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ABSTRACT

In this paper we present an unsynchronized camera network
able to estimate the motion and the structure with accurate
absolute scale. The proposed algorithm requires at least three
frames: two frames from one camera and a frame from a
neighbouring camera. The relative camera poses are esti-
mated with classical Structure-from-Motion and the absolute
scales between views are computed by assuming straight tra-
jectories between consecutive views of one camera. We pro-
pose a final optimisation step to refine only the scale and the
3D points. Our method is evaluated in real conditions on the
KITTI dataset. We show quantitative evaluation through com-
parisons against GPS/INS ground truth.

Index Terms— motion estimation, scale estimation,
Structure-from-Motion, scale estimation, ego-motion

1. INTRODUCTION

Long sequences occur to be an important challenge for mo-
tion estimation applications. Indeed small errors issues from
the estimation process are accumulated over time, which
cause a drift in the estimated trajectories. To handle this
problem, a bundle adjustment (BA) can be applied either
globally for all the sequence, known as global bundle ad-
justment, or locally for some viewpoints, which is called
windowed bundle adjustment. Monocular systems require
an initialisation step or a prior knowledge to obtain the ab-
solute metric scale. Multi-camera systems can be a good
alternative for scale estimation while also allowing to cover
the whole surrounding area around a vehicle. However, if
epipolar geometry is required for some algorithms like in [1],
the necessary synchronization device becomes a major incon-
venience. The synchronization device is difficult to embed
in practical. Asynchronous camera network presents several
advantages. First, it can be developed with low cost devices
and close-to-market sensors, which is often suggested for real
applications [2]. Next, the acquisition does not depend on
the slowest camera or the synchronisation device itself and
images can be acquired continuously from each camera. The
bandwidth constraint that appears in the case of synchronized
cameras is also avoided and finally the network can be easily
modified.

Our previous work introduced a new method relaxing the
synchronization constraint that we called the ”triangle-based”
method [3]. This method was based upon the assumption that
the motion between two consecutive frames is rectilinear. Al-
though ”triangle-based” method shows good performance for
a whole sequence, notable errors occur in presence of curves.
These errors, which are caused by the straight motion hypoth-
esis, reduce the accuracy of the absolute scale estimation. If
the scale estimation is not very well performed, larger error
will be introduced to the motion and the structure computa-
tion. To improve the scale estimation part, we suggest a final
absolute scale optimization step and thus provide a more com-
plete and accurate unsynchronized camera network. Our main
contribution is that we reduce errors imposed by the straight
motion assumption of the triangle-based method. To focus on
the scale estimation refinement, we suppose that the initial es-
timated rotation matrices and the translation vectors obtained
with the 5-points algorithm [4] are fixed and we only optimize
the scale factors and the 3D structure.

The rest of the paper is organized as bellow: in section 2,
we present a short discussion about the previous work related
to motion estimation and optimisation process. Next, we give
a detailed description of the triangle method and present bun-
dle adjustment applied on our camera network in section 3.
Before concluding our work in the last section, experiments
and results for real sequences are presented in section 4.

2. RELATED WORK

Motion estimation and structure from motion algorithms have
been extensively studied [1] [5] [2] [6]. 2D-2D pose estima-
tion can be obtained with the classical 5-points algorithm [4].
An initial estimation from keypoints always suffers from er-
rors accumulated over time, and leads to drifts that even ro-
bust algorithms can not avoid. To handle this problem, op-
timization process as BA is usually applied as the last step
of Structure-from-Motion applications. In visual odometry,
a loop closure detection followed by a global bundle adjust-
ment is usually used [7]. This technique is very efficient but
difficult to apply in real applications. However, it is possi-
ble to use a local bundle adjustment with a limited temporary
window [8].

Asynchronous camera systems are rarely studied for the



motion estimation problem. In [9], an unsynchronized cam-
era system was presented a structure from stereo vision for
SLAM. This method used three images : two from the left
camera at the first and the third time steps and one from the
right camera in the time lap between the left images. Features
from the three images are interpolated to create the missing
synchronized image assuming that the features change lin-
early between the frames. Using the robot poses from odome-
ters, this method allows to have an accurate 3D structure but
it does not estimate the scale or the motion parameters.

If the absolute metric scale is desired, visual odome-
try process must integrate a particular 3D knowledge. For
monocular systems, a prior 3D knowledge is required as ini-
tialization and to be maintained later. In [6], Fraundorfer
et al. present a constricted BA parametrization for relative
scale estimation. To compute the rotation and the translation
parts, authors use the 1-point algorithm [10] based on the
general Ackermann steering principle for circular motion.
To compute the scale, Fraundorfer et al. propose a global
parametrization process to solve for all the scales at once.
Instead of optimising all the motion parameters like the clas-
sical BA algorithm, they refine only the relative scales. The
main difference between [6] and our work is that they use a
monocular camera system and we developed an asynchronous
multi-camera system. Also, their algorithm is based on cir-
cular motion assumption and our method makes a straight
motion assumption instead.

