
HAL Id: hal-01711083
https://hal.science/hal-01711083v1

Submitted on 13 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A General Consistent Decentralized Simultaneous
Localization And Mapping Solution

Guillaume Bresson, Romuald Aufrère, Roland Chapuis

To cite this version:
Guillaume Bresson, Romuald Aufrère, Roland Chapuis. A General Consistent Decentralized Simul-
taneous Localization And Mapping Solution. Robotics and Autonomous Systems, 2015, 74, Part A,
pp.128-147. �hal-01711083�

https://hal.science/hal-01711083v1
https://hal.archives-ouvertes.fr


00 (2018) 1–20

A General Consistent Decentralized Simultaneous Localization And
Mapping Solution

Guillaume Bressona,∗, Romuald Aufrèrea,b, Roland Chapuisa

aInstitut Pascal - UMR 6602 CNRS, Clermont Université, Université Blaise Pascal - Aubière, France
bLIMOS - UMR 6158 CNRS, Clermont Université, Université Blaise Pascal - Aubière, France

Abstract

In this paper, we propose a new approach to the decentralized Simultaneous Localization And Mapping (SLAM) problem. The goal is to
demonstrate the feasibility of decentralized localization using low-density maps built with low-cost sensors. This problem is challenging at
different levels. Indeed, each vehicle localization tends to drift over time independently of one another making the global localization of a fleet
hard to achieve. To counter this effect, called SLAM inconsistency and which has been stated numerous times in the literature, we introduce a
model to represent the natural drift of SLAM algorithms. Its integration inside an Extended Kalman Filter is explained along with simulations
validating its use. The second part of this paper presents the fusion architecture designed to solve the different problems arising in a decentralized
scheme. It avoids data incest, which is an important source of inconsistency, and integrates the previously mentioned SLAM drift in the estimates
produced. This architecture also separates the SLAM classically used for mono-vehicle applications from the high-level decentralized part
offering flexibility regarding sensors and algorithms at a low-level. Other aspects, involved by the multi-vehicle settings, are also taken into
account (communication losses, latencies, desynchronizations, unknown initial positions of the fleet members and data association). The whole
algorithm has been tested in various scenarios with vehicles equipped with a single camera and an odometer. The results, from both simulated
and real scenarios, show that our approach can work in real time with very small bandwidth requirements.

Keywords:
multi-vehicle, decentralized, SLAM, EKF, monocular, drift, bias, consistency

1. Introduction

Applications involving autonomous vehicles have been vas-
tly studied among the mobile robotics community over the last
decades. The focus was mostly on the perception systems and
automatic guidance of a single vehicle. While some great re-
sults have been demonstrated, many applications are yet to be
tackled as they require a fleet of cooperating vehicles. The
emergence of fast and reliable communication means for In-
telligent Transportation Systems could heavily contribute to the
expansion of these collaborative approaches in the near future.
Moreover, it is also a first step towards self-driving cars which
will certainly require to share information to ensure safety.

Some authors have already investigated potential applica-
tions and showed impressive results. We can cite: fast explo-
ration [1][2], localization without direct observation [3], risk as-

∗Corresponding author
Email addresses: guillaume.bresson@univ-bpclermont.fr

(Guillaume Bresson), romuald.aufrere@univ-bpclermont.fr (Romuald
Aufrère), roland.chapuis@univ-bpclermont.fr (Roland Chapuis)

sessment in dangerous situations [4], augmented reality for co-
ordinated transportation [5], augmented reality for cellphones
[6], improved localization accuracy [7], dense 3D reconstruc-
tion distributed over smartphones [8]... In the literature, multi-
vehicle algorithms have been applied to field robotics [5], in-
door environments [3], AUVs [9], UAVs [10] and heteroge-
neous teams [11].

Many of the examples cited above rely on vehicles able to
localize themselves in unknown environments and share their
poses with the rest of the team. One of the most common
method to do so is for the vehicle to build a map of the environ-
ment while simultaneously localizing itself inside this map. Si-
multaneous Localization And Mapping (SLAM) has been widely
used in single-vehicle applications [12][13] and naturally ex-
tends to multi-vehicle scenarios. Indeed, a decentralized ap-
proach can quicken the mapping of an area [14] and has also
been proven to provide a better localization accuracy [15] than
mono-vehicle SLAM systems.

Nevertheless, very little algorithms have been designed to
address all the issues arising when dealing with several vehi-
cles. Indeed, there are many aspects to consider when devel-

1



G. Bresson et al. / 00 (2018) 1–20 2

oping a multi-vehicle process (data incest, unknown initial po-
sitions, bandwidth requirements, data association...) that are
tightly bound to the application aimed.

Furthermore, certain issues, already present in single-vehicle
systems, become an overriding concern in a multi-vehicle scheme.
It is, for example, the case of the natural SLAM drift as each
vehicle will drift differently from one another. This problem
has already been stated several times [16][17] and remains an
open question. Even though some methods have been devel-
oped to decrease the influence of this drift [18], none of them
have addressed its modeling and integration inside existing fil-
tering methods.

In this paper, we present a complete algorithm suited to a
multi-vehicle use [19]. Our objective is to propose an approach
that can work with any feature-based SLAM. Here, we apply
our algorithm to a low-cost monocular EKF-SLAM solution.
Our contributions are the following:

• The development of a decentralized SLAM system that
ensures the consistency of the computed localization at
a global level (vehicle fleet) and takes into account the
communication aspects involved by multi-vehicle appli-
cations (quantity of data sent, latencies, desynchroniza-
tions, communication losses).

• A general framework that can be applied to various feature-
based SLAM algorithms and that is applied here to a
monocular setting for the first time to our knowledge.

• The integration of a model representing the natural SLAM
drift which guarantees the integrity of the localization
provided by the mono-vehicle (low-level) SLAM, allows
the use of absolute information (GPS data, geo-referenced
landmarks) and can perform loop closing seamlessly.

• The real time application of our approach to various sce-
narios (simulated and real) with 2 or 3 vehicles.

The rest of this paper will be organized as follows: Sec-
tion 2 will present the state of the art regarding multi-vehicle
SLAM (Subsection 2.1) and the mono-vehicle constraints on
the decentralized part (Subsection 2.2). Then, Section 3 will
be about the SLAM divergence. The model used to represent
the drift will be exposed (Subsection 3.1) followed by its inte-
gration into a SLAM algorithm (Subsection 3.2). Some simu-
lation results concerning its single-vehicle application will be
presented (Subsection 3.3). Section 4 will first introduce the
architecture built to cope with the decentralized aspects (Sub-
section 4.1) and how unknown initial positions of vehicles are
dealt with thanks to the static part of the drift model (Subsection
4.2). Subsection 4.3 will expose the data association used in this
multi-vehicle context. Finally, in Section 5, the experiments
will be presented. Results from a realistic simulator (Subsec-
tion 5.1) and real data (Subsection 5.2) will be discussed.

2. State of the art

2.1. Multi-vehicle localization
One major aspect when building an algorithm for a fleet of

vehicles is choosing between a distributed or centralized scheme.

This choice has a big impact on the design of the whole algo-
rithm and the communication strategy. A centralized method is
easy to implement as all the vehicles only need to send infor-
mation to a centralizing entity. This central node (a vehicle or a
dedicated computer) just has to fuse all the incoming informa-
tion and share the resulting map. This scheme has been used
in many algorithms [11][20] due to its simplicity. However,
it suffers from significant drawbacks. First, in case of failure,
the vehicules are unable to access the global map. Other than
robustness, the communication requirements for a centralized
approach are higher than for a decentralized one. Indeed, the
global map, only managed inside the central node, must be reg-
ularly sent to all the vehicles of the team. Depending on the
size of the map, it can be difficult to achieve within a satisfy-
ing amount of time. Last but not least, the centralized scheme
forces every vehicle to be at reach of the entity handling the
global fusion. With a distributed approach, each vehicle is able
to relay the information through the whole network.

2.1.1. Data incest
Whatever the strategy, it is necessary to be careful about the

way data coming from different vehicles are handled. Double-
counting information can cause the overconfidence of the esti-
mates produced (vehicle poses and landmark positions). This
aspect, also known as data incest, is a common topic in the
multi-vehicle community. It has already been stated in cooper-
ative localization [21][22] and some solutions have been pro-
posed [23][24]. When building a common map, a special at-
tention must be given to this issue as landmarks are frequently
updated and could easily be mixed in the estimation process.
A 4-step example is shown in Figure 1 in which a landmark
estimate is used twice.

In [25], the authors use a dedicated network architecture
(communications are limited to neighbors) to avoid data in-
cest. The authors of [26] only exchange submaps once they are
closed (not updated anymore). Each data is consequently sent
only once thus preventing data incest. In the approach presented
in [11], the authors solely exchange a high-level (topological)
map which keeps tracks of the different submaps. The topologi-
cal map has the advantage to be light and can be easily replaced
when outdated. In [27], a graph-based approach is presented.
The map of each vehicle is compressed and sent to neighbors.
A cache filters the maps already exchanged. The common map
is then computed between neighbors based on common land-
marks. Similarly, in [28][29], a consensus is sought between
neighbors in order to find the best common map that avoids
double counting information.

In this paper, we present a new approach, based on previous
works on cooperative localization [24], which requires no ded-
icated network architecture and provides a near-optimal global
map at every moment as opposed to the previously cited meth-
ods (see Section 4).

2.1.2. Communication constraints
Ideally, a decentralized algorithm should be independent of

the number of vehicles involved regarding bandwidth require-
ments [25]. However, it requires a limiting dedicated network

2



G. Bresson et al. / 00 (2018) 1–20 3

Figure 1. An example of data incest where a landmark estimate is taken into ac-
count twice. Triangles represent vehicles and diamonds, landmarks. 1. A new
landmark is mapped by the red vehicle. It is then exchanged to the blue one.
The ellipses correspond to the localization uncertainties. 2. A new landmark is
mapped by the blue vehicle. 3. Both landmarks actually represent the same one,
they are consequently fused (green landmark). The result is exchanged to the
red vehicle. 4. The red vehicle finds that the received landmark and its own can
be fused together (same landmark). However, the received landmark already
integrates the estimate computed by the red vehicle. The result is overconfident
and the true positions (gray triangle for the vehicle and gray diamond for the
landmark) are outside of the estimated uncertainties. The true uncertainties are
the ones in dashed lines.

architecture to fulfill this condition. Instead of this constraint,
we chose to minimize the quantity of information to send in
order to have the smallest bandwidth needs possible and so a
potentially large number of vehicles communicating together.
This aspect is often neglected in the literature despite its fun-
damental implication on the design of the algorithm [26][30]
and is mainly raised in approaches only exchanging high-level
topological maps which are light [11][27][31].

Apart from the bandwidth needed, communication losses,
latencies or desynchronizations can occur. When they are not
handled, communication losses often lead to data that is def-
initely lost [30]. With an exchange strategy based on entire
submaps, it can be problematic [26]. Algorithms built around
neighbors communications are usually able to request missing
data as it is done at a more local level [27]. Similarly, in [32],
the authors used Particle Filters to apply observations no mat-
ter the order, thus allowing to solve the data loss case. Laten-
cies and desynchronizations are naturally avoided by using the
inverse form of the Kalman Filter. Indeed, with the Informa-
tion Filter, the update steps become additive, making the order
in which they are performed meaningless [9][33][34]. Other
approaches chose to exchange every piece of information only
once in order to make latencies harmless [26][30].

