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CONVERGENCE OF A DEGENERATE MICROSCOPIC DYNAMICS
TO THE POROUS MEDIUM EQUATION

ORIANE BLONDEL, CLÉMENT CANCÈS, MAKIKO SASADA, AND MARIELLE SIMON

Abstract. We derive the porous medium equation from an interacting particle system
which belongs to the family of exclusion processes, with nearest neighbor exchanges. The
particles follow a degenerate dynamics, in the sense that the jump rates can vanish for
certain configurations, and there exist blocked configurations that cannot evolve. In [15]
it was proved that the macroscopic density profile in the hydrodynamic limit is governed
by the porous medium equation (PME), for initial densities uniformly bounded away from
0 and 1. In this paper we consider the more general case where the density can take those
extreme values. In this context, the PME solutions display a richer behavior, like moving
interfaces, finite speed of propagation and breaking of regularity. As a consequence, the
standard techniques that are commonly used to prove this hydrodynamic limits cannot
be straightforwardly applied to our case. We present here a way to generalize the relative
entropy method, by involving approximations of solutions to the hydrodynamic equation,
instead of exact solutions.

1. Introduction

The derivation of macroscopic partial differential equations from microscopic interacting
particle systems has aroused an intense research activity in the past few decades. In par-
ticular, the family of conservative interacting particle systems with exclusion constraints
is rich enough to provide significant results. One aims at showing that the macroscopic
density profile for these models evolves under time rescaling according to some determinis-
tic partial differential equation (PDE). The space-time scaling limit procedure which is at
play here is called hydrodynamic limit. The simplest example in that family is the symmet-
ric simple exclusion process (SSEP), for which the macroscopic hydrodynamic equation is
the linear heat equation [18, Chapter 2.2]. The purpose of this article is to present a new
tool for the derivation of the hydrodynamic limit, when the macroscopic PDE belongs to
the class of nonlinear diffusion equations which are not parabolic.

In [15], Gonçalves et al. designed an exclusion process with local kinetic constraints, in
order to obtain the porous medium equation (PME) as the macroscopic limit equation. The
class of kinetically constrained lattice gases has been introduced in the physical literature
in the 1980’s (we refer to [2, 23] for a review) and is used to model liquid/glass transitions.
The PME is a partial differential equation which reads in dimension one as

Btρ “ Buupρmq, (1.1)
and here we assume that m is a positive integer which satisfies m ⩾ 2. The PME be-
longs to the class of diffusion equations, with diffusion coefficient Dpρq “ mρm´1. Since
Dpρq vanishes as ρ Ñ 0, the PME is not parabolic, and its solutions can be compactly
supported at each fixed time, the boundary of the positivity set tρ ą 0u moving at finite
speed. Another important feature is that if the initial condition ρini of (1.1) is allowed
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Figure 1. Allowed jumps are denoted by ✓. Forbidden jumps are denoted
by X.

to vanish, then the solution ρpt, uq can have gradient discontinuities across the interfaces
which separate the positivity set tρ ą 0u from its complement. We refer to the monograph
[29] for an extended presentation of the mathematical properties of the PME.

We consider in this paper the particle system introduced in [15]. Let us describe it in
the case m “ 2 (see (2.1) for the general definition). The setting is one-dimensional and
periodic: particles are distributed on the points of the finite torus of size N denoted by
TN “ Z{NZ. We impose the exclusion restriction: no two particles can occupy the same
site. A particle at x jumps to an empty neighboring site, say x ` 1, at rate 2 if there are
particles at x ´ 1 and x ` 2, at rate 1 if there is only one particle in tx ´ 1, x ` 2u, and
rate 0 else. The jump rate from x` 1 to x is given by the same rule.

As explained in [15], this constrained exclusion process permits to derive the PME (1.1)
with m “ 2, when the process is accelerated in the diffusive time scale tN2. However, in
that paper the authors need to assume that the initial profile ρini is uniformly bounded
away from 0 and 1, namely that it satisfies an ellipticity condition of the form 0 ă c´ ⩽
ρini ⩽ c` ă 1. With this assumption, the PME is uniformly parabolic and in particular
does not display its more interesting features: finite speed of propagation and gradient
discontinuities. The authors in [15] manage to circle around the problem by perturbing the
microscopic dynamics with a slowed SSEP. This way, they gain ergodicity of the Markov
process and can derive the PME using the well-known entropy method introduced in [16].

In this paper, we do not assume the ellipticity condition on ρini and we keep the original
model described above. We believe this is the first derivation of a moving boundary prob-
lem from a conservative and degenerate microscopic dynamics (see [11, 28] for derivations
in non-conservative or non-degenerate settings). One advantage of keeping the original
degenerate dynamics is that one may think about studying the boundary of the positive
set microscopically, even if the definition of the microscopic boundary is absolutely not
obvious and would need precaution. The microscopic behaviour of that moving interface
(such that its speed, or fluctuation, for instance), as well as the relationship between the
microscopic boundary and the macroscopic boundary, would be very interesting future
works.

Our choice of initial condition makes the entropy method and the relative entropy method
fail (these techniques are explained in detail in [18]). Indeed, the lack of ergodicity breaks
any hope to use the entropy method and the special features of the PME are a serious
obstacle to using the relative entropy method. Let us explain why and describe how we
manage anyway here.
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The relative entropy method was introduced for the first time by Yau [30], and its main
idea is the following: since the particle system has a family of product invariant measures
indexed by the density (here, the Bernoulli product measure νNρ ), one can use the non-
homogeneous product measures νNρpt,uq

with slowly varying parameter associated with the
solution ρpt, uq to (1.1), and compare it to the state at macroscopic time t of the diffusively
accelerated Markov process. The latter is denoted below by µNt , it is a probability law
on t0, 1uTN . If one expects the PME to be the correct hydrodynamic equation, these two
measures should be close, and this can be seen from the investigation of the time evolution
of the relative entropy HpµNt |νNρpt,uq

q (see (3.27) for the definition).
In our case, two obstacles appear straight away. The first one is that ρpt, uq can take

values 0 and 1, and therefore the above relative entropy will generally be infinite. Indeed,
Yau designed this method for the linear heat equation Btρ “ ∆ρ which can be wisely
rewritten as Btρ “ Bupρp1´ ρqBupfpρqqq, with fpρq “ logpρ{p1´ ρqq being the macroscopic
entropy [13]. Therefore, the application of Yau’s method to the derivation of the PME
is also based on the reformulation of Btρ “ Buupρmq into Btρ “ Bupmρmp1 ´ ρqBupfpρqqq,
with the same function f which degenerates at ρ “ 0 and ρ “ 1. We note however that f
is not the natural physical entropy for the PME, as explained in [22]. The second one is
that the solution ρpt, uq has poor analytic properties as soon as ρini vanishes, which will
complicate the control of the time evolution of the entropy. To remove these obstacles,
we modify the original investigation by considering an approximation of ρpt, uq, denoting
ahead by ρN pt, uq, which satisfies two important properties:

(i) it is bounded away from 0 and 1 and regular;
(ii) the sequence pρN q uniformly converges to ρ on compactly supported time intervals.

As we will see in the text, these two properties are not enough to apply straightforwardly
Yau’s method: we also need sharp controls on several derivatives of ρ. Moreover, the
usual one-block estimate (which is at the core of the relative entropy method) requires
understanding the interface between the positivity set of ρ and its complement, and needs
very refined additional arguments. These are the main ingredients of our proof.

Let us note that the relative entropy is a tool that has been widely used in various
contexts in the past forty years. Without being exhaustive, let us list a few applications of
the relative entropy in the study of PDEs. It was introduced simultaneously by DiPerna
[10] and Dafermos [8] in order to show a weak-strong uniqueness principle for the entropy
solutions to nonlinear hyperbolic systems of conservation laws. It has then been used in
[6, 22] to quantify the convergence of the solutions to the porous medium equation (set
on the whole space Rd) towards Barenblatt (or ZKB) self-similar profiles. Furthermore,
it has been one of the fundamental tools in the derivation of hydrodynamic limits from
Boltzmann equation [1, 14, 26]. In [26], the author manages to extend previous results by
considering an approximation of the solution instead of the true solution, in the same spirit
as what we are doing here. It was also used to justify rigorously reduced model obtained
by asymptotic limits, like for instance in [20] where the relative entropy method was used
to study the long-time diffusive regime of hyperbolic systems with stiff relaxation, or
in [21] where compressible flows in thin domains were studied. Finally, very recent works
[17, 5, 12] make use of the relative entropy in order to get error estimates for numerical
approximation of PDEs.
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Up to our knowledge, the present contribution is the first application of the relative
entropy method to derive a hydrodynamic limit with degenerate intervals and without
smoothness of the solution. To overcome that difficulty, we need to use an approximation
of the solution to the hydrodynamic equation, instead of the true solution, which is the
main novelty of this work. Finally, note that the idea of plugging an approximation of
the solution into the relative entropy method should certainly apply to other degenerate
particle systems and allow to derive other degenerate parabolic equations. The additional
work with respect to what we present here would be to derive the corresponding analytic
estimates on the solution to the macroscopic equation (see mainly Proposition 3.3 and
the estimates in Section 4). The complexity of this program in higher dimensions is the
reason we kept d “ 1.

