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The goal of this paper is to prove that the classifying spaces of categories of algebras governed by a prop can be determined by using function spaces on the category of props. We first consider a function space of props to define the moduli space of algebra structures over this prop on an object of the base category. Then we mainly prove that this moduli space is the homotopy fiber of a forgetful map of classifying spaces, generalizing to the prop setting a theorem of Rezk.

The crux of our proof lies in the construction of certain universal diagrams in categories of algebras over a prop. We introduce a general method to carry out such constructions in a functorial way.

Introduction

Associative algebras, Lie algebras, Poisson algebras and their variants play a key role in algebra, topology, category theory, differential and algebraic geometry, mathematical physics. They all share the common feature of being defined by operations with several inputs and one single output (the associative product, the Lie bracket, the Poisson bracket). A powerful device to handle such kind of algebraic structures is the notion of operad, which have proven to be a fundamental tool to study algebras such as the aforementioned examples, feeding back important outcomes in these various fields. However, algebraic structures equipped not only with products but also with coproducts play a crucial role in various places in mathematics. One could mention for instance the following important examples: Hopf algebras in representation theory and mathematical physics, Frobenius algebras encompassing the Poincaré duality phenomenon in algebraic topology (which corresponds to unitary and counitary Frobenius bialgebras, see [START_REF] Kock | Frobenius algebras and 2D topological quantum field theories[END_REF]), Lie bialgebras introduced by Drinfeld in quantum group theory (see [START_REF] Drinfeld | Quantum groups[END_REF] and [START_REF] Drinfeld | On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/Q[END_REF]), involutive Lie bialgebras originally encoding operations on free loops on surfaces in the work of Turaev [START_REF] Turaev | Skein quantization of Poisson algebras of loops on surfaces[END_REF] and then generalized to higher dimensional manifolds by Chas-Sullivan [START_REF] Chas | Closed string operators leading to Lie bialgebras and higher string algebra[END_REF] in string topology [START_REF] Chas | String topology[END_REF]. A convenient way to handle such kind of structures is to use the formalism of props, a generalization of operads encoding algebraic structures based on operations with several inputs and several outputs. A dg prop is a collection of complexes P = {P (m, n)} m,n∈N , where each P (m, n) represents formal operations with m inputs and n outputs. This collection P is equipped with composition products grafting and concatenating these operations in a compatible way.

This paper is a follow-up of [START_REF] Yalin | Classifying spaces of algebras over a prop[END_REF], where we set up a homotopy theory for algebras over (possibly colored) differential graded (dg for short) props. The crux of our approach lies on the proof that the Dwyer-Kan classifying spaces attached to categories of algebras over dg props are homotopy invariants of the dg prop. Such spaces have been introduced by Dwyer and Kan in their seminal work on simplicial localization of categories (see [START_REF] Dwyer | Simplicial localization of categories[END_REF], [START_REF] Dwyer | Calculating simplicial localizations[END_REF] and [START_REF] Dwyer | Function complexes in homotopical algebra[END_REF]). Recall from these papers that the classifying space of a category with weak equivalences (for instance a model category) is the nerve of its subcategory of weak equivalences. It encodes information about homotopy types and internal symmetries of the objects, i.e. their homotopy automorphisms. The goal of the present paper is to give another description of these classifying spaces, in terms of function spaces of dg prop morphisms, in order to make their homotopy theory accessible to computation. These function spaces are moduli spaces of algebra structures, that is, simplicial sets P {X} whose vertices are dg prop morphisms P → End X representing a P -algebra structure on an object X of the base category. For us, the base category is the category Ch of Z-graded chain complexes over a field K. Let Ch P be the category of P -algebras and w Ch P be its subcategory obtained by restriction to morphisms which are quasi-isomorphisms in Ch. Let us denote by N (-) the nerve of a category. Our main theorem reads: Theorem 0.1. Let P be a cofibrant dg prop defined in the category of chain complexes Ch and X ∈ Ch. The commutative square P {X} / / N w Ch P {X} / / N w Ch is a homotopy pullback of simplicial sets.

As a consequence, we get the following decomposition of function spaces in terms of homotopy automorphisms: Corollary 0.2. We have

P {X} ∼ [X]
Lw Ch P (X, X) where L(-) is the simplicial localisation functor of Dwyer-Kan [START_REF] Dwyer | Calculating simplicial localizations[END_REF], and [X] ranges over the weak equivalence classes of P -algebras having X as underlying object. In particular, the simplicial monoids of homotopy automorphisms Lw Ch P )(X, X) are homotopically small in the sense of Dwyer-Kan, that is, their homotopy groups are all small as sets.

Theorem 0.1 is a broad generalization of the first main result of Rezk's thesis [START_REF] Rezk | Spaces of algebra structures and cohomology of operads[END_REF]Theorem 1.1.5], which concerns the case of operads in simplicial sets and simplicial modules. However, the method of [START_REF] Rezk | Spaces of algebra structures and cohomology of operads[END_REF] relies on the existence of a model category structure on algebras over operads, which does not exist anymore for algebras over dg props. The crux of the proof of Theorem 0.1 lies in the construction of functorial diagram factorizations in categories of algebras over dg props. We use a new approach, relying on universal categories of algebras over dg props, to perform such constructions in our context. This method enables us to get round the lack of model structure.

We would like to emphasize some links with two other objects encoding algebraic structures and their deformations. Theorem 0.1 asserts that we can use a function space of dg props, the moduli space P {X}, to determine classifying spaces of categories of algebras over dg props N w Ch P . The homotopy groups of this moduli space, in turn, can be approached by means of a Bousfield-Kan type spectral sequence. The E 2 -page of this spectral sequence is identified with the cohomology of certain deformation complexes. These complexes have been studied in [START_REF] Fregier | The L∞-deformation complex of diagrams of algebras[END_REF], [START_REF] Markl | Intrinsic brackets and the L∞-deformation theory of bialgebras[END_REF] and [START_REF] Merkulov | Deformation theory of representations of properads II[END_REF]. These papers prove the existence of an L ∞ -structure on such complexes which generalizes the intrinsic Lie bracket of Schlessinger and Stasheff [START_REF] Schlessinger | The Lie algebra structure of tangent cohomology and deformation theory[END_REF]. We aim to apply this spectral sequence technique and provide new results about the deformation theory of bialgebras in an ongoing work. To complete this outlook, let us point out that Ciocan-Fontanine and Kapranov used a similar approach to that of Rezk in [START_REF] Ciocan-Fontanine | Derived Hilbert schemes[END_REF] in order to define a derived moduli space of algebras structures in the formalism of dg schemes. The author recently proved in [START_REF] Yalin | Moduli stacks of algebraic structures and deformation theory[END_REF], by different methods, that the simplicial moduli spaces considered in the present paper are also the global points of derived moduli stacks in the setting of Toen-Vezzosi's derived algebraic geometry, and that the deformation complexes of [START_REF] Merkulov | Deformation theory of representations of properads II[END_REF] really computes the tangent complexes of these stacks. Organization. In Section 1, we briefly recall several properties of dg props and their algebras, and we define the notion of moduli space of algebraic structures. In Section 2, we revisit the notion of a colored dg prop as a symmetric monoidal dg category generated by words of colors. Then we perform the main technical construction of this section: a dg category associated to the data of a small category J and a colored dg prop P I encoding I-diagrams of P -algebras, where I is a subcategory of J . This category of "formal variables" is used to explain how a functorial Idiagram of P -algebras can be extended to a functorial J -diagram of P -algebras under several technical assumptions. This construction applies in particular to the functorial factorizations of morphisms provided by the axioms of model categories. In Section 3, we prove that the classifying space of quasi-isomorphisms of P -algebras is weakly equivalent to the classifying space of acyclic surjections of P -algebras. For this, we need to examine in Section 3 how the internal and external tensor products of a diagram category behaves with respect to its injective and projective model structures. The projective case is more subtle and does not appear in the literature. Then we combine the results of Section 2, those of Section 3 and Quillen's Theorem A to provide this weak equivalence (induced by an inclusion of categories). Finally, in Section 4 we rely on the previous results to generalize [START_REF] Rezk | Spaces of algebra structures and cohomology of operads[END_REF]Theorem 1.1.5] to the dg prop setting. Acknowledgements. I would like to thank Benoit Fresse for his useful remarks. I also thanks the referee for his careful reading and useful comments.

