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Abstract

This paper aims at developing an experimental method to characterize the vibroacoustic response

of a panel to a diffuse acoustic field excitation with a different laboratory setup than those used in

standards (i.e., coupled rooms). The proposed methodology is based on a theoretical model of the

diffuse acoustic field and on the measurement of the panel’s sensitivity functions which characterize

its vibroacoustic response to wall plane waves. These functions can be estimated experimentally

using variations of the reciprocity principle which are described in the present paper. These

principles can either be applied for characterizing the structural response by exciting the panel

with a normal force at the point of interest or for characterizing the acoustic response (radiated

pressure, acoustic intensity) by exciting the panel with a monopole and a dipole source. For both

applications, the validity of the proposed approach is numerically and experimentally verified on

a test case composed of a baffled simply supported plate. An implementation for estimating the

sound transmission loss of the plate is finally proposed. The results are discussed and compared

with measurements performed in a coupled anechoic-reverberant room facility following standards.

PACS numbers: PACS: 43.40.At, 43.40.Dx
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I. INTRODUCTION1

The experimental vibroacoustic characterization of panels under a diffuse acoustic field2

(DAF) excitation is of great interest for the industry. This excitation is commonly used3

to determine the sound reduction index of panels as described in several standards using4

coupled reverberant-reverberant room [1] [2] or reverberant-anechoic room [3] [4] laboratory5

facilities. Theoretically, a DAF is defined as an infinite set of uncorrelated plane waves with6

uniformly distributed incidence angles. In standard laboratory measurements, this excita-7

tion is reproduced using a reverberant room and only partially corresponds to its theoretical8

definition, especially below the Schroeder frequency of the room where the sound field is9

dominated by well-defined acoustic cavity modes. Even above the Schroeder frequency, the10

pressure field is not perfectly homogeneous and the lack of grazing incidence plane waves11

has been pointed out in the literature. Inter-laboratory variations of vibroacoustic measure-12

ments in reverberant rooms can be attributed to these phenomena, but other parameters13

are involved such as room dimensions, niche effects, panel mounting conditions, aperture14

size and measuring protocols [5] [6] [7].15

In this context, the aim of this study is to investigate an alternative and robust approach16

to experimentally characterize a panel’s response to a DAF excitation by using only the17

theoretical model of this excitation to overcome the limitations of a reverberant room mea-18

surement discussed above. Indeed, the mathematical formulation of a panel’s vibro-acoustic19

response when submitted to random excitations in the wavenumber domain allows estimat-20

ing the system’s response, at any point on the structure or in the acoustic medium, from21

wall-pressure cross spectral density (CSD) functions (characterizing the excitation) and from22

so-called ‘sensitivity functions’, which were introduced in [8] [9] for the analogous problem23

of panels excited by a turbulent flow. The latter are defined as the panel’s response to wall-24

pressure plane waves and characterize the panel’s vibroacoustic behavior. The estimation of25

the panel’s response submitted to a DAF excitation therefore only requires the experimental26

measurement of sensitivity functions in the acoustic wavenumber domain.27

A method is proposed for estimating the sensitivity functions experimentally. Whereas28

the direct interpretation of the sensitivity functions would require exciting the panel by sets29

of wall plane waves, which is not easy from an experimental point of view, an alternative30

method based on a reciprocity principle is proposed. The reciprocity principle states that the31
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sensitivity functions at any point on the structure or in the acoustic medium are equivalent32

to the panel’s velocity response expressed in the wavenumber domain when the system is33

excited by a vibration or acoustic source at the same point. From an experimental point34

of view, it is then only necessary to excite the system with a vibration or acoustic source35

and to apply a wavenumber transform to the measured transfer function between the panel36

velocity and the source magnitude to obtain the sensitivity functions for a wide range of37

wavenumbers. Globally, the proposed experimental process consists in exciting the panel38

with the source of given magnitude at the point of interest. The spatial vibratory response of39

the panel is then measured with a scanning laser vibrometer. In a subsequent post-processing40

phase, a discrete 2-D wavenumber transform of the measured vibratory field is performed to41

deduce the sensitivity functions. Finally, using the wall-pressure model of a DAF and the42

previously estimated sensitivity functions, the response when the panel is excited by a DAF43

can be deduced at any point on the structure or in the acoustic medium. To evaluate the44

sound transmission loss, this process is repeated for a series of points belonging to a surface45

surrounding the panel to estimate the acoustic intensity at these points when the panel is46

excited by a DAF.47

The remainder of the paper is organized as follows: the considered vibro-acoustic problem48

and the quantities characterizing a panel under a DAF are described in Sec. II. Then, the49

mathematical formulation of the vibro-acoustic problem is presented in Sec. III where the50

sensitivity functions appearing in the formulation are defined. An alternative interpretation51

of these functions based on the reciprocity principle is proposed in Sec. IV. This inter-52

pretation suggests a simple implementation for measuring the sensitivity functions. The53

proposed methodology for characterizing the panel response under a diffuse acoustic field54

is summarized in Sec. V. Numerical and experimental validations are provided in Sec. VI.55

Finally, a comparison with measurements performed following standards [4] is proposed in56

Sec. VII.57

II. VIBROACOUSTIC CHARACTERIZATION OF PANELS UNDER DIFFUSE58

ACOUSTIC FIELD59

Let us consider a baffled panel of surface Σp with arbitrary boundary conditions separating60

two semi-infinite acoustic domains. Each of these acoustic domains is characterized by a61
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FIG. 1. Panel (gray line) and coordinate system. (a) receiving side: semi-infinite domain. (b)

source side: theoretical DAF.

mass density ρ0 and a sound velocity c0. As shown in Fig. 1, one supposes that a DAF is62

generated on one side of the panel. We define x = (x, y, z) the observation point in the63

receiving half space z > 0 or on the panel z = 0 and x̃ = (x̃, ỹ) the excitation point on the64

panel surface. Both points are defined in the Cartesian coordinate system (x, y, z) shown in65

Fig. 1.66

To experimentally characterize the vibroacoustic behavior of this panel, two quantities67

are considered:68

- the one-sided normal velocity frequency response v at a given point on the panel,69

which for random excitations is given by the auto spectral density (ASD) function of70

the normal velocity Gvv (x, f),71

- the transmission loss (TL) defined by72

TL (f) = 10 log10

(
Πinc (f)

Πrad (f)

)
, (1)

where f is the frequency and is considered positive.73

The incident acoustic power and the radiated acoustic power are denoted Πinc and Πrad, re-74

spectively. For a DAF exciting a panel of area Σp, the incident acoustic power is theoretically75

given by [10]76

Πinc (f) =
Gpbpb (f) Σp

8 ρ0c0

, (2)

where Gpbpb (f) is the one-sided frequency wall-pressure ASD function and the factor 877

accounts for pressure doubling at the panel surface [11]. The radiated power of the panel78
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into the receiving medium is obtained by integrating the normal active sound intensity flow79

passing through a virtual surface Σv surrounding the panel80

Πrad (f) =

∫∫
Σv

Iact (x, f)n dx, (3)

n being the unit exterior vector normal to Σv, dx the surface element and Iact (x, f) the81

active sound intensity at point x. The latter is directly related to the one-sided frequency82

CSD function Gpv0 (x, f) between the sound pressure p and the particle velocity v0 at point83

x with [12]84

Iact (x, f) = Re{Gpv0 (x, f)}. (4)

Theoretically, the radiated power is obtained by solving the formal integral in Eq. (3).85

For numerical and experimental applications, the integral of Eq. (3) may be approximated86

by discretizing the surface Σv and using the rectangular integration rule:87

Πrad (f) ≈
∑
x∈σv

Iact (x, f)n δx, (5)

where σv represents the set of points defined on Σv and δx is the elementary point area.88