Here follows an outline of the paper. In Section 2, we introduce and define the model
with its notations, and we state our hydrodynamic limit result (Theorem 2.3). In Section 3,
we start with recalling some specificities of the solutions to the porous medium equation,
then we give a crucial property of the boundary of the positivity set. We also define
an approximation of the solution ρN and study its convergence. Finally we expose the
strategy of the proof of the hydrodynamic limit through the control of HpµNt |νNρN pt,uq

q,
which generalizes the usual relative entropy method. The estimates that we need about
the derivatives of ρN are proved in Section 4. The proof of the hydrodynamic limit, and
in particular the one-block estimate, is completed in Section 5.

2. Hydrodynamics limits

2.1. Context. Let us introduce with more details the microscopic dynamics which was
first given in [15], and which we described in the introduction in the case m “ 2. For any
x P TN , we set ηpxq “ 1 if x is occupied, and ηpxq “ 0 if x is empty, which makes our
state space t0, 1uTN . The dynamics can be entirely encoded by the infinitesimal generator
LN which acts on functions f : t0, 1uTN Ñ R as

LNfpηq :“
ÿ

x,yPTN
|x´y|“1

rx,ypηqηpxqp1 ´ ηpyqq
`

fpηx,yq ´ fpηq
˘

, (2.1)

where

rx,x`1pηq “ rx`1,xpηq “

x
ÿ

y“x´m`1

y`m
ź

z“y
zRtx,x`1u

ηpzq,

and

ηx,ypzq “

$

’

&

’

%

ηpyq if z “ x,

ηpxq if z “ y,

ηpzq otherwise.
For instance, when m “ 2, the jump rate reads

rx,x`1pηq “ ηpx´ 1q ` ηpx` 2q,

and when m “ 3 it reads
rx,x`1pηq “ ηpx´ 2qηpx´ 1q ` ηpx´ 1qηpx` 2q ` ηpx` 2qηpx` 3q.
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The initial configuration is random, distributed according to some initial probability mea-
sure µN0 on t0, 1uTN . We denote by pηNt qt⩾0 the Markov process generated by N2LN (note
that it is equivalent to accelerate time by a factor N2) and starting from the initial state
µN0 . For any fixed t ⩾ 0, the probability law of tηNt pxq ; x P TNu on the state space
t0, 1uTN is denoted by µNt .

In the following we also denote by PµN0 the probability measure on the space of trajec-
tories DpR`, t0, 1uTN q induced by the initial state µN0 and the accelerated Markov process
pηNt qt⩾0. Its corresponding expectation is denoted by EµN0 .

2.2. Product Bernoulli measures. For any α P r0, 1s, let νNα be the Bernoulli product
measure on t0, 1uTN with marginal at site x P TN given by

νNα
␣

η : ηpxq “ 1
(

“ α.

In other words, we put a particle at each site x with probability α, independently of the
other sites. Similarly, we define να as the Bernoulli product measure on t0, 1uZ. We
denote by Eα the expectation with respect to να, and note that Eαrηp0qs “ α. One can
easily check (using the fact that rx,x`1 “ rx`1,x for any x) that the product measures
tνNα ; α P r0, 1su are reversible for the Markov process pηNt q.

As the size N of the system goes to infinity, the discrete torus TN tends to the full lattice
Z. Therefore, we will need to consider functions on the space t0, 1uZ. Let φ : t0, 1uZ Ñ R
be a local function, in the sense that φpηq depends on η only through a finite number of
coordinates, and therefore φ is necessarily bounded. We then denote by φpαq its average
with respect to the measure να:

φpαq :“ Eαrφpηqs.

Note that α ÞÑ φpαq is continuous for every local function φ.
The one-dimensional continuous torus is denoted by T “ R{Z. Let us now define

the non-homogeneous product measure νNρp¨q
on t0, 1uTN associated with a density profile

ρ : T Ñ r0, 1s, whose marginal at site x P TN is given by

νNρp¨q

␣

η : ηpxq “ 1
(

“ 1 ´ νNρp¨q

␣

η : ηpxq “ 0
(

“ ρ
`

x
N

˘

. (2.2)

We denote by ENρp¨q
the expectation with respect to νNρp¨q

. If ρp¨q is continuous on T and if
φ : t0, 1uZ Ñ R is local, then the following Riemann convergence holds:

1

N

ÿ

xPTN

ENρp¨q

“

τxφpηq
‰

ÝÝÝÝÑ
NÑ8

ż

T
Eρpuq

“

φpηq
‰

du “

ż

T
φ
`

ρpuq
˘

du. (2.3)

Moreover, if a sequence of continuous profiles ρN p¨q converges uniformly to ρp¨q on T, then

1

N

ÿ

xPTN

ENρN p¨q

“

τxφpηq
‰

ÝÝÝÝÑ
NÑ8

ż

T
Eρpuq

“

φpηq
‰

du. (2.4)

The last convergence property will be used several times in the paper.
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2.3. Statement of the main result. Let ρini P L8pT; r0, 1sq be an initial density profile.
Our goal is to consider the hydrodynamic limit of the microscopic dynamics described in
Section 2.1. As already pointed out by Gonçalves et al. [15], the underlying macroscopic
equation is expected to be the porous medium equation (PME)

#

Btρ “ Buupρmq in R` ˆ T,
ρ|t“0

“ ρini in T.
(2.5)

This equation is of degenerate parabolic type. It is well known that the notion of strong
solution —i.e., ρ P C1,2pR` ˆ Tq— is not suitable to get the well-posedness of the prob-
lem (2.5) unless ρini remains bounded away from 0. Indeed, the space derivative of ρ may
be discontinuous at the boundary of the set tρ ą 0u (see for instance [29]). This motivates
the introduction of the following notion of weak solutions.

Definition 2.1. A function ρ P L8pR` ˆ T; r0, 1sq is said to be a weak solution to (2.5)
corresponding to the initial profile ρini if Bupρmq P L2pR` ˆ Tq and
ĳ

R`ˆT

ρ Btξ dudt`

ż

T
ρini ξp0, ¨qdu´

ĳ

R`ˆT

BupρmqBuξ dudt “ 0, for all ξ P C1
c pR` ˆ Tq.

(2.6)

What we call a weak solution corresponds to what is called an energy solution in
Vazquez’ monograph (see [29, Section 5.3.2]). The classical existence theory based on
compactness arguments (see for instance [29, Therorem 5.5]) can be extended to our
periodic setting without any difficulty. The uniqueness of the weak solution and the
fact that they remain bounded between 0 and 1 are consequences of the following L1-
contraction/comparison principle (see [29, Proposition 6.1]): let ρini and ρ̌ini be two initial
profiles in L8pT; r0, 1sq, and let ρ and ρ̌ be corresponding weak solutions, then

ż

T
pρpt, uq ´ ρ̌pt, uqq`du ď

ż

T
pρinipuq ´ ρ̌inipuqq`du, for any t ě 0, (2.7)

where a` “ maxpa, 0q denotes the positive part of a. In the above relation, we have used
the fact that any weak solution to (2.5) belongs to CpR`;L

1pTqq (see for instance [4]).
As it will appear in the sequel, the so-called pressure, denoted by ϖ in what follows,

plays an important role. It is related to the density ρ by the monotone relation

ϖ “ ϖpρq “
m

m´ 1
ρm´1.

The equation (2.5) then rewrites
Btρ´ Bu pρBuϖq “ 0.

We denote ϖini “ m
m´1

`

ρini˘m´1, and we now state our assumption on the initial condition.

Assumption 2.2 (The initial profile). We assume that:
‚ The initial pressure profile ϖini is Lipschitz continuous, namely there exists CLip ą

0 such that
›

›Buϖ
ini
›

›

8
⩽ CLip, (2.8)

where } ¨ }8 denotes the usual L8-norm;
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‚ The initial positivity set

P0 :“
␣

u P T : ρinipuq ą 0
(

(2.9)

has a finite number of connected components.

Note that this assumption is less restrictive than the one given in [15], where ρini was
supposed to be uniformly bounded away from 0 and 1. In particular, we authorize van-
ishing initial profiles. Our main result reads as follows:

Theorem 2.3. We assume that the initial microscopic configuration tη0pxq : x P TNu is
distributed according to µN0 “ νN

ρinip¨q
, with ρini satisfying Assumption 2.2.

Then, the following local equilibrium convergence holds at any macroscopic time t ą 0:
for any continuous function G : T Ñ R, any local function φ : t0, 1uZ Ñ R

lim
NÑ8

EµN0

„ˇ

ˇ

ˇ

ˇ

1

N

ÿ

xPTN

G
´ x

N

¯

τxφ
`

ηNt
˘

´

ż

T
Gpuqφ

`

ρpt, uq
˘

du

ˇ

ˇ

ˇ

ˇ

ȷ

“ 0, (2.10)

where ρ is the unique weak solution of (2.5) in the sense of Definition 2.1.

Remark 2.4. The porous medium equation (2.5) admits fundamental solutions, which are
usually called Barenblatt (or ZKB) solutions. An explicit form for the Barenblatt solution
is

ρBpt, xq “ t´
1

m`1

˜˜

C ´
pm´ 1qx2

2mpm` 1qt
2

m`1

¸`¸
1

m´1

for each C ą 0. In particular, for sufficiently small t ą 0, its support is contained in T
and ρinip¨q :“ ρBpt, ¨q satisfies Assumption 2.2.

