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Abstract

Learning sparse linear models with two-way interactions is desirable in many application
domains such as genomics. `1-regularised linear models are popular to estimate sparse models,
yet standard implementations fail to address specifically the quadratic explosion of candidate
two-way interactions in high dimensions, and typically do not scale to genetic data with hundreds
of thousands of features. Here we present WHInter, a working set algorithm to solve large `1-
regularised problems with two-way interactions for binary design matrices. The novelty of
WHInter stems from a new bound to efficiently identify working sets while avoiding to scan
all features, and on fast computations inspired from solutions to the maximum inner product
search problem. We apply WHInter to simulated and real genetic data and show that it is more
scalable and two orders of magnitude faster than the state of the art.

1 Introduction

In application domains where the number of features exceeds the number of available samples,
sparsity-inducing regularisers have a long history of success. Genomic prediction of complex phe-
notypes, biomedical imaging, astronomy or finance are a few examples. In particular the least
squares with `1 regularisation, known as the LASSO (Tibshirani, 1996), has been extensively stud-
ied. It enjoys desirable statistical properties, since the number of samples required for exact support
recovery of a sparse model scales as the logarithm of the number of features, under some assump-
tions (Wainwright, 2009). It also enjoys practical advantages, notably the interpretability of the
learned models and the availability of fast solvers.

Indeed, a lot of research effort has been devoted to accelerating solvers for sparsity constrained
problems in high dimension. A central idea is to exploit the sparsity of the solution to develop
algorithms that do not spend too much time on optimising coefficients that will end up being 0. For
example, safe screening rules identify features which are guaranteed to be inactive at the optimum
so that their corresponding coefficients can be safely zeroed and set aside from the pool of coeffi-
cients to update (El Ghaoui et al., 2012; Xiang et al., 2011; Xiang and Ramadge, 2012; Fercoq et al.,
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2015; Wang et al., 2013; Raj et al., 2016). Dynamic screening rules (Bonnefoy et al., 2015) such
as the GAP safe rules (Fercoq et al., 2015) are particularly useful since more and more coefficients
can be safely zeroed while the solver approaches the optimal solution. In spite of this, safe rules
tend to be conservative, thereby limiting the potential speed-up. To remedy this drawback, new
working set heuristics have been proposed. Working set algorithms iteratively solve subproblems,
either problems restricted to a subset of features in the primal or to a subset of constraints in
the dual, until convergence. Working set methods allow to focus coefficient updates on a set of
features which can be significantly smaller than that yielded by safe rules. However this comes at a
cost, that of checking the optimality conditions for all features at each iteration. BLITZ (Johnson
and Guestrin, 2015) is a recently proposed working set algorithm that has been shown to have
state-of-the-art performance for `1-regularised problems. Interestingly, the choice of the working
sets in BLITZ can be seen as an aggressive use of the GAP safe rules (as noted in Massias et al.,
2017) where the size of the working set is chosen to maximise the progress towards convergence.
BLITZ can therefore be combined with the GAP safe rules (or the FLEX constraint elimination
according to Johnson et al. terminology) at no cost. A direct comparison between BLITZ and the
GAP safe rules by Ndiaye et al. (2017) illustrates the effectiveness of the working set approach.
Further developments have also focused on coordinate descent (CD) to avoid wasteful coordinate
updates, which represent most of the time spent by the solver (Fujiwara et al., 2016; Johnson and
Guestrin, 2017).

The problem of fitting sparse linear models with two-way interactions has also attracted at-
tention during the past decade. By two-way interactions we mean the entry-wise multiplication
between two features; this is for example important in genomics to detect possible epistasis between
genes. Surprisingly, very few of these works have links with the aforementioned literature. A ma-
jority of them focus on the design of sparsity-inducing penalties which enforce heredity assumptions
and apply to moderate-dimensional settings (p < 1, 000) (Radchenko and James, 2010; Bien et al.,
2013; Lim and Hastie, 2015; Haris et al., 2016). Heredity assumptions state that an interaction can
be included in the model only if one or both of its corresponding main effects are included. We note
however that glinternet (Lim and Hastie, 2015) was applied to higher dimensional problems and
in particular to a dataset with roughly p = 27, 000 main effects, although the size of the learned
model is not specified and the running time for the experiment is not reported by the authors.
Interestingly, glinternet uses an active set strategy. Comparatively few works have been devoted
to learning sparse regression models with interactions when the number of interactions is higher.
Most of them are heuristics which start by selecting main effects and then incorporate interactions
generated under the heredity constraint in a possibly iterative fashion. The simplest form of such
heuristics consists in fitting a sparse linear model with the main effects only, and then fitting a
second sparse linear model on all previously selected main effects and their interactions. This has
been used in practice for example by Wu et al. (2009). Iterative refinements have been proposed
where the LASSO is fit several times, and each time the set of candidate interactions considered is
updated either by subsets, with the interactions between the K most relevant main effects selected
at the previous fit (Bickel et al., 2010), or in a greedy fashion, where new interactions are included
in the model as soon as a new main effect enters the LASSO path (Shah, 2016). In a similar vein,
Hao and Zhang (2014) is based on a greedy model selection procedure instead of several LASSO
fits. While these heuristics can deal with higher-dimensional problems than previous methods and
enjoy some desirable statistical properties, they do not provide exact solutions and do not enjoy
statistical properties as strong as those of the LASSO estimator.

An interesting link between the literature on interactions and that of solver acceleration with
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Figure 1 – Organisation of the main effects and interactions in a tree, depicted for 4 main effects.

sparsity inducing norms has been made recently by Nakagawa et al. (2016). In the case where
variables are binary or with values in [0, 1], they propose an approach called Safe Pattern Pruning
(SPP) which is able to provide the optimal solution of the LASSO with two-way interactions for
fairly high-dimensional problems, with no heredity constraint. Typically, for a problem with 1,000
samples and 10,000 main effects, SPP can provide solutions for a grid of regularisation parameters
within one or two hours on a laptop with one core. SPP relies on the recently developed GAP
safe screening rules. More precisely, the authors propose a safe pattern pruning criterion that can
safely discard subsets of interactions from the model to speed up convergence. The performance
of SPP is however hindered by several factors. One of them is that safe screening rules can be
quite conservative even in the sequential setting. This property is inherited and amplified by the
SPP criterion which can lead to heavy computations. Moreover, the GAP safe rules rely on a dual
feasible point which is expensive to compute especially when the number of interactions is huge.