Props, algebras and moduli spaces

Throughout this paper, we work in the category Ch of Z-graded chain complexes over a field K. We write "dg" as a shortcut for "differential graded". We give brief recollections on our conventions and on the main definitions concerning dg props in this section. We refer to [START_REF] Benoit Fresse | Props in model categories and homotopy invariance of structures[END_REF] for a more comprehensive account. 2 where each M (m, n) is equipped with a right action of the symmetric group on m letters Σ m , a left action of the the symmetric group on n letters Σ n and so that these actions commute to each other. Definition 1.1. A dg prop is a S-biobject in Ch endowed with associative horizontal composition products

Recollections on props and their algebras

. A S-biobject in Ch is a double sequence {M (m, n) ∈ Ch} (m,n)∈N
• h : P (m 1 , n 1 ) ⊗ P (m 2 , n 2 ) → P (m 1 + m 2 , n 1 + n 2 ),
vertical associative composition products

• v : P (k, n) ⊗ P (m, k) → P (m, n)
and units η : K → P (n, n). These products satisfy the exchange law

(f 1 • h f 2 ) • v (g 1 • h g 2 ) = (-1) |g1||f2| (f 1 • v g 1 ) • h (f 2 • v g 2 )
and are compatible with the actions of symmetric groups and with the differentials. Morphisms of dg props are equivariant morphisms of collections compatible with the composition products. We denote by P rop the category of dg props.

The following definition shows how a given dg prop encodes algebraic operations on the tensor powers of a chain complex: Definition 1.2. [START_REF] Barwick | Relative categories:another model for the homotopy theory of homotopy theories[END_REF] The endomorphism dg prop of a chain complex X is given by End X (m, n) = Hom Ch (X ⊗m , X ⊗n ) where Hom Ch (-, -) is the internal hom bifunctor of Ch. The horizontal composition is given by the tensor product of homomorphisms and the vertical composition is given by the composition of homomorphisms.

(2) Let P be a dg prop. A P -algebra is a chain complex X equipped with a dg prop morphism P → End X .

Hence any "abstract" operation of P is sent to an operation on X, and the way abstract operations compose under the composition products of P tells us the relations satisfied by the corresponding algebraic operations on X.

One can perform similar constructions in the category of colored S-biobjects in order to define colored dg props and their algebras: Definition 1.3. Let C be a non-empty set, called the set of colors.

(1) A C-colored S-biobject M is a double sequence of chain complexes

{M (m, n)} (m,n)∈N 2
where each M (m, n) admits commuting right Σ m action and left Σ n action as well as a decomposition

M (m, n) = ci,di∈C M (c 1 , • • • , c m ; d 1 , • • • , d n )
compatible with these actions. The objects (2) A C-colored dg prop P is a C-colored S-biobject endowed with a horizontal composition

M (c 1 , • • • , c m ; d 1 , • • • , d n ) should
• h : P (c 11 , • • • , c 1m1 ; d 11 , • • • , d 1n1 ) ⊗ • • • ⊗ P (c k1 , • • • , c km k ; d k1 , • • • , d kn1 ) → P (c 11 , • • • , c km k ; d k1 , • • • , d kn k ) ⊆ P (m 1 + • • • + m k , n 1 + • • • + n k )
and a vertical composition

• v : P (c 1 , • • • , c k ; d 1 , • • • , d n ) ⊗ P (a 1 , • • • , a m ; b 1 , • • • , b k ) → P (a 1 , • • • , a m ; d 1 , • • • , d n ) ⊆ P (m, n)
which is equal to zero unless b i = c i for 1 ≤ i ≤ k. These two compositions satisfy associativity axioms (we refer the reader to [START_REF] Johnson | On homotopy invariance for algebras over colored PROPs[END_REF] for details). 

End {Xc} C (c 1 , • • • , c m ; d 1 , • • • , d n ) = Hom Ch (X c1 ⊗ • • • ⊗ X cm , X d1 ⊗ • • • ⊗ X dn ).
(2) Let P be a C-colored dg prop. A P -algebra is the data of a collection of objects {X c } C and a C-colored dg prop morphism P → End {Xc} C . Remark 1.5. Let I be a small category and let P be a dg prop. We can build an ob(I)-colored dg prop P I such that the P I -algebras are the I-diagrams of Palgebras in Ch in the same way as that of [START_REF] Markl | Homotopy algebras are homotopy algebras[END_REF]. We refer the reader to Definition 2.3 where this construction is made explicit.

We provide Ch with the model category structure such that the weak-equivalences are quasi-isomorphisms and fibrations are degreewise surjections. The category of S-biobjects is a diagram category over Ch, so it inherits a cofibrantly generated model category structure in which weak equivalences and fibrations are defined componentwise. The free dg prop functor [12, Appendix A] gives rise to an adjunction Ch S P rop between the category of S-biobjects Ch S and the category of dg props P rop, which transfers this model category structure to the category of dg props: Theorem 1.6 (see [START_REF] Benoit Fresse | Props in model categories and homotopy invariance of structures[END_REF]Theorem 4.9] and [START_REF] Johnson | On homotopy invariance for algebras over colored PROPs[END_REF]Theorem 1.1]). (1) Suppose that char(K) > 0. The category P rop 0 of dg props with non-empty inputs (or outputs) equipped with the classes of componentwise weak equivalences and componentwise fibrations forms a cofibrantly generated semi-model category.

(2) Suppose that char(K) = 0. Then the entire category of dg props inherits a cofibrantly generated model category structure with the weak equivalences and fibrations as above.

(3) Suppose that char(K) = 0. Let C be a non-empty set. Then the category P rop C of C-colored dg props forms a cofibrantly generated model category with fibrations and weak equivalences defined componentwise.

A semi-model category structure is a slightly weakened version of a model category structure where the lifting axioms only work for cofibrations with cofibrant domain, and where the factorization axioms only work for a map with a cofibrant domain (see the relevant section of [START_REF] Benoit Fresse | Props in model categories and homotopy invariance of structures[END_REF]). The notion of a semi-model category is sufficient to apply the usual constructions of homotopical algebra. A dg prop P has non-empty inputs if it satisfies

P (0, n) = K, if n = 0, 0 otherwise.
We define in a symmetric way a dg prop with non-empty outputs. Such dg props usually encode algebraic structures without unit or without counit, for instance Lie bialgebras.

We will use all the time the existence of a (semi)-model category structure on dg props. Our results hold over a field of any characteristic: we can work alternatively with every dg prop in characteristic zero or with dg props with non-empty inputs/outputs in positive characteristic.

Finally, we recall from [START_REF] Benoit Fresse | Props in model categories and homotopy invariance of structures[END_REF] the construction of the endomorphism dg prop associated to a diagram F : J → Ch:

End F (m, n) := ˆi∈J Hom Ch (X ⊗m i , X ⊗n i )
where X i = F (i). This end can equivalently be defined as a coreflexive equalizer

End F (m, n) / / i∈J Hom Ch (X ⊗m i , X ⊗n i ) d0 / / d1 / / u:i→j Hom Ch (X ⊗m i , X ⊗n j ) s0 g g
where d 0 is the product of the maps

u * = (F (u) ⊗n • -) : Hom Ch (X ⊗m i , X ⊗n i ) → Hom Ch (X ⊗m i
, X ⊗n j ) induced by the morphisms u : i → j of J and d 1 is the product of the maps

u * = (-• F (u) ⊗m ) : Hom Ch (X ⊗m j , X ⊗n j ) → Hom Ch (X ⊗m i , X ⊗n j )
The section s 0 is the projection on the factors associated to the identities id : i → i. This construction allows us to characterize a diagram of P -algebras F : J → Ch P , where Ch P is the category of P -algebras in chain complexes, as a dg prop morphism

P → End U (F ) ,
where U (F ) is the diagram of chain complexes underlying F .

Moduli spaces of algebra structures.

Throughout the text, we use the Kan-Quillen model category structure on simplicial sets. A moduli space of algebra structures over a dg prop P , on a given chain complex X, is a simplicial set whose points are the dg prop morphisms P → End X and connected components are homotopy classes of P -algebra structures on X. Such a moduli space can be more generally defined on diagrams of chain complexes. We then deal with endomorphism dg props of diagrams. To construct properly such a simplicial set and give its first fundamental properties, we have to recall some results about cosimplicial and simplicial resolutions in a model category. For the sake of brevity and clarity, we refer the reader to [START_REF] Hirschhorn | Model categories and their localizations[END_REF]Chapter 16] for a complete treatment of the notions of simplicial resolutions, cosimplicial resolutions and Reedy model categories.

Definition 1.7. Let M be a model category and let X be an object of M.

(1) A cosimplicial resolution of X is a cofibrant approximation to the constant cosimplicial object cc * X in the Reedy model category structure on cosimplicial objects M ∆ of M.

(2) A simplicial resolution of X is a fibrant approximation to the constant simplicial object cs * X in the Reedy model category structure on simplicial objects M ∆ op of M. Definition 1.8. Let M be a model category and let X be an object of M.

(1) A cosimplicial frame on X is a cosimplicial object X in M, together with a weak equivalence X → cc * X in the Reedy model category structure of M ∆ . It has to satisfy the two following properties : the induced map X0 → X is an isomorphism, and if X is cofibrant in M then X is cofibrant in M ∆ .