3. MOTION AND STRUCTURE ESTIMATION

The proposal method is divided in two main steps : the motion
and the structure estimation with the absolute metric scale and
the refinement of the scale and the structure by BA.

3.1. TRIANGLE-BASED METHOD

In our previous work [3], the approach is based on two as-
sumptions : two consecutive frames of each camera follow a
linear trajectory and the neighbouring cameras have a com-
mon filed of view. Our method can be generalized to N cam-
eras and requires at least two cameras. In the rest of the paper,
we introduce approach for two cameras Ci and C j. The rela-
tive cameras poses are computed via Structure-from-Motion
and the absolute scale factors are computed using the extrinsic
calibration and the linearity assumption.

Three relative poses : rotation matrices R and translation
unit vectors t, are computed between the three images using
the 5-points algorithm. Figure 1(a) shows the triangle shape
between the camera Ci in the time step 0 and 2, and the cam-
era C j in the time step 1. Red lines refer to the transforma-
tions between the cameras position and the green line refers
to the calibration process transformation. T i0

i2 is the transfor-
mation of the camera coordinate system of Ci2 to the camera
coordinate system of Ci0, the same for T i0

j1 and T i2
j1 . The trans-

(a) The big triangle (b) The sub-triangles

Fig. 1. Triangle-based method for unsynchronized cameras,
blue cameras are cameras which take images: Ci0, C j1, and
Ci2. Ci1 is a virtual position of the camera Ci.

formation T j1
i1 allows a static coupling of the two cameras in

the same time because of the system rigidity.
We integrate T j1

i1 in the triangle shape to deduce the abso-
lute scale factors. The virtual pose of the camera Ci at the time
step 1, Ci1, is intercalated in the big triangle. This pose gives
two sub-triangles shapes, figure 1 (b). In our three triangles
shape, we can write these equations:
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Expanding this equations and decoupling the rotation and
translation terms, we obtain the equation 2:
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The absolute scales factors, λ1, λ2, α , and β can be de-
rived by means of a linear least square model. The linear
system can be written as A.X = B where X is the vector of the
scale factors. The translation of the camera position Ci0 to the
coordinate system of Ci1 and the translation of Ci2 to Ci1 are
obtained thanks to the linearity assumption. For more details
about the triangle based method please refer to [3].

3.2. BUNDLE ADJUSTMENT

BA has an important role in computer vision applications fo-
cused on 3D reconstruction and Structure-from-Motion, in
that it allows to refine the parameters of the motion and the 3D
structure describing the environment [11]. This is an optimi-
sation of both the 3D points positions and the camera parame-
ters, so the reprojection errors between observed image-points
and projected points from the 3D structure are minimized. In
our approach, we apply BA for some views locally. To fo-
cus on the scale estimation refinement, we suppose that the
initial estimated rotation matrices and the translation vectors
are fixed and we only optimize the scale factors and the 3D
structure. We choose to take a sliding window composed by
two consecutive triangles (five images). We compute the 3D



points at scale from the inliers corresponding points and the
camera poses expressed on the first camera of each window.

3.2.1. Problem formulation

In the pinhole camera model, the projection function of a
3D point X of a scene into a 2D point x in the image plane
can be written using a perspective transformation like x =
K [R|s∗ t]X where, K is the matrix of intrinsic parameters,
[R|s∗t] is the matrix of extrinsic parameters, s design the scale
factor, and t the unit translation vector.

BA minimizes the reprojection errors between observed
image-points and projected points from the 3D structure. The
minimization of the reprojection error is resolved using non-
linear least-squares algorithms such as LevenbergMarquardt
algorithm [12]. This algorithm requires to obtain successive
approximations of the parameters vector P according to the
algorithm of LevenbergMarquardt 1, where 4i is obtained
by solving the augmented normal equation for each iteration.
The reprojection errors are computed and evaluated for both
Pi and Pi+1.

Algorithm 1 Pseudo-code of LevenbergMarquardt algorithm
i←0

λ←0.001

compute ‖e(P0)‖
while i < MAX ITERATIONS and ‖e(Pi)‖> threshold do

solve the augmented normal equation:
(JT J+λ I)4=−JT ε

evaluate the new parameters vector Pi+1=Pi+4i

if ‖e(Pi+1)‖≥‖e(Pi)‖ then
λ←10λ

end if
if ‖e(Pi+1)‖≤‖e(Pi)‖ then

λ←λ/10, Pi=Pi+1

end if
i=i+1

end while

3.2.2. Jacobian Derivation

In our proposed method, the Jacobian matrix J is calculated
by derivating the projection function only by the scale fac-
tor s and the 3D point X . The symbolic differentiation of the
projection function F is performed with respect to the scale
factor s and to the 3D coordinates of the 3D point X . The
Jacobian matrix is the derivative of the projection matrix by
the 3D point X and the scale factor s. Differentiating the pro-
jection function by the 3D point, we obtain the derivatives JX
(2x3 matrix) with respect to X , the equation 3. When we de-
rive the projection function by the scale factor, we obtain JS
(2x3 matrix).