Inspired by SPP and the acceleration of solvers for sparsity constrained problems we propose
a scalable algorithm, WHInter, to compute the optimal solution of `1-regularised linear problems
with two-way interactions. WHInter is a working set method that efficiently delineates working
sets among all interactions and main effects thanks to two contributions. First, we introduce a
cheap and effective bound to rule out subsets of interactions that are guaranteed to be outside
of the working set. Second, the identification of the working set among the remaining features is
cast as a variant of the Maximum Inner Product Search (MIPS) problem to alleviate the afferent
computational load. We find that WHInter is up to two orders of magnitude faster than SPP. For
example, a problem with roughly 700 samples and 100,000 main effects can be solved for a grid
of regularisation parameters in half an hour on a laptop with one core compared to more than 30
hours with SPP. This improvement in the scalability opens up new horizons in several application
fields. The rest of the paper is organised as follows. In section 2, we present useful knowledge and
notations used throughout the paper. In section 3 we describe in details our algorithm and our
main contributions. In section 4, we evaluate WHInter on simulated datasets and finally in Section
5, we report results on a toxicogenomics prediction task.

2 Preliminaries

2.1 Setting and notations

For any integer d ∈ N, we note JdK = {1, . . . , d} and 1d ∈ Rd the d-dimensional vector of 1’s. For

any vector u = (u1, . . . ,ud) ∈ Rd, we note ‖u ‖1 =
∑d

i=1 |ui |, ‖u ‖2 =
(∑d

i=1 u2
i

)1/2
, supp(u) =

{i ∈ JdK : ui 6= 0} and ‖u ‖0 = | supp(u) |. For any two vectors u,v ∈ Rd, u � v is the vector
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Table 1 – Summary of useful functions for the LASSO and logistic regression: loss function fi,
its derivative f ′i , its Fenchel-Legendre transform f∗i .

fi(u) f ′i(u) f∗i (u)

LASSO 1
2 (yi − u)2 u− yi

1
2 (yi + u)2 − 1

2y2
i

Logistic regr. log(1 + exp(−yiu)) − u
yi

log(− u
yi

) + (1 + u
yi

) log(1 + u
yi

) −yi
1+exp(yiu)

of entry-wise products, i.e., (u � v)i := uivi for i = 1, . . . , d. For any matrix M, we denote by
Mi,j its (i, j)-th entry, Mj its j-th column and by mi its i-th row. For any u ∈ Rd and I ⊂ JdK,
uI = (ui)i∈I , and similarly, if M is a matrix with d columns, MI is the sub-matrix with | I |
columns MI = (Mi)i∈I .

Throughout the text we consider a design matrix X ∈ {0, 1}n×p corresponding to n samples and
p binary features, together with a response vector y ∈ Rn. We define an expanded design matrix
Z ∈ {0, 1}n×D, with D = p(p + 1)/2, which contains all p features from X plus the p(p − 1)/2
interaction features. For clarity purposes, we define a symmetric indexing function τ : JpK2 7→ JDK
that uniquely assigns to every main effect and interaction an index in the expanded matrix Z such
that Zτ(j,k) = Zτ(k,j) := Xj � Xk. In particular Zτ(i,i) = Xi � Xi = Xi represents the ith main
effect. Since X is a binary matrix, the interaction feature Xj �Xk corresponds to a logical AND
between features Xi and Xj . We organise the main effects and interactions in a simple tree as
depicted in Figure 1 so as to reflect the property that ∀(j, k) ∈ JpK2 ,Zτ(j,k) ≤ Xj and Zτ(j,k) ≤ Xk.
In the sequel, the set composed of a main effect and its interactions with all other main effects will
be referred to as a branch and for for any j ∈ JpK, we note branch(j) = {τ(j, k) : k ∈ JpK}.

We consider the convex optimization problem:

min
(w,b)∈RD×R

PZ,λ(w, b) := F (Zw + b1n) + λ ‖w‖1 :=

n∑
i=1

fi (ziw + b) + λ ‖w‖1 , (1)

where λ > 0 is a regularisation parameter and, for any i ∈ JnK, fi : R 7→ [−∞,+∞] is a loss function
parametrised by yi and assumed to be convex and differentiable. Table 1 provides examples of
classical loss functions in classification and regression. A dual formulation of (1) reads:

max
θ∈Rn

DZ,λ(θ) := −
n∑
i=1

f∗i (−θi) s.t.

{∣∣Z>i θ∣∣ ≤ λ ∀i ∈ JDK ,
1>n θ = 0 ,

(2)

where f∗i is the Fenchel-Legendre transform of the loss fi, i.e., the function f∗i : R 7→ [−∞,+∞]
defined by f∗i (u) = supv∈R uv − fi(v). For the derivation of the dual problem, we refer the reader
to Johnson and Guestrin (2015, Appendix E). The constraint 1>n θ = 0 comes from the bias term
b1n in the primal problem (1). We denote by (w∗, b∗) and θ∗ a set of primal and dual optimal
solutions to problems (1) and (2) respectively. Strong duality holds and therefore (w∗, b∗) and θ∗

satisfy Fermat’s rules (Ndiaye et al., 2017):

θ∗ = −∇F (Zw∗ + b∗1n) , (3)

and

∀i ∈ JDK , Z>i θ
∗ ∈

{
{−λ, λ} if w∗i 6= 0 ,

[−λ, λ] if w∗i = 0 .
(4)
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2.2 Basic working set algorithm

A general strategy to solve (1) is to follow a working set approach, as summarised in Algorithm 1.
At each iteration, it solves (1) restricted to a small subset of features W called the working set.
W is typically chosen as the set of features that violate the optimality condition (4) at the current
iteration. In the sequel, we will call such features violating features, and the branches which contain
at least one violating feature will be called violating branches. The algorithm converges when no
violating feature remains, which occurs in a finite number of iterations as shown in Kowalski et al.
(2011). When the number of interaction features runs into the billions, Algorithm 1 is not tractable
since the delineation of the working set (line 3 in Alg. 1) requires O(p2n) operations at each iteration.