To characterize the vibration response of a panel to a DAF, it is then necessary to89

evaluate Gvv at the considered point on the panel while the evaluation of Gpv0 for the set90

of points σv is required to estimate the TL. An approach for evaluating these quantities91

based on deterministic transfer functions and using a reciprocity principle is presented in92

the following sections.93

III. MATHEMATICAL FORMULATION OF THE VIBROACOUSTIC RESPONSE94

OF PANELS UNDER DIFFUSE ACOUSTIC FIELD95

Let us consider the blocked wall-pressure field pb (x̃, t) exerted on the panel by a DAF96

excitation at point x̃ as a function of time. The response of the panel at point x when the97

panel is excited by pb (x̃, t) is denoted α(x, t). If x is on the panel, α stands for v whereas98

it stands for p or v0 if x is in the acoustic domain. This response can be expressed by the99
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convolution product [13]100

α(x, t) =

∫∫
Σp

∫ ∞
−∞

hα/Fn (x, x̃, t− τ) pb (x̃, τ) dτdx̃, (6)

where hα/Fn (x, x̃, t) is the impulse response (structural velocity, acoustic pressure or particle101

velocity-wise) at point x for a normal unit force applied at point x̃. Assuming that the102

random process is ergodic, the cross-correlation function Rαα′ (x, t) is defined by103

Rαα′ (x, t) =

∫ ∞
−∞

α (x, τ)α′ (x, t+ τ) dτ. (7)

where α′ also designates v, p or v0. Introducing Eq. (6) in Eq. (7) and performing a time104

Fourier transform of the resulting expression of the cross-correlation function gives the space-105

frequency spectrum Sαα′ (x, ω), which after some manipulations (see [13] for details) can be106

written as107

Sαα′ (x, ω) =

∫∫
Σp

∫∫
Σp

Hα/Fn (x, x̃, ω)H∗α′/Fn

(
x, ˜̃x, ω

)
Spbpb

(
x̃, ˜̃x, ω

)
dx̃d˜̃x, (8)

where Hα/Fn (x, x̃, ω) is the time Fourier transform of hα/Fn (x, x̃, t) and corresponds to the108

panel frequency response function (velocity, pressure or particle velocity-wise) at point x109

when it is excited by a normal force Fn applied at point x̃; Spbpb

(
x̃, ˜̃x, ω

)
is the time110

Fourier transform of the cross-correlation function of the blocked wall-pressure; finally ∗ is111

the complex conjugate. Defining the wavenumber-frequency spectrum of the wall-pressure112

Spbpb (k, ω) as the wavenumber transform of the space-frequency spectrum Spbpb

(
x̃, ˜̃x, ω

)
,113

one has114

Spbpb

(
x̃, ˜̃x, ω

)
=

1

4π2

∫∫ ∞
−∞

Spbpb (k, ω) ejk(˜̃x−x̃)dk. (9)

where k = (kx, ky) is the wavevector defined in the plane (x, y) and dk is the two-dimensional115

wavenumber element. By introducing Eq. (9) in Eq. (8) and rearranging the terms, one116

obtains117

Sαα′ (x, ω) =
1

4π2

∫∫ ∞
−∞

Hα (x,k, ω)H∗α′ (x,k, ω)Spbpb (k, ω) dk, (10)

where118

Hα (x,k, ω) =

∫∫
Σp

Hα/Fn (x, x̃, ω) e−jkx̃ dx̃. (11)
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The Hα (x,k, ω) functions are called the sensitivity functions [14] and characterize the vi-119

broacoustic behavior of the panel. The function Hα/Fn (x, x̃, ω) is the time Fourier transform120

hα/Fn (x, x̃, t) and, therefore, corresponds to the transfer function between the panel velocity121

frequency response and the frequency spectrum of the applied effort.122

The wall-pressure CSD function in the space-frequency domain of a DAF can be expressed123

by [15]124

Spbpb (r, ω) = Spbpb (ω)
sin (k0r)

k0r
, (12)

where r = |x̃− ˜̃x|, k0 = ω/c0 is the acoustic wavenumber and Spbpb (ω) is the wall-pressure125

ASD function. The space-wavenumber transform of Eq. (12) gives the wall-pressure CSD126

function in the wavenumber-frequency space127

Spbpb (k, ω) = Spbpb (ω) Φpbpb (k, ω) , (13)

where128

Φpbpb (k, ω) =


2π
k0

1√
k20−|k|2

if |k| < k0

0 if |k| ≥ k0

. (14)

As the wall-pressure CSD function of a DAF is null for wavenumbers larger than the acoustic129

wavenumber, the integration domain involved in Eq. (10) can be restricted to the wavenum-130

bers contained in the acoustic domain (i.e., |k| < k0). Moreover, in practice, this integral131

is approximated considering a set of wavevectors in the acoustic domain Ωk and using the132

rectangular integration rule. It should be stressed here that Sαα′ (x, ω) is a two-sided spec-133

trum as a function of the angular frequency. It can be related to the one-sided spectrum as134

a function of the frequency Gαα′ (x, f) by135

Gαα′ (x, f) = 4π Sαα′ (x, ω) . (15)

For the sake of coherence with experiments, one-sided frequency spectra will be considered136

in the remainder of the article.137

According to Eq. (10) and (15), the one-sided frequency ASD function of the velocity v138
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at point x (z = 0) of a panel excited by a DAF can be estimated with139

Gvv (x, f) ≈ 1

4π2

∑
k∈Ωk

|Hv(x,k, ω)|2Gpbpb (f) Φpbpb (k, ω) δ2k, (16)

whereas the one-sided frequency CSD function between the pressure p and the particle140

velocity v0 at a given point x into the acoustic domain can be estimated with141

Gpv0 (x, f) ≈ 1

4π2

∑
k∈Ωk

Hp (x,k, ω)H∗v0 (x,k, ω)Gpbpb (f) Φpbpb (k, ω) δ2k, (17)

where δk represents the wavenumber resolution and Gpbpb (f) = 4π Spbpb (ω) is the one-sided142

frequency ASD function of the blocked wall-pressure.143

To evaluate these two quantities, the sensitivity functions Hv, Hp and Hv0 for wavenum-144

bers belonging to Ωk are thus to be determined. A direct interpretation of these sensitivity145

functions can be deduced from Eq. (11). Since Hα/Fn (x, x̃, ω) is the response α at point x146

for a unit normal force at point x̃, Hα represents the frequency response α at point x due147

to a wall-pressure plane wave of wavevector −k (i.e., due to the pressure field e−jkx̃). This148

direct interpretation is depicted in Figs. 2(a), 2(c) and 2(e) for Hv, Hp and Hv0 , respectively.149

The sensitivity functions must, therefore, be estimated only at the point of interest x150

and for the set of wavevectors Ωk. A large number of waves should be considered to entirely151

cover the acoustic wavenumber domain. Moreover, from an experimental point of view,152

wall-pressure plane waves cannot be easily reproduced. To circumvent these issues, another153

interpretation of these sensitivity functions based on the reciprocity principle is given in the154

next section.155

IV. ALTERNATIVE INTERPRETATION OF THE SENSITIVITY FUNCTIONS156

In order to propose another interpretation of the sensitivity functions, let us consider the157

standard reciprocity principle which states that the response of a system is invariant with158

respect to the exchange of points of excitation and observed response [16]. Following the159

previous notation, it can be translated into160

Hα/Fn(x, x̃, ω) = Hv/ᾱ(x̃,x, ω), (18)
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where Hv/ᾱ(x̃,x, ω) is the frequency response function between the panel velocity and a161

source ᾱ, dual of α. As the normal force Fn is applied on the panel, the exchanged observa-162

tion point is also on the panel which explains why the right-hand side of Eq. (18) remains163

the velocity response of the panel, regardless of α. However the type of excitation source ᾱ164

depends on α and it will be detailed below for each quantity considered for α.165

