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Abstract 

Abstract here. 
This paper is concerned with proposing a fuzzy cognitive 
maps (FCMs) driven approach for geocomputing urban 
dynamics (social, spatial and temporal) as a complex 
system. After an overview of FCMs, mathematical 
fundamentals methodology that this theory suggests are 
examined. Then, the formalization and algorithm 
implementation of a model apply to residential mobility in 
urban space based on FCMs is described. Very good results 
were obtained, demonstrating that the use of these 
modelling approach is good and reliable. 
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Introduction 

Geographical systems are complex entities that require 
integrated spatial and temporal modelling approaches to 
better understand underlying patterns and processes. These 
modelling approaches are now multidisciplinary in nature 
as geographers are not the only ones examining the 
multifaceted issues embedded in spatial patterns and 
dynamics. Hence, it is challenging to clearly situate 
spatiotemporal modelling within the domains of geographic 
information science, geocomputation (Openshaw, 2014) or 
geosimulation (Bennson & Torrens, 2004). A useful way of 
placing spatiotemporal modelling concepts is to consider 
them as being located in the intersection spaces of these 
tree disciplines. So, the inspiration for further advancement 
in spatiotemporal can be found in domains such as artificial 
intelligence, computer science, and complexity science 
among others. In this regard, the wide recognition of FCMs 
as a promising modelling and simulation methodology for 
complex systems (Papageorgiou et al., 2004), characterized 
by abstraction, flexibility and fuzzy reasoning promotes 
advanced research about large-scale geographical systems. 
Urban systems have been traditionally characterized by a 
large number of variables, nonlinearities and uncertainties. 
Modelling such systems can be hard in a computational 
sense and many quantitative techniques exist. Development 
of FCMs that accurately describe urban dynamics is a 
challenging task, which, in many cases cannot be fully 
completed based solely on human expertise. Interestingly, 
in the recent years we have witnessed the development of 
algorithms that support learning of FCMs from data 
(Xirogiannis and Glykas, 2004; Anninou and Groumpos, 
2014).   
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Fuzzy Cognitive Map background 

Fuzzy Cognitive Maps (FCMs), introduced by Kosko 
(1986), are powerful tools for modeling dynamic systems. 
FCMs describe expert knowledge of complex systems with 
high dimensions and a variety of factors. An increased 
interest about the theory and application of FCMs in 
complex systems has been also noted, and their validity and 
usefulness has been proved in the various fields (Eden et 
al., 2006; Eden et al., 2007). 
 

Theoretical foundations of Fuzzy Cognitive Map 

Fuzzy Cognitive Maps (Kosko, 1988, 1993) are signed 
directed graphs: they consist of nodes, so-called ‘‘concepts’’ 
that are connected through arrows that show the direction 
of influence between concepts. Causal and cognitive maps 
have been used to describe decision-based systems 
(Axelrod, 1976). Fuzzy Cognitive Maps were supplied with 
fuzzy logic theory enhancing Cognitive Maps ability to 
present and model qualitatively dynamic systems. So, FCM 
is a soft computing modeling technique used for causal 
knowledge acquisition and supporting causal knowledge 
reasoning process. FCMs permit the necessary cycles for 
knowledge expression within their feedback framework of 
systems. FCMs originated as a combination of ideas and 
methods from fuzzy logic and neural networks theories and 
have been introduced by Kosko (1986). Neuro-fuzzy 
systems have been proposed as advanced techniques for 
modeling and controlling real world problems that are 
complex, usually imprecisely defined and require human 
intervention. Neuro-fuzzy systems have the ability to 
incorporate human knowledge and to adapt their 
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knowledge base via optimization techniques. They can play 
an important role in the conception, description and 
modelling complex systems. FCMs are regarded as a simple 
form of recursive neural networks. Concepts are equivalent 
to neurons, but other than neurons, they are not either 
‘‘on’’ (= 1) or ‘‘off’’(= 0 or  1), but can take states in-
between and are therefore ‘‘fuzzy’’. Fuzzy concepts are 
non-linear functions that transform the path-weighted 
activations directed towards them (their ‘‘causes’’) into a 
value in [0,1] or [ 1;1]. When a neuron ‘‘fires’’ (i.e. when a 
concept changes its state), it affects all concepts that are 
causally dependent upon it. Depending on the direction 
and size of this effect, and on the threshold levels of the 
dependent concepts, the affected concepts may 
subsequently change their state as well, thus activating 
further concepts within the network. Because FCMs allow 
feedback loops, newly activated concepts can influence 
concepts that have already been activated before. As a 
result, the activation spreads in a non-linear fashion 
through the FCM net until the system reaches a stable limit 
cycle or fixed point. A FCM illustrates the whole system by 
a graph showing the effect and the cause along concepts. 
FCM is a simple way to describe the system’s model and 
behaviour in a symbolic manner, exploiting the 
accumulated knowledge of the system. A FCM integrates 
the accumulated experience and knowledge on the 
operation of the system, as a result of the method by which 
it is constructed, i.e., using human experts that know the 
operation of system and its behaviour in different 
circumstances. Moreover, FCM utilizes learning techniques, 
which have implemented in Neural Network Theory, in 
order to train FCM and choose appropriate weights for its 
interconnections. 
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Fuzzy Cognitive Map representation 