JX = [
∂F
∂X

] and JS = [
∂F
∂ s

]. (3)

For each 3D point, we calculate its JX and its JS for all the
cameras included into the sliding window. J will have a sparse
block structure, Figure 2. If we consider n cameras and m 3D
points, the jacobian will be a 2∗n∗mx1∗n+3∗m matrix.

Fig. 2. Jacobian matrix for a bundle adjustment problem con-
sisting of 3 cameras and 4 points. the dark blue means the
camera parameters JS and the 3D point parameters JX , the
light blue means the zeros elements

4. EXPERIMENTS

In this section, we present the results of our algorithm on a
real world image sequence from the KITTI dataset [13] [14].
The sensors used in our comparison are the gray scale syn-
chronized stereo cameras and the GPS/IMU inertial naviga-
tion system. To have the unsynchronized fact, we use only
one image in every time step. For each set of three images,
key-points are extracted with SURF detector [15] and de-
scribed with Freak descriptor [16]. Each corresponding points
between two images allows to estimate an essential matrix
using the 5-point algorithm implementation. The relative ro-
tations and translations are recovered using cheirality check.
The retained inliers are then triangulated to compute the 3D
points. We solve the equation system of equation 2 to com-
pute the initial absolute scale factors λ1, λ2, α , and β and ob-
tain the camera poses at scale. For two consecutive triangles
(five images), we compute the 3D points at scale from the in-
liers corresponding points and the camera poses expressed on
the first camera of the sliding window. Afterwards, we apply
the Levenberg Marquard algorithm. Our results are presented
for some images of the sequence 0 of the KITTI dataset.

4.1. Results of an ”optimal” BA

For the quantitative evaluation of our proposal algorithm, we
apply the BA on the ground truth (GT) poses. For a slid-
ing window of two triangles, we take the rotation matrix, the



translation unit vector and the scale factors of the camera from
the GPS GT. Then we compute 3D points at scale and apply
the BA step. This test, which we call the ”optimal” BA, gives
the reference results for the scale factors refinement after the
BA step. To evaluate the scale factors, we compute the ratio of
the evaluated scale factor by the scale factor of the GT, Both
before and after BA as in equations 4 and 5. we obtain almost
the same starting data with acceptable small errors. We add
a gaussian noise to the scales values to evaluate our method.
the trajectory obtained when accumulating the poses after BA
is almost the same of the GT trajectory. The obtained results
are summarized on the table 1 where scale 1 is the scale factor
of the transformation of the second to the first camera of the
window, scale 2 is the scale of the transformation of the third
camera to the first one, same for scale 3 and scale 4.

ratios before =
evaluated scale factors before BA

scale factors GT
(4)

ratios after =
evaluated scale factors after BA

scale factors GT after optimal BA
(5)

Table 1. Ratios before and after a BA step for gaussian added
noise ( σ = 0.01)

scale 1 scale 2 scale 3 scale 4
Before BA 1.0014 0.9993 0.9996 0.9994
After BA 1.0003 0.999803 01.0001 1.003

The ratios are around 1 so we judge that our BA algorithm
gives very accurate results. These errors are due to many rea-
sons : inaccuracy of detector and descriptor algorithms, errors
of matching, computation errors of the triangulation and the
reprojection of the 3D points into the 2D image points. The
BA step minimizes reprojection errors to improve the scale
factors and the 3D points. When the motion parameters are
”perfect” (GT), it remains some errors on the structure.

4.2. Results of Triangle based method

We apply the proposed BA on the Triangle based method.
Figure 4 shows the distribution of the accumulated reprojec-
tion errors before and after the BA for a sequence of 200 im-
ages.We compute the ratio same as equations 4 and 5. Re-
sults are summarized in table 2. the trajectories are presented
in figure 5. The figure shows that the trajectory of the pro-
posal algorithm is better than the trajectory obtained in our
previous work.

5. CONCLUSION

In this paper, we presented a complete motion estimation
method which we called “triangle-based” method using an
unsynchronized multi camera setup. The “triangle-based”
method motion estimation presented in our previous work [3]

Fig. 3. Accumulated reprojection errors for 52 triangles for a
BA applied on the triangle based method estimation

Fig. 4. Example of reprojection errors of the 3D points after
BA, each color refers to the reprojection errors on a camera
of the sliding window (5 cameras)

Table 2. Ratios before and after a BA step for triangle based
method

scale 1 scale 2 scale 3 scale 4
Before BA 0.9516 0.944478 0.9555 0.9500
After BA 1.037 1.002 1.0286 1.0609

(a) trajectory of 200 images (a) zoom in on the trajectory

Fig. 5. trajectory of 200 images for two triangles : the esti-
mation in red, GT in blue, BA in green

assumes that the trajectory between two consecutive frames
of one camera is rectilinear and requires an off line calibration
knowledge. The linearity assumption causes small errors es-
pecially for curve trajectories. The presented approach results
improves the accuracy on the absolute scale estimation.
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