Sticking to the general case, by introducing Eq. (18) in Eq. (11) one obtains166

Hα(x,k, ω) =

∫∫
Σp

Hv/ᾱ(x̃,x, ω)e−jkx̃ dx̃. (19)

The right hand side of Eq. (19) can be interpreted as the space-wavenumber transform of167

Hv/ᾱ(x̃,x, ω) with respect to the spatial variable x̃. The points x̃ become observation points168

on the panel surface Σp, which means that the space-wavenumber transform is performed169

over the vibration velocity field of the panel. To sum up, the sensitivity function Hα(x,k, ω)170

may be obtained by exciting the panel with a source ᾱ at point x and by calculating the171

space-wavenumber transform of the panel velocity frequency response normalized by the172

source frequency spectrum. This second interpretation of the sensitivity functions is now173

detailed for the three cases involved in the evaluation of the panel response excited by a174

DAF.175

Case of plate velocity (α = v): The reciprocity principle states [17] that the ratio of176

the normal velocity of the panel at point x over the applied normal force at point x̃ is equal177

to the ratio of the normal velocity of the panel at point x̃ over the normal force applied at178

point x. Eq. (18) becomes179

Hv/Fn(x, x̃, ω) = Hv/Fn(x̃,x, ω). (20)

In this case, ᾱ is a normal force and thus, the sensitivity function Hv(x,k, ω) is obtained180

by exciting the panel with a normal force at point x and by performing a space-wavenumber181

transform of the transfer function between the panel vibration velocity response and the182

force frequency spectrum, as illustrated in Fig. 2(b).183

Case of radiated pressure (α = p): Lyamshev reciprocity relations for elastic struc-184

tures excited by point forces [16] indicate that the ratio of the pressure at point x over the185

applied normal force at point x̃ is equal to the ratio of the normal velocity of the panel at186

9



FIG. 2. Direct interpretation of the sensitivity functions: (a) Hv, (c) Hp, (e) Hv0 and corresponding

reciprocal interpretation (b) Hv, (d) Hp, (f) Hv0 . (d) and (f) see appendix for demonstration.

point x̃ over the volume velocity Qv of a monopole source placed at point x. The demon-187

stration of this particular reciprocity relation according to Lyamshev [18] is provided in188

Appendix A 1 (this classical demonstration is useful to introduce reciprocity in terms of189

particle velocity and dipole source strength, which is demonstrated in appendix A 2). In190

this case ᾱ is a monopole source of volume velocity Qv and Eq. (18) becomes191

Hp/Fn(x, x̃, ω) = Hv/Qv(x̃,x, ω). (21)

The sensitivity function Hp(x,k, ω) is therefore obtained by exciting the panel with a192

monopole source at point x and by performing a space-wavenumber transform of the panel193

vibration velocity response normalized by the frequency spectrum of the monopole’s volume194

velocity, as illustrated in Fig. 2(d).195
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Case of particle velocity (α = v0): Fahy stated that the reciprocity relationship could196

be extended to acoustic dipoles and particle velocities [16], however no demonstration could197

be found in the literature. As a point dipole can be represented by a point force injected in198

the fluid, the ratio of the particle velocity at point x over the applied normal force at point199

x̃ is equal to the ratio of the normal velocity of the panel at point x̃ over the force injected200

in the fluid F0 at point x. This latter reciprocity relation is demonstrated in Appendix A 2.201

The dual source ᾱ being a dipole source of force F0 injected in the fluid, Eq. (18) now202

becomes203

Hv0/Fn(x, x̃, ω) = Hv/F0(x̃,x, ω) (22)

As demonstrated in Appendix A 2, the force F0 is injected in the same direction n as204

the desired direction of the particle velocity v0. One can obtain the sensitivity function205

Hv0(x,k, ω) by exciting the panel with a dipole source at point x and by performing a206

space-wavenumber transform of the panel vibration velocity response normalized by the207

frequency spectrum of the force injected by the dipole source in the fluid, as illustrated in208

Fig. 2(f).209

To sum up, the sensitivity functions can be obtained by exciting the system at the point210

of interest x and by performing a space-wavenumber transform of the panel velocity field.211

In practice, the vibratory field has to be measured on a regular grid of points denoted212

Γx̃, using a scanning laser vibrometer, for example. The space-wavenumber transform is213

therefore approximated by a discrete Fourier transform. In order to avoid aliasing effects,214

the spatial resolution δx̃ over Γx̃ should be determined so that the spatial variations of215

the vibratory field can be correctly represented by the grid of points. For a homogeneous216

isotropic thin panel, δx̃ should be less than or equal to a quarter of the natural flexural217

wavelength of the panel λf at the highest frequency of interest. For a more complex panel,218

a preliminary study should be carried out to define this parameter (for instance, by using a219

numerical model of the panel or by using a trial and error procedure).220

V. DESCRIPTION OF THE PROPOSED METHODOLOGY221

A methodology for experimentally estimating the vibroacoutic response of a panel excited222

by a DAF is now presented. This methodology is based on Eqs. (16) and (17), and the second223

interpretation of the sensitivity functions, as described in the previous section.224
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Vibration response of the panel: The methodology for evaluating the velocity ASD225

function Gvv at a given point x of the panel (z = 0) can be summarized as follows:226

- Excite the panel with a normal mechanical force at point x (for instance by using a227

shaker) and measure the normal velocity response of the panel at points x̃ ∈ Γx̃ to228

determine Hv/Fn (x̃,x, ω),229

- Perform a discrete Fourier transform of the panel velocity response Hv/Fn (x̃,x, ω)230

(with respect to x̃) to obtain the sensitivity functions Hv(x,k, ω) at point x for k ∈ Ωk,231

- Use Eqs. (16) and (14) to estimate the velocity ASD function Gvv at point x under an232

ideal DAF excitation.233

Acoustic response of the panel: The acoustic response of the panel is characterized234

by the TL as described in Sec. II. It can be obtained by following the next five steps:235

- Excite the panel with a monopole source at a given point of interest x and measure the236

normal velocity response of the panel at points x̃ ∈ Γx̃ to determine Hv/Qv (x̃,x, ω),237

- Excite the panel with a dipole source at a given point of interest x and measure the238

normal velocity response of the panel at points x̃ ∈ Γx̃ to determine Hv/F0 (x̃,x, ω),239

- Perform a discrete Fourier transform of the panel velocity responses obtained for240

both monopole and dipole cases to estimate the sensitivity functions Hp(x,k, ω) and241

Hv0(x,k, ω) at point x,242

- Calculate the pressure – particle velocity CSD function at point x using Eqs. (17)243

and (14),244

- Calculate the active sound intensity at point x using Eq. (4).245

The five previous steps are repeated for points x ∈ σv (discretizing the whole virtual246

surface Σv surrounding the panel) to calculate the radiated power using Eq. (5). The TL is247

finally deduced using Eq. (1) while the incident acoustic power is evaluated with Eq. (2).248
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VI. NUMERICAL AND EXPERIMENTAL VALIDATION OF THE PROPOSED249

