1) it is performed for a fewer number of times (depending on

the trigger events); (2) it alleviates the redundant computations

that arrive due to the partial matches that would not produce a

complete match; (3) it avoids the cost of creation and deletion of

partial matches.

The detailed structure and contributions of this paper are as

follow. We first provide the compilation of the query tree for a

CEP query (§ 2.2). We then present the design of an algorithm for

recomputing matches and analyse its complexity(§ 2.3). Based

on this algorithm, we present the techniques to process joins

between events and to execute the Kleene+ operator (§ 2.4). We

implemented our solution and demonstrate that it outperforms

existing solutions both in terms of memory and CPU cost (§ 3).

2 RECOMPUTATION BASED CEP
2.1 Preliminaries
In this section, we present the CEP specifics definitions, query

representation and query evaluation techniques.

Event. An event e is tuple (A, t ), where A = {A1,A2, . . . ,Am }
(m ≥ 1) is a set of attributes and t ∈ T is an associated timestamps

that belongs to a totally ordered set of time points (T, ≤).
Event Stream. An event stream S is a possibly infinite set of

events such that for any given timestamps t and t ′, there is a
finite amount of events occurring between them.

Event Sequence. A chronological ordered sequence of events,
with a total ordering given byT is represented as ®E = ⟨e1, e2, . . . , en⟩
with e1 refer to the first event and en to the last.

CEP Query. A CEP query Q has the following form:

PATTERN P [WHERE Θ ]WITHINw SLIDE s

where P = SEQ(p1, . . . ,pk ) is a sequence of pairwise disjoint
variables of the formp andp+,Θ = θ1, . . . ,θl is a set of predicates
(constant and variable) over the variables in P (see Query 1 in

Example 1), ω is the time window and s is slide of the window
to define the scope of event stream. A variable p ∈ P binds

a sequence of a single event ⟨ei ⟩, while the qualified variables

p+ ∈ P binds a sequence of one or more events ⟨e1, . . . , en⟩,n ≥ 1

for a query match.

CEP Query Match. To define the matching of a CEP query

Q , we use a substitution γ ={p1/ ®E1, . . . ,pk/ ®Ek } to bind the event

sequences ( ®E) with the variables. Given Q and the event stream

S, a substitution γ is a match of Q in S, iff (i) all the predicates

Θ inQ evaluate to true, (ii) for events in the two event sequences

e ∈ ®Ei and e
′ ∈ ®Ei+1, we have e .t < e ′.t and (iii) all the events

in each event sequence ®Ei has timestamps less than the defined

windoww . Since no order is imposed on the selected events, it

complies to the skip-till-any-match selection strategy.

2.2 Query Tree
Given the CEP query, we need to compile it from the high-level

language into some form of automaton [1, 4, 6, 13] or a tree-

like [5, 11] structure to package the semantics and execution

framework. Since we are working with the recomputation-based

model, a traditional tree structure customised for the streaming

and recomputation settings would suit our needs. Given Q we

construct a tree, where leaf nodes are the substitution pairs,

i.e. (pi/ ®Ei ), to store the primitive events and the internal nodes

represent the joins on the defined predicates Θ and temporal

ordering. We call it a query tree Tq . Our model differs from other

tree-structures [5, 11] since we do not store any partial matches.

An example of such a tree for Query 1 is shown in Fig 2, where

we have three leaf nodes for the variables bindings a/ ®E1, b/ ®E2
and c/ ®E3. The internal nodes in Fig. 2 evaluate the defined Θ
in terms of joins (denoted as ZΘ) for all the variables p ∈ P .
Furthermore, since for a CEP query, the matched events should

follow the sequential order, joins on the timestamps (denoted as

Zt ) are also provided in the Tq .
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Figure 2: (a) Left-deep and (b) Right-deep Query tree for Query 1
in Example 1

2.3 Query Evaluation
We now present the algorithm to evaluate the query tree over the

event stream without storing the partial matches. Algorithm 1

shows the query evaluation and is divided into three main steps.

Step 1. For each incoming event e , we add e to the compatible

event sequence ®Ei , such that constant predicates (e.g. a.price >

10 ) filter the unwanted events for each ®Ei in Tq . For instance,

for a constant predicate a.price > 10, all the events in a/ ®Ei ,
should have the price > 10. This step (lines 4-6) constitutes to
the accumulation of events within a defined window.