(2) A simplicial frame on X is a simplicial object X in M, together with a weak equivalence cs * X → X in the Reedy model category structure of M ∆ . It has to satisfy the following two properties : the induced map X → X0 is an isomorphism, and if X is fibrant in M then X is fibrant in M ∆ op . Proposition 1.9 ([15, Proposition 16.1.9]). Let M be a model category. There exists functorial simplicial resolutions and functorial cosimplicial resolutions in M. Proposition 1.10 ([15, Proposition 16.6.3]). Let X be an object of M.

(1) If X is cofibrant then every cosimplicial frame of X is a cosimplicial resolution of X.

(2) If X is fibrant then every simplicial frame of X is a simplicial resolution of X.

In a model category M, one can define homotopy mapping spaces M ap M (-, -), which are simplicial sets equipped with a composition law defined up to homotopy. There are two possible definitions. We can take either

M ap M (X, Y ) = M or M (X ⊗ ∆ • , Y ) where (-) ⊗ ∆ • is a cosimplicial resolution, or M ap M (X, Y ) = M or M (X, Y ∆ • ) where (-) ∆ • is a simplicial resolution. When X is cofibrant
and Y is fibrant, these two definitions give the same homotopy type of mapping space and have also the homotopy type of Dwyer-Kan's hammock localization L H (M, wM)(X, Y ) where wM is the subcategory of weak equivalences of M (see [START_REF] Dwyer | Function complexes in homotopical algebra[END_REF]). Moreover, the set of connected components (1

π 0 M ap M (X, Y ) is the set of homotopy classes [X, Y ] M in Ho(M).
) If Y is a fibrant object of M, then M or M (C, Y ) is a fibrant simplicial set. (2) If p : X Y is a fibration in M, then p * : M or M (C, X) M or M (C, Y ) is a fibration of simplicial sets, acyclic if p is so. (3) If p : X ∼ → Y is a weak equivalence of fibrant objects in M, then p * : M or M (C, X) ∼ → M or M (C, Y ) is a weak equivalence of fibrant simplicial sets.
Definition 1.12. Let P be a cofibrant dg prop in Ch. Let X be a chain complex. The moduli space of P -algebra structures on X is the simplicial set defined by

P {X} = M or P rop (P ⊗ ∆ • , End X ),
where (-) ⊗ ∆ • is a functorial cosimplicial frame on P rop. We get a functor

P rop →sSet P →P {X}
where sSet is the category of simplicial sets.

We can already get two interesting properties of these moduli spaces: Lemma 1.13. Let P be a cofibrant dg prop. For any chain complex X, the moduli space P {X} is a fibrant simplicial set.

Proof. Every chain complex is fibrant, and fibration of dg props are defined componentwise, so End X is a fibrant dg prop. Given that P is cofibrant, the mapping space P {X} is fibrant.

In this case, the connected components of this moduli space are exactly the homotopy classes of P -algebra structures on X.

To conclude, let us note that these moduli spaces are a well defined homotopy invariant of algebraic structures over a given object: Lemma 1.14. Let X be a chain complex. Every weak equivalence of cofibrant dg props P ∼ → Q gives rise to a weak equivalence of fibrant simplicial sets

Q{X} ∼ → P {X}.
Proof. Let ϕ : P → Q be a weak equivalence of cofibrant dg props. According to [START_REF] Hirschhorn | Model categories and their localizations[END_REF]Proposition 16.1.24], the map ϕ induces a Reedy weak equivalence of cosimplicial resolutions

P ⊗ ∆ • ∼ → Q ⊗ ∆ • .
The dg prop End X is fibrant, so we conclude by [START_REF] Hirschhorn | Model categories and their localizations[END_REF]Corollary 16.5.5] that this weak equivalence of cosimplicial resolutions induces a weak equivalence between the corresponding moduli spaces.

Remark 1.15. The reader may have noticed that, using the existence of functorial cosimplicial resolutions, Definition 1.12, Lemma 1.13 and Lemma 1.14 could have been stated without the cofibrancy assumption on P . In this case, let 

P • ∼ → cc • P be such a cosimplicial
P {X} = M or P rop (P • , End X ) M or P rop (P ∞ ⊗ ∆ • , End X ) = P ∞ {X}.
Our alternative construction of a moduli space directly from a dg prop P thus has the homotopy type of the moduli space of homotopy P -algebra structures constructed in Definition 1.12 from a cofibrant resolution of P . 

(x, • • • , x; x, • • • , x) = P (m, n), by P (y, • • • , y; y, • • • , y) = P (m, n),
and by an element f ∈ P (x, y) which represents an abstract arrow f : x → y. The associated dg monoidal category cat(P x→y ) is defined in the following way. Let F ree mon (x, y) be the monoid freely generated by the two generators x and y, i.e the set of words in two letters w ∈ F ree mon (x, y). Then the objects of cat(P x→y ) are the "monoidal words" ob(cat(P x→y )) = {w ⊗ (x, y), w ∈ F ree mon (x, y)} where w ⊗ (x, y) is the formal tensor product corresponding to the word w. The complexes of morphisms are

Hom cat(Px→y) (w ⊗ (x, y), v ⊗ (x, y)) = P x→y (w, v)
where w is the ordered sequence of letters, i.e colors, appearing in the word w. Algebras over P x→y are enriched symmetric monoidal functors cat(P x→y ) → Ch. A P x→y -algebra is equivalent to a diagram of P -algebras {• → •} → Ch P . These constructions can be generalized to arbitrary diagrams Definition 2.3. Let I be a small category. Then there exists a ob(I)-colored dg prop P I consisting of abstract objects x i associated to i ∈ I, and the morphisms of P I are generated by operations p ∈ P I (x ⊗m i , x ⊗n i ) associated to each p ∈ P (m, n) and each variable x i , as well as abstract arrows f : x i → x j associated to the morphisms of I. The corresponding dg monoidal category cat(P I ) is defined as follows:

ob(cat(P I )) = {w ⊗ (x i , i ∈ ob(I)), w ∈ F ree mon (x i , i ∈ ob(I))}.
The tensor product is defined by

w ⊗ (x i , i ∈ ob(I)) ⊗ v ⊗ (x i , i ∈ ob(I)) = (w * v) ⊗ (x i , i ∈ ob(I)).
The complexes of morphisms are

Hom cat(P I ) (w ⊗ (x i , i ∈ ob(I)), v ⊗ (x i , i ∈ ob(I))) = P I (w, v).
The composition on the dg hom is the vertical composition product of P I , and the tensor product of morphisms is the horizontal composition product of P I .

In other words, the category cat(P I ) is a differential graded monoidal category monoidally generated on objects by the set of colours of P I . This can be generalized in any symmetric monoidal category, giving an alternative definition of a colored dg prop: Definition 2.4. (1) A C-colored dg prop is a small symmetric monoidal dg category monoidally generated by C.

(2) A P I -algebra is a symmetric monoidal dg functor cat(P I ) → Ch.

Proposition 2.5. A P I -algebra corresponds to an I-diagram of P -algebras.

This result follows from the construction of P I in terms of generators and relations. For more details we refer the reader to [21, Section 2], where such a construction is carried out in the case of colored dg operads.

Categories of universal twisted sums and functorial diagrams of algebras.

Let P J be a colored prop on a small category J . The category cat(P J ) reflects the universal structures of the symmetric monoidal category defined by a P -algebra in the category of chain complexes. But for some constructions of homotopy theory, we need operations of the ambient category of chain complexes which lie outside the image of this category cat(P J ). Namely, we need to perform direct sums C ⊕ D, suspensions ΣC, and twisted complexes (C, d) which we form by adding a twisting homomorphism d ∈ Hom(C, C) to the internal differential of a chain complex δ : C → C. These operations can clearly not be formed within the image of cat(P J ) in the category of chain complexes in general. Therefore, we define a universal enriched category TwSum(P J ) generated by the formal image of the tensor products w(x j , j ∈ J ) ∈ ob(cat(P J )) under such direct sum, suspension, and twisting operations. If we put all these operations together, then we get the notion of a twisted direct sum which we formalize in our definition. Let us simply mention that we use formal tensor products Ke ⊗ V , where Ke is the free K-module spanned by a homogeneous element of degree d = deg(e) to materialize a d-fold suspension operation Σ d : C → Σ d C. In the sequel, our idea is to define universal models of the homotopical construction which we need to work out our problems in this enriched category TwSum(P J ).

Construction of the category of universal twisted sums.