Figure 1 illustrates a simple FCM consisting of five (5) 
concepts and ten (10) weighed arcs. Thus FCMs are 
directed graph capable of modelling interrelationships or 
causalities existing among concepts. Concept variables and 
causal relations constitute the fundamental elements of an 
FCM. Concept variables are represented by nodes, such as 
C1, C2, C3, C4 and C5. Causal variables always depict 
concept variables at the origin of arrows; effect variables, 
on other hand, represent concepts variables at the terminal 
point of arrows. For example, looking in figure 1, at 
C1àC2, C1 is said to impact C2 because C1 is the causal 
variable, whereas C2 is the effect variable. Each concept is 
characterized by a number Ai that represents its value and it 
results from the transformation of the real value of the 
system’s variable, for which this concept stands, in the 
interval [0,1]. Causality between concepts allows degrees of 
causality and not the usual binary logic, so the weights of 
the interconnections can range in the interval [-1, 1]. FCM 
models a system as an one-layer network where nodes can 
be assigned concept meanings and the interconnection 
weights represent causal relationships among concepts. 
FCM is a graph shows the degree of causal relationship 
among concepts of the map knowledge expressions and the 
causal relationships are expressed by and fuzzy weights. 
Existing knowledge on the behaviour of the system is 
stored in the structure of nodes and interconnections of the 
map. Each one the key-factors of the system. Relationships 
between concepts have three possible types: (1) either 
express positive causality between two concepts: wij > 0   
(2) negative causality: wij < 0 and (3) no relationship: wij = 0 
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The value of wij indicates how strongly concept Ci influence 
concept Cj. The sign of wij indicates whether the 
relationships between concept Ci and Cj is direct or inverse. 
The direction of causality indicates whether concept Ci 
causes concept Cj or vice versa. These parameters have to 
be considered when a value is assigned to weight wij. 
 

 
 
Fig. 1: A simple Fuzzy Cognitive Map model 

Mathematical formalization of Fuzzy Cognitive Map  

The simplest FCMs act as asymmetrical networks of 
threshold or continuous concepts and converge to an 
equilibrium point or limit cycles. At this level, they differ 
from Neural Networks in the way they are developed as 
they are based on extracting knowledge from experts. 
FCMs have nonlinear structure of their concepts and differ 
in their global feedback dynamics. The value Ai

t+1 for each 
concept Ci at each time step is calculated by the following 
general rule: 

𝐴"#$% = 𝑓(𝑘% 𝑊+"𝐴+# + 𝑘-𝐴"#)
/

+0%
+1"

																																						(1)	 