Communication constraints are often neglected because of
the complexity of rolling out multi-vehicle applications. Most
of the time, multi-vehicle results come from Matlab simulations
[15] [22][27][35].

2.1.3. Data association
In classic single-vehicle SLAM algorithms, data associa-

tion is mostly a tracking issue. Projecting a previously initial-

ized landmark in the sensor space and finding the best match-
ing is sufficient for most applications. Nevertheless, in a multi-
vehicle context, such algorithms are difficult to use as they in-
volve a heavy communication constraint in order to be able to
project every piece of data back in the sensor space of each
vehicle. Moreover, the fact that the location of vehicles with
relation to each other is usually unknown makes it even harder.
Data association algorithms based on sensor features should be
avoided in a multi-vehicle context. In [1][25], the authors start
with known distances between the vehicles which limits the po-
tential applications. The authors of [36] define a rendezvous in
order for each vehicle to have a direct observation of the other
ones. In [37] and [38], a GPS is first used to have a rough
estimate of the localization of the fleet. Then, grid maps are
matched thanks a genetic algorithm so as to refine the prior
knowledge provided by the GPS.

Among the data association processes developed for the multi-
vehicle context, we can cite [34] in which the authors propose to
analyze the 3 closest landmarks of each point. Thanks to some
measures (distances and angles), it is then possible to associate
together landmarks sharing the same configuration. Similarly,
in [39], landmarks are regrouped by 3. A Delaunay triangula-
tion is performed in order to obtain a unique map. The perime-
ters and areas of these triangles are then provided to a RANSAC
algorithm which aims at finding the best matching between two
maps from two different vehicles. These approaches require
that the landmarks mapped by 2 different vehicles are almost
the same.

Data association algorithms able to solve the kidnapped ve-
hicle problem (locate a lost vehicle given a map and observa-
tions) are interesting as they can be adapted to multi-vehicle ap-
plications. The Joint Compatibility Branch and Bound (JCBB)
[40] method could be considered if an accurate enough idea of
the distance between vehicles is known beforehand. Indeed,
JCBB consists in finding a set of jointly compatible landmarks
with relation to Mahalanobis distances. However, with high
uncertainties concerning the poses of the different vehicles, this
method would be inefficient and would mostly provide wrong
matchings. An alternative is the Geometric Constraints Branch
and Bound (GCBB) [41]. The idea is to define constraints be-
tween pairs of landmarks from the map and new observations.
A tree of possible pairings is then established and explored. The
most likely subset of correspondences between the map and ob-
servations is returned. The main advantage of this method is
that geometric constraints are robust when considered for a set
of landmarks (instead of associations on a case by case basis).
The other interesting aspect of this algorithm is that it only re-
quires several common landmarks to find proper associations
between two maps.

2.2. Mono-vehicle constraints on the decentralized part

2.2.1. Low-level SLAM
To be able to decorrelate the decentralized part of the algo-

rithm from the sensors used, the classic SLAM process (called
low-level from now on) must be independent of the rest. How-
ever, there is a wide variety of SLAM algorithms, making this

3



G. Bresson et al. / 00 (2018) 1–20 4

constraint hard do satisfy. We propose here an abstraction for
feature-based SLAM as they are commonly used.

Although it is essential for multi-vehicle SLAM systems to
be as much as possible independent of the sensors used, it is
necessary to keep in mind that decentralized algorithms should
not rely on expensive sensors as the cost is multiplied by the
number of vehicles composing the fleet. However, sensors must
be discriminative enough so as to track landmarks and recog-
nize previously mapped areas. Cameras seem to be a good
compromise between cost and information-richness. Monocu-
lar SLAM solutions have been widely studied [42][43] for these
reasons. Consequently, we opted for a low-level SLAM based
on a single-camera system and an odometer which are fused in
an Extended Kalman Filter. A Harris detector provides the dif-
ferent features that are then tracked in images in order to have
accurate 3D landmarks (30 points are tracked per image). It is
these points that will then be used in the decentralized part of
the algorithm to find common map portions between vehicles.
Interested readers can refer to [44] and [18] for more informa-
tion about the low-level algorithm. It is, to our knowledge, the
first time that a fully decentralized monocular SLAM algorithm
is presented.

2.2.2. SLAM inconsistency
One of the main problem of SLAM algorithms is incon-

sistency (true position of the vehicle or a landmark outside of
the estimated uncertainty) [16][17][45]. One of the source of
inconsistency is correlated to the linearization involved by the
use of non-linear models. It causes SLAM-based methods to
drift over time [46], making the filter compute biased vehicle
localizations and so divergent landmark estimates. Consistency
cannot be guaranteed [47]. With optimization approach, non-
linear solvers are also affected and can give wrong results under
the form of local minima [39]. Another source of inconsistency
has been notified by Julier and Uhlmann in [48]. They showed
that considering every piece of sensor data independently of
the previous one can also cause inconsistency. Of course, using
sensors from whose errors tend to accumulate over time (odom-
etry for instance) will also cause this phenomenom.

The drift is closely linked to the distance traveled. The
longer it is, the more significant will be the bias affecting the
localization. Experimental results also show that the error af-
fecting the orientation makes the filter diverge more than a po-
sition inaccuracy [49][50].

Most of the work so far has consisted in finding a way to
avoid sources of inconsistency. In [51], for example, the authors
create, for a single trajectory, several maps, called submaps.
When linearization errors become too important (high uncer-
tainty for the vehicle), the current submap is closed and a new
one is initialized. The reference frame is changed, making it
free from the previous drift. A global map keeps track of all the
submaps and the links between them. At a local level, the drift
is thus limited, but it is not the case when considering the global
map. Smoothing approaches [52][53] propose to keep all past
vehicle poses to re-linearize the state when necessary. While
it allows for more consistent results, it requires to keep (and

exchange in our multi-robot setting) all past poses and infor-
mation needed to perform re-linearization which can be costly
when done regularly. Covariance Intersection [54] is one way
to model unknown correlations between landmarks and the ve-
hicle pose. However, it usually implies that the results will be
globally pessimistic. Another idea to avoid inconsistency was
proposed by Roumeliotis et al. in [55]. In this paper, the au-
thors proposed not to model the dynamic behaviour of the vehi-
cle but only to consider the sensors used. The main advantage
is that it allows to directly model the errors affecting the sen-
sors (responsible for attitude estimation here) with linear equa-
tions. Nevertheless, it does not mean that cumulative errors are
avoided.

In many algorithms, divergence is corrected thanks to loop
closing [56]. It usually consists of a separated process (because
of the inconsistency of the estimates) whose role is to detect
previously visited locations. When such a match is found, a part
of the drift can be computed thanks to the distance between the
vehicle estimate during the first passing and the second. How-
ever, the drift is only partially corrected and the results are still
overconfident [17][57]. In [58], once the loop closure is iden-
tified, errors are redistributed in a probabilistic manner around
the past trajectory. It allows to avoid overconfidence but it still
does not guarantee consistency. Another solution is to integrate
absolute information (GPS positions for instance). Indeed, it
has the advantage to be drift-free as it does not refer to a rela-
tive frame. Nevertheless, a low-cost GPS can be affected by the
surroundings, especially in urban environments. In this case,
geo-referenced infrastructures with or without communication
capabilities can be an alternative [59]. With the emergence of
the 802.11p standard, Vehicle To Infrastructure (V2I) or Vehicle
To Vehicle (V2V) communications can be considered as a vi-
able solution for collaborative approaches in the coming years.
Otherwise, a simple database of geo-referenced landmarks can
help to reduce the drift [60]. The authors of [61] proposed to
search geo-referenced satellite images in a camera to improve
the vehicle localization. It is an interesting way to constrain the
divergence.

Nevertheless, estimating the drift at one moment does not
allow to represent it at any time. As a consequence, in this
paper, we chose to develop a model representing the SLAM
drift. We integrate it in an EKF so as to estimate it together
with the vehicle state and the map. Still, when it is possible, the
methods cited above can be used to occasionally estimate the
drift.

3. SLAM divergence

3.1. Bias model

The inconsistency of SLAM algorithms creates a gap be-
tween where the vehicle thinks it is and its true location. This
error is not covered by the uncertainty (covariance matrix) as-
sociated to the vehicle estimate. This gap can be seen as a bias
concerning the vehicle localization. The bias affecting the vehi-
cle depends on the length of the path traveled and is thus tightly
linked to the current curvilinear abscissa (distance traveled).

4



G. Bresson et al. / 00 (2018) 1–20 5

The direct consequence is that landmarks mapped at different
moments will be subject to different bias values (the same ap-
plies to vehicle poses).

We define the bias as the 3 parameters (translation and ro-
tation) expressing the difference between the real pose and the
estimated pose of the vehicle:

bs =
(
bxs bys bθs

)T

where (bxs bys ) is a position bias and bθs an angular one. The
choice of this 2.5D representation is mainly motivated by the
fact that the drift almost exclusively concerns these 3 parame-
ters in the case of a still camera. Of course, the equations that
follow can be extended to 6D.

This bias estimation is indexed according to the current curvi-
linear abscissa s. bs is associated to its covariance matrix Pbs

which indicates the uncertainty regarding the localization diver-
gence.

Let s be the curvilinear abscissa associated to the moment k.
The estimated and biased pose (2D position and orientation) of
the vehicle vk =

(
xk yk θk

)T
can be corrected with the bias

bs. The unbiased pose of the vehicle vuk can then be expressed
as follows:

vuk =

cos(bθs ) − sin(bθs ) 0
sin(bθs ) cos(bθs ) 0

0 0 1

 vk + bs (1)

The bias integration can also be done for landmarks. For
a landmark position lik =

(
lixk

liyk

)T
, affected by a bias bs, its

unbiased version can be computed:

luik
=

[
cos(bθs ) − sin(bθs )
sin(bθs ) cos(bθs )

]
lik +

[
bxs

bys

]
(2)

We chose to define and integrate the bias in the world frame
<w in an additive manner but it is still necessary to take into ac-
count the rotation induced by the angular drift. Integrating this
rotation in<w has the advantage to allow to completely correct
a trajectory whose angle is biased. The bias can be seen as a
frame change allowing to pass from a localization in a biased
world to a pose taking into account the drift.

The typical evolution of the drift during trajectories sug-
gests that a dynamic model is required. Autoregressive models
are a great fit as they link each new estimate to the chronologi-
cally previous one. Indeed, the evolution of the drift clearly il-
lustrates that each new estimate is tightly linked to the previous
one. However, indexing its evolution according to the elapsed
time is wrong as it would mean that a stationary vehicle could
drift. The evolution equation of a continuous stochastic linear
system [62] is:

ḃ(s) = Acb(s) + Bcu(s) + Mcε(s) (3)

where b is the state vector, Ac the state matrix (linking b tem-
porally), u the input vector, Bc the matrix linking u to b, ε the
evolution noise (assumed white) and Mc the matrix linking the
evolution noise to the state. s is the curvilinear abscissa.