Let J be a small category and P J the associated ob(J )-colored dg prop. Our goal is to build from cat(P J ) a certain dg monoidal category TwSum(P J ) called its category of universal twisted sums. The objects are pairs

  α∈A (Ke α ) ⊗ (x α1 ⊗ • • • ⊗ x αn ), tw   where • the first term α∈A is a formal sum over a finite set A of multi-indices α = (α 1 , ..., α n ) of formal tensor products (Ke α ) ⊗ (x α1 ⊗ • • • ⊗ x αn ), where x α1 ⊗ • • • ⊗ x αn
is an object of cat(P J ) and we consider the graded Kmodule Ke α generated by a homogeneous element e α of a certain degree

d α = deg(e α );
• The second term represents a collection of homomorphisms

tw α β ∈ e α ⊗ e ∨ β ⊗ Hom cat(P J ) (x β1 ⊗ • • • ⊗ x βm , x α1 ⊗ • • • ⊗ x αn ),
indexed by the couples (α, β) ∈ A 2 , homogeneous of degree -1, and that satisfy the relation of twisting cochains: We define the dg-modules of homomorphisms of TwSum(P J ) as the twisted sums of dg-modules

δ(tw αβ ) + γ∈A tw αγ • tw γβ = 0 in the dg-module e α ⊗ e ∨ β ⊗ Hom cat(P J ) (x β1 ⊗ • • • ⊗ x βm , x α1 ⊗ • • • ⊗ x αn ),
Hom TwSum(P J ) ((⊕ β∈B (Ke β ) ⊗ (x β1 ⊗ • • • ⊗ x βm ), tw L ) =L , (⊕ α∈A (Ke α ) ⊗ (x α1 ⊗ • • • ⊗ x αn ), tw K ) =K ) := ( (β α)∈B×A Ke α ⊗ Ke ∨ β ⊗ Hom cat(P J ) (x β1 ⊗ • • • ⊗ x βm , x α1 ⊗ • • • ⊗ x αn ), ∂), with twisting homomorphism ∂ : (f β α ) → (∂(f ) β α ) such that ∂(f ) β α = γ∈B tw β γ • f γ α - γ∈A sign(f )f β γ • tw γ α ,
for every couple of sequences of colours (α, β), where sign(f ) is a sign depending on f . This endows TwSum(P J ) with a dg category structure:

Proof. We equip this dg hom Hom TwSum(P J ) (K, L) with the total differential δ + ∂ where δ is the internal differential induced by the differential of P and ∂ is the twisting homomorphism. The fact that (δ + ∂) 2 = 0 follows from the relation of twisting cochains satisfied by the tw's with respect to δ. Indeed, for each β ∈ B, α ∈ A, we have

(δ + ∂) 2 (f ) β,α = (δ(∂) + ∂ 2 )(f ) β,α
where δ(∂) is the usual differential of a homomorphism defined by the commutator

δ(∂) = δ • ∂ -(-1) deg(∂) ∂ • δ = δ • ∂ + ∂ • δ.
We have

δ(∂)(f ) β,α = δ(∂(f ) β,α ) + ∂(δ(f )) β,α = δ(tw β,α )(f )
and

∂ 2 (f ) β,α = ∂(∂(f )) β,α = γ∈B tw β γ • ∂(f ) γ α - γ∈A sign(∂(f ))∂(f ) β γ • tw γ α = γ∈B tw β γ • ∂(f ) γ α + γ∈A sign(f )∂(f ) β γ • tw γ α =   γ∈B tw β γ • tw γ α   (f ) because sign(∂(f )) = sign(f ) -1 (the homomorphism ∂ is of degree -1), so (δ + ∂) 2 (f ) β,α =   δ(tw β,α ) + γ∈B tw β γ • tw γ α   (f ) = 0.
For each object

K = (⊕ α Ke α ⊗ (x α1 ⊗ • • • ⊗ x αn ), tw K )
of TwSum(P J ), the associated identity element in the dg hom Hom TwSum(P J ) (K, K) is the 0-cycle defined by

⊕ α (Ke α ) ⊗ Ke ∨ α ⊗ id xα 1 ⊗•••⊗xα n , where id xα 1 ⊗•••⊗xα n is the identity on the object x α1 ⊗ • • • ⊗ x αn of cat(P J ).

The composition law

Hom TwSum(P J ) (K, L) ⊗ Hom TwSum(P J ) (L, M ) → Hom TwSum(P J ) (K, M ) on such dg homs is then defined by the composition of dg homs in cat(P J ) and the relation e ∨ α (e α ) = 1 on matching colors. The compatibility of this composition with the twisted differentials of the dg homs is automatic.

2.2.2.

The tensor structure on a category of universal twisted sums. The category TwSum(P J ) is equipped with a dg enriched symmetric monoidal structure, defined by the natural distribution formula at the level of objects

(⊕ α (Ke α ) ⊗ (x α1 ⊗ • • • ⊗ x αm ), tw K ) K ⊗ (⊕ β ((Ke β ) ⊗ (x β1 ⊗ • • • ⊗ x βn ), tw L ) L := (⊕ α,β ((Ke α ⊗ e β ) ⊗ (x α1 ⊗ • • • ⊗ x αm ⊗ x β1 ⊗ • • • ⊗ x βn ), tw K ⊗ id + id ⊗ tw L ) =K⊗L ,
and where we use the horizontal compositions

Ke γ ⊗ Ke ∨ α ⊗ Hom cat(P J ) (x α1 ⊗ • • • ⊗ x αm , x γ1 ⊗ • • • ⊗ x γp ) ⊗Ke δ ⊗ Ke ∨ β ⊗ Hom cat(P J ) (x β1 ⊗ • • • ⊗ x βn , x δ1 ⊗ • • • ⊗ x δq ) ⊗ -→ (Ke γ ⊗ Ke δ ) ⊗ (Ke α ⊗ Ke β ) ∨ ⊗Hom cat(P J ) (x α1 ⊗ • • • ⊗ x αm ⊗ x β1 ⊗ • • • ⊗ x βn , x γ1 ⊗ • • • ⊗ x γp ⊗ x δ1 ⊗ • • • ⊗ x δq )
to define the formal twisted cochain tw K ⊗ id + id ⊗ tw L of this object K ⊗ L. An analogous construction holds at the level of homomorphisms.

Each object x α1 ⊗ • • • ⊗ x αn ∈ cat(P J ) is naturally identified with the trivial twisted sum K = (Ke 0 ⊗ (x α1 ⊗ • • • ⊗ x αn ), 0) in TwSum(P J ), where deg(e 0 ) = 0 ⇒ Ke 0 = K. In particular, to each x αi corresponds a trivial twisted sum K αi = (Ke 0 ⊗ x αi , 0). This defines a functor cat(P J ) → TwSum(P J ).

The category of universal twisted sums satisfies the following universal property with respect to this functor: Lemma 2.6. For every symmetric monoidal dg functor R : cat(P J ) → Ch (that is, every P J -algebra), there exists a canonical factorization cat(P J ) R / / Ch TwSum(P J ) R : :

.

Proof. We construct R by setting first R(K αi ) = R(x αi ) so that the diagram commutes. Then, for any object

  α (Ke α ) ⊗ (x α1 ⊗ • • • ⊗ x αn ), tw   of TwSum(P J ), we define R α (Ke α ) ⊗ (x α1 ⊗ • • • ⊗ x αn ), tw = α (Ke α ) ⊗ (R(x α1 ) ⊗ • • • ⊗ R(x αn )), R(tw)
where the left-hand term is built with the direct sum and tensor product of Ch.

The differential of R α (Ke α ) ⊗ (x α1 ⊗ • • • ⊗ x αn )
, tw is then defined on each component of this direct sum by the sum of the differential of R(x α1 )⊗• • •⊗R(x αn ) with a twisting cochain R(tw) defined as follows. Since R is a symmetric monoidal dg functor, it induces a morphism of chain complexes

R x β 1 ⊗•••⊗x βm ,xα 1 ⊗•••⊗xα n : Hom cat(P J ) (x β1 ⊗ • • • ⊗ x βm , x α1 ⊗ • • • ⊗ x αn ) → Hom Ch (R(x β1 ) ⊗ • • • ⊗ R(x βm ), R(x α1 ) ⊗ • • • ⊗ R(x αn )) so that we can well define the collection R(tw) = {R(tw α β )} α β by R(tw α β ) = R x β 1 ⊗•••⊗x βm ,xα 1 ⊗•••⊗xα n (tw α β ) ∈ e α ⊗ e ∨ β ⊗ Hom Ch (R(x β1 ) ⊗ • • • ⊗ R(x βm ), R(x α1 ) ⊗ • • • ⊗ R(x αn )).
This collection satisfies the relation of twisting cochains because R is a symmetric monoidal dg functor and the collection {tw α β } α β satisfies the relation of twisting cochains in TwSum(P J ).

Functorial diagrams of algebras.

Our purpose is to use categories of universal twisted sums to perform diagrams of dg P -algebras "functorial in their variables" in a suitable sense.