Algorithm 1 Working set algorithm

Input: Z ∈ {0, 1}n×p,y ∈ Rn, λ > 0
Output: w∗, b∗

1: Set θ ← −∇F (0n), W = ∅. . Initialisation
2: while true do
3: W ′ =

{
i ∈ JDK :

∣∣Z>i θ∣∣ ≥ λ} . Update the working set
4: if maxi∈W ′

∣∣Z>i θ ∣∣ ≤ λ then Break else W ←W ′
5: w∗W , b

∗ ← argmin
wW ,b

PZW ,λ(wW , b) . Solve subproblem

6: θ ← −∇F (ZWw∗W + b∗1n).
7: end while

3 The WHInter algorithm

3.1 Overview

WHInter is a working set algorithm that follows the general scheme of Algorithm 1 but implements
an efficient strategy to delineate the working set among all main effects and interactions. It is de-
scribed in Algorithm 2. The identification of the working set (line 3 in Algorithm 1) corresponds to
lines 11-18 in Algorithm 2. Instead of scanning through all features to build the working set, WHIn-
ter first identifies branches that are guaranteed to contain no violating feature. These branches are
identified via the evaluation of a branch bound η(Xj ,Θ

ref
j ,θ,mref

j ) (line 13) which is described in
Section 3.2. The branch bound is cheap to evaluate since it solely depends on main effects and
not on their numerous interactions. Moreover, it is designed to efficiently rule out branches thanks
to the exploitation of the shared structure among features in a branch, as well as the correlation
among dual variables for two sufficiently close points in the optimisation path. In cases where a
branch cannot be ruled out, features in the branch are considered one by one to build the working
set, which is very computationally expensive. In order to reduce this cost, we cast the problem as a
variant of the Maximum Inner Product Search (MIPS) problem, which is described in Section 3.3.
If no violating feature is identified then the algorithm has converged. Otherwise, a new candidate
solution is obtained by solving problem (1) restricted to the features in the working set, and the
process is repeated until no violating feature remains. While any solver can be used to solve the
restricted problem, we implemented in WHInter a coordinate descent approach with safe pruning.
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Algorithm 2 WHInter

Input: X ∈ {0, 1}n×p, y ∈ Rn, λ1 > · · · > λT .
Output: (W,w∗W , b

∗)t for each λt
1: θ ← −∇F (0n)
2: for j in JpK do

3: Θref
j ← θ

4: end for
5: W,mref ← update W(X,θ, JpK , λ1, ∅) . See Section 3.3
6: for t = 1 to T do
7: w∗W , b

∗ ← argmin
wW ,b

PZW ,λt(wW , b) . Pre-Solve

8: θ ← −∇F (ZWw∗W + b∗1n).
9: W,mref ← clean W(W, λt,θ,Θ

ref ,mref )
10: while true do
11: V ← ∅ . Identify violated branches
12: for j in JpK do

13: if η(Xj ,Θ
ref
j ,θ,mref

j ) > λt then . See Section 3.2
14: V ← V ∪ {j}
15: Θref

j ← θ
16: end if
17: end for
18: W ′,mref

V ← update W(X,θ,V, λt,W) . See Section 3.3
19: if maxi∈W ′

∣∣Z>i θ ∣∣ ≤ λ then Break else W ←W ′
20: w∗W , b

∗ ← argmin
wW ,b

PZW ,λt(wW , b) . Solve subproblem

21: θ ← −∇F (ZWw∗W + b∗1n).
22: W,mref ← clean W(W, λt,θ,Θ

ref ,mref )
23: end while
24: (W,w∗W , b

∗)k ← (W,w∗W , b
∗)

25: end for

26: function clean W(W, λ,θ,Θref ,mref )
27: for i in W do
28: if

∣∣Z>i θ∣∣ < λ then
29: Remove {i} from W
30: for b in branch(i) do

31: if mref
b <

∣∣∣Z>i Θref
b

∣∣∣ then mref
b ←

∣∣∣Z>i Θref
b

∣∣∣
32: return W, mref
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3.2 The Branch bound η

As WHInter iterates, it produces candidate solutions (w∗, b∗) and corresponding dual variables θ
(lines 20 and 21 of Algorithm 2). For two sufficiently close iterations, or for two problems with
sufficiently close regularisation parameters, the candidate solutions are likely to be close to one
another, as well as the corresponding dual variables. WHInter exploits this intuition to speed up
the identification of the working set from an iteration to another or from one problem to another.
The following results relate the criteria used to identify the working set (line 3 of Algorithm 1) for
two distinct dual variables.

Lemma 3.1. For any X ∈ {0, 1}n×p, v ∈ Rn+, θ1,θ2 ∈ Rn, j ∈ JpK, I ⊂ JpK and α ∈ R, the
following holds:

max
k∈I

∣∣∣θ>2 (v �Xk)
∣∣∣ ≤ |α |max

k∈I

∣∣∣θ>1 (v �Xk)
∣∣∣+ ζ(θ2 − αθ1,v) , (5)

where

∀(u,v) ∈ Rn × Rn+ , ζ(u,v) = max

( ∑
i:ui>0

uivi,−
∑
i:ui<0

uivi

)
.

The proof of Lemma 3.1 is postponed to Appendix A. It is based on the decomposition θ2 =
αθ1 +(θ2 − αθ1), and exploits the tree structure among features in a branch. To exploit Lemma 3.1
in WHInter, we define for α ∈ R the function

∀ (v,θ1,θ2,m) ∈ Rn+ × Rn × Rn × R , ηα (v,θ1,θ2,m) = |α |m+ ζ (θ2 − αθ1,v) , (6)

and we maintain an active set W ⊂ JDK, a matrix Θref ∈ Rn×p that contains reference dual

variables Θref
j ∈ Rn for each branch j ∈ JpK, and the vector mref ∈ Rp defined by:

∀j ∈ JpK , mref
j = max

k∈JpK:τ(j,k)/∈W

∣∣∣Z>τ(j,k)Θ
ref
j

∣∣∣ . (7)

We now state our pruning theorem which allows to identify branches which are guaranteed to not
contain any violating feature (line 13 of algorithm 2):

Theorem 3.1 (Branch pruning). For any Θref ∈ Rn×p, W ⊂ JpK, j ∈ JpK, let mref
j ∈ R+ be given

by (7). Then for any θ ∈ Rn, α ∈ R and λ > 0, if

ηα

(
Xj ,Θ

ref
j ,θ,mref

j

)
< λ , (8)

then any feature from branch j that belongs to the working set
{
i ∈ JDK :

∣∣Z>i θ∣∣ ≥ λ} is already in
W. This holds in particular if

ηmin

(
Xj ,Θ

ref
j ,θ,mref

j

)
:= min

α∈R
ηα

(
Xj ,Θ

ref
j ,θ,mref

j

)
< λ . (9)

Proof. Take I = {k ∈ JpK : τ(j, k) /∈ W}, v = Xj , θ1 = Θref
j and θ2 = θ in Lemma 3.1. Then if

(8) holds, we deduce from (3.1) that

max
k∈JpK:τ(j,k)/∈W

∣∣∣Z>τ(j,k)θ
∣∣∣ < λ .