The k%	expresses the influence of the interconnected 
concepts in the configuration of the new value of the 
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concept A6	and k-	represents the proportion of the 
contribution of the previous value of concept in the 
computation of the new value. This formulation assumes 
that a concept links to itself with a weight w66	 = 𝑘-. 
Namely, 𝐴"# and 𝐴"#$% are respectively the values of concept 
Ci at times t respectively t+1. w86	is The weight of the 
interconnection from concept Cj to concept Ci and f is a 
threshold function. The unipolar sigmoid function is the 
most used threshold function, (Liu and Satur, 1999) where 
λ>0 determines the steepness of the continuous function f . 
The sigmoid function ensures that the calculated value of 
each concept will belong to the interval [0,1]. 

𝑓 𝑥 =
1

1 + 𝑒;<=
																																																																		(2) 

Materials and methods 

The methodology approach followed for the 
implementation of the residential mobility FCM-based 
model consist of three discrete stages:  
1-  Concepts investigation for constructing the FCM. All 
the concepts that can affect the household’s residential 
choice.  
2- The causal relationships defined as fuzzy rules.  
3- Cellular automata-based geosimulation 

Concepts investigation for constructing the FCM 

The Concepts used in the development of the model are 
derived from determinants of residential mobility. These 
determinants are directly related to the household’s 
residential satisfaction that involves several influencing 
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factors: objective residential environment, subjective 
residential environment, resident’s characteristics and 
housing allocation institution. 
 
Housing characteristics is the basic spatial scale of objective 
residential environment. Residents have high satisfaction 
with larger-sized and better forms housing. Chen, Zhang, 
and Yang (2013) analyzed Chinese residential survey data 
from Dalian and found that people are more satisfied with 
larger housing. Mohit, Ibrahim, and Rashid (2010) 
investigate inhabitants of public housing in Kuala Lumpur, 
Malaysia and found that housing features, especially 
housing unit size, correlate positively with residential 
satisfaction. Ukoha and Beamish (1996) observed that 
residents in Abuja, Nigeria are dissatisfied with types of 
housing structure, building features and housing condition. 
 
Neighborhood characteristics, such as neighbourhood 
quietness, greenness, cleanness and security, are the key 
factors influencing residential satisfaction. Most studies 
found that neighborhood security are dominant predictors 
of residential satisfaction (Cook, 1988; Salleh, 2008). Salleh 
(2008) investigated residents in Pulau Pinang and 
Terengganu state in Malaysia and found neighbourhood 
facilities and environment are the dominant factors 
affecting residential satisfaction. Parkes, Kearns, and 
Atkinson (2002) found that the neighborhood factors, 
especially the place and condition of neighborhood, are 
much more important in predicting residential 
dissatisfaction than are socio-demographic factors. 
Public facilities or infrastructure such as transportation, 
schools, healthcare, shopping, banking and parking facilities 
determine the degree of life convenience and thus have 
influences on residential satisfaction. Lu (1999) found that 
residents in public housing in Hong Kong are dissatisfied 
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with public transportation. Ha (2008) found that residents 
of public housing in Korea are satisfied with the availability 
of healthcare, shopping and banking facilities, but 
dissatisfied with parking and landscaping facilities. Mohit 
and Azim (2012) showed that residents of public housing in 
Hulhumale, Maldives, are more satisfied with their public 
facilities than with their housing condition. 
The social environment, such as social relations and 
community cohesion and security, has influences on 
residential satisfaction. Adriaanse (2007) found that 
residential social climate, people's social perception of 
social relationship, is the most significant factor to 
influence residential satisfaction. Mohit and Azim (2012) 
showed that inhabitants of public housing in Hulhumale 
are very satisfied with their social environment, especially 
regarding security and their relationships with their 
neighbors and community. Ibem and Aduwo (2013) found 
that people's cohesion and participation in the development 
of residences contributed to residential satisfaction. 
Household characteristics such as age, sex, household size 
and income have been proved to have a direct impact on 
residential satisfaction. For example, age is identified as a 
significant determinant of residential satisfaction by many 
scholars (Ibem and Amole, 2012). However, the influence 
of some factors remains unclear because the existing 
empirical results conflict with each other. For example, 
although one empirical study found that household size is 
negatively correlated with higher residential satisfaction 
(Galster, 1987), others found household size is positively 
related to satisfaction (Cook, 1988). The inconsistencies 
might result from residents' housing preferences across 
various groups of people in different counties. Further, 
household characteristics determine someone's ability to 
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realize their housing needs and goals (Schwanen and 
Mokhtarian, 2004). Income status is one of the main 
factors that indicate this ability. 
It is believed that housing allocation institutions 
determining housing access type and housing adjustment 
freedom have an influence on residential satisfaction levels 
(Chen et al., 2013). The level of freedom that one has to 
choose or adjust one's residential environment in order to 
get closer to one's residential preferences has an impact on 
one's resultant residential satisfaction. As home owning 
offers more freedom than renting, home owners are more 
satisfied than renters (Varady et al., 2001). James (2008) 
found that subsidized renters in the US are more satisfied 
than non-subsidized renters. In addition, as home 
ownership provides people with a sense of self-respect and 
pride, home owners are more satisfied with their residential 
situation than are renters. Empirically, Elsinga and 
Hoekstra (2005) showed that home owners are more 
satisfied than are tenants in many European countries. 
Table 1 reports the concepts used to construct the FCM-
based model of residential mobility. 
 