In the case of the bias evolution, we consider an approxima-
tive model based on a simple random walk. Indeed, the impact
that can have the rotation matrix on the vehicle position is inte-
grated in Equation (1) and is consequently not directly involved
in the drift evolution. As a consequence, for the drift evolution,
Ac and Bc are equal to zero:

ḃ(s) = ε(s) (4)

By discretizing the system, we obtain:

bs = Abs−∆s + ε∆s

= bs−∆s + ε∆s
(5)

where bs−∆s is a previous bias estimate and ε∆s is a white noise
representing the drift occurring between s−∆s and s (∆s being
the distance traveled by the vehicle between k − 1 and k). The
state matrix A of the discrete model is defined as follows:

A = exp(Ac∆s)
= 1 (6)

As ε∆s cannot be directly estimated, it is necessary to char-
acterize its variance Pε∆s . The variance of ε∆s is given by:

Pε∆s =

∫ ∆s

0
exp(Acs)Pε exp(AT

c s)ds (7)

where Pε is the covariance matrix of the white noise ε(s):
Thanks to Equations (5) and (7), we can infer the current

bias uncertainty:

Pbs = Pbs−∆s + ∆sPε (8)

Even though this model is sufficiently accurate for SLAM
algorithms, it is not perfect. Indeed, we consider here that the
evolution of the model is independent of the physical state of
the vehicle, meaning that the bias will evolve similarly if the
vehicle is turning or just moving forward. However, by prop-
erly characterizing Pε, this model is sufficient to guarantee the
consistency of the computed localizations. This stationarity hy-
pothesis allows to empirically quantify the evolution of the bias
uncertainty:

Pε =
D2

s
(9)

where D2 represents the quadratic divergence observed over a
distance s (s should be large enough to be relevant). Pε can thus
be easily characterized for each vehicle and the environment in
which they are evolving.

We will now show the impact that can have the angular bias
integration on the vehicle position. To do so, we consider a
simple example where a vehicle moves forward on the ~x axis.
While moving, we will consider that the vehicle is only affected
by an angular drift so as to identify how bΘs affects bxs or bys .
However, as bxs and bys are purely additive on xk and yk, adding
a drift on these parameters does not change the evolution of
bΘs . After s meters and based on Equation (1), the unbiased

5



G. Bresson et al. / 00 (2018) 1–20 6

estimation of yk (the divergence on xk being meaningless), yuk ,
can be expressed as follows:

yuk = s sin(bΘs ) (10)

This drift can be considered small and Equation (10) can be
simplified:

yuk ≈ sbΘs

≈ s
∑s

i=0 ∆bΘi

(11)

The associated variance is:

σ2
yuk

= s2var[
∑s

i=0 ∆bΘi ] (12)

As the drift evolution noise is assumed white, the sum vari-
ance is the variance sum:

σ2
yuk

= s3σ2
bΘ (13)

We can notice that the angular bias has a considerable im-
pact on the position drift.

The model, defined thanks to Equation (5), shows that each
bias estimate is linked to the previous one. Let consider the link
cov(bs−∆s,bs) between the uncertainties which are associated to
the biases bs−∆s and bs. This relationship can be expressed as:

cov(bs−∆s,bs) = E[bs−∆sbs] − E[bs−∆s]E[bs]
= E[b2

s−∆s + bs−∆sε] − E[bs−∆s]E[bs−∆s + ε]
= E[b2

s−∆s] + E[bs−∆sε]
−E[bs−∆s](E[bs−∆s] + E[ε])

(14)
The noise ε is assumed white and so E[ε] = 0. As this noise

is independent of bs−∆s, E[bs−∆sε] = 0 and so:

cov(bs−∆s,bs) = E[b2
s−∆s] − E[bs−∆s]2

= Pbs−∆s

(15)

Bias uncertainties are thus always linked by the previous
variance. The major advantage of this is that if the value of the
bias can be computed at one curvilinear abscissa, the informa-
tion can be easily spread to all the different bias estimates and
still be consistent.

3.2. Bias integration
The integration of the bias inside a SLAM algorithm must

be separated from the classic SLAM process for several rea-
sons. In order to build a generic framework for existing feature-
based SLAM algorithms, this separation is essential as each al-
gorithm would require a special bias integration. Moreover, di-
rectly integrating the bias is not trivial. Indeed, integrating the
bias would mix the uncertainty of the landmark with the one of
the bias. With new observations, the uncertainty (including the
bias part) would be lowered thus causing inconsistency.

The separation naturally makes the inconsistent “low-level”
SLAM algorithm independent of the rest. The organization of
the whole system is given in Figure 2.

We use an EKF to handle the bias and the integration of
information that can help to estimate the divergence (loop clos-
ing, etc.). In this paper, the low-level is based on a monocular
EKF solution.

Figure 2. Organization of the whole system

Linking a bias estimate to the landmarks concerned or to
the previous bias is done thanks to the high-level EKF. The first
step is to connect the different bias estimates together. Indeed,
as explained before, the value of the bias at one moment is dif-
ferent from the one coming just after. It means that in order
to fully integrate the bias into the EKF, it would be necessary
to insert a new estimate each time a new landmark, or vehicle
pose, is added. The main problem is that the size of the state
vector would quickly grow and become intractable. To avoid
this issue, we chose to insert a new bias estimate periodically
based on the distance traveled (every 5 meters in our case).

As the bias cannot be directly estimated, its initialization in
the Kalman Filter is straightforward (ε equals 0):

bs = bs−∆s (16)

The lack of knowledge regarding the value of ε is integrated
into its covariance. We first initialize this covariance with infi-
nite values. The idea is to use the EKF to refine it. We define
an observation function hb:

hb(bs−∆s,bs) = bs − bs−∆s (17)

It produces an observation equals to zero, which gives a null
innovation in the Kalman equations. It means that only the co-
variance matrix of bs (Pb s) along with its link with Pbs−∆s are
affected. We set Pbo = Pbs−∆s + ∆sPε and define the observation
error as follows:

Rb = Pbo − Pb s−∆s (18)

We then compute the Jacobian matrix Hb associated to the
observation function hb to use it in the Kalman update equa-
tions.

K = PHT
b

(
HbPHT

b + Rb

)−1
(19)

P = P −KHbP (20)

with P being the covariance matrix corresponding to the global
state vector of the high-level EKF.

This update state will not only link together two consecutive
bias estimates but also all the previous bias estimates (see Eq.
(15)). With an example where a state vector is composed of four
bias estimates, the covariance matrix will be defined as follows:

P0 P0 P0 P0
P0 P1 P1 P1
P0 P1 P2 P2
P0 P1 P2 P3

 (21)

6



G. Bresson et al. / 00 (2018) 1–20 7

Integrating landmarks (and vehicle poses) in a similar man-
ner will link them with their corresponding bias estimate (and
with the rest of the state vector). The procdure is similar. The
landmark is first inserted in the state vector thanks to Equation
(2). P is then augmented with an infinite variance for the land-
mark. An update step of the filter is required to refine it. We
consider an observation zl = li with its covariance Rl = Pli , li
being the landmark coming from the low-level SLAM and Pli
its uncertainty. We define hl, the non-linear observation func-
tion allowing to pass from a landmark taking into account the
bias to one ignoring it (the opposite of Equation (2)).

hl(bi, lui ) =

[
cos(bθi ) sin(bθi )
− sin(bθi ) cos(bθi )

] (
lui −

[
bxi

byi

])
(22)

with bi being the bias estimate associated to the landmark lui .
The Jacobian Hl associated to hl is then computed and used

in the update similarly to Equations (19) and (20).
With this bias integration, the system is aware of the drift.

Finding loop closures becomes easier by taking into account
the drift as it gives a strong hint at when to look for them. Be
they loop closures, geo-referenced points or a common land-
mark between two vehicles, they all can be fused in the high-
level SLAM. It is a simple 3D point-3D point fusion where one
of the landmark is already in the state vector and connected to
its bias estimate. The fusion will impact the whole state vector.
Let consider a landmark lui already in the state vector. A land-
mark l j, just received (from the low-level or a distant vehicle), is
associated to lui (the data association process is described later
in Subsection 4.3). Let b j be the bias estimate in the state vec-
tor corresponding to l j. We consider the new landmark as an
observation z f = l j with its covariance R f = Pl j . It allows to
define the following simple observation function h f :

h f (lui ,b j) =

[
cos(bθ j ) sin(bθ j )
− sin(bθ j ) cos(bθ j )

] (
lui −

[
bx j

by j

])
(23)

The innovation of the Kalman update can be computed:

∆ = z f − h f (lui ) (24)

The Kalman gain can be calculated similarly to Equation
(19) by replacing Rb by R f and Hb with H f which is the Jaco-
bian associated to h f . H f is equal to zero everywhere except
for the landmark lui and the bias b j. The update will naturally
impact the entire state vector and will help to estimate the drift
affecting the vehicle (and landmarks) on the whole trajectory.

3.3. Simulation results

3.3.1. 1D examples
Let us consider a vehicle evolving along a line at one unit

per iteration. This speed is noised so as to simulate a localiza-
tion bias. The estimation of the bias and the vehicle pose are
integrated inside a Kalman filter. The bias cannot be directly
estimated and its covariance evolves with relation to the maxi-
mum drift given. Drift values are randomly generated. Figure 3
shows the vehicle evolution on one dimension.

Figure 3. 1D localization example of a vehicle with bias integration. Red
crosses represent vehicle pose estimates and black dots, real poses. In blue,
the uncertainty computed from the bias integration.

We can notice that the vehicle pose slowly drifts but that the
uncertainty still covers the real pose. Consistency is ensured in
this simulation.

Let now consider that after 5 units, a landmark observed at
the first unit is re-observed. The observation is fused. Figure
4 shows its impact on the bias. The values displayed here are
the ones computed at each step (the feedback on unit 1 to 4 is
therefore not visible).

Figure 4. 1D localization example of a vehicle with bias correction. Same color
code as the previous figure.

The vehicle position is corrected at the fifth unit and then
diverges progressively as no new information on the drift is
available. The landmark fusion allowed to decrease the bias un-
certainty to what it was at unit 1 where the landmark was first
seen. The uncertainty bias profile with and without the fusion
is available in Figure 5 in red.

Figure 5. Evolution and correction of the bias uncertainty on a 1D example.
In blue, the uncertainty without any fusion. In red, the uncertainty with the
landmark fused at unit 5.

As soon as the landmark is fused, the uncertainty is lowered.
At this moment (unit 5), the vehicle position at unit 3 is the
farthest from the fusion (which closes the loop between unit 1
and 5) and so the one the less affected by it.

3.3.2. 2.5D simulations
The simulations presented here will expose the impact of

the angular bias on the computed pose and its integrity. We
first consider a trajectory of 100 meters where a vehicle can
drift of 0.001 radian per meter. So as to illustrate the weight of
the angular drift, only a very small position drift is added here.
Figure 6 shows the trajectory performed while considering a
random realization of the drift.