This shows that there is no feature i in branch j such that
∣∣Z>i θ∣∣ ≥ λ and i is not already in

W. The fact that for fixed arguments, the function α → ηα has a minimum α∗ ∈ R is shown in
Appendix B, along with with an algorithm to compute it in O (‖Xj ‖0 ln ‖Xj ‖0) operations. Since
the statement is true for any α, it is a fortiori true for α∗.
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Theorem 3.1 provides criteria (8) and (9) that can be computed for each branch j, and which
if satisfied allow to skip the search for violating variables in the branch. Importantly, the features
that are already in the working set W are not taken into account to compute the criterion for a
given branch. This subtlety allows to rule out branches even if they already contain features that
were previously incorporated in the working set. Note that the reference dual variable for branch
j, i.e, Θref

j , is kept unchanged as long as branch j is pruned, and is otherwise updated to the latest

dual variable (line 15 of Algorithm 2). As mref
j depends on the reference dual variable instead

of the current one, it is solely reevaluated each time the reference residual is updated (line 18 of
Algorithm 2) or when a feature from branch j leaves the working set (line 22 of Algorithm 2) .

Criterion (9) is the most stringent one, and therefore the most efficient one to prune branches,
but it takes O (‖Xj ‖0 ln ‖Xj ‖0) operations to compute. In order to balance computational com-
plexity of the bound with its efficacy to prune branches, criterion (8) can be used as an alternative
for a specific α value. One simple choice is to just take α = 1, which leads to the criterion

η1

(
Xj ,Θ

ref
j ,θ,mref

j

)
= mref

j + ζ
(
Θref
j − θ,Xj

)
< λ . (10)

Alternatively, a simple heuristic to expect a more efficient pruning is to choose an α that minimises

‖
(
θ − αΘref

j

)
�Xj ‖2, i.e,

α`2 =
θ>
(
Θref
j �Xj

)
‖Θref

j �Xj ‖22
. (11)

ηα`2 is expected to be more effective than η1 since it is reasonable to expect that ζ
(
θ − α`2Θ

ref
j ,Xj

)
is smaller than ζ

(
θ −Θref

j ,Xj

)
. Overall, computing criterion (9) for α = 1 as in (10), or for

α = α`2 as in (11), is an O(‖Xj ‖) operation. Since computing ζ(θ − αΘref
j ,Xj) for a fixed α

is also a O(‖Xj ‖) computation, the total cost of identifying branch j as violated is O(‖Xj ‖) for
criterion (10), compared to O (‖Xj ‖0 ln ‖Xj ‖0) for criterion (9). In Algorithm 2, the notation η
refers to a user-defined function among η1, ηα`2 or ηmin.

3.3 Updating the working set

When some branches V ⊂ JpK cannot be pruned, the simultaneous updates of the working set W
and of mref

V requires scanning through all features in the branches V (lines 5 and 18 in Algorithm 2).
In what follows we discuss strategies to make these updates efficient. For that purpose, let us first
notice that:

∀j, k ∈ JpK ,
∣∣∣Z>τ(j,k)θ

∣∣∣ =
∣∣∣(Xj �Xk)

> θ
∣∣∣

=
∣∣∣(Xj � θ)>Xk

∣∣∣
=
∣∣∣Q>j Xk

∣∣∣ ,
where for any j ∈ JpK ,Qj = Xj � θ. This allows us to write the updates of W and mref

V as:
W ′ =W ∪

{
τ(j, k) : j ∈ V, k ∈ JpK ,

∣∣∣Q>j Xk

∣∣∣ ≥ λ} ,
mref

j = max
k: |Q>j Xk|<λ

∣∣∣Q>j Xk

∣∣∣ , ∀j ∈ V . (12)

8



This highlights the fact that the updates of the working set W and of mref
V can be cast as par-

ticular variants of the Maximum Inner Product Search (MIPS) problem. MIPS aims at finding a
vector in a database of probes which maximises the inner product with a given query vector. If
we consider X as a set of probes, and Qj as a query, then (12) is a variant of MIPS where (i) the
set of probe vectors satisfies some constraints and is not known upfront and (ii) the problem is a
maximum absolute inner product search. The update of W involves what is sometimes referred to
as above-λ-MIPS problems where again, maximum absolute inner products are considered.

The interest of casting these updates as variants of MIPS problems is to exploit the ideas
developed in the literature for solving these problems efficiently. Teflioudi and Gemulla (2016) and
Fontoura et al. (2011) give good overviews of MIPS solvers developed for recommender systems
and information retrieval applications respectively. In both cases, the proposed methods rely on
two main ideas: (i) adequate indexing techniques or data structures and (ii) pruning criteria which
allow to not compute all inner products entirely. Since none of these methods can directly be
applied to problem (12) because of its specificities, we propose an appropriate algorithm based on a
simple inverted index approach, which we will refer to as IL, and which exploits the sparsity of the
problem. Another option would be to leverage pruning techniques. We detail such an attempt in
Appendix C. However, since our preliminary results with the pruning technique were not conclusive
compared to IL on the simulated and real data, we will only focus on the inverted index approach
below.

Algorithm 3 update W

Input: X ∈ {0, 1}n×p, θ ∈ Rn, Q ⊂ JpK , λ ∈ R, W ⊂ JDK
Output: W, mref

1: for j ∈ Q do
2: Initialise an array a of size p to zero.
3: for each i in supp(Xj) do
4: for each k in supp(xi) do
5: ak = ak + θi
6: end for
7: end for
8: for each k s.t. ak 6= 0 do
9: if mref

j < ak < λ then set mref
j = ak

10: if ak ≥ λ and τ(j, k) /∈ W then add τ(j, k) to W
11: end for
12: end for
13: return W,mref

IL is detailed in Algorithm 3. The inverted indices consist of n lists, one for each dimension,
where each list supp(xi) records the indices of the features in X which have a non-zero element
for the ith dimension. These inverted lists can be computed once for all when WHInter starts
and be reused for all MIPS problems, and therefore building the inverted lists requires a negligible
additional computational cost. Algorithm (3) computes inner product following a term-at-a-time
(TAAT) scheme (Fontoura et al., 2011), i.e, the inner products are accumulated simultaneously
across probes and the contribution of the ith dimension to the inner products is entirely processed
before moving to the next one.