APPROACH250

A. Test case description251

For numerical and experimental validation purposes a test case is considered, which252

consists in a rectangular thin aluminum plate, simply supported on its four edges, baffled,253

and submitted to a DAF excitation on one side. This baffled plate separates two semi-infinite254

domains filled with air (ρ0 = 1.3 kg.m−3 and c0 = 343 m.s−1). The plate’s geometrical and255

mechanical properties are detailed in Table I. The structural loss factor ηmn of the (m,n)256

mode has been experimentally estimated using the -3 dB bandwidth method on the first257

few resonances of the plate and is taken into account in the numerical simulations. A mean258

value of η = 0.005 has been measured. Simply-supported boundary conditions have been259

chosen because they lead to a simple analytical solution of the plate equation of motion.260

In addition, the experimental setup proposed by Robin et al. [19] for reproducing these261

boundary conditions has already been validated.262

The frequency range of interest is [170, 2000 Hz] with a frequency resolution of 0.625 Hz.263

The low frequency limit is set according to the frequency response of the monopole source264

and the high frequency limit has been chosen arbitrarily. This frequency range is below the265

critical frequency of the panel, fc, given by266

fc =
c2

0

2π

√
ρh

D
, (23)

where D = Eh3

12(1−ν2)
is the flexural stiffness. For the considered case, fc = 3867 Hz.267

In this section, we will focus on:268

- the velocity sensitivity functionsHv at point xM of coordinates (x = 0.06 m, y = 0.3 m, z = 0 m)269

on the plate,270

- the pressure and particle velocity sensitivity functions Hp and Hv0 at point xN of271

coordinates (x = 0.06 m, y = 0.3 m, z = 0.1 m) into the acoustic medium. The particle272

velocity v0 will be determined in direction z,273

- the frequency response of the velocity response at point xM and of the active intensity274

at point xN in the direction z.275
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To apply the methodology described in Sec. V, the panel velocity field has to be measured276

or calculated on a grid of points Γx̃. In the following, a uniform mesh of 15 × 13 points is277

considered in directions x and y respectively and a gap of 30 mm along the edges is left for278

practical reasons. This leads to a spatial resolution of δx = δy = 30 mm and ensures at least279

4 points per flexural wavelength for all frequencies of interest. The highest wavenumbers280

kmaxx and kmaxy that can be resolved in directions x and y, respectively, are given by281

kmaxx = kmaxy =
π

δx
=
π

δy
' 105 m−1. (24)

These wavenumbers are well above twice the acoustic wavenumber (related to the Shan-282

non criterion) at the highest frequency of interest (i.e., k0 = 37 m−1 at 2000 Hz). As283

a consequence, the considered grid of points provides correct estimation of the sensitivity284

functions in the acoustic wavenumber domain Ωk. The wavenumber resolutions δkx and δky285

in directions x and y respectively, are given by286

δkx =
2π

Lx
' 13 m−1 ; δky =

2π

Ly
' 15 m−1. (25)

These wavenumber resolutions are relatively large because of the small dimensions of the287

panel. In order to improve the wavenumber resolution, zero-padding is used to obtain a288

wavenumber resolution of 0.5 m−1 along kx and ky.289

In order to assess the accuracy of the reciprocity approach for evaluating the panel sensi-290

tivity functions, the results obtained with this approach are compared with those obtained291

by considering the direct interpretation of these functions (as described in Sec. III). This292

comparison will allow validating the uniform mesh of 15 × 13 points used for the discrete293

spatial Fourier transform of the panel velocity field. The numerical model used for this study294

is described in Appendix B.295

B. Experimental set-up296

Fig. 3 shows the experimental setup used to measure the sensitivity functions. The297

plate was glued on thin blades and fixed on a frame as described in [19] to reproduce simply298
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FIG. 3. Experimental setup. (a) plate excited by a shaker to determine Hv. (b) and (c) baffled

plate excited by a monopole source to determine Hp and Hv0 . 1 - shaker with impedance head. 2

- plate. 3 - frame. 4 - baffle. 5 - sound absorbing foam. 6 - monopole source mounted on 3-axis

robot. 7 - single-point laser vibrometer mounted on 2-axis robot.

supported boundary conditions. To determine the velocity sensitivity functions Hv, the plate299

was excited by a normal force at point xM of coordinates (x = 0.06 m, y = 0.3 m, z = 0 m).300

This force was applied using a TMS SmartShaker K2007E01 with integrated amplifier, which301

was fed with a swept sine over the considered frequency range and the force was measured302

using an impedance head PCB288D01 (as shown in Fig. 3(a)). An adapter was used between303

the impedance head and the plate reducing the area of mechanical coupling to approximately304

a 5 mm diameter circle.305

For acoustic applications, the plate was baffled in a 1 × 1 m2 plywood panel of 2 cm306

thickness. The experiment was performed in a hemi-anechoic room and 10 cm thick sound307

absorbing foam (Decibel France Polyphone 63 T) was placed on the ground and around the308

plate (see Figs. 3(b) and 3(c)) to avoid potential reflections and possible influence of the309

background noise generated by the robot used to estimate the TL (see Figs. 3(c) and section310

VII B). This allowed approaching fully anechoic conditions and ideal monopole and dipole311

excitations.312

To estimate the pressure sensitivity functions at point xN of coordinates (x = 0.06 m, y =313

0.3 m, z = 0.1 m), the plate was excited by a Microflown Mid-High frequency monopole-314

HFM source at point xN fed with a white noise signal on the considered frequency range.315

The monopole source consists of a high impedance loudspeaker connected to a socket by a316

tube with an inner diameter of 15 mm. The frequency range over which the source is effective317
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and acts like a monopole is [100, 7000 Hz]. The calibration of the source (volume velocity318

Qv per unit input voltage U) was obtained by measuring the radiated sound pressure p at a319

given distance r in anechoic conditions for a given input voltage U and using the theoretical320

model of a monopole in free field for the relation between p and Qv. The effect of the tube321

on the frequency response has thereby been accounted for.322

To estimate the particle velocity sensitivity functions at point xN in the direction z,323

the response of the plate to a dipole source has been reconstructed by exciting the plate324

with the same monopole source, still fed with a white signal and moved from the previous325

position by a distance d = 3 cm in the direction of the injected force (in this case z).326

Two monopoles close to each other and out of phase have been thereby reconstructed by327

subtracting the measured transfer functions Hv/Qv . A preliminary experimental study in free328

field conditions and using the plate was performed to determine an appropriate separation d.329

It showed that below a separation of 0.5 cm, the vibration fields induced for both positions330

of the monopole source were not sufficiently different to be noticeably measured. On the331

other hand, above a separation of 5 cm, the directivity of the reconstructed dipole did not332

match that of a theoretical dipole. A value of 3 cm for d appeared to be an optimal value333

for the present case. It should be noted that the condition k0d << 1 does not hold at the334

highest frequencies. However, the induced vibrations were in accordance with the response335

of a plate to a theoretical dipole. Since the numerical and experimental sensitivity functions336

and pressure - particle velocity CSD functions are in good agreement (see next section),337

these results validate the experimental method for reconstructing a dipole source.338

According to the methodology described in Sec. V, the vibratory response of the panel339

has been measured on the grid of 15×13 points with a single point Polytec laser vibrometer340

for each case of the excitation (i.e., force, monopole, dipole). Also, in each case, the time341

Fourier transform was directly performed in the post-processing software with ten linear342

averages.343
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FIG. 4. Velocity sensitivity functions at point xM , |Hv|2 (dB, ref. 1 m2.s−2): direct calculation

(left), numerical reciprocity approach (middle), experimental reciprocity approach (right). (a)

f = 178 Hz. (b) f = 600 Hz. (c) f = 1710 Hz. - - -, circle of radius kf . —–, circle of radius k0.