7



G. Bresson et al. / 00 (2018) 1–20 8

Figure 6. Simulation trajectory with an angular drift. In blue, the trajectory
with the drift. In black, the ground truth. The red ellipses are the uncertainties
computed at 3σ that integrate the angular drift.

We can notice that despite the angular drift, consistency is
preserved all along the trajectory thanks to the bias evolution
and integration.

Let now show that, whatever the realization of the angular
bias, the position uncertainty integrating this drift does include
the different possible trajectories. To illustrate this point, we
ran another simulation with the same context as previously. In
this simulation, 1000 realizations of an angular bias have been
generated based on a maximal drift of 0.001 radian per meter.
The results can be seen in Figure 7.

Figure 7. Different trajectory realizations with an angular drift (in red). The
black ellipse is the uncertainty at 3σ computed based on the defined bias evo-
lution.

We can see that these 1000 realizations are almost all in-
cluded in the position uncertainty computed at 3σ. It shows
that the defined drift model is coherent and able to properly
model an angular divergence.

In the next simulation, we present a loop closing situation
(two turns on a ring). Odometric data has been generated and
the measurements have been noised in order to simulate the be-
havior of a real vehicle. Simulated landmarks have also been
created. A set of 8 points have been defined at the beginning
of the trajectory which are then used to perform loop closures
and estimate the bias. The data association is known. Figure
8(a) shows the results provided by a classic EKF not taking into
account the drift or performing data associations. Figure 8(b)
shows the same trajectory but with the bias integration (still no
associations).

We can see a strong angular drift that is growing along with

(a) Trajectory without taking
into account the bias

(b) Trajectory taking into ac-
count the bias

Figure 8. Trajectories performed without closing the loops. In black is the
ground truth. The colored curves and ellipses are the computed vehicle esti-
mates.

the distance traveled. Without taking into account the bias, the
computed vehicle positions are not consistent with relation to
the ground truth whereas it is the case as soon as the bias model
is active. In order to illustrate this aspect, we computed the
Consistency Index (as defined in [63]) for both localization re-
sults. The CI is based on the Normalized Estimation Error
Squared (NEES) and the Chi-square test. A CI lower than 1
means that the estimate is consistent with the ground truth. Es-
timates whose CI is greater than 1 are optimistic (inconsistent).
Figure 9 shows the CI for this trajectory.

(a) Consistency Index without clos-
ing the loop

(b) Zoomed view

Figure 9. Consistency Index without closing the loop. In blue is the CI with
bias integration. In green is the CI without bias estimation. The black line
represents the CI below which consistency is ensured.

Figure 10(a) shows the whole trajectory when the loop is
closed the first time the vehicle returns to the starting point. The
first lap is properly corrected and the uncertainty is still coher-
ent. During the second turn, the vehicle starts to drift similarly
to the first turn but the bias evolution is able to cover it. Figure
10(b) now illustrates the trajectory when the two loop closures
are performed.

Consistency is still ensured (see Figure 11) and the bias
estimation is able to offer a better localization (see the Root-
Mean-Square Error in Figure 12). The example of the loop clo-
sure could easily be replaced by GPS information or maps from
other vehicles. The next section will now present how this al-
gorithm has been extended to a fleet localization.

8



G. Bresson et al. / 00 (2018) 1–20 9

(a) Trajectory when closing the
loop the first time

(b) Trajectory when closing the
loop at each lap

Figure 10. Trajectories performed when closing the loops

Figure 11. Consistency Index when closing the loop with bias integration.

Figure 12. Root-Mean-Square Error with bias integration (in blue) and without
bias integration (in green).

4. Multi-vehicle SLAM

4.1. Multi-vehicle architecture

Concerning data incest (double counting information), the
strategy often used consists in never exchanging already fused
information so as to avoid considering a piece of data twice.
In [24], the vehicle states are separated in what are called sub-
states. The idea is to freely exchange the independent substates
without fearing overconfidence. When a substate is received, it
just replaces the old one. The substates can be regularly fused
in order to obtain a global state that takes advantage of all the
available information. Only the substates are shared as they are
independent. With all the substates shared, each vehicle is ca-
pable of computing the same global state as the other.

Though designed for multi-vehicle localization, this method
can be adapted to fit our needs. The biggest change is that not
only vehicle localizations must be sent but also maps. The maps
need to be separated in submaps in order to be independent and
avoid data incest. A 2-vehicle example is exposed in Figure
13. In this example, without communication, the global map
obtained by each vehicle corresponds to its own submap. Once
the submaps are shared, each vehicle can fuse them in order
to obtain a global map where the different data (landmarks and
vehicles) are expressed in a common frame. This way, land-

marks common between submaps can help correct the drift and
estimate the relative distance and orientation between vehicles.

(a) Before commu-
nication

(b) After communi-
cation

Figure 13. Separation in submaps so as to avoid data incest. In both figures, the
squares at the left are the submaps (one for each vehicle) and the square at the
right is the global map fused from the submaps. In red, information from Robot
1 and in blue, information from Robot 2. In green, information found common
(and fused) between both robots.

We define a substate Xrk of a vehicle r at a moment k as
follows:

Xrk =
(
vrk Mrk Brk

)T
(25)

where vrk is the vehicle state as defined previously, Mrk is the
map of the n accurate landmarks at the moment k, defined as
Mrk = (lr0 ... lrn )T , and Brk the m bias estimates concerning the
vehicle r at the moment k, Brk = (br0 ... brm )T .

The fused state, or decentralized map, represents the inte-
gration of the drift for each substate and the fusion of landmarks
common between vehicles when there are any. It is defined as:

Xdk =
(
Vuk Muk Bk

)T
(26)

with Vuk = (vu0k
... vup−1k

)T (p being the number of vehicles)
computed individually with Equation (1) and Murk

, the land-
marks computed thanks to Equation (22) or, when already in
the state vector, fused with Equation (23). Bk represents the
bias estimates from the different vehicles when they are con-
nected with Equation (17).

Maps grow and improve over time in a SLAM algorithm,
conversely to the localization approach described in [24], thus
preventing the replacement of a whole substate (and of the de-
centralized map) each time it changes because of the computa-
tional burden involved. It means that sending a landmark to all
the vehicles every time it is updated in the low-level is not a vi-
able solution. Indeed, it would generate a large network traffic
and above all, it would force to break the decentralized map in
order to rebuild it with the new landmark estimate. Because of
this constraint, we chose to only use landmarks from the low-
level in the decentralized part of the algorithm (in substates and
in the fused state) when they can be considered accurate (cu-
mulated standard deviation on the 3 axes below a threshold).
They also remain in the low-level algorithm while they help the
vehicle localization. However, the updates will not be brought
to the high-level for the same reasons as mentioned above. This

9



G. Bresson et al. / 00 (2018) 1–20 10

loss is negligible since only accurate landmarks are transferred.
This constraint is mainly valid when sensors do not provide ac-
curate depth immediately (as it is the case with a monocular
SLAM solution). With other sensors (laser and stereovision for
instance), landmarks are accurate when initialized, allowing to
use them right away in the decentralized part of the algorithm.

Anyway, thanks to this choice, we are able to avoid having
to break the global map. Indeed, only new landmarks (com-
ing from the low-level or the network) will be added, thus con-
stantly improving the overall map. It reinforces the separation
established in Subsection 3.2. It also means that the SLAM al-
gorithm used in the low-level can use any sensor as long as it
provides landmark estimates with their uncertainties along with
the vehicle pose. The architecture, designed for a multi-SLAM
use, is depicted in Figure 14 with the same 2-vehicle example
as before.

Figure 14. Multi-vehicle architecture (2-vehicle example)

Figure 14 maintains the structure already presented in Fig-
ure 2. The top gray block represents the classic SLAM. In this
example, the vehicle pose and 2 landmark estimates are shown.
One of them has converged (squared in black) and is thus trans-
mitted to the decentralized process along with the vehicle esti-
mate. It allows the creation of the submap 1 (blue submap). A
new bias, initialized to represent the drift affecting the landmark
and the vehicle, is inserted into the submap (circled in red in the
first submap). Submap 1 can then be sent to the other vehicles
of the team. In this example, another vehicle has communicated
its submap (in green here). The vehicle pose has been received
along with a landmark and the associated bias estimate (circled
in red in the submap 2). By fusing these two submaps inside an
EKF, the global decentralized map is obtained (right part of the
bottom gray block) where everything is expressed in a frame
common to both vehicles.

One can notice that cross-covariances are not copied from
the low-level algorithm and not sent (or received) to (from)
other vehicles. Indeed, as only accurate landmarks are kept,
cross-covariances are very weak, making them negligible com-
pared to the drift affecting all the landmarks. It allows to lighten
the communications even more. However, landmarks are still

linked by the SLAM drift which affects every landmark. The
integration of the bias, thanks to Equations (1) and (2), will
naturally retrieve the cross-covariances between landmarks and
vehicle poses. In the decentralized map of the example given
in Figure 14, it can be seen that the bias estimate affecting each
vehicle is linked to the concerned landmark and vehicle. By
finding a common landmark between submaps 1 and 2, the de-
centralized map will become entirely connected (see Subsec-
tion 3.2).

Real life applications imply to be robust against commu-
nication failures. It can be split into several problems: laten-
cies, desynchronizations and communication losses. Concern-
ing desynchronizations, they are mostly due to the fact that each
sensor delivers information at a different speed. In a decentral-
ized scheme, it is easy to understand that the number of vehicles
involved could potentially lead to unmanageable situations. In
the architecture proposed here, it is not the case as the low-level
only provides high-level information (landmarks instead of raw
measurements). Desynchronizations are thus easy to handle as
they can be avoided by sharing a time line between the differ-
ent vehicles thanks to the Network Time Protocol (NTP) for
instance. With every piece of data timestamped, it becomes
possible, with a constant velocity model, to have an estimate of
each vehicle pose whenever it is needed.

Concerning latencies, the exchange strategy prevent them
from having any effect. Indeed, landmarks pass from the low-
level to their hihg-level corresponding submap once. It is a copy
from the low-level to the high-level and so no network commu-
nications are involved. As a consequence, only one version of
each landmark will exist and be sent to other vehicles. It means
that it does not matter when it is received because this landmark
will never be updated in the submap but only in the decentral-
ized map which is not exchanged. It is also interesting because
any vehicle can share all the submaps available even if it did
not build them. Vehicles can thus act as relays to transfer infor-
mation, increasing the communication range and adding redun-
dancy. If a vehicle receives the same landmark twice, it is not
considered the second time (same landmark that is received so
there is no information loss). The system must thus be able to
identify landmarks. As a consequence, each landmark is iden-
tified with a unique index (vehicle number and landmark num-
ber) defined locally.

The unique index per landmark has also the advantage to
provide a solution to data loss. Each time a new landmark is
copied onto the high-level SLAM, the index is incremented. For
a distant vehicle, identifying missing landmarks becomes easy
as there will be a gap between the indices (for example land-
marks l1 and l3 coming from vehicle 1 are received by vehicle
2, l2 is missing). A request can then be sent to the concerned
vehicle which will respond with the missing landmarks. This
mechanism lightens the communications as it avoids sending
the substates all the time but only when necessary.