Labels Concept description 
C1 Income 
C2 Position in life cycle 
C3 Level of degree 
C4 Owner 
C5 Tenant 
C6 Other occupancy status 
C7 Single person 
C8 Childless couple  
C9 Couple with children  
C10 Single parent family 
C11 Land price 
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C12 Rents 
C13 Amenities 
C14 Environmental quality 
C15 House 
C16 Apartment 
Table 1: Concepts investigated for constructing the FCM 

The causal relationships defined as fuzzy rules 

The above review of studies shows that while various 
factors could have influences on residential satisfaction, 
and the influences may vary in different groups, countries 
and societies. For example, Parkes, Kearns, and Atkinson 
(2002) found the relative importance of neighborhood and 
socio-demographic factors is influenced by the 
characteristic of the place and time of their study. James 
(2008) emphasizes the influences of public housing project 
size on residential satisfaction.  
This indicates that specific case study and empirical 
research of the determinants of residential satisfaction are 
needed to be carried out for better guiding public housing 
policies. In addition, the impact of housing allocation 
institution on residential satisfaction is little studied. In this 
paper, the expert’s appreciation is taken into account. And 
the relationships between the determinants of residential 
mobility in term of concepts according to FCM-based 
modelling approach, are established using a series of fuzzy 
rules of the type “if the concept Ci is in sp then the causal 
relationship with concept Cj is wij”, where sp is one of the 
possible states of the concept Ci and wij will be the value of 
the causal relationships for this state. In this way, a set of 
rules defining the value of the relationship is used to 
determine the relationship value between two concepts. 
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To define the set of rules, we define a general procedure. 
For instance, we assume that the state of each concept 
according to fuzzy sets in three zones illustrated in Fig.2.  

 

Fig. 2: Fuzzy state of each concept 

The state can be defined as a fuzzy variable composed by 
three fuzzy sets: high, medium and low. Additionally, the 
possible types of relationships between concepts can be like 
linguistic variable (table 2). Also, the type of relationships 
can be defined as a fuzzy variable composed by nine sets: 
Complete+, High+, etc.  

Value Linguistic variable 
1.00 Complete+ 

0.75 High+ 

0.50 Medium+ 

0.25 Low+ 

0.00 Null 
-0.25 Low- 

-0.50 Medium- 

-0.75 High- 

-1.00 Complete-  

Table 2: Possible types of relationships between concepts 

Then, we can define the following set of generic rules using 
the concept states and the possible types of relationships 
defined previously, to define the causal relationships 
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between concepts: 

§ If the preceding concept is High and the consequent 
one is also High, then the relationship is Complete+ 
(1.0). 