C. Comparison between numerical and experimental results344

1. Sensitivity functions345

Fig. 4 shows the velocity sensitivity functions Hv obtained with the direct calculation346

and the reciprocal approach using numerical and experimental data, respectively. They are347

provided for three different frequencies, the lowest corresponding to the (2,1) vibration mode348

frequency (Fig. 4(a)) and the two others being off-resonance cases (Figs. 4(b) and 4(c)).349

The product of sensitivity functions Hp and H∗v0 , which is involved in the expression of350

Gpv0 (Eq. (17)), is shown in Fig. 5 at the same frequencies. The circles of radius k0 and351

kf =
√

2πfc
c0
k0, corresponding to the acoustic and flexural natural wavenumbers respectively,352

are also indicated in Figs. 4 and 5.353

In Fig. 4 and 5, results obtained by simulating numerically the direct and the reciprocity354

methods match perfectly. This validates the grid of points considered on the panel and355

the use of zero-padding to improve the wavenumber resolution without affecting the results.356

It also validates the method described above to reconstruct a dipole from two monopole357

sources.358

In Fig. 4 and 5, the numerical and experimental results are generally in good agreement.359
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FIG. 5. Product of sensitivity functions at point xN , |Re{Hp × H∗v0}| (dB, ref. 1 Pa.m.s−1): di-

rect calculation (left), numerical reciprocity approach (middle), experimental reciprocity approach

(right). (a) f = 178 Hz. (b) f = 600 Hz. (c) f = 1710 Hz. - - -, circle of radius kf . —–, circle of

radius k0.

One can observe that the sensitivity functions are slightly overestimated experimentally at360

the (2,1) vibration mode frequency compared to the numerical results. This can be explained361

by the fact that the modal damping loss factor has been estimated from the response of the362

plate to a shaker excitation. The added mass from the shaker possibly had an influence on363

the evaluation of the damping of the (2,1) mode.364

A good agreement is particularly noticed within the acoustic wavenumber circle (delin-365

eated by a full line). Again, only values in the acoustic wavenumber domain contribute366

to the plate’s vibroacoutic response to a DAF. However, the sensitivity functions are also367

correctly estimated experimentally for wavenumbers higher than the acoustic wavenumber.368

2. Plate velocity ASD function369

The velocity ASD function Gvv (x, f) at point xM of the panel excited by a DAF with a370

unit wall-pressure ASD function (Gpbpb(f) = 1 Pa2.Hz−1) has been estimated using Eq. (16)371

and the three previously described sensitivity functions. Fig. 6(a) compares the results372

obtained with the direct calculation and the numerical reciprocity approach. The two curves373

are perfectly superimposed, showing that the sensitivity functions obtained with the two374
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FIG. 6. Velocity ASD functions Gvv (dB, ref. 1 m2.s−2.Hz−1). (a) direct calculation (bold gray

line) vs. numerical reciprocity approach (light black line). (b) numerical reciprocity approach

(bold gray line) vs. experimental reciprocity approach (light black line).

approaches are essentially identical in the acoustic domain and on the whole considered375

frequency range. The small noticeable peaks between resonance frequencies of the plate on376

both curves are attributable to the wavenumber sampling in Eq. (16) which induces errors377

especially as |k| approaches k0, in which case the DAF wall-pressure CSD goes to infinity378

(see Eq. (14)).379

Fig. 6(b) compares the results obtained numerically and experimentally while considering380

the reciprocity method to estimate the sensitivity functions. A good agreement is observed381

between the two results, which experimentally validates the proposed methodology for the382

considered test case. Slight shifts of the resonance peaks in the high frequency range are383

noticed. They can be explained by small differences between the experimental and the384

theoretical boundary conditions of the panel or more likely by the added mass from the385

shaker.386

3. Pressure – particle velocity CSD function387

Fig. 7(a) shows the real part of the pressure – particle velocity CSD function Gpv0 (x, f)388

at point xN when the plate is excited by a DAF (Gpbpb(f) = 1 Pa2.Hz−1). These results have389

been obtained using the direct calculation and the reciprocal approach for the sensitivity390

functions. Again, the two curves are in good agreement, which shows that the sensitivity391

functions Hp and Hv0 are properly determined on the entire frequency range using the392
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FIG. 7. Pressure – particle velocity CSD functions Re{Gpv0} (dB, ref. 1 W2.m−2.Hz−1). (a) direct

calculation (bold gray line) vs. numerical reciprocity approach (light black line). (b) numerical

reciprocity approach (bold gray line) vs. experimental reciprocity approach (light black line).

reciprocity principle.393

The experimental and theoretical pressure – particle velocity CSD functions are com-394

pared in Fig. 7(b). Their good agreement shows that the active sound intensity is correctly395

estimated in this situation using the reciprocity approach. Furthermore, the experimental396

monopole and dipole excitations correctly reproduce the theoretical conditions. The reso-397

nance peaks are better estimated compared to those obtained to estimate the plate’s velocity398

ASD function in Fig. 6(b), particularly at high frequencies. This can be possibly explained399

by the accuracy in positioning the source which, for the experiment with the shaker was done400

manually (subject to more errors) whereas for the acoustic applications, it was controlled401

with a robot allowing a higher accuracy. A more likely explanation is the dynamic influence402

of the mass added with the shaker, which explains the slight shifts of the resonance peaks403

in Fig. 6(b).404

VII. COMPARISON WITH REVERBERANT ROOM MEASUREMENTS405

The proposed approach is finally compared with measurements performed at the Univer-406

sity of Sherbrooke transmission loss facility (coupled reverberant-anechoic rooms) using a407

plate similar to the one used in the previous section (similar dimensions, material and bound-408

ary conditions) and following test standard ASTM E2249-02 (2016) [4]. The reverberant409

room has a volume of approximately 140 m3 (7.5× 6.2× 3 m3), and the Schroeder frequency410
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of the room, above which the sound field can be considered diffuse, is approximately 410 Hz.411

The plate was mounted in an existing niche between the coupled anechoic-reverberant rooms412

(the panel being flush mounted on the reverberant room side). A double-wall structure with413

mechanical decoupling was then built around the plate to prevent acoustic leaks and flank-414

ing paths, as described in [19]. A loudspeaker fed with a white noise signal excited the415

reverberant chamber.416

A. Panel velocity response417

A first experiment in the transmission loss facility was carried out to evaluate the vibra-418

tory response of the panel under a DAF. A Polytec scanning laser vibrometer placed on the419

anechoic side was used to measure the plate velocity ASD function. A 9 × 9 microphones420

array (1/4 inch B&K 4957) separated by 10 cm in directions x and y was centered to the421

plate and used to directly measure wall-pressure fluctuations 1 cm away from the plate. An422

average sound pressure level over all 81 microphones was then calculated to evaluate a mean423

wall-pressure ASD function Ḡpbpb (f) on the reverberant side.424

The sensitivity functions of this second plate were estimated experimentally using the425

reciprocity method. Some differences with the sensitivity functions of the plate considered426

in Sec. VI (not shown here) indicate that the positioning of the force applied with the shaker427

is not exactly at the considered point xM . Indeed, the position has a significant influence428

on the vibratory response, particularly at high frequencies where the mode shapes get more429

complex. The mounting base of the force sensors also has a finite diameter of approximately430

5 mm, which makes the applied force not perfectly punctual. However, the modal frequencies431

correspond to the theory for both plates. The velocity ASD function was calculated using432

Eq. (16) and (14) whilst including the measured wall-pressure ASD function Ḡpbpb (f).433

The plate velocity ASD function measured in the reverberant room at point xM is com-434

pared to the result obtained with the proposed method in Fig. 8. The two obtained responses435

are in good agreement up to 800 Hz. Above this frequency, differences are noticeable and436

can be explained with:437

- the inaccuracy in the positioning of point xM where the velocity ASD function is438

measured in the reverberant chamber (corresponding to the point force position in the439

reciprocity method) whose influence increases with the frequency,440

21



200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency [Hz]

-140

-120

-100

-80

-60

10
 lo

g
10

(G
vv

) 
[d

B
]

FIG. 8. Velocity ASD functions Gvv (dB, ref. 1 m2.s−2.Hz−1): reverberant room measurements

(bold gray line) vs. experimental reciprocity approach (light black line).