3. Strategy of the proof

Let us give here some properties of the solution to the PME to be used in the sequel.
Sometimes we prove the results only partially, and we invite the reader to check the details
of the proofs in the monograph [29] written by J.L.Vazquez. Precise references will be given
for each result.

If the porous medium equation starts with an initial profile which vanishes, then the
solution at any later time can have discontinuous gradients across the interfaces at which
the function becomes positive. This is a problem when one tries to prove hydrodynamic
limits. The best way to tackle discontinuity problems is to slightly perturb the initial
condition, by making it positive, and bounded away from 1.

In Section 3.1, we state some properties of the PME starting from an initial profile
which can lead to singularities at positive times. In Section 3.2 we modify the initial
condition so as to regularize the solution of the PME and gain better control estimates.
In Section 3.3 we expose the strategy to prove Theorem 2.3.

In the following we denote by } ¨ }p the usual Lp-norm, whenever the integration spaces
are clear to the reader. Otherwise, the LppΩq-norm will be denoted by } ¨ }LppΩq.
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3.1. The porous medium equation (PME). We start with recalling some properties of
the unique weak solution ρpt, uq to (2.5). Our first statement is related to the continuity
of the weak solutions to the porous medium equation. Such a regularity result can be
deduced from [29, Section 7.7 and Section 15.1]. It is also a straightforward consequence
of the forthcoming Proposition 3.6.

Proposition 3.1 (Regularity of the solution). The unique weak solution to (2.5) is con-
tinuous on R` ˆT, and the corresponding pressure ϖ “ m

m´1ρ
m´1 is Lipschitz continuous.

Let us denote by Å the interior of the subset A Ă T and by A its closure. For all t ⩾ 0,
we denote by

Pt :“
␣

u P T : ρpt, uq ą 0
(

the positivity set of ρpt, ¨q, which is an open subset of T since ρpt, ¨q is continuous. Finally
we denote by

Γt :“ BPt “ PtzPt (3.1)
the interface between the positivity set Pt of ρpt, ¨q and the complementary

Zt :“
˝

hkkkkkkkkkkkkikkkkkkkkkkkkj

tu P T : ρpt, uq “ 0u “ TzPt (3.2)

of its support. Note that Γt is closed, and is a nowhere dense set, but it can a priori
have positive Lebesgue measure. Actually, we will prove in Lemma 3.4 below that from
our assumption (2.9) on P0, this does not happen and that the Lebesgue measure of Γt
vanishes for any t ą 0.

Remark 3.2. Let us underline that the derivatives of the pressure ϖ can have jump
discontinuities on the so-called free boundary

ď

tPp0,T s

ttu ˆ Γt,

but both ϖ and ρ are smooth outside of this set at positive times. We refer the reader to
[29, Chapter 14] for the general theory and also [29, Chapter 4] for several examples.

In what follows, the notation Leb stands for the usual Lebesgue measure restricted on
T, and |B| denotes the cardinality of the discrete subset B Ă TN .

Proposition 3.3 (Positivity intervals). For any δ ą 0 and t P r0, T s we set

Γtpδq “

!

u P T : 0 ă ρpt, uq ă δ
)

. (3.3)

We have
ż T

0
Leb pΓtpδqq dt ÝÝÝÑ

δÑ0
0. (3.4)

Proof of Proposition 3.3. The proof follows from the following technical lemma, which we
will prove ahead in Appendix A.

Lemma 3.4 (Connected components of the positivity set). For any t ą 0, Pt has a finite
number of connected components.
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From last lemma, since Pt has a finite number of connected components for any t ą 0,
we know that Γt is a finite union of points, and therefore LebpΓtq “ 0. Since

Γt “
č

δą0

!

u P T : 0 ă ρpt, uq ă δ
)

“
č

δą0

Γtpδq,

it follows from the monotonicity of the Lebesgue measure that

0 “ LebpΓtq “ lim
δÑ0

LebpΓtpδqq, for any t P r0, T s.

Moreover, since Γtpδq Ă T, we get that LebpΓtpδqq ď 1 for all t P r0, T s. Hence (3.4)
follows from Lebesgue’s dominated convergence Theorem. □

3.2. The regularized initial condition. In order to prove Theorem 2.3, we need to
introduce a regularized approximate solution to the PME. This is the goal of this section.

Let pεN qNPN be a vanishing sequence such that εN P p0, 12q. The rate at which εN Ñ 0
will be made more precise later on. Let h P C8pRq be such that h ⩾ 0 and

piq Suppphq Ă p´1, 1q,

ż

R
hpyqdy “ 1, (3.5)

piiq hpyq “ hp´yq, for any y P R (3.6)

piiiq Byhpyq ⩽ 0, if y ⩾ 0. (3.7)

Denote Ch :“ }h}8. It follows from (3.6) and (3.7) that }Byh}1 “ 2Ch. Let us define the
regularizing approximation of the unit:

hN pyq “ ε´1
N hpε´1

N yq, y P R

which satisfies SuppphN q Ă p´εN , εN q, and also
›

›hN
›

›

1
“ 1,

›

›hN
›

›

8
“
Ch
εN

,
›

›ByhN
›

›

1
“

2Ch
εN

. (3.8)

From here several steps are necessary to define the approximate initial data ρini
N . First, we

introduce the truncated initial density and pressure defined by

rρiniN “max
␣

εN , min
`

1 ´ εN , ρ
ini
˘(

,

rϖini
N “

m

m´ 1

`

rρiniN
˘m´1

“ max

"

m

m´ 1
εm´1
N , min

´ m

m´ 1
p1 ´ εN qm´1, ϖini

¯

*

.

The truncated and regularized initial data are then defined by

ϖini
N “ rϖini

N ‹ hN , ρiniN “

ˆ

m´ 1

m
ϖini
N

˙
1

m´1

, (3.9)

where ‹ is the usual convolution product on T. This approximation procedure is designed
so that the following properties hold:

(1) Regularity: ρiniN and ϖini
N are smooth on T;

(2) Boundedness away from 0 and 1:

εN ⩽ ρiniN ⩽ 1 ´ εN , (3.10)
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(3) Lipschitz regularity of the regularized pressure:
›

›Buϖ
ini
N

›

›

8
ď CLip, (3.11)

where CLip has been introduced in (2.8).
(4) Uniform convergence towards the initial profiles:

›

›ϖini
N ´ϖini

›

›

8
ď pm` CLipqεN ÝÝÝÝÑ

NÑ8
0 (3.12)

›

›ρiniN ´ ρini
›

›

8
⩽ Cini pεN q

1
m´1 ÝÝÝÝÑ

NÑ8
0. (3.13)

with Cini “

´

pm´1q

m pm` CLipq

¯
1

m´1 .
Note that (3.11) and the definition (3.9) imply:

›

›Buρ
ini
N

›

›

8
⩽ CLip

m
pεN q2´m, (3.14)

therefore ρiniN is uniformly Lipschitz only in the case m “ 2. If m ⩾ 3 the right hand side
above goes to infinity as N Ñ 8.

Let us now define the regularized solution ρN on R` ˆ T as the solution to
$

&

%

BtρN “ Buu
`

pρN qm
˘

in R` ˆ T,

pρN q|t“0
“ ρiniN in T.

(3.15)

This solution will play a central role in the proof of Theorem 2.3, as well as the corre-
sponding regularized pressure:

ϖN “
m

m´ 1
pρN qm´1. (3.16)

Let start here with two major properties of ρN .

Proposition 3.5. Fix a time horizon line T ą 0. Problem (3.15) admits a unique strong
solution ρN P C8pr0, T s ˆ Tq which satisfies

εN ⩽ ρN ⩽ 1 ´ εN . (3.17)

Proof of Proposition 3.5. The uniqueness of the weak (then strong) solution follows from
the monotonicity of the porous medium equation, which yields L1-contraction and a com-
parison principle (see for instance [7]). It follows from this comparison principle that
εN ⩽ ρN ⩽ 1 ´ εN a.e. in r0, T s ˆ T. Therefore, the solution remains bounded away from
the degeneracy ρ “ 0 of the PME (2.5). The problem (3.15) is then uniformly parabolic.
It follows from the classical regularity theory for parabolic equations (see for instance [19])
that ρN is smooth. See also [29, Theorem 3.1, Proposition 12.13]. □

Proposition 3.6 (Uniform convergence). The sequence pρN qNPN converges uniformly in
r0, T s ˆ T towards the unique weak solution to (2.5).

Proof of Proposition 3.6. It follows from the comparison principle (2.7) that
ż

T
|ρpt, uq ´ ρN pt, uq|du ď

ż

T
|ρinipuq ´ ρini

N puq|du, for any t P r0, T s.
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Hence, we deduce from estimate (3.13) that pρN qNPN converges in Cpr0, T s;L1pTqq towards
ρ. Therefore, it suffices to show that pρN qNPN is relatively compact in Cpr0, T s ˆ Tq to
conclude the proof of Proposition 3.6 thanks to the uniqueness of the limit value. Our
proof mainly follows the program of [29, Section 7.7]. We first need to introduce the
fractional Sobolev spaces HspTq. We refer to [9] for an overview on fractional Sobolev
spaces. Since we are in the simple situation where the domain is the one-dimensional
torus, such spaces are very easy to define and to manipulate with Fourier series. We recall
here its core properties to be used in what follows. Given s P r0, 1s, a function ρ : T Ñ R
belongs to HspTq iff

}ρ}HspTq :“

ˆ

ÿ

kPZ

`

1 ` 4π2|k|2
˘s

|pρk|2
˙

1
2

ă 8,

where the Fourier coefficient pρk reads as pρk :“
ş

T ρpuqe´i2πkudu. From Parseval’s relation,
we have

}ρ}2H1pTq “ }ρ}2L2pTq ` }Buρ}2L2pTq.