Recall that the colored dg prop P J parametrising J -diagrams of P -algebras is equivalent to the datum of a symmetric monoidal dg category cat(P J ). Algebras over P J are then strict symmetric monoidal dg functors cat(P J ) → Ch, and morphisms of P J -algebras are natural transformations preserving the strict symmetric monoidal dg structures. Such a natural transformation corresponds to a natural transformation of J -diagrams of P -algebras. Now let A, B : cat(P J ) → Ch be two such algebras, and φ : A ⇒ B be a strict symmetric monoidal dg natural transformation. Recall that, according to Lemma 2.6, such functors lift to strict symmetric monoidal dg functors Ã, B : TwSum(P J ) → Ch. We want to prove that such a lift works similarly for symmetric monoidal dg natural transformations between such functors: Lemma 2.7. The natural transformation φ lifts to a strict symmetric monoidal dg natural transformation φ : Ã ⇒ B.

Proof. To see this, let us first recall from [START_REF] Kelly | Basic concepts of enriched category theory[END_REF] the notion of enriched natural transformation in the case where the categories are enriched over Ch. Let F, G : C → D be two dg functors and Hom C (-, -), Hom D (-, -) be respectively the dg homs of C and D. A dg natural transformation τ :

F ⇒ G is a collection of chain morphisms {τ (x) : K → Hom D (F (x), G(x))} x∈ob(C)
, that is of 0-cycles in the Hom D (F (x), G(x))'s indexed by the objects x of C. For every x, y ∈ ob(C), this collection makes the following diagram commutative:

Hom C (x, y) ∼ = ∼ = / / Hom C (x, y) ⊗ K Gx,y⊗τ (x) K ⊗ Hom D (x, y) τ (y)⊗Fx,y Hom D (G(x), G(y)) ⊗ Hom D (F (x), G(x)) • D Hom D (F (y), G(y)) ⊗ Hom D (F (x), F (y)) • D / / Hom D (F (x), G(y))
.

For any object

K =   α (Ke α ) ⊗ (x α1 ⊗ • • • ⊗ x αn ), tw K  
of TwSum(P J ), we define the associated 0-cycle φ in

Hom Ch (( α (Ke α )⊗(A(x α1 )⊗• • •⊗A(x αn )), A(tw K )), ( α (Ke α )⊗(B(x α1 )⊗• • •⊗B(x αn )), B(tw K ))) by φ(K) = α (Ke α ) ⊗ (φ(x α1 ) ⊗ • • • ⊗ φ(x αn )).
We have to prove that this form a 0-cycle, thus that

(δ + B(tw K )) • φ(K) = φ(K) • (δ + A(tw K )).
The equality

δ • φ(K) = φ(K) • δ
follows from the fact that each φ(x αi ) : A(x αi ) → B(x αi ) is a morphism of chain complexes and the differential δ is the differential of B(x α1 ) ⊗ • • • ⊗ B(x αn ) on the left-hand side of the equality and of A(x α1 ) ⊗ • • • ⊗ A(x αn ) on the right-hand side.

The equality

B(tw K ) • φ(K) = φ(K) • A(tw K ) follows from the definition of A(tw K ) as A(tw K ) = {A x β 1 ⊗•••⊗x βm ,xα 1 ⊗•••⊗xα n ((tw K ) α β )} α β
(and the same for B(tw K )), the fact that φ is a dg natural transformation between A and B and the definition of φ(K) in function of the φ(x αi )'s.

Concerning the monoidality of our collection of 0-cycles { φ(K)} K∈ob(TwSum(P J )) , recall from 2.2.2 that the tensor product of two objects of TwSum(P J ) is defined by

(⊕ α (Ke α ) ⊗ (x α1 ⊗ • • • ⊗ x αm ), tw K ) K ⊗ (⊕ β ((Ke β ) ⊗ (x β1 ⊗ • • • ⊗ x βn ), tw L ) L := (⊕ α,β ((Ke α ⊗ e β ) ⊗ (x α1 ⊗ • • • ⊗ x αm ⊗ x β1 ⊗ • • • ⊗ x βn ), tw K ⊗ id + id ⊗ tw L ) =K⊗L
and that the functors Ã, B : TwSum(P J ) → Ch associated to A, B : cat(P J ) → Ch are defined by

à α (Ke α ) ⊗ (x α1 ⊗ • • • ⊗ x αn ), tw = α (Ke α ) ⊗ (A(x α1 ) ⊗ • • • ⊗ A(x αn )), A(tw) .
We have natural isomorphisms

a K⊗L : Ã(K ⊗ L) ∼ = → Ã(K) ⊗ Ã(L) and b K⊗L : B(K ⊗ L) ∼ = → B(K) ⊗ B(L) induced by natural isomorphisms A(• ⊗ •) ∼ = → A(•) ⊗ A(•) and B(• ⊗ •) ∼ = → B(•) ⊗ B(•)
since A and B are symmetric monoidal functors. We have to check the commutativity of the square below:

Ã(K ⊗ L) a K⊗L φ(K⊗L) / / B(K ⊗ L) b K⊗L Ã(K) ⊗ Ã(L) φ(K)⊗ φ(L) / / B(K) ⊗ B(L)
. By construction of Ã, B and φ, which are defined by applying A, B and φ to each variable of the tensor powers defining the objects of TwSum(P J ), this boils down to the commutativity of such a monoidality square for A, B and φ, which holds because φ is a monoidal natural transformation.

The naturality of { φ(K)} K∈ob(TwSum(P J )) then follows directly from the naturality of φ.

We consequently get two functors à * , B * : TwSum(P J ) P → Ch P that carry any P -algebra in TwSum(P J ), represented by a symmetric monoidal functor C : cat(P ) → TwSum(P J ), to the P -algebra in Ch represented by the composite functors à C, B C : cat(P ) → Ch. We also have a natural transformation φ * : à * ⇒ B * between these functors on P -algebras.

For any small category I, we get strict symmetric monoidal dg functors The main example to which we want to apply this construction is the following. Let f : X → Y be a morphism of chain complexes, then it admits a functorial factorization by an acyclic cofibration (i.e acyclic injection) followed by a fibration (i.e a surjection). This factorization is explicitely given by

Ξ(f : X → Y ) : X X / / i ∼ / / id X 3 3 f , , Z s > > > > p Y where Z = (Ke 0 ⊗ X ⊕ Ke 01 ⊗ Y ⊕ Ke 1 ⊗ Y, d Z )
with deg(e 0 ) = deg(e 1 ) = 0 and deg(e 01 ) = -1. The differential d Z can be expressed in this direct sum by the matrix

  d X 0 0 f -d Y -id 0 0 d Y   =   d X 0 0 0 -d Y 0 0 0 d Y   +   0 0 0 f 0 -id 0 0 0  
where the first matrix of the sum is the differential of the direct sum Ke 0 ⊗ X ⊕ Ke 01 ⊗ Y ⊕ Ke 1 ⊗ Y and the second is a twisting tw Z , a map of degree -1 satisfying tw 2 Z = 0. The map i sends x ∈ X to x ⊕ 0 ⊕ f (x) and s and p are respectively projections on the first and the third factor, that is, we have

i = id 0 f , s =   id 0 0   and p =   0 0 id   .
There is a diagram of chain complexes Ξ : M or(Ch) → F un(Y, Ch) functorial in its variables, where M or(Ch) is the category whose objects are morphisms of chain complexes and morphisms are commutative squares, and Y is the small category whose objects and arrows are given by

Y :=                  • • / / 2 2 , , • ? ? • 
                .
Our goal is to prove that for any cofibrant dg prop P , this functor induces a functor Ξ : M or(Ch P ) → F un(Y, Ch P ), that is, a functor Ξ :

(Ch P ) •→• → (Ch P ) Y .
This means the following: Theorem 2.9. Let P be a cofibrant dg prop. The functorial factorization of morphism of chain complexes described above lifts to a functorial factorization of Palgebra morphisms into an acyclic injection followed by a surjection.

Proof. The general strategy is to prove that the diagram in TwSum(P x→y ) associated to Ξ(f : X → Y ) is actually a diagram in TwSum(P x→y ) P and then apply Proposition 2.8. Let f : X → Y be a morphism of chain complexes and P x→y be the 2-colored dg prop of P -algebra morphisms. In this proof, we will use the short notation Tw := TwSum(P x→y ).

We can associate to the diagram of chain complexes Ξ(f : X → Y ) a diagram Ξ(f : x → y) in Tw so that Proposition 2.8 applies. For this, recall that the colors x and y are embedded into Tw as the objects Ke 0 ⊗ x, 0) and Ke 1 ⊗ y, 0). We will denote by f both the operation of P x→y corresponding to f and the morphism End (f,Tw) .