§ If the preceding concept is High and the consequent 
one is also Medium, then the relationship is High+ 
(0.75). 

§ If the preceding concept is High and the consequent 
one is also Low, then the relationship is Low+ (0.25). 

§ If the preceding concept is Medium and the 
consequent one is also High, then the relationship is 
High+ (0.75). 

§ If the preceding concept is Medium and the 
consequent one is also Medium, then the relationship 
is Medium- (-0.25). 

§ If the preceding concept is Medium and the 
consequent one is also Low, then the relationship is 
High- (-0.75). 

§ If the preceding concept is Low and the consequent 
one is also High, then the relationship is High- (-0.75). 

§ If the preceding concept is Low and the consequent 
one is also Medium, then the relationship is Medium- 
(-0.50). 

§ If the preceding concept is Low and the consequent 
one is also Low, then the relationship is Complete- (-
1.0). 

The set of generic fuzzy rules follows an adaptation 
mechanism similar to the hebb learning rule (Papageorgiou 
and al. 2003; 2004; Anninou and Groumpos, 2014). These 
rules would be used to determine all the relationships 
between the different concepts. Thus, every relationship 
would be determined under the same set of rules.  
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Cellular automata-based geosimulation 

The cellular automata concept was introduced in the mid-
1940s by John von Neumann (1951) and Stanislaw Ulam 
(1952) in the fields of mathematics, artificial intelligence 
and computing machinery (Turing, 1950). In the 1960s, 
John Conway presented ‘‘LIFE’’, a cellular automaton that 
is well known as ‘‘the game of life’’ and that is characterised 
by the following simple rules. A live cell stays alive if two or 
three of its neighbours are alive; otherwise, it dies. A dead 
cell will come to life if it has three living neighbours 
(Gardner, 1970). ‘‘LIFE’’ became the most famous basic 
rule in the ‘‘standard’’ CA and contributed greatly to its 
popularity. 
Between the 1970s and the 1990s, conventional CA were 
proposed to model geographical phenomena such as spatial 
dynamics (Couclelis, 1985) and various spatial processes 
(Phipps, 1989; Ceccchini and Viola, 1992). Since Wolfram 
demonstrated the capability of CA techniques to generate 
surprising fractal patterns (Wolfram, 1984), conventional 
CA have been used to study urban fractal forms (Batty, 
1991). In spite of the value of conventional CA that mimic 
the complex nature of geographical systems, a conventional 
CA can be inappropriate when modelling and predicting 
complex and dynamic land use processes realistically 
(White and Engelen, 1994). For purposes of land use 
dynamics, a more complex CA model (e.g., Constrained 
CA model) is needed (White and Engelen., 1997). Simply 
defined, land-use is the human use of land cover (e.g., 
Corine Land Cover technical guide, EEA, 2000). The 
complexity of a land use system depends on: (1) the 
inherent qualities of land use, (2) the multiple local spatial 
interactions between land use types (Agbossou et al., 2008; 
Agbossou 2010), (3) the neighbouring effects of land use 
activities, and (4) the aggregate level of demand for each 
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land use activity. Naturally, time and various scale variables 
further complicate the linkage between the land-use system 
and the dynamics and therefore the rules and/or processes 
that permanently regulate the changes. Consequently, it is 
important to achieve several objectives in the modelling 
process: model and simulate related changes, dynamics and 
transformations, including their nature and content; the 
resulting processes, structures and configurations; and their 
location across time and space while predicting other 
potential changes. CA-based models can take these 
objectives into account (Portugali, 2004; Yeh and Li, 2002; 
Barredo et al., 2003). This study, which mimics complex 
land use patterns, utilises the fundamental properties of CA 
basedmodels, which include (1) a regular discrete lattice of 
cells. In this model, each land use type is represented by a 
particular cell state; (2) the evolution of each cell takes 
place in discrete time steps; (3) each cell is characterised by 
a state that is taken from a finite set of states; (4) the state 
of the cell at each iteration is determined by the states of 
the cells within a large neighbourhood and the transition 
rules based on the FCM dynamics derived from fuzzy 
relationships rules (these transitions are identical for all cells 
in the lattice and represent the neighbourhood influences); 
and (5) the large neighbourhood effects influence the 
studied cells. These properties permit CA-based models to 
simulate the evolution of land use dynamics in response to 
the implementation of the residential mobility process. 