9
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Figure 2 – Performance comparison on simulated data for an entire regularisation path. Com-
parison of WHInter with three branch pruning criteria η ∈ {ηα2 , ηmin, η1} to ζ + IL, SPP and BLITZ. (a)
Time in seconds for n = 1× 103 fixed and p varied. (b) Time in seconds for p = 1× 103 fixed and n varied.
(c) number of branches that are not pruned at the first iteration, as a function of λ, for n = p = 1× 103.

4 Simulation study

We first test the performances of WHInter on synthetic LASSO datasets. We assess the perfor-
mances of the different branch pruning bounds presented in 3.2, i.e, ηmin, η1 and ηα`2 , and further
compare WHInter to a working set method that uses the bound ζ(θ,Xj) instead of ηα, but is
otherwise equivalent to WHInter. We refer to this method as ζ + IL. It is expected to prune
less branches than WHInter but does not require to maintain mref . We also compare WHInter
to SPP (Nakagawa et al., 2016) and BLITZ (Johnson and Guestrin, 2015). In our experiments,
we use a slightly modified, more efficient version of the code provided by the authors of SPP (cf
Appendix D). As for BLITZ, since the method is not tailored for interaction problems, we first
compute the matrix Z which is fed as input to BLITZ. For this reason we could not solve problems
when p is too large (e.g., p = 1 × 104 in the simulations) since, even in sparse format, storing
Z requires too much memory. Importantly, the performances reported for BLITZ do not include
the time required to compute Z from X, which clearly advantages BLITZ compared to the other
methods.

We simulate five datasets X ∈ {0, 1}n×p with varying number of features and samples: three
datasets with p = 1 × 103 fixed and n ∈

{
3× 102, 1× 103, 1× 104

}
, and two more with n =

1 × 103 fixed and p ∈
{

3× 103, 1× 104
}

. The features are drawn from a Bernoulli distribution
with parameter q ∈ [0.1, 0.5] itself drawn from a uniform distribution U[0.1,0.5]. We then randomly
pick a set S of 100 features among the main effects and interactions and compute the response
as y = ZSw

∗
S where w∗S ∼ N (0|S|, I|S|). In all experiments, the LASSO is solved for a sequence

(λt)t∈JT K, T = 100, logarithmically spaced between λmax and max(0.01λmax, λ
′) where λmax is the

largest value of λ for which at least one feature is selected, and λ′ is the first λi for which 150
features or more are selected in the model. For all methods, the time to compute λmax is included
in the total time required to solve the regularisation path. In WHInter, λmax can easily be deduced
from the initialisation of mref since λmax = maxj∈JpKm

ref
j . All algorithms are implemented in

C++ and compiled with the -O3 optimisation flag. The experiments are run on a 64-bit machine
with Intel Core i7 Processor 2.5 GHz, 16GB of memory and 6MB of cache.

Results are shown in Figure 2. For n = 1× 103 (Figure 2a), LASSO solutions are computed for
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Figure 3 – Performance comparison on SNPs data for an entire regularisation path. The y-axis
reports the total time (in minutes) required to compute the LASSO path for chromosome 22 (around 20,000
SNPs), chromosome 1 (around 90,000 SNPs) and the whole genome (around 1.2 million SNPs).

42, 32 and 28 values of λ for p = 1× 103, p = 3× 103 and p = 1× 104 respectively. In these cases
smaller values of λ result in model sizes exceeding 150 features. For the remaining settings where
p = 1× 103 and n = 3× 102 or n = 1× 104 (Figure 2b), LASSO solutions are computed for 34 and
all 100 values of λ between λmax and 0.01λmax, respectively. We checked that all methods return
the exact same support.

In all settings, WHInter is the fastest method. Its better performance compared to ζ + IL
highlights the benefit of using reference dual variables even if it implies to maintain mref . The
results also show the importance of α, since WHInter with η`2 is always better (×1.2 to ×1.8) than
WHInter with η1 for example. Figure 2c confirms that the choice of α has an impact on the pruning
efficiency and consequently on the performance. It shows, however, that on this experiment ηmin
does not allow to prune many more branches than η`2 . This explains why η`2 tends to outperform
ηmin, notably for large n, since the higher computational complexity of ηmin does not sufficiently
enhance the pruning. We also notice that SPP is the slowest algorithm, and in particular ζ + IL is
×17 faster than SPP on average. This speed-up is mostly explained by the fact that ζ+IL relies on
inverted lists to update the working set while SPP identifies the safe set naively. Overall, WHInter
offers a signifiant speed-up of two orders of magnitude or more compared to its safe screening
counterpart.

5 Results on real world data

We now illustrate the performance of the different algorithms on a real-world problem, where we
want to predict the cytotoxic response of 884 lymphoblastoid cell lines split into a train (n = 620)
and a test (n = 264) set, and characterized by about 1.2 × 106 single nucleotide polymorphisms
(SNP) that represent their genotypes. The data was released as part of the Dialogue on Reverse
Engineering Assessment and Methods 8 (DREAM 8) toxicogenetics challenge (Eduati et al., 2015).
We encode the SNP data as a binary matrix were 1 stand for the presence of a minor allele on
one or both copies of the chromosomes. As preprocessing we removed SNP with less than 5% of
1’s and corrected the data for population structure as in Price et al. (2006). To focus on problems
of increasing scales, we first considered the SNPs of the smallest chromosome only (chr. 22), then
of the largest only (chr. 1) and finally of all chromosomes together. This leads to train matrices

11
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Figure 4 – Predictive performance on the test set. The y-axis reports the pearson correlation between
the true and predicted response. The x-axis reports the number of selected features for the sequence of
regularisation parameters tested.

with n = 620 and p = 18, 168 SNPs for chromosome 22, p = 89, 027 SNPs for chromosome 1 and
p = 1, 166, 836 SNPs for the whole genome. We consider a sequence of 100 regularisation parameters
λ logarithmically spaced between λmax and 0.01λmax, and by default stop computations as soon
as 150 features or more are selected. This occurs after the 12th, the 11th and the 9th value of λ for
chromosome 22, chromosome 1 and all chromosomes respectively. The time required to compute
the regularisation paths are shown in Fig. 3.

The relative performances of the methods are the same as for the simulations. ηα`2 provides a
×1.4 (resp. ×1.8) speed up compared to using η1 for chromosome 22 (resp. chr. 1). and compared
to SPP, there is a ×81 (resp. ×73) speed up for chromosome 22 (resp chr. 1). In the case of the
whole genome, we only ran WHInter with ηα`2 which takes two days and a half. While this can
seem a lot, we recall that this corresponds to a problem with roughly 680 billion features. We did
not run other methods on the whole genome since most of them are expected to take too long.