Ke 0 ⊗ x, 0) → Ke 1 ⊗ y, 0) in Tw.
We will denote these dg props by End Ξ(f :x→y) and End f for short. We have to prove that this fibration is acyclic. For this, we consider the following commutative diagram of S-biobjects:

End z = Hom zz (i * ,p * ) * * p * ) ) i *
) ) where Hom zz (m, n) = Hom Tw (z ⊗m , z ⊗n ). Limits of S-biobjects are created pointwise, so for every (m, n) ∈ N 2 we have a commutative diagram Hom Tw (z ⊗m , z ⊗n )

Hom
((i ⊗m ) * ,(p ⊗n ) * ) ) ) (p ⊗n ) * ) ) (i ⊗m ) * ( ( pullback / / Hom Tw (z ⊗m , y ⊗n ) (i ⊗m ) * Hom Tw (x ⊗m , z ⊗n ) (p ⊗n ) *
/ / Hom Tw (x ⊗m , y ⊗n ) .

We have to check that ((i ⊗m ) * , (p ⊗n ) * ) is an acyclic fibration. Since acyclic fibrations of S-biobjects are determined pointwise, we deduce that 

X b / / i b ∼ / / Z b p b / / / / Y b .
Our goal is to prove that for every natural integers m and n, we have isomorphisms of chain complexes

Hom Tw (z ⊗m , z ⊗n ) ∼ = Hom Ch (Z ⊗m b , Z ⊗n b ) ⊗ P (m, n), Hom Tw (z ⊗m , y ⊗n ) ∼ = Hom Ch (Z ⊗m b , Y ⊗n b ) ⊗ P (m, n) and Hom Tw (x ⊗m , z ⊗n ) ∼ = Hom Ch (X ⊗m b , Z ⊗n b ) ⊗ P (m, n).
The method is exactly the same for the three cases, so we just write the argument for the third isomorphism. We need to determine the tensor powers of z. For every natural integer n, the object z ⊗n is given by the direct sum of shuffles

1≤j≤i≤n σ∈Sh(i,m-i) τ ∈Sh(j,m-j) σ * ((Ke 0 ⊗ x) ⊗n-i , τ * ((Ke 01 ⊗ y) ⊗j , (Ke 1 ⊗ y) ⊗i-j )),
where the action σ * (A ⊗k , B ⊗l ) of a (k, l)-shuffle σ on a pair of tensor powers (A ⊗k , B ⊗l ) permutes the variables of the tensor product A ⊗k ⊗ B ⊗l . The twisting of z ⊗n is determined by tw ⊗n 0,01 = e ⊗n 01 ⊗ (e ∨ 0 ) ⊗n ⊗ f • h n and tw ⊗n 1,01 = e ⊗n 01 ⊗ (e ∨ 1 ) ⊗n ⊗ (-id) • h n where • h is the horizontal composition product of the dg prop P x→y . We get

Hom Tw (x ⊗m , z ⊗n ) = 1≤j≤i≤n σ∈Sh(i,m-i) τ ∈Sh(j,m-j) Hom Tw (x ⊗m , σ * ((Ke 0 ⊗ x) ⊗n-i , τ * ((Ke 01 ⊗ y) ⊗j , (Ke 1 ⊗ y) ⊗i-j ))) ∼ = 1≤j≤i≤n σ∈Sh(i,m-i) τ ∈Sh(j,m-j) Ke ⊗n-i 0 ⊗ Ke ⊗j 01 ⊗ Ke ⊗i-j 1 ⊗ Hom Tw (x ⊗m , σ * (x ⊗n-i , τ * (y ⊗j , y ⊗i-j )))
Moreover, we have Hom Tw (x ⊗m , σ * (x ⊗n-i , τ * (y ⊗j , y ⊗i-j ))

) = P x→y (x, • • • , x; σ * (x, • • • , x, τ * (y, • • • , y)))
where

P x→y (x, • • • , x; σ * (x, • • • , x, τ * (y, • • • , y))
) has m copies of the color x in input, and in output n -i colors x and i colors y permuted by the shuffles σ and τ . 

The subcategory of acyclic fibrations

The goal of this section is to prove that the classifying space of weak equivalences of P -algebras is weakly equivalent to the classifying space of acyclic fibrations of P -algebras: Theorem 3.1. Let P be a cofibrant dg prop. The inclusion of categories i : f w Ch P → w Ch P gives rise to a weak equivalence of simplicial sets N f w Ch P ∼ → N w Ch P . Remark 3.2. Actually, the methods of [START_REF] Yalin | Simplicial localization of homotopy algebras over a prop[END_REF] can be transposed in our setting to prove the following much stronger statement. We refer the reader to the seminal papers [START_REF] Dwyer | Simplicial localization of categories[END_REF], [START_REF] Dwyer | Calculating simplicial localizations[END_REF] and [START_REF] Dwyer | Function complexes in homotopical algebra[END_REF] for the notions of simplicial localization, hammock localization and Dwyer-Kan equivalences of simplicial categories. The inclusion of categories i : f w Ch P → w Ch P induces a Dwyer-Kan equivalence of hammock localizations

L H (Ch P , f w Ch P ) ∼ → L H (Ch P , w Ch P ).
We refer the reader to [START_REF] Yalin | Simplicial localization of homotopy algebras over a prop[END_REF] for more details about this proof, which relies on the properties of several models of (∞, 1)-categories (simplicial categories [START_REF] Bergner | A model category structure on the category of simplicial categories[END_REF], relative categories [START_REF] Barwick | Relative categories:another model for the homotopy theory of homotopy theories[END_REF] and complete Segal spaces [START_REF] Rezk | A model for the homotopy theory of homotopy theory[END_REF]).

To prove this theorem, we use Quillen's Theorem A [START_REF] Daniel | Higher algebraic K-theory I[END_REF]: we have to check that for every chain complex X, the nerve of the comma category (X ↓ i) is contractible. For this aim, we prove the following more general result: Proposition 3.3. Let I be a small category. Every simplicial map N I → N (X ↓ i) is null up to homotopy.

As a consequence we get: Proposition 3.4. The simplicial set N (X ↓ i) is contractible.

To prove Proposition 3.4, we apply Proposition 3.3, for every n ∈ N, to the subdivision category of a simplicial model of the n-sphere S n . We take ∂∆ n+1 as simplicial model of S n and note sd∂∆ n+1 its subdivision category. We then use general arguments of homotopical algebra: Proof. We will use the definition of mapping spaces via cosimplicial frames. The proof works as well with simplicial frames. The adjunction (F, G) induces an adjunction at the level of diagram categories

F : C ∆ D ∆ : G. Now let φ : A • B
• be a Reedy cofibration between Reedy cofibrant objects of C ∆ . This is equivalent, by definition, to say that for every integer r the maps

(λ, φ) r : L r B L r A A r B r
induced by φ and the latching object construction L • A are cofibrations in C. Let us consider the pushout

L r A / / L r φ A r L r B / / L r B L r A A r .
The fact that φ is a Reedy cofibration implies that for every r, the map L r φ is a cofibration. Since cofibrations are stable under pushouts, the map A r → L r B L r A A r is also a cofibration. By assumption, the cosimplicial object A • is Reedy cofibrant, so it is in particular pointwise cofibrant. We deduce that L r B L r A A r is cofibrant. Similarly, each B r is cofibrant since B • is Reedy cofibrant. The map (λ, φ) r is a cofibration between cofibrant objects and F is a left Quillen functor, so F ((λ, φ) r ) is a cofibration of D between cofibrant objects. Recall that the r th latching object construction is defined by a colimit. As a left adjoint, the functor F commutes with colimits so we get a cofibration

L r F (B • ) L r F (A • ) F (A r ) F (B r ).
This means that F (φ) is a Reedy cofibration in D ∆ . Now, given that Reedy weak equivalences are the pointwise equivalences, if φ is a Reedy weak equivalence between Reedy cofibrant objects then it is in particular a pointwise weak equivalence between pointwise cofibrant objects, hence F (φ) is a Reedy weak equivalence in D ∆ . We conclude that F induces a left Quillen functor between cosimplicial objects for the Reedy model structures. In particular, it sends any cosimplicial frame of a cofibrant object X of C to a cosimplicial frame of F (X).