Results and discussion 

Experimentation of the model was carried out in the 
municipality of Saône (in eastern France). Each simulation 
is analyzed over a period of fifteen years with a reference 



xx Igor Agbossou 

situation, which is that of 2005. We postulate that, beyond 
15 years, experimentation with our scenarios would be too 
prone to societal transformations to be valid. Thus, our 
simulations are performed over a period from 2006 to 
2020. Also, for all scenarios the spatial resolution remained 
the same (we took a spatial resolution of 30 meters). The 
passage of the grid to the initial configuration (which is a 
model very close to the reality of the spatial distribution of 
different types of housing in the area in 2005). Five types of 
land use are identified: green space, building land, house 
rented, owner-occupied house and owner-occupied 
apartment is used in the simulations. Indeed, in the 
database used to perform this simulation are not involved 
in serviced apartments households, and therefore land use 
materializing this household category is not included in the 
simulations. However, we wish in future research include 
this land use through a weight made from the data. The 
results suggest that spatial planning policy to curb 
suburbanization could turn to a pre consisting in 
implementing the idea of the following scenario: a pleasant 
living environment for all and demographic balance. This 
would actually work in reducing urban pollution of all kinds 
(noise, pollution, incivility, insecurity, etc.) and develop 
more amenities. It will also, of a socio-demographic point 
of view, introduce incentives to maintain strong family 
cohesion. 
Indeed, analysis of the simulations of the spatial 
distribution of habitat for 2005-2015 shows that of 
temporality than 10 years, we do not observe an increase in 
the type of housing "apartment for rent". 
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Fig. 3: From meshwork of study zone to results 
 
Paradoxically, it is the habitat type "house property" that 
spreads. Faced with this result against-intuitive, we wanted 
to go further in the analysis. To do this, we launched the 
simulations of this scenario over a longer temporality, until 
2020 (Fig. 3) by observing the type of household "Singles" 
and "Single parent". Again, the results are surprising. The 
year 2015 was a pivotal year, a year that would mark a 
dynamic shift of residential mobility for this population of 
households with an increase in apartments and lower 
houses. Thus we see emerge the idea of conversion spaces 
materialize timidly across the housing types. 
this result suggests us to focus in a forthcoming paper on 
the issue of the shrinking/reversing spaces in spatial 
planning. 
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Conclusion  

This research introduces a new methodological framework 
for modelling, and simulating the residential mobility on 
the land use dynamics. The developed CA constrained by 
FCM-based model provides specific land use scenarios 
through 2020 that reflect the reality. 
A comparison of the scenarios shows that each land use 
type obeys specific dynamics that are primarily the result of 
‘‘push–pull effects’’ between different land use types, which 
are linked to the nature of the neighbourhood 
configuration and allow the model to run as a non-linear 
system. The allocation, distribution and redistribution of 
cells through space and time are central to the way that it 
allows the model to capture local spatial processes and to 
show net changes and growth in the study area. 
The complexity of the land use systems and the long-term 
spatial effects of the residential mobility dynamics are 
significant. Therefore, the model was demonstrated to be 
appropriate. However, the model requirements pose several 
limitations that we have to investigate in futures work with 
appropriate a complex dataset that is geographically 
integrated and harmonised in time and in surveying 
methodology.  
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