The space HspTq is compactly (hence continuously) embedded in CpTq as soon as s ą 1
2 .

Moreover, for any ρ P H1pTq, the following interpolation inequality holds:

}ρ}HspTq ď
›

›ρ
›

›

1´s

L2pTq

›

›ρ
›

›

s

H1pTq
, for any s P r0, 1s. (3.18)

Going back to our problem, let us multiply the PME (3.15) by Bt pρmN q and then integrate
over r0, t‹s ˆ T for some arbitrary t‹ P r0, T s to get

AN pt‹q `BN pt‹q “ 0,

where

AN pt‹q “

ĳ

r0,t‹sˆT

BtρN Bt pρmN q dtdu, BN pt‹q “

ĳ

r0,t‹sˆT

Bu pρmN q But pρmN q dtdu.

The bound |ρN | ď 1 yields

AN pt‹q ě
1

m

ĳ

r0,t‹sˆT

|BtvN |
2 dtdu,

where we have set vN :“ ρmN . On the other hand,

BN pt‹q “
1

2

ż

T

ˇ

ˇBuvN pt‹, uq
ˇ

ˇ

2
du´

1

2

ż

T

ˇ

ˇ

ˇ
Bu

´

`

ρini
N

˘m
¯ˇ

ˇ

ˇ

2
du.

The bound (3.11) together with 0 ď ρiniN ď 1 provide that
1

2

ż

T

ˇ

ˇ

ˇ
Bu

´

`

ρini
N

˘m
¯ˇ

ˇ

ˇ

2
du“

1

2

ż

T

ˇ

ˇ

ˇ
ρiniN Buϖ

ini
N

ˇ

ˇ

ˇ

2
du ď

1

2
pCLipq2.

Hence, we obtain that
2

m

ĳ

r0,t‹sˆT

|BtvN |
2 dtdu`

ż

T
|BuvN pt‹, uq|

2 du ď pCLipq2, for any t‹ P r0, T s.
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To sum up, we have the following (uniform w.r.t. N) estimates on the sequence pvN qN :
denoting C “ CLip

a

m{2,
›

›vN
›

›

L8pr0,T sˆTq
ď 1, (3.19)

›

›BtvN
›

›

L2pr0,T sˆTq
ď C, (3.20)

sup
tPr0,T s

›

›BuvN pt, ¨q
›

›

L2pTq
ď C. (3.21)

It follows from (3.21) and the Cauchy-Schwarz inequality that

|vN pt, uq ´ vN pt, puq| ď C|u´ pu|
1
2 , for any u, pu P T, t P r0, T s. (3.22)

Similarly, we deduce from (3.19) and (3.20) that pvN qN is uniformly bounded in the space
C0, 1

2

`

r0, T s;L2pTq
˘

, i.e.,
›

›vN ptq ´ vN pptq
›

›

L2pTq
ď C|t´ pt|

1
2 , for any t,pt P r0, T s. (3.23)

Using (3.18), we get that
›

›vN ptq´vN pptq
›

›

HspTq
ď
›

›vN ptq ´ vN pptq
›

›

s

H1pTq

›

›vN ptq ´ vN pptq
›

›

1´s

L2pTq
, for any t,pt P r0, T s.

Combining it with (3.21) and (3.23), this provides
›

›vN ptq ´ vN pptq
›

›

HspTq
ď C p4 ` T q

s
2 |t´ pt|

1´s
2 , for any t,pt P r0, T s.

Choosing s P p12 , 1q and using the continuous embedding of HspTq in CpTq we get that

|vN pt, uq ´ vN ppt, uq| ď C p4 ` T q
s
2 |t´ pt|

1´s
2 , for any u P T, t,pt P r0, T s. (3.24)

The combination of (3.22) with (3.24) provides: there exists C 1 ą 0 that depends on
pCLip, T, sq such that, for any u, pu P T, and t,pt P r0, T s,

|vN pt, uq ´ vN ppt, puq| ď |vN pt, uq ´ vN ppt, uq| ` |vN ppt, uq ´ vN ppt, puq|

ď C 1
´

|t´ pt|
1´s
2 ` |u´ pu|

1
2

¯

.

Therefore, one can apply Arzela-Ascoli’s Theorem and claim that pvN qN is relatively
compact in Cpr0, T s ˆ Tq, and thus so is pρN qN “

`

pvN q
1
m

˘

N
. □

3.3. Relative entropy method. In the following, for any two probability measures µ, ν
on t0, 1uTN we denote by Hpµ|νq the relative entropy of µ with respect to ν, defined as
usual by

Hpµ|νq “ sup
f

"
ż

fdµ´ log

ż

efdν

*

,

where the supremum is carried over all real valued functions. The following entropy
inequality is going to be useful: for any γ ą 0, we have

ż

fdµ ⩽ 1

γ

´

log

ż

eγfdν `Hpµ|νq

¯

. (3.25)
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Recall that we denote by ENρN pt,¨q the expectation with respect to the non-homogeneous
Bernoulli product measure νNρN pt,¨q. Fix α P p0, 1q and an invariant measure να. We
introduce the density

ψNt pηq :“
dνNρN pt,¨q

dνα
pηq “

1

ZNt
exp

ˆ

ÿ

xPTN

ηpxq λN

´

t,
x

N

¯

˙

,

where
λN pt, uq “ log

ˆ

ρN pt, uqp1 ´ αq

αp1 ´ ρN pt, uqq

˙

, (3.26)

and ZNt is the normalization constant. Note that λN is well defined thanks to Proposition
3.5. Recall moreover that µNt is the distribution of the accelerated process at time tN2

and denote its density with respect to να as

fNt :“
dµNt
dνα

.

Finally, we are interested in the relative entropy

HN ptq :“ H
`

µNt |νNρN pt,¨q

˘

“

ż

fNt pηq log
´ fNt pηq

ψNt pηq

¯

dναpηq. (3.27)

The proof of Theorem 2.3 is based on the investigation of the time evolution of the entropy
HN ptq. This strategy is inspired by the relative entropy method which is exposed in details
for instance in [18, Chapter 6]. However, in our case the standard method cannot work:
the usual scheme works with the relative entropy of µNt with respect to the product
measure νNρpt,¨q, associated with the true weak solution of the PME (2.5). As we have seen
in Section 3.1, this solution has poor regularity properties, and more importantly, it can
vanish on non-trivial intervals. This would make the relative entropy take infinite values
for presumably long times.

This is why we work with a different relative entropy: here, HN ptq defined in (3.27)
involves the non-homogeneous product measure νNρN pt,¨q, which is associated with the reg-
ularized solution ρN , defined in (3.15). Since ρN is smooth and bounded away from 0 and
1, the relative entropy is always finite. Since pρN q uniformly converges to ρ on r0, T s ˆ T
(from Proposition 3.6), one might believe that the arguments of [18] can be easily adapted.
However, one needs much more than uniform convergence. In particular, sharp controls
on the derivatives of ρN are also needed, as explained in the rest of the paper.

Let us conclude this section with two important results concerning HN ptq. At the end
of this paragraph we will show how do they imply Theorem 2.3. First of all, at t “ 0, the
initial relative entropy is of order NpεN q

1
m´1 | log εN | as N Ñ 8, namely:

Lemma 3.7 (Initial entropy).

HN p0q “ H
`

µN0 |νN
ρiniN p¨q

˘

“ H
`

νNρini |ν
N
ρiniN p¨q

˘

“ O
`

NpεN q
1

m´1 | log εN |
˘

“ opNq, as N Ñ 8.

This lemma is proved in Section 5.1. Next, we are able to control the entropy production
on a finite time interval, thanks to all the sharp estimates that we will obtain in Section
4. This is where we need to make an assumption on the convergence speed of pεN q:
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Assumption 3.8 (Convergence speed of εN ).

lim
NÑ8

NpεN q6m´6 “ `8. (3.28)

Proposition 3.9 (Entropy production). Under Assumption 3.8, there exists a constant
κ ą 0 such that

HN pT q ⩽ κ

ż T

0
HN psqds` oT pNq,

where oT pNq stands for a sequence of real numbers CpT,Nq such that CpT,Nq{N Ñ 0 as
N Ñ 8.

We prove this result in Section 5.2.
From Gronwall’s inequality and Lemma 3.7, we conclude:

Corollary 3.10. For any t ą 0,

H
`

µNt | νNρN pt,¨q

˘

“ HN ptq “ otpNq, as N Ñ 8.