Remark 3.6. The isomorphism above holds if the cosimplicial frame for the lefthand mapping space is chosen to be the image under F of the cosimplicial frame of the right-hand mapping space. But recall that cosimplicial frames on a given object are all weakly equivalent, so that for any choice of cosimplicial frame we get at least weakly equivalent mapping spaces. Now, recall that the geometric realization functor and the singular complex functor induce a Quillen equivalence

| -| : sSet T op : Sing • (-)
between topological spaces and simplicial sets. We have

M ap sSet (N sd∂∆ n+1 , N (X ↓ i)) M ap sSet (N sd∂∆ n+1 , Sing • (|N (X ↓ i)|)) M ap T op (|N sd∂∆ n+1 |, |N (X ↓ i)|) M ap T op (S n , |N (X ↓ i)|) hence |M ap sSet (N sd∂∆ n+1 , N (X ↓ i))| |M ap T op (S n , |N (X ↓ i)|)|, in particular π 0 |M ap sSet (N sd∂∆ n+1 , N (X ↓ i))| ∼ = [S n , |N (X ↓ i)|] Ho(T op) .
Proposition 3.3 means that for every integer n, the space |M ap sSet (N sd∂∆ n+1 , N (X ↓ i))| has only one connected component (the component of the zero map), that is, the homotopy groups of |N (X ↓ i)| are trivial.

Proof of Proposition 3.3. The category (X ↓ i) has weak equivalences X ∼ → Y as objects and acyclic fibrations as morphisms. It contains the initial object X = → X of (X ↓ Ch).

Every simplicial map N I → N (X ↓ i) comes from a functor I → (X ↓ i), i.e a I-diagram in (X ↓ i). Let F be such a functor. Let X be the initial I-diagram, that is the constant diagram on X = → X. In order to simplify notations, we note Y for a morphism X → Y (an object of (X ↓ Ch)) and Y → Y for a commutative triangle relating

X → Y to X → Y (a morphism of (X ↓ Ch)). The diagram F × X : I → (X ↓ Ch) is defined on objects by F × X(k) = F (k) × X an on arrows by F × X(φ) = F (φ) × id X .
Applying the functorial factorization of Theorem 2.9 to the unique initial morphism X → F × X, we get a decomposition in (X ↓ Ch) P into a diagram Y given by

X X = / / / / / / i ∼ / / G p1 ? ? ? ? p2 F .
where the functor G is defined pointwise by the functorial factorization of Theorem 2.9. The map (p 1 , p 2 ) : G F × X is a pointwise fibration and i is a pointwise acyclic cofibration of chain complexes. Since the map (p 1 , p 2 ) : G F × X is a pointwise fibration and F and X are pointwise fibrant, the maps p 1 and p 2 are pointwise acyclic fibrations: the product F × X is given by the pullback

F × X p1 / / p2 X F / / •
and pointwise fibrations are stable under pullbacks so p 1 and p 2 are pointwise fibrations. Since id X = p 1 • i and X → F = p 2 • i are weak equivalences, the maps p 1 and p 2 are acyclic by the two-out-of-three property.

The functors X and F take their values in (X ↓ i) by definition. This implies that the functor G sends morphisms of I to acyclic fibrations by definition of the functorial factorization in chain complexes. We obtain consequently a zigzag of natural transformations X ← G → F of functors I → (X ↓ i). This zigzag implies that N F is homotopic to N X, which is itself null up to homotopy. This concludes the proof of Proposition 3.3. 

4.3. Let X n • • • X 1 X 0 be a chain of fibrations of chain complexes. For every 0 ≤ k ≤ n -1, the map d 0 in the pullback End {Xn ••• X0} d0 / / d1 End {X k ••• X0} End {Xn ••• X k+1 } / / Hom X k+1 X k is a fibration . Moreover, if the fibrations in the chain X n • • • X 1 X 0 are acyclic then so is d 0 .
Proof. We prove this lemma by induction. The case n = 1 is Lemma 4.1. Now suppose that our lemma is true for a given integer n ≥ 1. Let X n+1

• • • X 1 X 0 be a chain of fibrations of complexes. We distinguish two cases:

-the case k = n: we have the pullback

End {Xn+1 ••• X0} d0 / / d1 End {Xn ••• X0} End Xn+1 f * / / Hom Xn+1Xn where f : X n+1 X n .
The fact that f is a fibration implies that f * is a fibration, so d 0 is a fibration because of the stability of fibrations under pullback, and the acyclicity of f implies the acyclicity of d 0 . The detailed proof of these statements is done in the proof of [START_REF] Benoit Fresse | Props in model categories and homotopy invariance of structures[END_REF]Lemma 7.2].

-the case 0 ≤ k ≤ n -1:

d 0 = End {Xn+1 ••• X0} → End {Xn ••• X0} → End {X k ••• X0}
is the composite of an map satisfying the induction hypothesis with the map of the case k = n, so the conclusion follows. Proof. (1) If f is a cofibration then d 1 is a fibration. So (d 1 ) * is a fibration of simplicial sets according to Proposition 1.11. If f is acyclic, then d 0 and d 1 are weak equivalences. Every chain complex is fibrant and cofibrant, and fibrations of props are determined componentwise, so End X and End Y are fibrant props. This implies that End {f } is also fibrant. We deduce from this and Proposition 1.11 that (d 0 ) * and (d 1 ) * are weak equivalences.

(2) The proof is the same as in the previous case.

By induction we can also prove the following proposition:

Proposition 4.6. Let X n ∼ • • • ∼ X 1 ∼
X 0 be a chain of acyclic fibrations and P be a cofibrant dg prop. For every 0 ≤ k ≤ n -1, the map (d 0 ) * is an acyclic fibration and (d 1 ) * a weak equivalence in the diagram below: We have now all the key results to generalize Rezk's theorem to algebras over dg props. The remaining arguments are the same as that of Rezk, so we will not repeat it with all details but essentially show how our Theorem 3.1, as well as the main theorem of [START_REF] Yalin | Classifying spaces of algebras over a prop[END_REF], fit in the proof.

P {X n ∼ • • • ∼ X k+1 } (d1) * ← P {X n ∼ • • • ∼ X 0 } (d0) * → P {X k ∼ • • • ∼ X 1 }.
Let P be a cofibrant dg prop, and N w Ch P ⊗∆ • the bisimplicial set defined by

(N w Ch P ⊗∆ • ) m,n = (N w Ch cf ) P ⊗∆ n ) m .
The dg prop P is cofibrant, thus so is P ⊗ ∆ n for every n ≥ 0. According to Theorem 3.1, we have a weak equivalence induced by an inclusion of categories We use an adaptation of a slightly modified version of Quillen's theorem B (cf. [START_REF] Daniel | Higher algebraic K-theory I[END_REF]), namely [START_REF] Rezk | Spaces of algebra structures and cohomology of operads[END_REF]Lemma 4.2.2], in order to determine the homotopy fiber of the map diagN f w Ch P ⊗∆ • → N f w Ch. To prove that our map verifies the hypotheses of this lemma we use the propositions of Section 4.1 exactly in the same way as Rezk in the operadic case. Then we check that diag(U ↓ X) P {X} where U : f w Ch P ⊗∆ • → f w Ch is the forgetful functor (by using again the propositions of Section 4.1) and finally we get the following diagram: The exactness of the above sequence implies that π 0 p(P {X}) = (π 0 N U ) -1 ([X]) so [Y ] P ∈ π 0 p(P {X}). This means that there exists a P -algebra structure on X such that we have a zigzag of P -algebras morphisms

P {X} / / diagN f
X ∼ ← • • • ∼ → Y
which are weak equivalences of Ch. Remark 4.9. We do not adress the case of simplicial sets. However [START_REF] Johnson | On homotopy invariance for algebras over colored PROPs[END_REF]Theorem 1.4] endows the algebras over a colored prop in simplicial sets with a model category structure. Moreover, the free algebra functor exists in this case. Therefore one can transpose the methods used in the operadic setting to obtain a simplicial version of [29, Theorem 0.1]. Theorem 0.1 in simplicial sets can be proved by following step by step Rezk's original proof. We also conjecture that our results have a version in simplicial modules which would follow from arguments similar to ours.

  be thought as spaces of operations with colors c 1 , • • • , c m indexing the m inputs and colors d 1 , • • • , d n indexing the n outputs.

Definition 1 . 4 .

 14 [START_REF] Barwick | Relative categories:another model for the homotopy theory of homotopy theories[END_REF] Let {X c } C be a collection of chain complexes. The C-colored endomorphism dg prop End {Xc} C is defined by

Proposition 1 .

 1 11 ([15, Corollary 16.5.3] and [15, Corollary 16.5.4]). Let M be a model category and C a cosimplicial resolution in M.

  for every couple of sequences of colours (α, β) ∈ A 2 . The notation e ∨ β represents an element dual to e β , homogeneous of degree deg(e ∨ β ) = -deg(e β ), and we use the relation e ∨ β (e β ) = 1 when we form the composites tw α γ • tw γ β .

ÃProposition 2 . 8 .