- the deviation of the pressure field in reverberant room to an ideal DAF. An analysis441

of the pressure field measured with the microphone array shows spatial variations in442

contradiction with the assumptions of a perfect DAF. Moreover, it is well known that443

a reverberant chamber has difficulty creating grazing incidence waves. The absence444

of grazing incidence waves can hardly be quantified as it varies from one reverberant445

room to another. Some authors suggest corrections on the theoretical model of the446

excitation to better represent the actual excitation in a reverberant room [20] [21].447

B. Sound transmission loss448

A second experiment in the transmission loss facility was conducted for estimating the449

plate TL. A 1/2 inch Bruel & Kjaer rotating microphone was used to measure the spatially-450

averaged sound pressure level Lp in far radiation field. The average sound intensity level LI451

was measured on the anechoic side by using a Bruel & Kjaer sound intensity probe composed452

of two 1/2 inch microphones with a 12 mm spacing. The sound intensity probe was manually453

moved 5 cm away from the plate to scan over a parallel surface identical to the plate area,454

as described in [4] for the case of a plate flush mounted on the source side. The transmission455

loss of the structure is given by TL = Lp − LI − 6 [22]. An illustration of this experiment456

and the considered virtual surface is given in Fig. 9(a).457

In addition, the proposed methodology described in Sec. V for estimating the TL was458

applied. A numerical study on the definition of the virtual surface Σv (which is not detailed459

in this paper) showed that considering a virtual surface equal to the plate area and positioned460

5 cm away from it would result in a slight overestimation of the TL, particularly at high461

frequencies. This overestimation is due to sound intensity levels outside the virtual surface462

Σv that are thus not taken into account in the calculation of the radiated power. The463
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FIG. 9. Illustration of the virtual surface Σv considered for estimating the radiated power. (a) in

the transmission loss facility. (b) with the reciprocal approach. (c) with the reciprocal approach

considering the symmetry properties of the system.

virtual surface Σv over which the active sound intensity should be estimated to obtain the464

radiated power should enclose the plate entirely. Therefore, the considered surface Σv was465

decomposed into 5 surfaces: (a), the surface Sz which is directly in the front of the plate,466

of dimensions 0.66 m × 0.6 m and positioned at zv = 0.05 m; (b), the four lateral surfaces467

(denoted Sx±, Sy± as shown in Fig. 9(b)) to enclose the whole panel. The active sound468

intensity on Sz was calculated on a grid of 12 × 10 points uniformly distributed along x469

and y, respectively. The sound intensity was only calculated on 10 aligned points on Sx±470

uniformly distributed along y and 12 aligned points on Sy± uniformly distributed along x.471

In both case, the points were positioned at zv/2. Note that in the reciprocal approach, the472

direction of the active sound intensity is defined by the direction of the force injected by473

the dipole (see Fig. 2(f)). To determine the active sound intensity at point x using the474

reciprocity principle, the plate was excited successively by a monopole and dipole source at475

point x.476

To reduce the number of excitation points and the measurement time, the symmetries477

of the system (with respect to x = Lx/2 and y = Ly/2) were considered. Only the points478

belonging to a fourth of Σv, as illustrated in Fig. 9(c), were considered, leading to a total of479

40 positions of excitation as compared to 160 in Fig. 9(b). The experiment was performed480

in an anechoic room, using two translating robots to automate the process (see Figs. 3(b)481

and 3(c)). One robot was used to move the monopole source over each point σv defining482

the discretized surfaces (considering the above symmetry) and the other robot was used to483

move a Polytec single-point laser vibrometer measuring the panel velocity on a 15×13 point484
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FIG. 10. Transmission loss (dB). (a) numerical approach (bold gray line) vs. experimental reci-

procity approach (light black line). (b) transmission loss facility (bold gray line) vs. experimental

reciprocity approach (light black line).

mesh.485

As a reference to compare the following numerical and experimental results, a numerical486

model has been established to accurately evaluate the radiated power from wall pressure487

and wall velocity values. At the wall, the particle velocity sensitivity function Hv0 normal488

to the plate is equal to the plate velocity sensitivity function Hv. Expressing it in the489

wavenumber domain allows using the wavenumber relation between the acoustic pressure490

and the particle velocity [23] and thus determining Hp at the wall. Finally, by expressing491

Eqs. (4), (5) and (17) in the wavenumber domain and using Hp and Hv0 determined at the492

wall, one obtains the radiated power directly at the wall.493

Fig. 10(a) shows experimental results obtained based on the reciprocity method, while494

considering the virtual surface Σv described at the beginning of this section and illustrated495

in Figs. 9(b) and 9(c), versus simulation results for which the radiated power was evaluated496

at the panel surface. The curves match very well on the whole frequency range. This497

demonstrates that the proposed reciprocity approach accurately reproduces the theoretical498

TL for the considered test case. Moreover, it validates the definition of the virtual surface499

Σv considered in the experiment.500

The experimental results obtained with the reciprocity principle are compared in Fig. 10(b)501

to the experimental results obtained in the transmission loss facility. The transmission loss502

facility results are noisier than those derived from the reciprocity principle. A good agree-503

ment is however noticed in general. Relatively small differences are noticeable above the504
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Schroeder frequency (410 Hz). These could be explained by the non-perfectly diffuse char-505

acter of the sound field in the reverberant room. On the other hand, below 410 Hz the TL506

measured in the transmission loss facility is on average 6.5 dB lower than the one obtained507

with the reciprocal approach. This is explained by the modal behavior of the reverber-508

ant room below the Schroeder frequency, which enhances the non diffuse character of the509

incident sound field.510

VIII. CONCLUSION511

In this paper, a methodology for characterizing the response of flat panels to a diffuse512

acoustic field excitation without using a reverberant room was proposed. This approach is513

based on the mathematical formulation of the random excitation problem in the wavenum-514

ber domain. This formulation indicates that the panel’s response at point x (on the panel515

or in the acoustic medium) to a random field depends on two quantities in the wavenumber516

domain: the wall-pressure cross spectral density function of the excitation and on so-called517

‘sensitivity functions’ at point x which characterize the panel. Using the reciprocity princi-518

ple, it has been shown that these functions can be determined from the panel velocity field519

in the wavenumber domain when the system is excited by a source of unit amplitude at the520

point of interest x. The sensitivity functions can be estimated easily by experiment based521

on the reciprocal interpretation.522

The proposed approach avoids the use of a reverberant room to determine the sound523

transmission loss factor and vibration response of plane panels under a diffuse field excitation.524