Out of curiosity, we also obtained preliminary results concerning the predictive performance
of WHInter compared to a LASSO with no interactions on such high-dimensional problems. The
results, presented in Figure 4 , suggest that interactions are relevant predictors for this data. For
the chromosomes 1 and 22 taken independently, the predictive accuracy of WHInter is better than
that of the simple LASSO for almost every value of λ. By contrast, for the whole genome, the
LASSO clearly performs better, which may underline statistical issues due to the huge number of
variables in this case (Donoho and Tanner, 2009).

6 Discussion

We presented WHInter, a working set algorithm designed to solve large scale LASSO problems
with interaction terms. WHInter implements a new branch pruning bound to efficiently delineate
the working set among the many possible interaction variables, and a variant of MIPS solver that
provides a further speed up. We showed that WHInter is up to two orders of magnitudes faster
than competing approaches. While we presented WHInter for binary data, it could also be used for
data rescaled in [0, 1], provided that an appropriate solver is picked for the MIPS problems. As for
future work, one could exploit the recent works on approximate MIPS (Shrivastava and Li, 2014;
Teflioudi and Gemulla, 2016) to obtain an additional speed up for the computationally intensive
updates, and possibly rely on recent post selection-inference (Suzumura et al., 2017) frameworks
to characterise the approximate solution obtained.
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Annexes

A Proof of Lemma 3.1

Lemma 3.1. For any X ∈ {0, 1}n×p, v ∈ Rn+, θ1,θ2 ∈ Rn, j ∈ JpK, I ⊂ JpK and α ∈ R, the
following holds:

max
k∈I

∣∣∣θ>2 (v �Xk)
∣∣∣ ≤ |α |max

k∈I

∣∣∣θ>1 (v �Xk)
∣∣∣+ ζ(θ2 − αθ1,v) ,

where

∀(u,v) ∈ Rn × Rn+ , ζ(u,v) = max

( ∑
i:ui>0

uivi,−
∑
i:ui<0

uivi

)
.

Proof. With the notations of Lemma 3.1 , we have:

max
k∈I

∣∣∣θ>2 (v �Xk)
∣∣∣ ≤ max

k∈I

∣∣∣αθ>1 (v �Xk) + (θ2 − αθ1)>(v �Xk)
∣∣∣

≤ |α |max
k∈I

∣∣∣θ>1 (v �Xk)
∣∣∣+ max

k∈I

∣∣∣ (θ2 − αθ1)>(v �Xk)
∣∣∣

≤ |α |max
k∈I

∣∣∣θ>1 (v �Xk)
∣∣∣+ max

X∈{0,1}n

∣∣∣ (θ2 − αθ1)>(v �X)
∣∣∣

= |α |max
k∈I

∣∣∣θ>1 (v �Xk)
∣∣∣+ ζ(θ2 − αθ1,v) .

B Computing ηmin

In this section we characterise the existence and an algorithm to compute, for any fixed (v,θ,θ′,m) ∈
Rn+ × Rn × Rn × R:

ηmin
(
v,θ,θ′,m

)
:= min

α∈R
ηα
(
v,θ,θ′,m

)
, (S1)

where ηα is defined in Section 3.2. For that purpose, let us introduce for any α ∈ R the functions:
γp(α) =

∑
i:θ′i−αθi>0

vi
(
θ′i − αθi

)
,

γm(α) =
∑

i:θ′i−αθi<0

vi
(
θ′i − αθi

)
,

such that:
ηα
(
v,θ,θ′,m

)
= |α|m+ max (γp(α),−γm(α)) . (S2)

Let us first characterise the existence and properties of the solution to the minimisation problem
(S1).

13



Theorem B.1. For any (v,θ,θ′,m) ∈ Rn+ × Rn × Rn × R, the function

α ∈ R→ ηα
(
v,θ,θ′,m

)
is continuous, piecewise affine, convex and nonnegative. It reaches at least a minimum at a value
α∗ ∈ B where

B = {0} ∪
{
θ′i
θi

: i ∈ supp(θ) ∩ supp(v)

}
∪ {α ∈ R : γp(α) = γm(α)} .

Proof. For any i ∈ JnK, let

∀α ∈ R , φi(α) = vi max
(
0,θ′i − αθi

)
.

Since vi ≥ 0, φi(α) = vi max (0,θ′i − αθi) is continuous, piecewise affine, convex and nonneg-
ative. It has a single breakpoint at αi = θ′i/θi if θi 6= 0 and vi > 0, and is constant oth-
erwise. Since γp(α) =

∑n
i=1 φi(α), γp is also continuous, piecewise affine, convex and nonneg-

ative with breakpoints in {θ′i/θi : i ∈ supp(θ) ∪ supp(v)}. Taking ψi(α) = vi max (0, αθi − θ′i)
shows similarly that −γm(α) =

∑n
i=1 ψi(α) has the same properties. Consequently, the function

α 7→ max (γp(α),−γm(α)) is also continuous, piecewise affine, convex and nonnegative, with possi-
ble breakpoints in {

θ′i/θi : i ∈ supp(θ) ∪ supp(v)
}
∪ {α ∈ R : γp(α) = γm(α)} .

Since α → |α | is also continuous, piecewise affine, convex and nonnegative, and has a breakpoint
for α = 0, Theorem B.1 follows by observing that a continuous, piecewise affine, convex and
nonnegative function necessarily reaches a minimum at one of its breakpoints.

Let S = | supp(θ) ∩ supp(v) |. Theorem B.1 shows that it suffices to compute the values of ηα
on at most S + 2 values for α to find the global minimum. However, a naive computation of ηα
using (S2) takes O(| supp(v) |) for each α, hence a total complexity O(S × | supp(v) |) to find the
minimum of ηα.

This can be improved to O(| supp(v) |+S lnS) by first sorting the S+ 1 breakpoints bi = θ′i/θi
for i ∈ supp(θ) ∩ supp(v) and bS+1 = 0 in increasing order:

bπ(1) ≤ bπ(2) ≤ . . . ≤ bπ(S+1) ,

which takes O(S lnS) time. Adding by convention bπ(0) = −∞ we observe that on each interval
(bk−1, bk] the functions γp and γm are affine, of the form:

∀α ∈ (bk−1, bk] ,

{
γp(α) = skp − αtkp ,
−γm(α) = skm − αtkm .