 28 * , B * : (TwSum(P J ) P ) I → (Ch P ) I and a strict symmetric monoidal dg natural transformation φ * : à * ⇒ B * . This transformation consists in a collection of natural transformations of I-diagrams of dg P -algebras φ * (Y ) : à * (Y ) ⇒ B * (Y ) for every Y ∈ (TwSum(P J ) P ) I . Thus, whenever we have an I-diagram of P -algebras in TwSum(P J ), say Y , we can associate an I-diagram of dg P -algebras à * (Y ) to any J -diagram of dg Palgebras A, and a natural transformation of I-diagrams of dg P -algebras φ * (Y ) : à * (Y ) ⇒ B * (Y ) to any natural transformation of J -diagrams of dg P -algebras φ : A ⇒ B. This result is equivalent to the following statement: Given an I-diagram Y of P -algebras in TwSum(P J ), the above construction determines a functor (Ch P ) J → (Ch P ) I .

  The object z of Tw corresponding to Z is defined by (Ke 0 ⊗ x ⊕ Ke 01 ⊗ y ⊕ Ke 1 ⊗ y, tw z ) with tw z =   tw 0,0 tw 01,0 tw 1,0 tw 0,01 tw 01,01 tw 1,01 tw 0,1 tw 01,1 tw 1part tw Z of Z. The maps i and p of Ξ(f : x → y) are then defined similarly to those of Ξ(f : X → Y ). The endomorphism dg prop End (Ξ(f :x→y),Tw) projects to the endomorphism dg prop End (f,Tw) of the subdiagram f : x → y, hence we have a fibration of dg props End (Ξ(f :x→y),Tw)

  xz × Homxy Hom zy / / Hom zy i * Hom xz p * / / Hom xy

  (i * , p * ) : End z ∼ Hom xz × Homxy Hom yz is an acyclic fibration of Σ-objects. Let us consider now the base extensions End x × Homxz End z × Homzy End y = End Ξ(f :x→y) and End x × Homxz (Hom xz × Homxy Hom zy ) × Homzy End y = End f . Acyclic fibrations are stable under base extensions, and acyclic fibrations of dg props are determined in the category of S-biobjects under the forgetful functor, so we finally get the desired acyclic fibration of dg props End x × Homxz (i * , p * ) × Homzy End y : End Ξ(f :x→y) ∼ End f . Now let us note X b = Ke 0 , Y b = Ke 1 and f b : X b → Y b the morphism sending e 0 to e 1 . This morphism admits a factorization

implies that p ⊗n b is an acyclic

  fibration. According to the dual pushout-product axiom, the fact that i ⊗m b is a cofibration and p ⊗n b is an acyclic fibration implies that ((i ⊗m b ) * , (p ⊗n b ) * ) is an acyclic fibration.

Proposition 3 . 5 .

 35 Let F : C D : G be a Quillen adjunction. It induces natural isomorphisms M ap D (F (X), Y ) ∼ = M ap C (X, G(Y ))where X is a cofibrant object of C and Y a fibrant object of D.

4 ./

 4 Moduli spaces of algebraic structures as homotopy fibers 4.1. Moduli spaces of algebra structures on fibrations. The results of this subsection holds for algebras in E over a prop in C, where the category C is a cofibrantly generated symmetric monoidal model category and the category E is a cofibrantly generated symmetric monoidal model category over C. However, for the sake of simplicity we explain only the case E = C = Ch. We start by recalling [12, Lemma 7.2]. Let f : A → B be a morphism of Ch, we have a pullback End {A→ f B} d0 / Hom AB where Hom AB is defined by Hom AB (m, n) = Hom Ch (A ⊗m , B ⊗n ).

Lemma 4 . 1 (

 41 [START_REF] Benoit Fresse | Props in model categories and homotopy invariance of structures[END_REF] Lemma 7.2]).[START_REF] Barwick | Relative categories:another model for the homotopy theory of homotopy theories[END_REF] If f is a (acyclic) fibration then so is d 0 .(2) If f is a cofibration, then d 1 is a fibration. If f is also acyclic then d 1 is an acyclic fibration and d 0 a weak equivalence. Remark 4.2. It is a generalization in the prop context of [25, Proposition 4.1.7] and [25, Proposition 4.1.8].

Lemma

  

Remark 4 . 4 .Proposition 4 . 5 .( 1 )

 44451 This lemma is the generalization in the prop context of [25, Proposition 4.1.9].We deduce from lemmata 4.1 and 4.3 the following properties of our moduli spaces: Let f : X → Y be a chain complex morphism and P be a cofibrant dg prop. The pullback of lemma 5.9 gives rise to the following diagram of simplicial sets: If f is a cofibration then (d 1 ) * is a fibration. Moreover, if f is acyclic then (d 0 ) * and (d 1 ) * are weak equivalences.(2) If f is a fibration then (d 0 ) * is a fibration. Moreover, if f is acyclic then (d 0 ) * and (d 1 ) * are weak equivalences.

Remark 4 . 7 .

 47 Propositions 4.5 and 4.6 are generalizations in the prop context of [25, Proposition 4.1.11], [25, Proposition 4.1.12] and [25, Proposition 4.1.13]. 4.2. Proof of Theorem 0.1.

N f w

 w Ch P ⊗∆ n ∼ → N w Ch P ⊗∆ n Morevoer, for every n, n ≥ 0, ∆ n → ∆ n induces a weak equivalence of cofibrant dg props P ⊗ ∆ n → P ⊗ ∆ n and thereby a weak equivalence of simplicial sets N w Ch P ⊗∆ n ∼ → N w Ch P ⊗∆ n according to [29, Theorem 0.1]. We obtain a zigzag of weak equivalences diagN f w Ch P ⊗∆ • ∼ → diagN w Ch P ⊗∆ • ∼ ← N w Ch P

p

  / / N w Ch P N U {X} / / N w Ch which induces an exact sequence of pointed sets π 0 P {X} → π 0 N w Ch P → π 0 N w Ch . The base point of the set π 0 N w Ch is the weak equivalence class of X, denoted by [X]. The weak equivalence X ∼ → Y in Ch implies that we have the equality [Y ] = [X] and thus π 0 N U ([Y ] P ) = [X], where [Y ] P is the weak equivalence class of Y in Ch P .

  We revisit the definition of colored dg props by explaining how they can alternatively be defined as symmetric monoidal dg categories "monoidally" generated by the set of colors. We start with two simple examples before explaining the general construction. Any dg prop in Ch can alternatively be defined as a dg monoidal category cat(P ) such that ob(cat(P )) = {x ⊗n , n ∈ N} (where x is a formal variable), the tensor product is given by x ⊗m ⊗ x ⊗n = x ⊗(m+n) and the complexes of morphisms byHom cat(P ) (x ⊗m , x ⊗n ) = P (m, n). The category of P -algebras consists of enriched symmetric monoidal functors Let P be a (1-colored) dg prop. There exists a 2-colored dg prop P x→y such that the category of P x→y -algebras is the category of morphisms f : X → Y in the category of P -algebras Ch P . It has two colors x, y and it is generated for the composition products by P

	Example 2.1. cat(P ) → Ch
	with their natural transformations.
	Example 2.2.

2. Dg categories associated to colored dg props 2.1. Colored dg props as symmetric monoidal dg categories.

  w Ch P ⊗∆ • ∼ / / diagN w Ch P ⊗∆ • N w Ch P ∼ o o pt / / N f w Ch Remark 4.8. Note that we can recover the transfer theorem of bialgebras structures of [12, Theorem A] as a consequence of Theorem 0.1. Indeed, let P be a cofibrant dg prop in Ch. Let X Ch such that Y is endowed with a P -algebra structure. We have a homotopy pullback of simplicial sets

	P {X}

∼ / / N w Ch . The proof of Theorem 0.1 is complete. ∼ → Y be a morphism of
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We want to build an isomorphism 1≤j≤i≤n σ∈Sh(i,m-i) τ ∈Sh(j,m-j) Ke ⊗n-i 0 ⊗ Ke ⊗j 01 ⊗ Ke ⊗i-j

where [-1] is the degree shift applied to the chain complex Y b . For this, we define in each component (i, j, σ, τ ) of the direct sum an isomorphism

which sends any

where σ * τ * is the unique homomorphism sending e ⊗m 0 to σ * (e ⊗n-i 0 , τ * (e ⊗j 01 , e ⊗i-j

1

)) and σ * (f

Finally, since ((i ⊗m ) * , (p ⊗n ) * ) is the tensor product of ((i ⊗m b ) * , (p ⊗n b ) * ) by P (m, n), it remains to apply the methods of [START_REF] Benoit Fresse | Props in model categories and homotopy invariance of structures[END_REF]Lemma 8.3] in the category of chain complexes, for X b and Y b , to prove that ((i ⊗m b ) * , (p ⊗n b ) * ) is an acyclic fibration. We write the arguments here for the sake of clarity. We have a commutative diagram

)

) )

.

Recall that chain complexes over a field are all cofibrant and fibrant in the model structure of Ch. The map i b is a cofibration and X b is cofibrant, so by the pushoutproduct axiom, for every integer n the map i ⊗n