Step 2. For each incoming event e , check if it can trigger the

query evaluation to produce matches. That is, if e can be part of

®Ek (k = |P |), it can complete a set of matches; since it contains

the highest timestamp within the window. For instance, Query 1



Algorithm 1: CEP Query Evalution

Input: Query Tree Tq and an event stream S

Output: A set of query matches

1 Q ← (P, Θ, ω, s) ; // CEP Query

2 ®E ← { ®E1, ®E2, . . . , ®Ek }, k = |P | ; // Event sequences for Tq
3 for each e ∈ S do
4 for each ®Ei ∈ ®E do
5 if isCompatible( ®Ei ,e ) then
6 ®Ei = ®Ei ∪ e ; // Step 1

7 if isCompatible( ®Ek ,e ) then
8 ExecuteJoins( ®E , Θ); // Step 2

9 ExecuteKleenePlus( ®E , Θ); // Step 3

produces thematches onlywhen an event of type c arrives. Hence,
we execute the query tree for a trigger event. By execution, we

mean executing the joins between events within each ®Ei using
the predicates Θ and timestamps t . This step (lines 7-8) assembles

all the events, in a batch manner, for each ®Ei that can produce

the set of matches.

Step 3. For ap+i ∈ P , we need to compute all the combinations for

the events in p+i /
®Ei , i.e. a power set of events in ®Ei . For instance,

in Fig. 1 and using Query 1, each a event has 2
|2 | − 1 matches for

two b events. This step (line 9) groups all the combinations by

following the one or more semantics of the Kleene+ operator.

2.4 Detailed Analysis
We now present the details of the two main processes of Algo-

rithm 1, i.e. joining the set of events and computing the power

set of events for the Kleene+ operator.

Execution of Joins. Let ®Ei and ®Ej are two event sequences

with theta-join ®Ei Z
t
Θ
®Ej over the timestamp t and predicates

Θ. Hence, we have joins on multiple relations for the Step 2.
The generic cost of such joins, i.e. pairwise join, is O(| ®Ei | | ®Ej |)
and the problem of its efficient evaluation resembles the tradi-

tional theta-joins with inequality predicates [8]. The wide range

of methods for this problem includes: the textbook merge-sort,

hash-based, band-join and various indices such as Bitmap [7].

These techniques are mostly focused on equality joins using a sin-

gle join relation, however. The inequality joins on multiple join

relations are notoriously slow and multi-pass projection-based
strategies [3, 8] are usually employed. These strategies, however,

require multiple sorting operations, each for a distinct relation,

and are only optimised for the static datasets, where indexing

time is not of much importance. Considering this, we employ

the general nested-loop join for our preliminary algorithm. Our

experimental analysis showcase that even such a naive algorithm

provides competitive performance.

Execution of Kleene+ Operator. For Step 3, we need to create
all the possible combinations of matches over the joined events.

That is, enumerating the powerset of event sequences’ with p+

bindings. A traditional solution in this context would be to gen-

erate Gray code sequence of events with p+ bindings, where a
new match can be constructed from its immediate predecessor

by adding or removing an event. However, this would require

storing the predecessor matches to produce the next one and

would result in an extra load on the memory resources. To im-

plement Kleene+ operator efficiently, we use the joined results

(from Step 2) while generating the binary representation of the
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Figure 3: Execution of the Kleene+ operator using the Banker’s
sequence and generated binary numbers

possible matches using the Banker’s sequence [10]. That is, we

check the number of events in event sequences’ with p+ bindings
after the join process. For |m | number of such events, we need to

create 1 to 2
m − 1 matches. This means if we generate all binary

numbers from 1 to 2
|m | − 1, and translate the binary represen-

tation of numbers according to the location of the events in the

p+/ ®Ei , we can produce all the matches for the Kleene+ operator

in a batch manner. For instance, consider Fig. 3 (using Query 1),

where there are three b events for the Kleene+ operator. Hence,

we generate binary numbers from 1 to 2
3 − 1. Now equates 1 as

take element at the specified location of the ®E2 and 0 as do not

take the element. Then using the generated binary numbers, we

generate all the combinations of matched events.

Complexity Analysis. Herein, we briefly present the complex-

ity analysis for the three steps described in Algorithm 1. Step
1 results in a constant time operation since an incoming event

can be directly added to an event sequence. Step 2 has a polyno-

mial time-cost (pair-wise joins) and depends on the number of

patterns P defined in a CEP query. For n events in a window and

k = |P |, we have O(nk ). Step 3 requires producing an exponen-

tial number of matches for a Kleene+ operator. For n events in a

window, we haveO(2n ). The memory cost for the Algorithm 1 is

linear to the number of events within a window.

3 EXPERIMENTAL EVALUATION
In this section, we report the results of our experimental study

on both incremental and recomputation-based methods for CEP.