From the properties of γp(α) =
∑n

i=1 φi(α) and −γm(α) =
∑n

i=1 ψi(α), we get the coefficients for
k = 1, i.e., for the interval (−∞, bπ(1)] in O(| supp(v) |) as follows:

s1
p =

∑
i∈supp(v) :θi>0 viθ

′
i +
∑

i∈supp(v) :θi=0 vi max(0,θ′i) ,

t1p =
∑

i∈supp(v) :θi>0 viθi ,

s1
m = −

∑
i∈supp(v) :θi<0 viθ

′
i +
∑

i∈supp(v) :θi=0 vi max(0,−θ′i) ,
t1m =

∑
i∈supp(v) :θi<0 viθi .

(S3)
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This allows in particular to compute γp(bπ(1)), γm(bπ(1)), and therefore ηbπ(1) from (S2). We can
then iteratively compute the coefficients for k + 1 from the coefficients for k in O(1) only, by
observing that between the intervals (bk−1, bk] and (bk, bk+1], the only change in slope and intercept
of γp is due to the function φπ−1(k), when π−1(k) 6= S + 1. Let i = π−1(k). When θi > 0, the slope
of φi increases by viθi and its intercept decreases by viθ

′
i at bi. When θi > 0, its slope increases

by −viθi and its intercept increases by viθ
′
i. This translates into the following recursive formula

for the coefficients of γp:

sk+1
p =

{
skp − viθ

′
i if θi > 0 ,

skp + viθ
′
i if θi < 0 ,

and
tk+1
p = tkp − vi |θi | .

A similar analysis on γm leads to the following recursion:

sk+1
m =

{
skm − viθ

′
i if θi > 0 ,

skm + viθ
′
i if θi < 0 ,

and
tk+1
m = tkm − vi |θi | .

We can thus iteratively compute the coefficients on each interval, and thus the values of ηα on each
breakpoint, with complexity O(1) per breakpoint. Since α 7→ ηα is convex, we stop at the first k
such that ηbπ(k+1)

≥ ηbπ(k) . From the equations of γp and γm on (bπ(k), bπ(k+1)] we can additionally
check if there is a crossing point ᾱ ∈ (bπ(k), bπ(k+1)] such that γp(ᾱ) = γm(ᾱ), in which case we also
compute ηᾱ. The global minimum of α 7→ ηα is then min(ηbπ(k) , ηᾱ).

The overall algorithm is detailed in Algorithm S1.

C Alternative solver for working set updates

In this section, we present an alternative solver to the inverted list approach (algorithm 3 in
section 3.3), which we call MIPS1, to compute the working set updates (12). It relies on a
pruning technique and does not require storing extra indices for the data. The main idea of this
alternative approach is to compute inner products on a progressively growing subset of dimensions,
and to maintain an upper-bound on the maximum attainable score on the remaining dimensions.
This allows to discard a probe as soon as its maximum attainable score drops below the maximum
score achieved so far without computing the inner product in its entirety. Algorithm S2 presents the
procedure in details. It takes as inputQ which contains the indices that define the queries of interest
and outputs the updated working set W and mref . For each query, we start by precomputing the
partial inner product bounds r+ ∈ Rn and r− ∈ Rn, where r+

i and r−i are respectively the maximum
and minimum attainable inner products between the query and any probe in the database on the
dimensions from i+ 1 to n. Formally, r+ and r− are defined for a given query j by:

∀i ∈ JnK , r+
i =

∑
m>i; θm>0

Xmjθm (S4)

∀i ∈ JnK , r−i =
∑

m>i; θm<0

Xmjθm (S5)
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Algorithm S1 Minimise η in α

Input: (v,θ,θ′,m) ∈ Rn+ × Rn × Rn × R.
Output: ηmin (v,θ,θ′,m)
1: S ← indices in supp(v) ∩ supp(θ)
2: N ← length(S)

3: v ←
[
0,
θ′
S[1]

θS[1]
, . . . ,

θ′
S[N ]

θS[N ]

]
4: ind← [none, S[1], . . . , S[N ]]
5: rank← sort(v) (in increasing order)
6: v ← v[rank]; ind← ind[rank]
7: Initialise sp, sm, tp, tm via (S3)
8: min← +∞
9: for i in 1 . . . N + 1 do

10: newmin← |v[i]|m+ max (sp − v[i]tp, sm − v[i]tm)
11: if newmin < min then
12: min← newmin

13: if ind[i] 6= none then
14: tp ← tp − vind[i]

∣∣θind[i]

∣∣
15: tm ← tm − vind[i]

∣∣θind[i]

∣∣
16: if θind[i] > 0 then
17: sp ← sp − vind[i]θ

′
ind[i]

18: sm ← sm − vind[i]θ
′
ind[i]

19: else
20: sp ← sp + vind[i]θ

′
ind[i]

21: sm ← sm + vind[i]θ
′
ind[i]

22: end if
23: end if
24: else
25: Check if there exists ᾱ ∈ [v[i− 1], v[i]] s.t. γp(ᾱ) = γm(ᾱ)
26: Return min(newmin, η(αintersection))
27: end if
28: end for
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and provide an upper bound on inner products with the query Xj � θ as follows:

∀k ∈ JpK , (Xj � θ)>Xk =
∑
m≤i

XmjθmXmk +
∑
m>i

XmjθmXmk

≤
∑
m≤i

XmjθmXmk +
∑

m>i; θm>0

Xmjθm

=
∑
m≤i

XmjθmXmk + r+
i

The bound involving r− can be obtained analogously. These bounds simply assume there is a probe
vector which has ones in front of every positive entry of the query and none in front of its negative
entries, or the reverse. Once these bounds have been precomputed, the inner product between the
query and a probe is computed up to a certain dimension, and every nc ∈ N dimensions we check
whether there is a possibility that the inner product being computed becomes larger than the cur-
rent maximum, or larger than λ. If it is impossible, then the probe can be safely discarded and the
algorithm proceeds with the next probe. If not, the inner product is computed on nc more dimen-
sions and a new check is performed. For all our simulations and real data experiments, we set nc to
a default of 20. If a probe cannot be discarded then the algorithm updates when appropriate the
active set W and/or the current maximum absolute inner product obtained mref

j . For the pruning
to be effective, we reorder the dimensions 1 . . . n so that queries are sorted in decreasing order in
absolute value. As a consequence, the partial inner product bounds r+

i and r−i are computed with
the n− i smallest entries in absolute value of the queries which makes them tighter than with any
other ordering of the dimensions.