4.2. Static and dynamic biases
The dynamic bias model presented in Subsection 3.1 to-

tally suits the decentralized needs as each vehicle drifts inde-
pendently of the others. However, it is still necessary to express

10



G. Bresson et al. / 00 (2018) 1–20 11

the whole state (vehicle, landmarks and biases) of the fleet in
a common frame. Indeed, in the low-level (and in the corre-
sponding submap), everything is expressed with relation to a
local frame initialized at the starting point of the vehicle. The
easiest way to get around this problem is for each vehicle to
express the whole team in its own reference frame.

Nevertheless, doing so requires to know the distance and
orientation between each vehicle. In multi-vehicle scenarios,
considering this as a prerequisite drastically limits the poten-
tial applications. Instead of forcing the system to start with
known positions, we decided to take advantage of this knowl-
edge only if available [64]. To do so, we integrate it under the
form of a static bias which is actually the initial value of the
first bias estimate. If the distance and orientation between a ve-
hicle and a frame, common to the whole team, is approximately
known, it can be used to initialize the first bias estimate inserted
into the decentralized part of the SLAM. Approximations can
also be taken into account in the covariance matrix associated
to the bias estimate. Let us consider 2 vehicles evolving in a
200-square-meter zone for instance. If we define the reference
frame as the center of this area, each bias covariance could be
initialized with a 15-meter-radius uncertainty to be sure to in-
clude the common frame. A similar method can be followed for
relative orientations. An example is visible in Figure 15.

Figure 15. Example of static bias initializations for two vehicles. The plain
triangles are the initial estimated positions in the common frame. The ellipses
represent the static bias uncertainties. The dashed triangles are the true poses.

The main advantage of integrating a static part to the bias
is to represent any kind of knowledge available before the be-
ginning of a trajectory, be it an actual value or an uncertainty.
Another essential aspect is the preservation of consistency. In-
deed, even with no knowledge about the relative poses between
vehicles, covariance matrices can still be initialized with infinite
values. It also allows us to design a data association algorithm
based on compatibility between landmarks. With consistency
ensured, associations between landmarks coming from differ-
ent vehicles can first be filtered depending on Mahalanobis dis-
tances.

4.3. Data association in a fleet context
The state-of-the-art analysis provided in Subsection 2.1 con-

cerning data association in multi-vehicle SLAM has already
given some insights about what existing algorithms could suit a
general approach. Data association algorithms that rely heavily
on identical spatial settings for landmarks are not ideal. Though

the geometric organization of landmarks is crucial to recognize
previously seen areas, it is important to bear in mind that only a
few landmarks can be common between two maps of the same
zone. Of course, it depends on the sensors, filtering method or
feature selection algorithm used in the low-level.

The previously mentioned JCBB algorithm can be a good
fit coupled with the static bias integration. However, if the prior
knowledge about the team organization is weak, Joint Compat-
ibility will not help. The uncertainty ellipses will be large and
intersect each other frequently making it impossible to find a
proper configuration of landmarks. The consistency ensured by
the bias notion can still be used as it can discard some wrong
matches and can greatly help once the initial bias uncertainty
has been refined.

Subsection 2.1 exposed another algorithm called Geometric
Constraints Branch and Bound (GCBB). A tree of the different
association possibilities (between new landmarks and the de-
centralized map in our case) is built and explored. Some con-
straints are defined in order to find the subset of observations
that best matches a map. Even though it is possible to define
new constraints, GCBB is mostly based around a binary geo-
metric constraint. In order to be added to the current hypothe-
sis, an observation and its associated landmark must maintain a
coherent spatial organization with the already selected observa-
tions (hypothesis) and the landmarks with which they have been
associated. A hypothesis is considered correct if the number of
landmarks composing it is above a threshold (usually set to 5
or 6 common landmarks to avoid wrong associations). Figure
16 explains, with an example, how this process works with two
steps of the algorithm.

Figure 16. Data association example. In orange, the current association hypoth-
esis. Red diamonds are landmarks from the decentralized map. Green circles
are observations (new landmarks). Circled in blue are the points whose asso-
ciation is currently being tested. To be confirmed, the distances to the points
in the hypothesis must be similar between new landmarks and the global map
(plain blue lines).

When this data association algorithm was first presented in
[41], the authors stated that it can be computationally costly
because of the tree search. Indeed, with a high number of land-
marks, the amount of solutions to test quickly increases. The
bias integration allows us to add a filtering method in order to
prune unlikely branches of the tree beforehand and thus reduce

11



G. Bresson et al. / 00 (2018) 1–20 12

the exploration time. We can limit the number of landmarks
that can be associated to those which are individually compati-
ble in terms of uncertainties. The Individual Compatibility (IC)
between two landmarks, lui and lu j , respectively associated to
their covariance matrix Plui

and Plu j
, can be computed as fol-

lows:

D2
i j = νT

i jC
−1
i j νi j < χ

2
d,α (27)

with:
νi j = lui − lu j

Ci j = Plui
+ Plu j

The acceptation threshold (below which an association is
possible) is based on the Chi-squared distribution χ2

d,α. Here,
d = 2 (degrees of freedom) and we set the desired confidence,
α to 0.95. Only individually compatible landmarks remain in
the tree making its exploration faster.

This algorithm is used to detect loop closing and areas map-
ped by another member of the team. The data association is
smartly triggered to avoid useless processing. Only new points
are checked against the decentralized map. If no potential asso-
ciations are found, the landmark is directly added to the global
map and linked to the rest of the state vector. Otherwise, it is
kept inside the data association process and if enough associ-
ations sharing the same spatial configuration are available, the
fusion algorithm is triggered. As stated before, a vehicle pass-
ing through an already explored area will not map the same
landmarks. Instead of analyzing the common landmarks at one
moment, we chose to look for them in map portions. It means
that landmarks with potential matches are kept in the associ-
ation process for a certain time. If, during this period, enough
landmarks are found to certify that a place has been recognized,
a fusion will be performed. If it is not the case, the landmarks
will be added to the global map once enough time has passed.
The algorithm is presented in Figure 17.

5. Results

Different experiments have been conducted to further vali-
date our general framework and drift-aware approach.

In the experiments that follow, we consider the application
of our method to electrical vehicles capable of transporting peo-
ple in urban areas. The objective is to ease and fasten small
trips around town centers or specific locations. The number of
vehicles can vary depending on the size of the environment. In
these experiments, we present 2 and 3-vehicle cases due to the
available resources (it is also true for simulations as the com-
putational power to generate data becomes too important with
more vehicles).

Regarding network aspects, each vehicle is capable of com-
municating wirelessly with the 802.11b standard by sending
UDP datagrams. The messages, containing localization infor-
mation and landmarks, are broadcast to the whole fleet. No
specific processing are applied to ensure the delivery or handle
losses at the network level. Only the actions handled by the
architecture and described previously are used.

procedure Data association(lnew)
% lnew: new landmarks (from low-level or received)
% n: number of new landmarks
% lassociation: landmarks that can be associated with the
% global map
for i = 0 to n − 1 do

% compute if compatible with the current decentral-
% ized map with Eq. (27)
if individuallyCompatible(lnewi , Muk ) then

lassociation = [lassociation lnewi ]
else

% add landmark using Eq. (2) and (22)
addToGlobalMap(lnewi )

end if
end for
% if enough landmarks to trigger the association
if lassociation > associationThreshold then

% find associations with GCBB
lassociated = GCBB(lassociation)
if lassociated > associationThreshold then

% fuse associated landmarks with Eq. (23)
fuseInGlobalMap(lassociated, Xdk )

end if
end if
% remove old potential associations based on time
lold = removeOldAssociations(lassociation)
addToGlobalMap(lold)

end procedure

Figure 17. Association algorithm

5.1. Realistic simulations
The multi-vehicle context makes the deployment of any so-

lution difficult. The cost and the technical support required to
realize such operations are substantial. To avoid these draw-
backs, the first experiment was carried out on a simulator.

The simulator used (Cobaye)1 presents a realistic physics
with vehicles responding similarly to real ones. The environ-
ment in which the simulation took place has been mapped from
a real experimental platform (PAVIN) which will be later used
for the real experiments. PAVIN recreates an urban setting with
roads, sidewalks, roundabouts, crosswalks, traffic lights, build-
ings and so on. The simulator is only used to provide sensor
data. The processing for each application (complete SLAM) is
performed on computers totally separated from the data gener-
ation (one computer per vehicle). This way, network communi-
cations are still happening as it would with real experiments.

Concerning the simulated sensors equipped on the vehicles,
it consists of a camera providing 800x600 black and white im-
ages and an odometer. The camera is running at 10 Hz and the
vehicles are moving at 2 meters per second. In the trajectory
performed, two vehicles, equipped with the same sensors, are
involved. The algorithm is running in real time on both com-
puters. Pictures illustrating the environment and typical camera

1Cobaye is developed by 4D-virtualiz: http://www.4d-virtualiz.com
12



G. Bresson et al. / 00 (2018) 1–20 13

(a) Environment (b) Environment (c) Camera output (d) Camera output

Figure 18. Environment and camera outputs provided by the simulator

outputs can be found in Figure 18. As for all the other experi-
ments of this article, the environment is not known beforehand.

It is also worth noting that, in all the experiments of this
paper, we do not directly measure the distance separating fleet
members even if it is possible. We only use common land-
marks, shared between the vehicles, to estimate their relative
distance and orientation. However, integrating a direct obser-
vation is possible and interesting as it would allow to estimate
easily the static bias. This piece of information could be used
by the high-level Kalman filter and fused with the vehicle pose.

This first trajectory (scenario 1) illustrates one of the ad-
vantage of a fully decentralized approach: there is no leading
vehicle. The idea is to change the front vehicle during the tra-
jectory. It is also a good way to show that our algorithm is able
to deal with long distances between vehicles (here more than 10
meters). The trajectories are around 110-meter long each. An
overview is depicted in Figure 19.

Figure 19. Scenario 1: Overview of the simulated trajectory. Crosses corre-
spond to stops. The green vehicle stops in the roundabout while the blue one
takes the convoy lead for the rest of the trajectory.

The two vehicles are separated by 11 meters and start in a
column formation (green vehicle followed by the blue one). Af-
ter the first bend, the front vehicle takes the roundabout with a
longer path than the back vehicle. The vehicle which is leading
stops while the other continues its path leaving several meters
between them. The trajectory goes on until the final stop. The
common portions of the map are not very long and require the
data association to work efficiently. Concerning the bias ini-
tialization, the front vehicle starting point serves as a common

frame. The back vehicle is thus inaccurate because its initial
localization, (0, 0, 0)T , is wrong in this common frame (its true
initial localization is closer to (−11, 0, 0)T ). We chose to initial-
ize its bias uncertainty with values generating a 20-meter-radius
circle so as to not guide much the association process. To be as
clear as possible, the results presented for this trajectory (and
all the following) will only be those of one vehicle. Indeed,
information shared in the team are the same, making the differ-
ent decentralized maps identical. Here, the results are coming
from the vehicle first leading the convoy (and so the trajectory
of the other one is received thanks to network communications).
The trajectories performed by the low-level SLAM are visible
in Figure 20. Less than 400 landmarks have been mapped dur-
ing this experiment (approximately 190 landmarks per vehicle).
The low-level algorithm was tracking around 30 features per
frame.