Our proposed techniques have been implemented in Java and our

system is called RCEP. All the experiments were performed on a

machine equipped with Intel Xeon E3 1246v3 processor and 32

GB of memory. For robustness, each experiment was performed

3 times and we report median values.

Datasets.We employ both real and synthetic datasets to compare

the performance of our proposed techniques.

Synthetic Stock Dataset (S-SD): We use the SASE++ generator,

as used in [14], to produce the synthetic dataset. Each event

carries a timestamp, company-id, volume and the price of a

stock. This dataset enables us to tweak the selectivity measures of

matches
#of Matches
#of events to evaluate the performance of the systems

at different workloads. In total, the generated dataset contains 1

million events.

Real Credit Card Dataset (R-CCD): We use a real dataset of

credit card transactions [2]. Each event is a transaction accompa-

nied by several arguments, such as the time of the transaction,



Figure 4: Memory cost and throughput analysis of the CEP systems over the two datasets S-SD and R-CCD

the card ID, the amount of money spent, etc. This dataset con-

tains around 1.5 million events.

Queries.We consider 8 different variations of Query 1 (Section 1)

against the stock dataset. These queries variations differ by the

constant predicates and time window to control the selectivity of

producedmatches. For the credit card dataset, we use a CEP query

describing “Big after Small”pattern [2] using the SEQ(a,b+) tem-

plate. That is, an outstandingly large amount of transactions after

one or a series of small amounts.

Methodology.We compare RCEP with the SASE++ [14] and the

open source streaming system Apache Flink [6]. All of these sys-

tems support skip-till-any-match and Kleene+ operator: both

SASE++ and Flink employ incremental evaluation of partial

matches. Flink guarantees that events are processed in paral-

lel but in-order by their timestamps. Unless otherwise specified,

all experiments use a slide granularity s = 1. We measure two

standard metrics common for the CEP systems: throughput and

memory requirements [1, 12, 14]. The memory requirements

were measured by considering the resident set size (RSS) in MBs.

RSS was measured using a separate process that polls the /proc
Linux file system, once a second. We use the selectivity measures

#of Matches
#of Events and window size to test different workloads.

MemoryCost. Figs. 4 (a) and (b) show the memory consumption

of all the systems for both datasets. As expected, increase in the

selectivity measures (subsequently window sizes) results in a

large number of partial matches and an extensivememory cost for

both SASE++ and Flink. In particular, Apache Flink consumption

is exponential in terms of the number of events in the window.

SASE++ managed to sustain memory requirement due to the

superior compression of Kleene+ matches. However, with the

increase in the number of events that prefixed a new partial

match, its memory utilisation increases to about two orders of

magnitude compared to our recomputation-based approach. This

phenomenon is largely observed in Fig. 4 (b), where the credit

card dataset contains a large number of events that can initiate

a new partial match. In contrast, RCEP scales linearly to the

number of events within a window and not the partial matches.

CPUCost. Figs. 4 (c) and (d) show the relative performance of the

CEP systems over both datasets.We can see that, in general, RCEP

have much higher throughput (more than an order of magnitude)

than Flink and SASE++. As a matter of fact, SASE++ and Flink do

not produce results for several hours for themoderate selectivities

and window sizes. This is because the cost of SASE++ and Flink

is highly dependent on the number of partial matches within a

window. As the window size (subsequently selectivity) increases,

both systems produce a large number of partial matches and

spend most of their time in compressing and decompressing of

the common events within the partial matches. That is, traversing

through the stack of pointers using depth-first-search to extract

all the matches. In contrast, (i) RCEP initiates the recomputation

of matches only if the triggered events’ arrive; (ii) the execute

joins over the stored events; and (iii) the Kleene+ operator is

executed only for the events that can be part of the final matches.

Hence, RCEP performs much better and consume less memory

than SASE++ and Flink, often by 1-2 orders of magnitude.

4 LOOKING AHEAD
In this preliminary study, we have highlighted the utility of

recomputation-based CEP for expensive CEP queries. We have

proposed our first algorithm for recomputing the matches with

the arrival of new events. To our knowledge, ours is the first

algorithm of this kind in the context of CEP. Our experimental

results show that recomputation-based approach outperforms

the incremental approach used by the existing systems.

Our study opens up several directions for the future work. A

major direction is to establish techniques to efficiently store and

index events within a defined window. Without this, we cannot

discard events within an event sequence unless it is accessed

and compared with all the other events. Hence, the indexing of

events would enable us to prune irrelevant events before the

joining process. Further, we plan to consider new algorithms

for the multi-relational and inequality joins in the streaming

settings since existing algorithms are only effective for the static

workloads and require extensive indexing time. Finally, we would

like to incorporate our solution in the open-source Apache Flink

framework.
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