Then, one has to prove that Corollary 3.10 is sufficient to show the local equilibrium
result (2.10) stated in Theorem 2.3. To do so, one needs to know that the approximate
solution ρN pt, ¨q converges uniformly to ρpt, ¨q in T (which does hold from Proposition 3.6),
and that the solution ρpt, ¨q is continuous. We have all in hands to conclude the proof of
Theorem 2.3:

Proof of Theorem 2.3. One has to compute the limit of the left hand side of (2.10). For
the sake of clarity, we assume that the local function φ only depends on the configuration
value at 0, namely: φpηq “ φpηp0qq. Recall that we want to prove that the expectation

EµN0

„ˇ

ˇ

ˇ

ˇ

1

N

ÿ

xPTN

G
´ x

N

¯

τxφ
`

ηNt
˘

´

ż

T
Gpuqφ

`

ρpt, uq
˘

du

ˇ

ˇ

ˇ

ˇ

ȷ

(3.29)

vanishes as N Ñ 8. Note that G and ρpt, ¨q are continuous and bounded. Then, for any
fixed t ą 0, we easily replace

ż

T
Gpuqφ

`

ρpt, uq
˘

du with 1
N

ÿ

xPTN

G
`

x
N

˘

φ
`

ρpt, xN q
˘

,

paying a small price of order otp1q. Next, we perform an integration by parts, and we
bound as follows:

ż

ˇ

ˇ

ˇ

ˇ

1
N

ÿ

xPTN

G
`

x
N

˘

φpηpxqq ´ 1
N

ÿ

xPTN

G
`

x
N

˘

φ
`

ρpt, xN q
˘

ˇ

ˇ

ˇ

ˇ

dµNt pηq

⩽
ż

1
N

ÿ

xPTN

ˇ

ˇ

ˇ

ˇ

1
2ℓ`1

ÿ

|y´x|⩽ℓ

`

G
`

y
N

˘

´G
`

x
N

˘˘

φpηpyqq

ˇ

ˇ

ˇ

ˇ

dµNt pηq (3.30)

`

ż

1
N

ÿ

xPTN

ˇ

ˇ

ˇ

ˇ

1
2ℓ`1G

`

x
N

˘

ÿ

|y´x|⩽ℓ

`

φpηpyqq ´ φ
`

ρpt, xN q
˘˘

ˇ

ˇ

ˇ

ˇ

dµNt pηq. (3.31)
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Since G is smooth, the first limit (3.30) vanishes as N Ñ 8 and then ℓ Ñ 8. Since G is
bounded, (3.29) vanishes if we are able to prove that

lim sup
ℓÑ8

lim sup
NÑ8

ż
ˆ

1

N

ÿ

xPTN

ˇ

ˇ

ˇ

1

2ℓ` 1

ÿ

|y´x|⩽ℓ
φpηpyqq ´ φ

`

ρ
`

t, xN
˘˘

ˇ

ˇ

ˇ

˙

dµNt pηq “ 0.

By the entropy inequality (3.25), for every γ ą 0, we bound the expectation under the
previous limit by

HN ptq

γN
`

1

γN
logENρN pt,¨q

„

exp
´

γ
ÿ

xPTN

ˇ

ˇ

ˇ

1

2ℓ` 1

ÿ

|y´x|⩽ℓ
φpηpyqq ´ φ

`

ρ
`

t, xN
˘˘

ˇ

ˇ

ˇ

¯

ȷ

.

From Corollary 3.10, the first term above vanishes as N Ñ 8. As for the second term, we
use the fact that νNρN pt,¨q is a product measure, and from Hölder’s inequality we bound it
from above by

1

γN

ÿ

xPTN

1

2ℓ` 1
logENρN pt,¨q

„

exp
´

γ
ˇ

ˇ

ˇ

ÿ

|y´x|⩽ℓ
φpηpyqq ´ φ

`

ρ
`

t, xN
˘˘

ˇ

ˇ

ˇ

¯

ȷ

. (3.32)

Since the profile ρpt, ¨q is continuous on T, and the function ρN pt, ¨q converges uniformly
to ρpt, ¨q (from Proposition 3.6) we deduce that (3.32) converges as N Ñ 8 to

1

γ

ż

T

1

2ℓ` 1
logEρpt,uq

„

exp
´

γ
ˇ

ˇ

ˇ

ÿ

|y|⩽ℓ
φpηpyqq ´ φpρpt, uqq

ˇ

ˇ

ˇ

¯

ȷ

du,

see also (2.4). To conclude the proof, we proceed as in [18, Chapter 6.1]: use the inequal-
ities ex ⩽ 1 ` x ` 1

2x
2e|x| and logp1 ` xq ⩽ x. Finally, choose γ “ ε{p2ℓ ` 1q. From the

law of large numbers, last expression vanishes as ℓ Ñ 8 and then ε Ñ 0. □

4. Norm bounds: statement and proof

In this section we state and prove the bounds on the derivatives of the regularized
solution that are needed for Proposition 3.9. The latter will be proved further in Section 5.

Proposition 4.1. For any N P N, there holds
sup

pt,uqPr0,T sˆT

ˇ

ˇBuϖN pt, uq
ˇ

ˇ ⩽ CLip, (4.1)

sup
pt,uqPr0,T sˆT

ˇ

ˇBuρN pt, uq
ˇ

ˇ ⩽ CLip

m
pεN q2´m, (4.2)

ĳ

r0,T sˆT

|BuuϖN pt, uq|2dtdu ď
pCLipq2

2m
pεN q1´m, (4.3)

ĳ

r0,T sˆT

|BuuρN pt, uq|2dtdu ď C0pεN q5´3m, (4.4)

where CLip has been defined in (2.8) and C0 is related to m and CLip as follows:

C0 “
pCLipq2

m3

ˆ

1 `
2pm´ 2q2

p3m´ 4qp3m´ 5q

˙

.
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Proof of Proposition 4.1. First, one can easily check that the space derivative of the pres-
sure fN “ BuϖN satisfies

BtfN ´ Bu

´

mpρN qm´1BufN ` pfN q
2
¯

“ 0, pfN q|t“0
“ Buϖ

ini
N . (4.5)

This equation has a maximum principle, so that }fN}8 ď }f iniN }8, which yields (4.1)
thanks to Assumption (2.8) and (3.11). A similar proof can be found in [29, Prop. 15.4].
Then it follows from (3.16) that

BuρN “
BuϖN

m pρN qm´2
, (4.6)

and estimate (4.2) follows directly from (3.17) and (4.1). In order to get (4.3), one multi-
plies (4.5) by fN and integrate over r0, T s ˆ T, leading to

1

2

ż

T
|fN pT, uq|2du`

ĳ

r0,T sˆT

mρm´1
N |BufN |2dtdu “

1

2

ż

T

ˇ

ˇBuϖ
ini
N

ˇ

ˇ

2
du.

Using (3.17) and (3.11) in the previous estimate (recalling that BufN “ BuuϖN ) yields (4.3).
Let us finally establish (4.4). To this end, remark first that ϖN “ 2ρN if m “ 2, so that
(4.4) directly follows from (4.3) in this case. Assume now that m ě 3, then from (3.16)
we get

BuuρN “
1

m

`

ρ2´m
N BuuϖN ´ pm´ 2qρ1´m

N BuρN BuϖN

˘

“
1

m

`

ρ2´m
N BuuϖN ` Buψ1pρN q BuϖN

˘

(4.7)

where ψ1pρq “ ρ2´m. Using pa` bq2 ď 2pa2 ` b2q and the previous estimates (3.17), (4.1),
and (4.3), we obtain that

›

›BuuρN
›

›

2

L2pp0,T qˆTq
ď

2pCLipq2

m2

ˆ

1

2m
pεN q

5´3m
`
›

›Buψ1pρN q
›

›

2

L2pp0,T qˆTq

˙

.

It remains to bound }Buψ1pρN q}2L2pp0,T qˆTq
. To this end, multiply the PME (3.15) by

φ1pρN q “
pm´ 2q2

mp4 ´ 3mq
ρ4´3m
N

and integrate over r0, T s ˆ T, leading to
ż

T
Φ1pρN qpT, uqdu`

›

›Buψ1pρN q
›

›

2

L2pp0,T qˆTq
“

ż

T
Φ1pρiniN qpuqdu (4.8)

with Φ1pρq “
şρ
0 φ1paqda “

pm´2q2

mp4´3mqp5´3mq
ρ5´3m ě 0 for ρ ą 0. Then we deduce

from (3.17) that
›

›Buψ1pρN q
›

›

2

L2pp0,T qˆTq
ď

pm´ 2q2

mp4 ´ 3mqp5 ´ 3mq
pεN q

5´3m . (4.9)

Estimate (4.4) directly follows from (4.8)–(4.9).
□
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Proposition 4.2. There exist three constants C1, C2, C3 ą 0 (that depend on m, Ch and
CLip) such that, for any N P N,

sup
tPr0,T s

ż

T

ˇ

ˇBuuϖN pt, uq
ˇ

ˇ

2
du ⩽ C1pεN q2´2m, (4.10)

ĳ

r0,T sˆT

ˇ

ˇBuuuϖN pt, uq
ˇ

ˇ

2
dtdu ⩽ C1pεN q3´3m, (4.11)

sup
tPr0,T s

ż

T

ˇ

ˇBuuρN pt, uq
ˇ

ˇ

2
du ⩽ C2pεN q6´4m, (4.12)

ĳ

r0,T sˆT

ˇ

ˇBuuuρN pt, uq
ˇ

ˇ

2
dtdu ⩽ C3pεN q7´5m. (4.13)

Proof of Proposition 4.2. For any N P N, we set gN “ BufN “ BuuϖN . It is a smooth
solution to the problem

BtgN ´ Bu
`

mpρN qm´1BugN ` pm` 1qfNgN
˘

“ 0, pgN q|t“0
“ Buuϖ

ini
N . (4.14)

Multiplying (4.14) by 2gN and integrating over r0, t‹s ˆ T for some arbitrary t‹ P r0, T s

provides
ż

T
|gN |2pt‹, uqdu´

ż

T

ˇ

ˇBuuϖ
ini
N

ˇ

ˇ

2
du

`

ĳ

r0,t‹sˆT

2mpρN qm´1|BugN |2 dtdu`

ĳ

r0,t‹sˆT

2pm` 1qfNgNBugN dtdu “ 0.