As the excitation is represented by an analytical model, this approach can be applied to525

experimentally characterize the vibroacoustic response of a panel to an ideal diffuse acoustic526

field. It should however be underlined that the main limitations of the proposed approach527

rely on the assumptions of the mathematical formulation of the problem: the system should528

be linear (i.e., elastic material, small deformations) and time invariant, and the condition529

of a baffled panel in an anechoic environment should be verified (particularly for acoustic530

applications). It offers however a large field of applications.531

From a practical point of view, the vibration response of a panel to a diffuse field excitation532

can be easily estimated using a mechanical source of effort and a vibration measuring device533

to determine the vibratory response of the panel (in this study, a shaker and a scanning laser534
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vibrometer were used). In this particular case, the use of a baffle is not crucial, because no535

acoustic excitation are considered.536

For acoustic applications, the condition of baffled panel in an anechoic environment is537

fundamental to agree with the assumption of blocked pressure. Monopole and dipole sources538

are required to determine the radiated pressure and the particle velocity, respectively. It can539

be quite challenging to experimentally reproduce those sources. In this study, a monopole-540

like source was used and moved from a certain distance to represent two monopoles close541

to each other and out of phase. A dipole source could thereby be reproduced. For the542

determination of the sound transmission loss factor, the monopole and dipole excitations543

have to be applied on several points discretizing a virtual surface, which encloses the whole544

panel. For each position of the excitation, the vibration response of the entire panel has to545

be measured. In this study, two translating robots were used to automate the process. As546

opposed to measurements in a transmission loss facility, this experiment was highly time-547

consuming. However, with the recently developed vibration measuring techniques (such as548

optical measurement), the time of experiment could be largely reduced.549

To conclude, the method has been validated numerically and experimentally for the550

considered test case. Comparisons of numerical and experimental results have shown that551

the sensitivity functions have been well estimated both inside and outside the acoustic circle552

in the wavenumber domain. A good agreement between numerical and experimental results553

has also been obtained whether for the velocity spectrum at a point on the panel or for the554

sound intensity spectrum at a point in the acoustic domain. An application of the proposed555

methodology for estimating the sound transmission loss of the plate has been presented and556

the results have been compared with standard measurements in a coupled room facility. In557

the near future, the method will be extended to the characterization of panels excited by a558

turbulent boundary layer.559
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FIG. 11. Illustration of the three considered vibroacoustic problems of an elastic structure excited

by: (a) a normal force at point x̃f , (b) a monopole source at point xm (internal or external to the

structure), (c) a dipole source at point xd (internal or external to the structure).

Appendix A: Acoustic reciprocity principles: mathematical formulation of the dif-623

ferent vibroacoustic problems624

Let’s consider a thin elastic structure in an acoustic medium of fluid density ρ0 where625

sound waves propagate at a certain speed c0. The vibroacoustic response of a structure at626

any given point x = (x, y, z) (belonging to the acoustic medium or the structure) is studied627

for three separate loadings (as illustrated in Fig. 11):628

1. a normal point force at point x̃f ,629

2. a monopole source at point xm,630

3. a dipole source at point xd,631

where points belonging to the structure are denoted x̃.632

Any kind of thin elastic structure can be considered; and the excitation and observation633

point (p(i)(x), i = 1, 2 or 3) can either be internal or external to the structure. It is also634

assumed that there is no other acoustic loading on the other side of the structure. The635

monopole source can be introduced in the Helmholtz equation by a Dirac function at point636

xm. As a dipole source is defined by two monopoles separated by a distance d (supposedly637

small compared to the acoustic wavelength) and out of phase, a dipole source is introduced638

by the gradient of a Dirac at point xd in direction nd. Sticking to the above numbering for639

each load case, the Helmholtz equations are given by640

∆p(1) (x) + k2
0 p

(1) (x) = 0, (A1)
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∆p(2) (x) + k2
0 p

(2) (x) = −jωρ0Q
(2)
v δ (x− xm) , (A2)

∆p(3) (x) + k2
0 p

(3) (x) = −F (3)
nd

∂

∂nd

δ (x− xd) [24], (A3)

where ω is the angular frequency, Qv the volume velocity flow of the monopole source,641

F
(3)
nd = jωρ0dQ

(3)
v the dipole source strength (or dipole force) and k0 = ω/c0 the acoustic642

wavenumber. The equilibrium equation for the structure in each case is643

Lv(1) (x̃) = F (1)δ (x̃− x̃f )− p(1) (x̃) , (A4)

Lv(2) (x̃) = −p(2) (x̃) , (A5)

Lv(3) (x̃) = −p(3) (x̃) , (A6)

where L is the self-adjoint operator of the structure and v is the structure velocity in direction644

n normal to the structure. Euler’s formula provides a relation between the pressure gradient645

in the fluid and the velocity along the normal external to the fluid. On the surface of the646

structure, the normal external to the fluid corresponds to −n. In this particular case, Euler’s647

formula becomes648

∂p

∂n
(x̃) = jωρ0v (x̃) . (A7)

1. Reciprocity principle for the radiated pressure (monopole source)649

Multiplying Eq. (A1) by p(2) (x) and Eq. (A2) by −p(1) (x), adding them and integrating650

them over the entire acoustic domain, one obtains651

∫
V

[
∆p(1) (x) p(2) (x)−∆p(2) (x) p(1) (x)

]
dx = jωρ0Q

(2)
v

∫
V

p(1) (x) δ (x− xm) dx. (A8)

The volume integral on the left-hand side of Eq. (A8) can be transformed to a surface in-652

tegral using Green’s theorem. Then, using Euler’s formula together with Eqs. (A4) and (A5),653
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one finally obtains [18]654

F (1)

∫
S

∂p(2)

∂n
(x̃) δ (x̃− x̃f ) dx̃ = jωρ0Q

(2)
v

∫
V

p(1) (x) δ (x− xm) dx. (A9)

From the property of the Dirac delta function (i.e.,
∫
V
f (x) δ (x− x0) dx = f (x0) for655

any function f defined on V and any point x0 ∈ V ) one has:656

F (1)∂p
(2)

∂n
(x̃f ) = jωρ0Q

(2)
v p(1) (xm) . (A10)

Using Eq. (A7), Eq. (A10) becomes657

p(1)

F (1)
(xm) =

v(2)

Q
(2)
v

(x̃f ) . (A11)

Eq. (A11) shows that the pressure radiated by a structure at point xm when it is excited658

by a normal unit point force at point x̃f equals the structure normal velocity at point x̃f659

when it is excited by a monopole source of unit volume velocity at point xm.660

2. Reciprocity principle for the particle velocity (dipole source)661

Multiplying Eq. (A1) by p(3) (x) and Eq. (A3) by −p(1) (x), adding them and integrating662

them over the entire acoustic domain, one obtains663

∫
V

[
∆p(1) (x) p(3) (x)−∆p(3) (x) p(1) (x)

]
dx = F (3)

nd

∫
V

p(1) (x)
∂

∂nd

δ (x− xd) dx. (A12)

As previously, the volume integral on the left-hand side of Eq. (A12) can be transformed664

to a surface integral using Green’s theorem. Then, using Euler’s formula together with665

Eqs. (A4) and (A6), one finally obtains [18]666

F (1)

∫
S

∂p(3)

∂n
(x̃) δ (x̃− x̃f ) dx̃ = F (3)

nd

∫
V

p(1) (x)
∂

∂nd

δ (x− xd) dx, (A13)

Using the previously described property of the Dirac delta function and the property667

of the distributional derivative of the Dirac delta function (i.e.,
∫
V
f (x) ∂

∂n
δ (x− x0) dx =668

−
∫
V

∂
∂n
f (x) δ (x− x0) dx = − ∂

∂n
f (x0) for any function f defined on V and any point669
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x0 ∈ V ) Eq. (A13) becomes670

F (1)∂p
(3)

∂n
(x̃f ) = −F (3)

nd

∂p(1)

∂nd

(xd) . (A14)

Using Euler’s formula, the normal velocity of the structure at point x̃f and the particle671

velocity vnd in direction nd at point xd are introduced in Eq. (A14). One finally obtains672

v
(1)
nd

F (1)
(xd) =

v(3)

F
(3)
nd

(x̃f ) . (A15)