Figure 20. Scenario 1: SLAM trajectories as perceived by the front vehicle. In
green, the front vehicle and in blue, the one starting at the back along with their
small uncertainties. The ground truth is in black.

The blue vehicle trajectory is shifted by 11 meters because
of the lack of knowledge about the distance to the common
frame. The uncertainties of both vehicles remain very small
during the whole trajectory, meaning that the integrity of the lo-
calization is not preserved. Figures 21(a) and 21(b) show how
the integration of the drift affects the uncertainties. A closer
look at the uncertainties computed by the low-level SLAM al-
gorithm is provided.

The integration of the bias model allows to achieve consis-
tent localization throughout the trajectory. In the case of Figure
21(a), the evolution of the bias uncertainty is visible as the ve-
hicle starts perfectly localized. The closer look given to the
end of the trajectory shows that the uncertainty coming from
the low-level SLAM is far from including the path really fol-

13



G. Bresson et al. / 00 (2018) 1–20 14

(a) Bias integration for the
front vehicle

(b) Bias integration for the back vehicle

Figure 21. Scenario 1: Bias integration with no associations performed

lowed by the vehicle (very small ellipses). The evolution of the
uncertainty is less obvious in Figure 21(b). Indeed, the static
bias uncertainty provided at the beginning of the trajectory is
significant (it generates a 20-meter-radius circle), making the
evolution of the dynamic part less visible. The zoom on the
end of the trajectory shows, once again, the inconsistency of
the classic SLAM.

The localization results for both trajectories with landmark
associations are given in Figure 22. For clarity purposes land-
marks are not visible, only the trajectories and uncertainties are.

Figure 22. Scenario 1: Trajectories computed by the two vehicles when the
data association is active

The localization obtained thanks to the bias integration is
close to the ground truth. The bias uncertainties have been
greatly reduced, especially for the blue vehicle which started
with a large initial covariance. The vehicle localizations main-
tain the consistency even with the reduced uncertainties.

Common portions of maps have been found. Still, it is
worth noting that not much landmarks are common to both ve-
hicles. Indeed, with a slightly different orientation for the vehi-
cle, the feature selection can be totally different. For instance,
after the roundabout, the green vehicle tends to map landmarks
from the right side of the road whereas the blue one has almost
only mapped those on the left side.

The quality of the estimated distance separating the vehicles
is exposed in Figure 23 and compared to the ground truth.

Figure 23. Scenario 1: Root-Mean-Square Error regarding the distance between
the two vehicles according to the elapsed time. In blue, RMSE computed with
the decentralized algorithm. In red, RMSE based on the SLAM estimates with-
out considering drift.

As the distance between the vehicles changes a lot, it is a
good indicator of how good the bias model is. Indeed, with new
associations, all the previous vehicle estimates are corrected be-
cause linked to the bias evolution. This retro-action helps esti-
mate the relative distance between the two vehicles (mean error
below 30 centimeters). We can see in Figure 23 that it follows
closely the real distance. The biggest gaps (around 1 meter)
occur when no associations are found. An evaluation of the
consistency is provided in Figure 24 based on the Consistency
Index and shows that the bias integration allows for a consistent
estimation even without information to reduce the drift.

(a) CI for the front vehicle

(b) CI for the back vehicle (with a zoomed view)

Figure 24. Scenario 1: Consistency Index for back and front vehicles. In red,
CI when considering only the low-level information. In blue, CI with bias inte-
gration and no associations performed. In green, CI when the bias is integrated
and associations are performed.

14



G. Bresson et al. / 00 (2018) 1–20 15

The CI is way more important for the back vehicle when the
drift is not considered as the initial error is not covered. How-
ever, even for the front vehicle, which starts perfectly localized,
consistency is not ensured (CI above 1) throughout the trajec-
tory when the bias is not integrated.

Concerning the network communications, the data transfer
rate is low. The bandwidth used by each vehicle is depicted in
Figure 25. Less than 10KB per second are needed per vehicle
which means the fleet size could be increased without fearing
network congestions.

Figure 25. Scenario 1: Quantity of data sent depending on the elapsed time.
The blue and green curves are respectively for the vehicles starting at the back
and at the front of the convoy. The quantity of data is expressed in bytes.

We replayed the same trajectories but, this time, we cut
the network during 10 seconds to test the algorithm robustness
against communication failures. As expected, localization re-
sults are almost identical. With no communications, the algo-
rithm continues to use only information coming from the low-
level. As soon as the network is available, exchange are pos-
sible. Because of the gap between landmark indices, vehicles
are able to notify that some landmarks are missing and request
them. When received, those landmarks are integrated in the de-
centralized map and used to find associations. As trajectories
are almost identical, we only present the impact of the commu-
nication interruption on the bandwidth used in Figure 26.

Figure 26. Scenario 1: Quantity of data sent depending on the elapsed time.
Same color code as previously. The quantity of data is expressed in Kilobytes.

After the interruption, big spikes can be noticed. It is due
to the answer of each vehicle to the request sent by the other.
The blue vehicle has missed 65 landmarks that were mapped
by the green vehicle during this period of time and that are thus
sent all at once when requested. The green vehicle requested 15
missing landmarks to the blue vehicle. Even with this important
interruption, the bandwidth needed is still far from technologi-
cal constraints.

The results exposed in this subsection confirm that our de-
centralized approach is viable. In terms of processing power, it
requires a standard laptop (Intel Core i5 running at 2.4GHz) to
make the algorithm run in real time. Concerning the amount of
memory used, it remains low throughout the trajectory (several
hundreds of KB) as the number of landmarks mapped is quite
small. The bandwidth needed is far from limiting as only 10KB
per second per vehicle are enough (missing information can be
spread through time to limit bandwidth needs). With techno-
logical constraints over several Megabytes per second, a large
fleet of vehicles can be considered. The sensors utilized can be
changed and a low-cost solution (one camera with an odometer)
has been proven to work in simulation. In order to fully validate
our approach, real experiments have also been carried out.

5.2. Real-life experiments

The context of the experiments on real data is very similar
to the one exposed in Subsection 5.1. The vehicles are equipped
with a single camera (Marlin F-1318 providing 1024x768 black
and white images) and use odometric information to feed a
simple motion model. The experiments are performed on the
PAVIN platform (Figure 27(b)) with electrical vehicles called
VIPALABs (Figure 27(a)). The camera of each vehicle is run-
ning at 15 frames per second and a RTK GPS is embedded to
provide a ground truth. As for the simulated scenario, the ap-
plication is executed on a laptop embedding an Intel i5 proces-
sor running at 2.4GHz. Each vehicle is using a single laptop
in a fully decentralized way. Our algorithm is running in real
time at 15Hz. All the vehicles are driven by operators. Com-
munications between vehicles are established using the Wi-Fi
802.11b standard. Some pictures coming from the cameras of
the experiments are provided in Figure 28 for a glimpse of the
environment in which the experiments take place.

(a) Electrical vehicle VIPALAB (b) Urban platform PAVIN

Figure 27. Experimental means

One advantage of our approach is that it does not require a
column-like formation. Indeed, as the algorithm is fully decen-
tralized, there is no leader in the fleet thus allowing to change
the order of a convoy, as showed previously, or to have vehicles
evolving side by side.

This configuration offers many possible applications, for in-
stance in the agricultural domain where several vehicles can
harvest a field side by side thus going faster than a single ve-
hicle. To test this setting, two vehicles moving side by side on
our experimental platform were used (scenario 2). Due to the

15



G. Bresson et al. / 00 (2018) 1–20 16

(a) (b) (c) (d)

Figure 28. Various camera outputs

size of the road, both vehicles were moving slowly, at approx-
imately 1 meter per second to avoid any accident. Likewise,
for safety reasons, only a long straight line of around 40 meters
was accomplished. The two vehicles were separated by 2 to 3
meters depending on their variable speed. An overview of the
trajectory is given in Figure 29.

Figure 29. Scenario 2: Overview of the trajectory. Circles correspond to start-
ing points of the vehicles and crosses to stops.

As for the previous experiment, the starting point of the
green vehicle is used as the common frame for both vehicles.
Both vehicles wirelessly communicate their SLAM trajectories
and maps. The trajectories performed by the SLAM algorithm
without any decentralized processing or bias integration are ex-
posed in Figure 30. 240 landmarks were mapped by both vehi-
cles (around 120 for each).

Figure 30. Scenario 2: SLAM trajectories as perceived by the right vehicle. In
green, SLAM trajectory of the right vehicle and in blue, of the left one. Ground
truth is in black for each vehicle.

The uncertainties displayed in Figure 30 are barely notice-
able further demonstrating the inconsistency of SLAM algo-
rithms. To cover the initial translation error of the blue vehi-
cle, we initialized the bias with an uncertainty of 3 meters for
the lateral error and 1 meter for the longitudinal error. Figures
31(a) and 31(b) show the SLAM trajectories with the drift inte-
gration.

Similarly, consistency is maintained throughout the trajec-
tory even though the drift remains quite small due to the small
distance traveled. In Figure 31(a), we can see that the initial

(a) Bias integration for the left ve-
hicle

(b) Bias integration for the right vehi-
cle

Figure 31. Scenario 2: Bias integration with no associations performed

value of the bias estimate ensures that the true location of the
blue vehicle is included. The localization results obtained when
the data association is active are presented in Figure 32.

Figure 32. Scenario 2: Trajectories computed by both vehicles with associa-
tions performed

The distance between the two vehicles has been recovered
and the uncertainties are consequently greatly reduced. It can
be noticed that the right vehicle (green one) has a small jump
in its localization after several meters. It is caused by an asso-
ciation between landmarks affected by an uncertainty still big
enough to allow this jump. Still, the localization is consistent
as the vehicle uncertainty is increased by this inaccuracy.

We computed the Consistency Index for both vehicles with
and without bias integration as well as when considering data
association or not. Results can be seen in Figure 33 where it can
be noticed that consistency is ensured for the whole trajectory
with our approach.

During the first part of the trajectory, the distance computed
by the decentralized algorithm oscillates with a maximum error
of 50 centimeters. When associations are found (second part of

16



G. Bresson et al. / 00 (2018) 1–20 17

(a) CI for the right vehicle (b) CI for the left vehicle

Figure 33. Scenario 2: Consistency Index for both vehicles. In red, CI when
considering only the low-level information. In blue, CI with bias integration
and no associations performed. In green, CI when the bias is integrated and
associations are performed.

the trajectory), the gap is well estimated. The error drops below
10 centimeters (see Figure 34).

Figure 34. Scenario 2: Root-Mean-Square Error regarding the distance between
the two vehicles according to the elapsed time. In blue, RMSE computed with
the decentralized algorithm. In red, RMSE based on the SLAM estimates with-
out considering drift.

As expected, the exchange rate remains very small. The
bandwidth utilized did not go above 5KB/s per vehicle which
remains very far from the current technological limitations.

The last experiment of this paper (scenario 3) presents an
example of trajectory with 3 vehicles and an important drift.
Each vehicle was moving at 2 meters per second and was equipped
with the same sensors as for the previous experiments (a cam-
era and an odometer). Each trajectory was around 125-meter
long. The overview of the trajectory is depicted in Figure 35.