It follows from the inequality

2|gNBugN | ď
p2m´ 1qpρN qm´1

pm` 1qCLip
|BugN |

2
`

pm` 1qCLip

p2m´ 1qpρN qm´1
|gN |

2

and from estimate (4.1) that
ĳ

r0,t‹sˆT

2mpρN qm´1|BugN |2dtdu`

ĳ

r0,t‹sˆT

2pm` 1qfNgNBugNdtdu

ě

ĳ

r0,t‹sˆT

pρN qm´1|BugN |2dtdu´
pm` 1q2pCLipq2

2m´ 1

ĳ

r0,t‹sˆT

ρ1´m
N |gN |2dtdu.

Therefore, we obtain that
ż

T
|gN |2pt‹, uqdu`

ĳ

r0,t‹sˆT

pρN qm´1|BugN |2dtdu

ď

ż

T

ˇ

ˇBuuϖ
ini
N

ˇ

ˇ

2
du`

pm` 1q2pCLipq2

2m´ 1

ĳ

r0,t‹sˆT

ρ1´m
N |gN |2dtdu.
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We deduce from (3.17) and (4.3) that
ĳ

r0,t‹sˆT

ρ1´m
N |gN |2dtdu ď

pCLipq2

2m
pεN q2´2m,

whereas the definition (3.9) of ϖini
N ensures that

›

›Buuϖ
ini
N

›

›

8
ď CLip

›

›ByhN
›

›

1
“

2ChCLip

εN
,

where the last equality follows from (3.8). Since εN ď 1
2 , and since ρN ě εN , we obtain

that (4.10) and (4.11) hold for

C1 “ pCLipq2
ˆ

pChq
2 22m´3 `

pm` 1q2

2mp2m´ 1q
pCLipq2

˙

.

Using (4.6), formula (4.7) can be recast into

BuuρN “
1

m

ˆ

ρ2´m
N BuuϖN ´

m´ 2

m
ρ3´2m
N pBuϖN q

2

˙

.

Therefore, using pa ` bq2 ď 2pa2 ` b2q again as well as estimates (3.17), (4.1) and (4.10),
we obtain that

sup
tPr0,T s

ż

T
|BuuρN pt, uq|2du ď

2C1

m2
pεN q6´4m ` 2

ˆ

m´ 2

m2

˙2

pCLipq
2

pεN q6´4m.

Estimate (4.12) follows from the above inequality, the constant C2 being given by

C2 “
2C1

m2
` 2

ˆ

m´ 2

m2

˙2

pCLipq
2 .

Finally, from (4.7), the third derivative of ρN is the sum of four terms:

BuuuρN “
1

m
ρ2´m
N BuuuϖN (4.15)

`
2p2 ´mq

m
ρ1´m
N BuρN BuuϖN (4.16)

`
p2 ´mq

m
ρ1´m
N BuuρN BuϖN (4.17)

`
p2 ´mq

m
Buψ2pρN q BuρN BuϖN , (4.18)

where ψ2pρq :“ ρ1´m. Then, in order to bound the integral
ť

r0,T sˆT |BuuuρN pt, uq|2 dtdu,
we use the inequality pa1 ` a2 ` a3 ` a4q2 ď 4pa21 ` a22 ` a23 ` a24q, and we compute the
contribution of each term (4.15)–(4.18) using the previous estimates, as follows: from
(3.17) and (4.11), we have

ĳ

r0,T sˆT

ˆ

1

m
ρ2´m
N BuuuϖN

˙2

dtdu ď
C1

m2
pεN q7´5m.
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Second, from (3.17), (4.2) and (4.3), we get
ĳ

r0,T sˆT

ˆ

2p2 ´mq

m
ρ1´m
N BuρN BuuϖN

˙2

dtdu ď
2p2 ´mq2pCLipq4

m5
pεN q7´5m.

In the same way, from (3.17), (4.4) and (4.1),
ĳ

r0,T sˆT

ˆ

p2 ´mq

m
ρ1´m
N BuuρN BuϖN

˙2

dtdu ď
p2 ´mq2 C0pCLipq2

m2
pεN q7´5m.

It remains to estimate the contribution of (4.18). For this term, we use the same strategy
as in the end of the proof of (4.4). First, we bound it from (4.1) and (4.2) as follows:

ĳ

r0,T sˆT

ˆ

p2 ´mq

m
Buψ2pρN q BuρN BuϖN

˙2

dtdu

ď
p2 ´mq2pCLipq4

m4
pεN q4´2m

›

›Buψ2pρN q
›

›

2

L2pp0,T qˆTq
.

Finally, to estimate the L2 norm }Buψ2pρN q}2L2pp0,T qˆTq
, we multiply the PME (3.15) by

φ2pρN q “
p1 ´mq2

mp2 ´ 3mq
ρ2´3m
N

and integrate over r0, T s ˆ T. This easily leads to

›

›Buψ2pρN q
›

›

2

L2pp0,T qˆTq
ď

p1 ´mq2

mp2 ´ 3mqp3 ´ 3mq
pεN q3´3m.

Finally, collecting all the contributions coming from (4.15)–(4.18) (which all are of the
same order), we obtain the bound (4.13) with

C3 “
4

m2

ˆ

C1 `
2p2 ´mq2pCLipq2

m3
` p2 ´mq2C0pCLipq2 `

p2 ´mq2p1 ´mq2pCLipq4

mp2 ´ 3mqp3 ´ 3mq

˙

.

□

We conclude this section by getting some technical bounds on the norms of λN and its
derivatives, where λN has been defined in function of ρN in (3.26).

Proposition 4.3. For any N P N,

sup
pt,uqPr0,T sˆT

ˇ

ˇBuλN pt, uq
ˇ

ˇ ⩽ 2CLip

m
pεN q1´m. (4.19)

Moreover, there exists C ą 0 which depends on m,Ch and CLip such that

sup
tPr0,T s

ż

T

ˇ

ˇBuuλN
ˇ

ˇ

2
pt, uq du ⩽ CpεN q4´4m (4.20)
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and finally
ĳ

r0,T sˆT

ˇ

ˇBuuuλN
ˇ

ˇ

2
pt, uq dtdu ⩽ CpεN q6´6m (4.21)

ĳ

r0,T sˆT

ˇ

ˇBuBtλN
ˇ

ˇ

2
pt, uq dtdu ⩽ CpεN q6´6m. (4.22)

Proof of Proposition 4.3. Using only the definition (3.26), one can easily prove the follow-
ing:

Lemma 4.4. We have

BuλN “
BuρN
ρN

`
BuρN
1 ´ ρN

“
BuρN

ρN p1 ´ ρN q
(4.23)

BuuλN “ pBuuρN q

ˆ

1

ρN
`

1

1 ´ ρN

˙

` pBuρN q2
ˆ

1

p1 ´ ρN q2
´

1

ρ2N

˙

(4.24)

BuuuλN “ pBuuuρN q

ˆ

1

ρN
`

1

1 ´ ρN

˙

` 3pBuuρN qpBuρN q

ˆ

1

p1 ´ ρN q2
´

1

ρ2N

˙

(4.25)

` 2pBuρN q3
ˆ

1

ρ3N
`

1

p1 ´ ρN q3

˙

. (4.26)

Therefore, if ρN is solution to the porous medium equation BtρN “ BuupρmN q then

BtλN “ mρm´1
N BuuλN `mρm´1

N pm´ pm` 1qρN q pBuλN q2. (4.27)

Then, from (4.23) and (3.17), we have

}BuλN}8 ď
2}BuρN}8

εN
.