Eq. (A15) shows that the particle velocity in direction nd at point xd in the acoustic673

medium when the structure is excited by a normal unit point force at point x̃f equals the674

structure normal velocity at point x̃f when it is excited by a dipole source at point xd675

oriented in direction nd and of unit injected force.676

Appendix B: Numerical simulations677

The panel vibratory response should be estimated numerically for the four different678

cases of excitation: (a) a wall plane wave for Hα (x,k, ω); (b) a normal point force679

for Hv/Fn (x̃,x, ω); (c) a monopole source for Hv/Qv (x̃,x, ω); (d) a dipole source for680

Hv/F0 (x̃,x, ω). They can be estimated by neglecting the fluid-structure interaction and681

considering the modal expansion technique. For a panel that has simply supported bound-682

ary conditions on all of its edges, the modal angular frequency ωmn, the spatial mode shape683

φmn, and the modal mass Mmn for the (m,n) mode are given, respectively, by684

ωmn =

[(
mπ

Lx

)2

+

(
nπ

Ly

)2
]√

D

ρh
, (B1)

685

φmn (x) = sin

(
mπ

Lx
x

)
sin

(
nπ

Ly
y

)
, (B2)

686

Mmn =
ρhLxLy

4
, (B3)

where m and n are non-zero strictly positive integers. The normal velocity v of the plate687
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excited by the pressure distribution P (x̃), x̃ ∈ Σp is then obtained with:688

v (x, ω) = jω
∑
m,n

Fmnφmn (x)

Mmn (ω2
mn − ω2 + jηωωmn)

, (B4)

where the modal force Fmn is defined by689

Fmn =

∫
Σp

P (x̃)φmn(x̃) dx̃. (B5)

1. Calculation of the sensitivity functions with the direct interpretation690

The direct interpretation described in Sec. III and in Fig. 2 indicates that the sensi-691

tivity functions are equal to the system response at point x when the panel is excited by692

wall-pressure plane waves of wavenumber −k = (−kx,−ky). The modal force is therefore693

calculated by considering the pressure distribution P (x̃) = e−jkx̃. In this case, the analytical694

solution to Eq. (B5) is695

Fmn = IxmI
y
n, (B6)

where for ξ = x or ξ = y,696

Iξp =


(
pπ
Lξ

)
(−1)pe

−jkξLξ−1

k2ξ−
(
pπ
Lξ

)2 , if |kξ| 6= pπ
Lξ

1
2
jLξ, otherwise.

(B7)

The sensitivity functions Hv for a point x on the panel can be directly estimated using697

Eqs. (B4) to (B7). Based on the velocity response of the plate to a wall-pressure plane698

wave, the radiated pressure at a point x in the acoustic domain may be calculated using the699

Rayleigh integral [23] whereas the particle velocity may be deduced from the Euler equation.700

Doing so for a set of wall-pressure plane waves allows calculating the sensitivity functions701

Hp and Hv0 at point x in the acoustic domain.702

2. Calculation of the sensitivity functions with the reciprocity interpretation703

The calculation of the velocity sensitivity function Hv at point x using the reciprocity704

principle involves exciting the plate with a normal unit force at point x. The modal force is705
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thus simply given by706

Fmn = φmn (x) . (B8)

According to the process described in Sec. V, the normal velocity of the panel should be707

calculated with Eq. (B4) for points x̃ ∈ Γx̃. A discrete Fourier transform is then applied to708

deduce the sensitivity functions Hv(x,k, ω).709

Similarly, the pressure sensitivity function Hp at point x in the acoustic domain is ob-710

tained by exciting the plate by a monopole at point x. The particle velocity sensitivity711

function Hv0 at point x is obtained analogously using a dipole excitation in the direction712

n at point x. The modal force is then obtained by approximating the integral of Eq. (B5)713

with the rectangular integration rule for a wall-pressure defined by714

P (x̃) = jωρ0Qv
e−jk0r

2πr
(B9)

for the monopole case, with r = |x− x̃| and Qv = 1 m3.s−1. For the dipole case,715

P (x̃) =
F0

d

(
e−jk0r1

2πr1

− e−jk0r2

2πr2

)
. (B10)

where r1 and r2 are two positions of monopoles separated by a distance d representing a716

dipole at a distance r [24] and the dipole force will be then considered of unit amplitude717

(i.e., F0 = 1 N).718
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Fig. 1. Panel (gray line) and coordinate system. (a) receiving side: semi-infinite719

domain. (b) source side: theoretical DAF.720

Fig. 2. Direct interpretation of the sensitivity functions: (a) Hv, (c) Hp, (e) Hv0721

and corresponding reciprocal interpretation (b) Hv, (d) Hp, (f) Hv0 . (d) and (f) see722

appendix for demonstration.723

Fig. 3. Experimental setup. (a) plate excited by a shaker to determine Hv. (b) and724

(c) baffled plate excited by a monopole source to determine Hp and Hv0 . 1 - shaker725

with impedance head. 2 - plate. 3 - frame. 4 - baffle. 5 - sound absorbing foam. 6 -726

monopole source mounted on 3-axis robot. 7 - single-point laser vibrometer mounted727

on 2-axis robot.728

Fig. 4. Velocity sensitivity functions at point xM , |Hv|2 (dB, ref. 1 m2.s−2): direct729

calculation (left), numerical reciprocity approach (middle), experimental reciprocity730

approach (right). (a) f = 178 Hz. (b) f = 600 Hz. (c) f = 1710 Hz. - - -, circle of731

radius kf . —–, circle of radius k0.732

Fig. 5. Product of sensitivity functions at point xN , |Re{Hp × H∗v0}| (dB, ref.733

1 Pa.m.s−1): direct calculation (left), numerical reciprocity approach (middle), ex-734

perimental reciprocity approach (right). (a) f = 178 Hz. (b) f = 600 Hz. (c)735

f = 1710 Hz. - - -, circle of radius kf . —–, circle of radius k0.736

Fig. 6. Velocity ASD functions Gvv (dB, ref. 1 m2.s−2.Hz−1). (a) direct calculation737

(bold gray line) vs. numerical reciprocity approach (light black line). (b) numerical738

reciprocity approach (bold gray line) vs. experimental reciprocity approach (light739

black line).740

Fig. 7. Pressure – particle velocity CSD functions Re{Gpv0} (dB, ref. 1 W2.m−2.Hz−1).741

(a) direct calculation (bold gray line) vs. numerical reciprocity approach (light black742

line). (b) numerical reciprocity approach (bold gray line) vs. experimental reciprocity743

approach (light black line).744

Fig. 8. Velocity ASD functions Gvv (dB, ref. 1 m2.s−2.Hz−1): reverberant room745

measurements (bold gray line) vs. experimental reciprocity approach (light black746

line).747
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Fig. 9. Illustration of the virtual surface Σv considered for estimating the radiated748

power. (a) in the transmission loss facility. (b) with the reciprocal approach. (c) with749

the reciprocal approach considering the symmetry properties of the system.750

Fig. 10. Transmission loss (dB). (a) numerical approach (bold gray line) vs. experi-751

mental reciprocity approach (light black line). (b) transmission loss facility (bold gray752

line) vs. experimental reciprocity approach (light black line).753

Fig. 11. Illustration of the three considered vibroacoustic problems of an elastic struc-754

ture excited by: (a) a normal force at point x̃f , (b) a monopole source at point xm755

(internal or external to the structure), (c) a dipole source at point xd (internal or756

external to the structure).757

36



TABLE I. Properties of the simply supported aluminum plate.

Parameter (Symbol), Unit Value
Young’s modulus (E), GPa 68.9

Poisson’s ratio (ν) 0.3
Mass density (ρ), kg/m3 2740

Length (Lx), mm 480
Width (Ly), mm 420

Thickness (h), mm 3.17
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