We now compare MIPS1 to its naive counterpart (which we will call Naive from now on)
on several benchmark datasets in order to assess the speed-up obtained with the pruning. To be
more specific, Naive is implemented similarly to MIPS1 except the lines specific to pruning, i.e.,
lines 5, 12 and 13 in Algorithm S2, are removed. The benchmark datasets we use are designed in
such a way that the pruning rate achievable varies. To do this, we simulate a matrix X ∈ Rn×p,
with n = p = 1000, where the features are drawn from a Bernoulli distribution, whose param-
eter is itself drown from a uniform distribution U[0.1,0.5]. Then θ ∈ Rn is built in such a way
that the cumulative sum of the vectors obtained by sorting θ|θ≥0 and |θ|θ<0| follows the function

f(x) = 1
1−e−µ (1− e−µx) , x ∈ {0, 1} for a given parameter µ ∈ R+. The area under this cumulative

sum, which is κ(µ) = 1
1−e−µ −

1
µ ∈ [0.5, 1], characterises the different vectors θκ obtained with

different values of µ. Figure S1a shows how the cumulative sums are modified with µ. The interest
of simulating different θκ is that the rate of pruning achievable increases with κ: the closer κ is to
1, the higher the pruning rate. In the experiments presented hereafter, all p features were taken as
queries, i.e., Q = JpK, and we took λ = +∞ and W = ∅. The results are presented in Figure S1b.
The pruning rate, which we define as the average number of non-zero coordinates of the queries
which were pruned out of their total number of non-zero coordinates, widely varies from 8% for
κ = 0.55 to 84% for κ = 0.95. Moreover, the speed-up obtained with MIPS1 compared to Naive
is almost equal to 1 minus the pruning rate. That means MIPS1 is twice as fast as Naive when
it can prune half of the total number of coordinates.

We now compare the performance of Naive, MIPS1 and IL on the benchmark datasets (Figure
S2). MIPS1 is the only method whose speed depends on κ since it is the only method to implement
pruning. It has the same performance in terms of speed as Naive for the lowest pruning rate, while
it is as fast as IL for the highest pruning rates. For vectors θ following classical distributions such
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Algorithm S2 MIPS1

Input: X ∈ [0, 1]n×p, θ ∈ Rn, Q ⊂ JpK , λ ∈ R, W ⊂ JDK
Param: nc ∈ N
Output: W, mref .
1: Reorder the dimensions 1 . . . n such that θ is sorted in descending order in absolute value and

reorder the dimensions of X accordingly.
2: Reorder the columns of X in descending order of vector size.
3: for j ∈ Q do mref

j ← 0
4: for j ∈ Q do
5: Compute r+ ∈ Rn and r− ∈ Rn via (S4) and (S5).
6: for k ∈ JpK do
7: if k ∈ Q and k > j then continue

8: d← 0 (inner product initialization); c = 0 (counter initialization);
9: for i ∈ supp(Xj) do

10: d← d+ XijXikθi
11: c← c+ 1.
12: if c mod nc = 0 then
13: if (d+ r+

i ) < min(mref
j , λ) and

∣∣(d+ r−i )
∣∣ < min(mref

j , λ) then go to next probe.
14: end if
15: end for
16: if mref

j < d < λ then set mref
j = d

17: if d ≥ λ and τ(k, j) /∈ W then add τ(k, j) to W
18: end for
19: end forreturn W,mref

a

0 100 200 300 400 500
Coordinate

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 s

u
m 0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

b

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

1 − pruning rate

S
pe

ed
−

up
 (

T
M

IP
S
/T

N
ai

ve
)

●

●

●

●

●

●

●

●

●

κ
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

Figure S1 – (a) Cumulative sum of the vector obtained by sorting the positive entries of θκ in decreasing
order. (b) Speed-up obtained with MIPS1 compared to Naive for different vectors θκ as a function of the
pruning rate. The pruning rate is defined as the average proportion of coordinates in the queries which are
pruned.
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Figure S2 – Time (in ms) taken by Naive, MIPS1 and MIPS2 to solve Maximum Inner Product Search
problems with responses characterised by different κ.

as the gaussian distribution, κ ≈ 0.7 and MIPS1 is therefore expected to be ×1.6 times faster than
Naive but ×11 times slower than IL. An analysis of the complexity of MIPS1 and IL can help to
understand these results. For a given query, MIPS1 requires to compute inner products (although
partially) with all p vectors in the database. In our implementation, the vectors are encoded as
sparse vectors, i.e., the vector Xj is represented by the list of its non-zero indices. If we assume that
the number of non-zero elements in the query is |q| and that the total number of non-zero elements
of the vectors in X in nnz, then MIPS1 has a O(p|q| + nnz) complexity to compute the p inner
products with the query. By contrast, the inverted index approach has a O(|q|nnzn ) complexity,
where nnz

n is the average length of an inverted index. As the number of non-zero elements |q| in the
query will typically be a fraction of the total number of samples n, the inverted index approach is
expected to be faster than MIPS1 even though the pruning in MIPS1 can make it faster. This
however may not be the case with dense data instead of sparse data.

D SPP: depth-first vs breadth-first

The Safe Pattern Pruning algorithm presented in Nakagawa et al. (2016) deals with pairwise inter-
actions but also higher-order interactions, and relies on a depth-first search scheme to explore the
tree of patterns. However in our setting where we only consider pairwise interactions, we find that
it is more efficient to implement a breadth-first search scheme for SPP. Indeed, the breadth-first
search first identifies all the branches which can be screened. Then with this knowledge, we can
restrict the number of interactions which are visited to those which only involve main effects whose
corresponding branch was not screened. Basically, if we consider a case where ps branches were
screened among p branches, then the total number of nodes visited will be p+ (p−ps)(p−ps−1)

2 . Figure
(S3) illustrates the difference in performance obtained with the original SPP and the breadth-first
search version in the case of pairwise interactions. The speed up obtained with the breadth-first
search version ranges from ×1.2 for n = p = 1000 to ×1.6 for n = 1000, p = 10000. We therefore
use the breadth-first search version of SPP as a comparison baseline in all our experiments.
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Figure S3 – Safe Pattern Pruning performance on simulated data for an entire regularisation
path. The breadth-first search SPP (which is adapted to order-2 interactions only) is in purple and the
original depth-first search SPP (which is adapted to order-2 interactions and more) is in magenta. (a) Time
in seconds for p = 1000 fixed and n varied. (b) Time in seconds for n = 1000 fixed and n varied.
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