Therefore, the first bound (4.19) is straightforward from Proposition 4.1. In the same way,
using Lemma 4.4 together with (3.17) and the inequality pa` bq2 ď 2pa2 ` b2q, we get, for
any t P r0, T s, that

›

›BuuλN pt, ¨q
›

›

2

L2pTq
⩽ 8

˜

›

›BuuρN pt, ¨q
›

›

2

L2pTq

pεN q2
`

›

›BuρN
›

›

4

8

pεN q4

¸

,

therefore (4.20) follows from Proposition 4.1 and Proposition 4.2, with C that satisfies
C ě 8pC2 ` pCLipq4{m4q. Also, from Lemma 4.4, from (3.17) and the inequality pa ` b `

cq2 ď 3pa2 ` b2 ` c2q, we have

ˇ

ˇBuuuλN
ˇ

ˇ

2 ⩽ 9

ˇ

ˇBuuu ρN
ˇ

ˇ

2

pεN q2
` 36

ˇ

ˇBuuρN
ˇ

ˇ

2 ˇ
ˇBuρN

ˇ

ˇ

2

pεN q4
` 16

ˇ

ˇBuρN
ˇ

ˇ

6

pεN q6
.
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Then from Proposition 4.1 and Proposition 4.2, we easily obtain
ĳ

r0,T sˆT

ˇ

ˇBuuuλN
ˇ

ˇ

2
pt, uq dtdu ď

ˆ

9C3 `
36pCLipq2C0

m2

˙

pεN q5´5m `
16pCLipq6

m6
pεN q6´6m

ď CpεN q6´6m,

with C that satisfies

C ě
1

2m´1

ˆ

9C3 `
36pCLipq2C0

m2

˙

`
16pCLipq6

m6
,

so that (4.21) is proved. Finally, to get (4.22), we use (4.27) together with |ρN | ď 1, and
we obtain that there exists a constant κ “ κpmq which depends only on m such that
ˇ

ˇBuBtλN
ˇ

ˇ

2 ⩽ κpmq

´

ˇ

ˇBuρN
ˇ

ˇ

2ˇ
ˇBuuλN

ˇ

ˇ

2
`
ˇ

ˇBuuuλN
ˇ

ˇ

2
`
ˇ

ˇBuλN
ˇ

ˇ

4ˇ
ˇBuρN

ˇ

ˇ

2
`
ˇ

ˇBuλN
ˇ

ˇ

2ˇ
ˇBuuλN

ˇ

ˇ

2
¯

,

and therefore, we let the reader conclude from Proposition 4.1 and the three first bounds
(4.19), (4.20) and (4.21), in order to get (4.22). □

5. Relative entropy estimates

In this section we prove Lemma 3.7 and Proposition 3.9.

5.1. Proof of Lemma 3.7. We say that a configuration η P t0, 1uTN is ρ-compatible with
a profile ρ : T Ñ r0, 1s if

ηpxq “ ρ
`

x
N

˘

whenever ρ
`

x
N

˘

“ 0 or 1.

Recall Definition 2.2. Since ρiniN P rεN , 1 ´ εN s, we can easily compute

HN p0q “
ÿ

η ρini–comp.
νNρinipηq

#

ÿ

x : ρinip x
N

q“0

log
1

1 ´ ρiniN p xN q
`

ÿ

x : ρinip x
N

q“1

log
1

ρiniN p xN q

`
ÿ

x : ρinip x
N

qPp0,1q

˜

ηpxq log
ρinip xN q

ρiniN p xN q
` p1 ´ ηpxqq log

1 ´ ρinip xN q

1 ´ ρiniN p xN q

¸+

,

where the first sum is over configurations η P t0, 1uTN compatible with the density profile
ρini. Then,

HN p0q “
ÿ

x : ρinip x
N

q“0

log
1

1 ´ ρiniN p xN q
`

ÿ

x : ρinip x
N

q“1

log
1

ρiniN p xN q
(5.1)

`
ÿ

x : ρinip x
N

qPp0,1q

˜

ρini
`

x
N

˘

log
ρinip xN q

ρiniN p xN q
`
`

1 ´ ρini
`

x
N

˘˘

log
1 ´ ρinip xN q

1 ´ ρiniN p xN q

¸

(5.2)

The lemma then follows from (3.13): indeed, there exists C ą 0 such that for all x P TN ,

ρini
`

x
N

˘

“ 0 ùñ

ˇ

ˇ

ˇ

ˇ

log
1

1 ´ ρiniN
`

x
N

˘

ˇ

ˇ

ˇ

ˇ

ď CpεN q
1

m´1 , (5.3)

ρini
`

x
N

˘

“ 1 ùñ

ˇ

ˇ

ˇ

ˇ

log
1

ρiniN
`

x
N

˘

ˇ

ˇ

ˇ

ˇ

ď CpεN q
1

m´1 . (5.4)
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Therefore, we can bound (5.1) by CNpεN q
1

m´1 . In order to bound the first term in (5.2),
note that (using again (3.13)) there exists C ą 0 such that

‚ if ρinip xN q ď 2CinipεN q
1

m´1 , then

ρini
`

x
N

˘

log
ρinip xN q

ρiniN p xN q
ď CpεN q

1
m´1 | log εN |,

‚ if ρinip xN q ą 2CinipεN q
1

m´1 , then
ˇ

ˇ

ˇ

ˇ

ˇ

ρinip xN q ´ ρiniN p xN q

ρinip xN q

ˇ

ˇ

ˇ

ˇ

ˇ

ă
1

2

and
ˇ

ˇ

ˇ

ˇ

ˇ

ρini
`

x
N

˘

log
ρinip xN q

ρiniN p xN q

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ρini
`

x
N

˘

log

ˆ

1 ´
ρinip xN q ´ ρiniN p xN q

ρinip xN q

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
ˇ

ˇρini
`

x
N

˘

´ ρiniN
`

x
N

˘ˇ

ˇ ď CCinipεN q
1

m´1 .

The second term in (5.2) is bounded similarly. Lemma 3.7 follows.

We now turn to the proof of Proposition 3.9, which is the central result of this work.

5.2. Entropy production. First of all, the following well-known entropy estimate is due
to Yau [30]:

BtHN ptq ⩽
ż
"

N2LNψNt
ψNt

´ Bt logpψNt q

*

dµNt .

Let us denote

hpηq :“
0
ÿ

y“´m`1

y`m´1
ź

z“y

ηpzq ´

´1
ÿ

y“´m`1

y`m
ź

z“y
z‰0

ηpzq,

gpηq :“
1

2
r0,1pηqpηp0q ´ ηp1qq2.

Note that gpρq “ mρmp1 ´ ρq and hpρq “ ρm, and also |gpηq| ⩽ m and |hpηq| ⩽ 2m for
any η. We first prove the following technical result:
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Lemma 5.1. Under Assumption 3.8, namely assuming pεN q6m´6N Ñ 8, we have

ż
"

N2LNψNt
ψNt

´ Bt logpψNt q

*

dµNt

“

ż

ÿ

xPTN

BuuλN
`

t, xN
˘

"

τxhpηq ´ h
`

ρN
`

t, xN
˘˘

´ h
1`
ρN

`

t, xN
˘˘

´

ηpxq ´ ρN
`

t, xN
˘

¯

*

dµNt

(5.5)

`

ż

ÿ

xPTN

pBuλN q2
`

t, xN
˘

"

τxgpηq ´ g
`

ρN
`

t, xN
˘˘

´ g1
`

ρN
`

t, xN
˘˘

´

ηpxq ´ ρN
`

t, xN
˘

¯

*

dµNt

(5.6)

` δpt,Nq,

where

1

N

ˇ

ˇ

ˇ

ˇ

ż T

0
δpt,Nqdt

ˇ

ˇ

ˇ

ˇ

ÝÝÝÝÑ
NÑ8

0.

Proof of Lemma 5.1. Fix t P r0, T s. For the sake of brevity we denote λNx :“ λN pt, xN q.

Step 1 – Part coming from the generator: First we have

N2LNψNt
ψNt

“N2
ÿ

xPTN

rx,x`1pηqηpxq
`

1 ´ ηpx` 1q
˘

´

eλ
N
x`1´λNx ´ 1

¯

(5.7)

`N2
ÿ

xPTN

rx,x`1pηqηpx` 1q
`

1 ´ ηpxq
˘

´

eλ
N
x ´λNx`1 ´ 1

¯

. (5.8)

In (5.7) and (5.8) we write the exponential as the infinite sum: ez ´ 1 “
ř

k⩾1
zk

k! . The
first order term pk “ 1q gives:

N2
ÿ

xPTN

rx,x`1pηq
`

ηpxq ´ ηpx` 1q
˘`

λNx`1 ´ λNx
˘

“ N2
ÿ

xPTN

˜

x
ÿ

y“x´m`1

y`m
ź

z“y
z‰x`1

ηpzq ´

x
ÿ

y“x´m`1

y`m
ź

z“y
z‰x

ηpzq

¸

`

λNx`1 ´ λNx
˘

“ N2
ÿ

xPTN

`

τxhpηq ´ τx`1hpηq
˘`

λNx`1 ´ λNx
˘

“ N2
ÿ

xPTN

τxhpηq
`

λNx`1 ` λNx´1 ´ 2λNx
˘

.
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In order to replace the discrete Laplacian by its continuous version, let us estimate the
following error

rN ptq :“

ˇ

ˇ

ˇ

ˇ

ż

ÿ

xPTN

τxhpηq

´

N2
`

λNx`1 ` λNx´1 ´ 2λNx
˘

´ BuuλN
`

t, xN
˘

¯

dµNt

ˇ

ˇ

ˇ

ˇ

.