Figure 35. Scenario 3: Overview of the trajectory with 3 vehicles. Circles
correspond to starting points of the vehicles and crosses to stops.

The 3 vehicles are evolving in a convoy even if the last ve-
hicle starts with a different orientation. The queue and the head
of the convoy were separated by approximately 25 meters and
the vehicle in the middle is around 15 meters ahead of the rear

vehicle. As all the vehicles were not starting at the exact same
time, these gaps change quickly after the start of the trajectory.
With a 3-vehicle setting, two vehicles start with an unknown
initial position. We used the starting point of the leading ve-
hicle (magenta one) as the common frame for the 3 vehicles.
It means that the other 2 vehicles are inaccurately localized in
this frame. Moreover, the vehicle at the back starts with a large
angular bias (around π rad).

The SLAM trajectories, without any association performed,
are visible in Figure 36. The number of landmarks tracked was
reduced to 15 per image, leading to approximately 100 land-
marks mapped per vehicle.

Figure 36. Scenario 3: SLAM trajectories as perceived by the front vehicle.
SLAM trajectory of the front vehicle in magenta and its ground truth in black,
SLAM trajectory of the vehicle in the middle of the convoy in green with its
ground truth in dark gray and SLAM trajectory of the rear vehicle in blue with
its ground truth in light gray (as vehicles are following each other, the ground
truth for the 3 vehicles are almost superimposed).

With longer distances traveled, the divergence becomes very
important, especially the angular error which makes the bends
looser than they should be. As expected, the blue vehicle totally
diverges compared to its ground truth because of the initial an-
gular error. The two other vehicles also end up far from their
ground truth due to a considerable angular drift. For the sake of
clarity, we will not expose the uncertainties of the 3 trajectories
when taking into account the bias. However, the initial bias un-
certainty covers way more than the initial real position for the
blue vehicle. Indeed, the idea was to put the data association in
a difficult situation with many potential matchings. The initial
angular bias uncertainty has been set in order to integrate an
initial angular error of 2π radians.

When the data association process is enabled, the decentral-
ized process is able to compute the trajectories visible in Figure
37. Once again, for clarity reasons, only the trajectories are
showed.

It illustrates that our decentralized application is able to es-
timate the gaps separating the vehicles thanks to several asso-
ciations. The angular drift is, of course, not corrected as it is
common to the three vehicles. Without an absolute information
(GPS) or a loop closure, it is impossible to correct the orienta-
tion as it is affecting the vehicles similarly. The angular diver-

17



G. Bresson et al. / 00 (2018) 1–20 18

Figure 37. Scenario 3: Trajectories computed by the three vehicles with asso-
ciations performed. Same color code as previously.

gence is at least constrained in the whole team by associations.
A small gap between the trajectory of the blue vehicle and

the two others can be observed. This is due to the fact that the
blue vehicle is starting in a bend whereas the others are starting
in straight lines. The consequence is that the drift is different
at the beginning of the trajectory between the two leading ve-
hicles and the last one. When associations are found, the bias
uncertainties are already too large to fully recover the distance
separating the vehicles. However, a major part of it is well-
estimated and only a small gap remains.

The evolution of the distance separating the different vehi-
cles according to the elapsed time is visible in Figure 38 with
each case detailed.

These different results illustrate that our decentralized SLAM
process is able to recover a distance profile which is quite simi-
lar to the real one. Errors can be explained by two reasons. The
first one is related to the evolution of the drift concerning the
vehicle position. Each vehicle is affected by a drift which, even
though similar, is not the same. One vehicle diverges differ-
ently from another and the true distance between the vehicles
cannot be entirely recovered due to the high uncertainties sur-
rounding the vehicle positions. A possible improvement for this
part would require a more accurate bias model. Moreover, di-
vergence is more likely during bends. It would be interesting to
integrate this aspect into the model in order to have an evolution
that follows more closely the true nature of the drift.

The second reason for these errors is related to the fact that
we only use a high-level data association process. In order to
keep our framework general, we chose to only perform associ-
ations between 3D points. The direct consequence is that it is
almost impossible to lower the error concerning the distance be-
tween the vehicles below the threshold used to notify landmarks
convergence. By re-projecting the 3D points in the sensor space
and tracking them in images, we would be able to have a better
accuracy. Of course, this can only be done by specializing our
framework for the sensors used by the low-level SLAM. An-
other solution would be to use sensors providing much accurate
landmarks such as stereovision systems or lasers.

Figure 39 shows the bandwidth requirements for each vehi-
cle.

Figure 39. Scenario 3: Quantity of data sent depending on the elapsed time.
The blue, green and magenta curves are respectively for the vehicles starting at
the back, middle and front of the convoy. The quantity of data is expressed in
bytes.

Once again, the quantity of data sent is very far from tech-
nological limitations. It can be observed that the magenta vehi-
cle sends a higher amount of information at once than the other
vehicles. This is due to the fact that we used different exchange
timers for the three vehicles to show that vehicles do not need to
have synchronized communications. The magenta vehicle was
sending information less frequently than the two others thus ex-
plained the higher quantity of data sent each time. Each vehicle
required a little bit less than 10KB/s which is very encourag-
ing for approaches which could use more or different kind of
landmarks (edges for instance).

The quality of the vehicle localizations could be improved
by mapping more landmarks. Even though the network require-
ments would not be a problem, the computational time needed
would be considerable. Beyond 40 landmarks tracked per im-
age, and with the additional cost of the decentralized layer, it
is difficult to increase the number of points in the decentral-
ized SLAM. However, with several optimizations, this limita-
tion could be less restrictive than it is now (feature selection
and matching computation moved to the GPU for instance).
The decentralized layer is quite light in terms of computational
requirements except when linking any information to its bias
estimate. Indeed, this operation depends on the size of the state
vector and can lead to heavy multiplications inside the Kalman
filter. A solution here would be to only connect together bias es-
timates and compute unbiased landmarks or vehicle poses when
needed. This approach is currently being tested. It is also pos-
sible to store most of the landmarks out of the state vector and
load them only when coming close to where they were first ob-
served. Anyway, our algorithm was running in real time all
along the experiments with a camera acquiring 15 images per
second, which is suitable for most applications.

6. Conclusion

A general decentralized SLAM solution has been presented.
We introduced several innovative elements to solve the multi-
vehicle SLAM problem while still maintaining the consistency
of the computed localizations. A model representing the natural
SLAM drift has been exposed. Its integration inside a SLAM
algorithm thanks to an Extended Kalman Filter has also been

18



G. Bresson et al. / 00 (2018) 1–20 19

(a) Distance between the blue and green vehi-
cles

(b) Distance between the blue and magenta ve-
hicles

(c) Distance between the green and magenta
vehicles

Figure 38. Scenario 3: Distances separating the vehicles all along the trajectory. In black is the true distance (RTK GPS), in red is the distance without data
association, in blue is the distance estimated thanks to the decentralized algorithm.

explained. Several simulation results validating its behavior
have been showed. They also demonstrate how easy the drift
model makes the integration of loop closures or absolute infor-
mation.

A specifically designed decentralized SLAM architecture
has been exposed. By separating the classic SLAM algorithm
from the decentralized processing, the use of various feature-
based SLAM algorithms is allowed. The organization of the
architecture avoids data incest and also handles the communi-
cation constraints (losses, latencies, etc.). The decentralized al-
gorithm does not need the initial positions of the vehicles of the
team. A prior knowledge can easily be integrated, be it under
the form of a distance and orientation to a common frame or
an uncertainty. By finding common landmarks between maps
from different vehicles, the algorithm is able to recover the rel-
ative distance and orientation between the different members of
the fleet. A data association process, built for identifying such
common map portions, has also been presented.

We carried out several experiments, both simulated and with
real data (with 2 and 3 vehicles), to validate our algorithm with
vehicles embedding only a camera and an odometer. The re-
sults, obtained in real time, show that the bandwidth required
by our application is very small. Good localization results are
also exposed in these experiments while preserving consistency.
The drift model could be improved by making its evolution
more tied to the steering angle which seems to be the biggest
cause of inconsistency. Current works are directed towards the
integration of landmarks in the decentralized map in order to
reduce to computational requirements and extend the number
of landmarks that could be used.

References

[1] W. Burgard, M. Moors, C. Stachniss, F. Schneider, Coordinated Multi-
Robot Exploration, IEEE Transactions on Robotics 21 (3) (2005) 376–
386.

[2] C. M. Gifford, R. Webb, J. Bley, D. Leung, M. Calnon, J. Makarewicz,
B. Banz, A. Agah, Low-Cost Multi-Robot Exploration and Mapping, in:
IEEE International Conference on Technologies for Practical Robot Ap-
plications, 2008, pp. 74–79.

[3] H. S. Lee, K. M. Lee, Multi-Robot SLAM Using Ceiling Vision, in:
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2009, pp. 912–917.

[4] A. Kleiner, D. Sun, Decentralized SLAM for Pedestrians without direct
Communication, in: IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2007, pp. 1461–1466.

[5] H. Li, F. Nashashibi, Multi-vehicle Cooperative Perception and Aug-
mented Reality for Driver Assistance: A Possibility to ’See’ Through
Front Vehicle, in: IEEE International Conference on Intelligent Trans-
portation Systems, 2011.

[6] K. C. Pucihar, P. Coulton, Towards Collaboratively Mapped Multi-View
Mobile Augmented Reality, in: Workshop on Mobile Augmented Reality:
Design Issues and Opportunities, Mobile Human Computer-Interaction,
2011.

[7] I. M. Rekleitis, G. Dudek, E. E. Milios, Multi-Robot Collaboration for
Robust Exploration, in: IEEE International Conference on Robotics and
Automation, Vol. 4, 2000, pp. 3164–3169.

[8] N. Barrena, J. R. Sánchez, A. Garcı́a-Alonso, A Distributed and Collabo-
rative vSLAM Framework for Real-Time Localisation in Huge Environ-
ments for Mobile Devices, in: Eurographics, 2013.

[9] J. V. Diosdado, I. T. Ruiz, Decentralised Simultaneous Localisation and
Mapping for AUVs, in: 2nd SEAS DTC Technical Conference, 2007, p.
A14.

[10] L. L. S. Ong, M. Ridley, J.-H. Kim, E. Nettleton, S. Sukkarieh, Six DoF
Decentralised SLAM, in: Australasian Conference on Robotics and Au-
tomation, 2003, pp. 10–16.

[11] T. A. Vidal-Calleja, C. Berger, J. Solà, S. Lacroix, Large Scale Mul-
tiple Robot Visual Mapping with Heterogeneous Landmarks in Semi-
structured Terrain, Robotics and Autonomous Systems 59 (9) (2011) 654–
674.

[12] T. Bailey, H. Durrant-Whyte, Simultaneous Localization and Mapping
(SLAM): Part II, IEEE Robotics and Automation Magazine 13 (3) (2006)
108–117.

[13] H. Durrant-Whyte, T. Bailey, Simultaneous Localization and Mapping:
Part I, IEEE Robotics and Automation Magazine 13 (2) (2006) 99–110.

[14] W. Burgard, M. Moors, D. Fox, R. Simmons, S. Thrun, Collaborative
Multi-Robot Exploration, in: IEEE International Conference on Robotics
and Automation, Vol. 1, 2002, pp. 476–481.

[15] J. W. Fenwick, P. M. Newman, J. J. Leonard, Cooperative Concur-
rent Mapping and Localization, in: IEEE International Conference on
Robotics and Automation, Vol. 2, 2002, pp. 1810–1817.

[16] J. A. Castellanos, J. Neira, J. D. Tardós, Limits to the Consistency of
EKF-Based SLAM, in: 5th IFAC Symposium on Intelligent Autonomous
Vehicles, 2004.

[17] A. Martinelli, N. Tomatis, R. Siegwart, Some Results on SLAM and the
Closing the Loop Problem, in: IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2005, pp. 2917–2922.

[18] G. Bresson, T. Féraud, R. Aufrère, P. Checchin, R. Chapuis, Parsimo-
nious Real Time Monocular SLAM, in: IEEE International Conference
on Intelligent Vehicles, 2012, pp. 511–516.

19



G. Bresson et al. / 00 (2018) 1–20 20

[19] G. Bresson, R. Aufrère, R. Chapuis, Consistent Multi-robot Decentralized
SLAM with Unknown Initial Positions, in: 16th International Conference
on Information FUSION, 2013.

[20] A. Gil, O. Reinoso, M. Ballesta, M. Juliá, Multi-robot visual SLAM using
a Rao-Blackwellized particle filter, Robotics and Autonomous Systems
58 (1) (2010) 68–80.

[21] S. P. McLaughlin, R. J. Evans, B. Krishnamurthy, Data Incest Removal in
Survivable Estimation Fusion Architecture, in: International Conference
on Information Fusion, Vol. 1, 2003, pp. 229–236.

[22] M. Hua, T. Bailey, P. Thompson, H. Durrant-Whyte, Decentralised Solu-
tions to the Cooperative Multi-Platform Navigation Problem, IEEE Trans-
actions on Aerospace and Electronic Systems 47 (2) (2011) 1433–1449.

[23] A. Bahr, M. R. Walter, J. J. Leonard, Consistent Cooperative Localization,
in: IEEE International Conference on Robotics and Automation, 2009,
pp. 3415–3422.

[24] N. Karam, F. Chausse, R. Aufrère, R. Chapuis, Localization of a Group of
Communicating Vehicles by State Exchange, in: IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2006, pp. 519–524.

[25] E. Nettleton, S. Thrun, H. Durrant-Whyte, S. Sukkarieh, Decentralised
SLAM with Low-Bandwidth Communication for Teams of Vehicles, in:
Field and Service Robotics, 2006, pp. 179–188.

[26] S. B. Williams, G. Dissanayake, H. Durrant-Whyte, Towards Multi-
Vehicle Simultaneous Localisation and Mapping, in: IEEE International
Conference on Robotics and Automation, 2002, pp. 2743–2748.

[27] A. Cunningham, M. Paluri, F. Dellaert, DDF-SAM: Fully Distributed
SLAM using Constrained Factor Graphs, in: IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2010.

[28] R. Aragues, E. Montijano, C. Sagues, Consistent Data Association in
Multi-Robot Systems with Limited Communications, in: Robotics: Sci-
ence and Systems, 2010, pp. 51–58.

[29] R. Aragues, J. Cortes, C. Sagues, Dynamic Consensus for Merging Visual
Maps under Limited Communications, in: IEEE International Conference
on Robotics and Automation, 2010, pp. 3032–3037.

[30] M. Pfingsthorn, B. Slamet, A. Visser, A Scalable Hybrid Multi-Robot
SLAM Method for Highly Detailed Maps, in: RoboCup 2007: Robot
Soccer World Cup XI, 2007, pp. 457–464.

[31] H. J. Chang, C. S. G. Lee, Y. C. Hu, Y.-H. Lu, Multi-Robot SLAM with
Topological/Metric Maps, in: IEEE/RSJ International Conference on In-
telligent Robots and Systems, 2007, pp. 1467–1472.

[32] A. Martin, M. R. Emami, Just-in-time Cooperative Simultaneous Local-
ization and Mapping, in: International Conference on Control, Automa-
tion, Robotics and Vision, 2010, pp. 479–484.

[33] R. H. Deaves, D. Nicholson, D. W. Gough, L. A. Binns, P. Vangasse,
P. Greenway, Multiple Robot System for Decentralized SLAM Investiga-
tions, in: Sensor Fusion and Decentralized Control in Robotic Systems
III, Vol. 4196, 2000, pp. 360–369.

[34] S. Thrun, Y. Liu, Multi-Robot SLAM With Sparse Extended Information
Filers, in: 11th International Symposium of Robotics Research, 2003, pp.
254–266.

[35] M. M.D.P., W. S. Wijesoma, B. Kalyan, N. M. Patrikalakis, P. Moghadam,
Collaborative Multi-Vehicle Localization and Mapping in High Clutter
Environments, in: International Conference on Control, Automation,
Robotics and Vision, 2010, pp. 1422–1427.

[36] X. S. Zhou, S. I. Roumeliotis, Multi-robot SLAM with Unknown Initial
Correspondance: The Robot Rendezvous Case, in: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2006, pp. 1785–
1792.

[37] H. Li, F. Nashashibi, A new method for occupancy grid maps merging:
Application to multi-vehicle cooperative local mapping and moving ob-
ject detection in outdoor environment, in: International Conference on
Control, Automation, Robotics and Vision, 2012, pp. 632–637.

[38] H. Li, F. Nashashibi, Multi-vehicle cooperative localization using indi-
rect vehicle-to-vehicle relative pose estimation, in: IEEE International
Conference on Vehicular Electronics and Safety, 2012, pp. 267–272.

[39] A. Cunningham, K. M. Wurm, W. Burgard, F. Dellaert, Fully Distributed
Scalable Smoothing and Mapping with Robust Multi-robot Data Associ-
ation, in: IEEE International Conference on Robotics and Automation,
2012, pp. 1093–1100.

[40] J. Neira, J. D. Tardós, Data Association in Stochastic Mapping Using the
Joint Compatibility Test, IEEE Transactions on Robotics and Automation
17 (6) (2002) 890–897.

[41] J. Neira, J. D. Tardós, J. A. Castellanos, Linear time vehicle relocation in
SLAM, in: IEEE International Conference on Robotics and Automation,
Vol. 1, 2003, pp. 427–433.

[42] J. Montiel, J. Civera, A. J. Davison, Unified Inverse Depth Parametriza-
tion for Monocular SLAM, in: Robotics: Science and Systems, Philadel-
phia, USA, 2006.

[43] A. J. Davison, Real-Time Simultaneous Localisation and Mapping with a
Single Camera, in: IEEE International Conference on Computer Vision,
Nice, France, 2003, pp. 1403–1410.

[44] G. Bresson, T. Féraud, R. Aufrère, P. Checchin, R. Chapuis, A New Strat-
egy for Feature Initialization in Visual SLAM, in: IEEE/RSJ International
Conference on Intelligent Robots and Systems Workshop on Perception
and Navigation for Autonomous Vehicles in Human Environment, 2011,
pp. 115–120.

[45] S. Huang, G. Dissanayake, Convergence and Consistency Analysis for
Extended Kalman Filter Based SLAM, IEEE Transactions on Robotics
23 (5) (2007) 1036–1049.

[46] Y. Bar-Shalom, X. R. Li, T. Kirubarajan, Estimation with Applications to
Tracking and Navigation, Wiley-Interscience, 2001.

[47] S. Julier, J. Uhlmann, Building a Million Beacon Map, in: Sensor Fusion
and Decentralized Control in Robotic Systems IV, Vol. 4571, 2001, pp.
1–9.

[48] S. Julier, J. Uhlmann, General Decentralized Data Fusion with Covariance
Intersection, CRC Press, 2001, chapter 12.

[49] T. Bailey, J. Nieto, J. Guivant, M. Stevens, E. Nebot, Consistency of the
EKF-SLAM Algorithm, in: IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 2006, pp. 3562–3568.

[50] U. Frese, A Discussion of Simultaneous Localization and Mapping, Au-
tonomous Robots 20 (1) (2006) 25–42.

[51] C. Estrada, J. Neira, J. D. Tardós, Hierarchical SLAM: real-time accurate
mapping of large environments, IEEE Transactions on Robotics 21 (4)
(2005) 588–596.

[52] F. Dellaert, M. Kaess, Square Root SAM: Simultaneous localization and
mapping via square root information smoothing, The International Jour-
nal of Robotics Research 25 (12) (2006) 1181–1203.

[53] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, F. Dellaert,
iSAM2: Incremental smoothing and mapping using the Bayes tree, The
International Journal of Robotics Research.

[54] S. J. Julier, J. K. Uhlmann, Using covariance intersection for slam,
Robotics and Autonomous Systems 55 (1) (2007) 3–20.

[55] S. Roumeliotis, G. Sukhatme, G. A. Bekey, et al., Circumventing dynamic
modeling: Evaluation of the error-state kalman filter applied to mobile
robot localization, in: Robotics and Automation, 1999. Proceedings. 1999
IEEE International Conference on, Vol. 2, IEEE, 1999, pp. 1656–1663.

[56] B. Williams, M. Cummins, J. Neira, P. Newman, I. Reid, J. Tardós, A
comparison of loop closing techniques in monocular SLAM, Robotics
and Autonomous Systems 57 (12) (2009) 1188–1197.

[57] G. Bresson, R. Aufrère, R. Chapuis, Loop Closing in a Drift-Aware
Monocular SLAM, in: IFAC Intelligent Autonomous Vehicles Sympo-
sium, 2013.

[58] D. M. Cole, P. M. Newman, Using Laser Range Data for 3D SLAM in
Outdoor Environments, in: IEEE International Conference on Robotics
and Automation, 2006, pp. 1556–1563.

[59] D.-S. Seo, D. Won, G.-W. Yang, M.-S. Choi, S.-J. Kwon, J. W. Park, A
Probabilistic Approach for Mobile Robot Localization under RFID Tag
Infrastructures, in: International Conference on Control, Automation and
Systems, 2005, pp. 1797–1801.

[60] G. Bresson, R. Aufrère, R. Chapuis, Making Visual SLAM Consistent
with Geo-Referenced Landmarks, in: IEEE International Conference on
Intelligent Vehicles, 2013.

[61] G. Conte, P. Doherty, Vision-Based Unmanned Aerial Vehicle Navigation
Using Geo-Referenced Information, EURASIP Journal On Advances In
Signal Processing (2009) 10–32.

[62] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, Vol. 1, MIT Press
Cambridge, 2005.

[63] L. M. Paz, J. D. Tardós, J. Neira, Divide and Conquer: EKF SLAM in
O(n), IEEE Transactions on Robotics 24 (5) (2008) 1107–1120.

[64] G. Bresson, R. Aufrère, R. Chapuis, Real-time Decentralized Monocular
SLAM, in: International Conference on Control, Automation, Robotics
and Vision, 2012.

20