⩽ 2m
ÿ

xPTN

ˇ

ˇ

ˇ

ˇ

´

N2
`

λNx`1 ` λNx´1 ´ 2λNx
˘

´ BuuλN
`

t, xN
˘

¯

ˇ

ˇ

ˇ

ˇ

,

where the last inequality comes from the fact |hpηq| ⩽ 2m. We use the Taylor formula for
the smooth function u ÞÑ λN pt, uq in order to obtain

N2
`

λNx`1 ` λNx´1 ´ 2λNx
˘

´ BuuλN
`

t, xN
˘

“
N2

2

ż x`1
N

x
N

BuuuλN pt, uq
`

x`1
N ´ u

˘2
du´

N2

2

ż x
N

x´1
N

BuuuλN pt, uq
`

x´1
N ´ u

˘2
du. (5.9)

We start with the first integral in (5.9). The second one is very similar and the same
argument will work. We use several times the Cauchy-Schwarz inequality in order to write

N2
ÿ

xPTN

ˇ

ˇ

ˇ

ˇ

ż x`1
N

x
N

BuuuλN pt, uq
`

x`1
N ´ u

˘2
du

ˇ

ˇ

ˇ

ˇ

⩽ N2
ÿ

xPTN

"ˆ
ż x`1

N

x
N

ˇ

ˇBuuuλN
ˇ

ˇ

2
pt, uq du

˙
1
2
ˆ
ż x`1

N

x
N

`

x`1
N ´ u

˘4
du

˙
1
2
*

⩽ N2

?
5N

5
2

ÿ

xPTN

ˆ
ż x`1

N

x
N

ˇ

ˇBuuuλN
ˇ

ˇ

2
pt, uq du

˙
1
2

⩽ N2

?
5N

5
2

?
N

"

ÿ

xPTN

ż x`1
N

x
N

ˇ

ˇBuuuλN
ˇ

ˇ

2
pt, uq du

*
1
2

“
1

?
5

›

›BuuuλN pt, ¨q
›

›

2
. (5.10)

Recall Proposition 4.3: we have proved that
ĳ

r0,T sˆT

ˇ

ˇBuuuλN
ˇ

ˇ

2
pt, uq dtdu ⩽ CpεN q6´6m,

for some C ą 0. We let the reader repeat the argument for the second integral in (5.9),
and deduce the following:

ż T

0
rN ptq dt ⩽ C 1

?
T pεN q3´3m, (5.11)

for some C 1 ą 0. From Assumption 3.8, we get NpεN q3m´3 “ pNpεN q6m´6q
1
2

?
N Ñ 8,

and we then have
1

N

ż T

0
rN ptqdt ÝÝÝÝÑ

NÑ8
0.
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Therefore, the first order term (k “ 1) gives the first contribution in (5.5), namely
ż

ÿ

xPTN

BuuλN
`

t, xN
˘

τxhpηq dµNt

plus an error rN ptq that we include in δpt,Nq.
In the same way, the second order term (k “ 2) gives

N2
ÿ

xPTN

1

2
rx,x`1pηq

`

ηpxq ´ 2ηpxqηpx` 1q ` ηpx` 1q
˘`

λNx`1 ´ λNx
˘2

“ N2
ÿ

xPTN

τxgpηq
`

λNx`1 ´ λNx
˘2
. (5.12)

We want here to estimate the error

sN ptq :“

ˇ

ˇ

ˇ

ˇ

ż

ÿ

xPTN

τxgpηq

´

N2
`

λNx`1 ´ λNx
˘2

´ pBuλN q2
`

t, xN
˘

¯

dµNt

ˇ

ˇ

ˇ

ˇ

.

As before, the Taylor formula and the Cauchy-Schwarz inequality allows us to bound

sN ptq ⩽ 2mN
ÿ

xPTN

ˇ

ˇ

ˇ

ˇ

BuλN
`

t, xN
˘

ż x`1
N

x
N

BuuλN pt, uq
`

x`1
N ´ u

˘

du

ˇ

ˇ

ˇ

ˇ

`mN2
ÿ

xPTN

ˇ

ˇ

ˇ

ˇ

ż x`1
N

x
N

BuuλN pt, uq
`

x`1
N ´ u

˘

du

ˇ

ˇ

ˇ

ˇ

2

⩽ 2mN
?
3N

3
2

›

›BuλN pt, ¨q
›

›

8

ÿ

xPTN

ˇ

ˇ

ˇ

ˇ

ż x`1
N

x
N

ˇ

ˇBuuλN pt, uq
ˇ

ˇ

2
du

ˇ

ˇ

ˇ

ˇ

1
2

`
mN2

3N3

ÿ

xPTN

ż x`1
N

x
N

ˇ

ˇBuuλN pt, uq
ˇ

ˇ

2
du

⩽ 2m
?
3

›

›BuλN pt, ¨q
›

›

8

›

›BuuλN pt, ¨q
›

›

2
`

m

3N

›

›BuuλN pt, ¨q
›

›

2

2

⩽ C2

ˆ

pεN q3´3m `
pεN q4´4m

N

˙

for some C2 ą 0, where the last inequality follows from Proposition 4.3. Therefore, we
also get that 1

N

şT
0 sN ptq dt Ñ 0, and the second order term gives the first contribution in

(5.6), namely
ż

ÿ

xPTN

pBuλN q2
`

t, xN
˘

τxgpηq dµNt ,

plus that error sN ptq that we include in δpt,Nq.
Finally, we show that none of the higher order terms (k ě 3) contributes and they are

all included in δpt,Nq. Precisely, we estimate

N2

ż T

0

1

N

ÿ

xPTN

ÿ

k⩾3

|λNx`1 ´ λNx |k

k!
dt (5.13)
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and show that this quantity vanishes as N Ñ 8. Using Proposition 4.3, we bound (5.13)
from above by

N2

ż T

0

ÿ

k⩾3

}BuλN pt, ¨q}k8

k! Nk
dt ⩽ TN2

ÿ

k⩾3

Ck pεN qkp1´mq

k! Nk

“ TN2
´

e
C
N

pεN q1´m
´
C2pεN q2p1´mq

2N2
´
CpεN q1´m

N
´ 1

¯

.

with C “ 2CLip{m. For any x P r0, 1s we have ex ´ x2

2 ´ x ´ 1 ⩽ x3, therefore the last
expression above is bounded by

TC3 N
2pεN q3´3m

N3
“
TC3pεN q3´3m

N
ÝÝÝÝÑ
NÑ8

0,

from Assumption 3.8.

Step 2 – Part coming from logpψNt q: The term with logpψNt q can be explicitly com-
puted as

Bt logpψNt q “
ÿ

xPTN

BtλN
`

t, xN
˘

”

ηpxq ´

ż

ηpxqψNt pηqdναpηq

ı

“
ÿ

xPTN

BtλN
`

t, xN
˘

”

ηpxq ´ ρN
`

t, xN
˘

ı

.

Recall that by definition gpρq “ mρmp1 ´ ρq and hpρq “ ρm. A straightforward computa-
tion (see Lemma 4.4) gives

BtλN “ BuuλN h
1
pρN q ` pBuλN q2 g1pρN q. (5.14)

Therefore, this term appears exactly on that form in (5.5) and (5.6).

Step 3 – Additional term: Note that in (5.5) and (5.6) there is an extra term, that
does not appear from the previous computations. Therefore, we have to substract it, and
use the triangular inequality to estimate it. We show that that term is actually of order
opNq when integrated in time between 0 and T , and therefore goes in δpt,Nq. Indeed, the
extra term reads

ÿ

xPTN

FN
`

t, xN
˘

where
FN pt, uq :“ BuuλN pt, uq hpρN pt, uqq ` pBuλN q2pt, uq gpρN pt, uqq.

We want to show that
1

N

ˇ

ˇ

ˇ

ˇ

ż T

0

ÿ

xPTN

FN
`

t, xN
˘

dt

ˇ

ˇ

ˇ

ˇ

ÝÝÝÝÑ
NÑ8

0. (5.15)

First, note that, for any t ą 0,
ż

T
FN pt, uq du “

ż

T
Bu

ˆ

pρN qm´1 BuρN
1 ´ ρN

˙

pt, uq du “ 0.
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Therefore, to prove (5.15) it is enough to prove that the following quantity vanishes:
ż T

0

ˇ

ˇ

ˇ

1

N

ÿ

xPTN

FN
`

t, xN
˘

´

ż

T
FN pt, uq du

ˇ

ˇ

ˇ
dt ⩽

ż T

0

ÿ

xPTN

ż x`1
N

x
N

ˇ

ˇ

ˇ
FN

`

t, xN
˘

´ FN pt, uq

ˇ

ˇ

ˇ
dudt.

From the Cauchy-Schwarz inequality, we have for any k P TN and u P r xN ,
x`1
N s,

ż T

0

ˇ

ˇ

ˇ
FN

`

t, xN
˘

´ FN pt, uq

ˇ

ˇ

ˇ
dt ⩽

ż T

0

ż u

x
N

ˇ

ˇBuFN pt, uq
ˇ

ˇ dudt ⩽
?
T
ˇ

ˇu´ x
N

ˇ

ˇ

1
2
›

›BuFN
›

›

L2pr0,T sˆTq
.

One can check that

BuFN “
pρN qm´1 BuuuρN

1 ´ ρN

` 3
BuuρN BuρN

p1 ´ ρN q2

`

pm´ 1qpρN qm´2 ` p2 ´mqpρN qm´1
˘

`
pBuρN q3

p1 ´ ρN q3
PpρN q,

where
Ppρq “ ρm´3

`

ρp2 ´mq `m´ 1
˘`

ρp4 ´mq `m´ 2
˘

` p2 ´mqρm´2p1 ´ ρq.

Therefore, from Proposition 4.1 and Proposition 4.2, one easily obtains that there exists
C “ CpT,m,CLip, Chq such that

›

›BuFN
›

›

L2pr0,T sˆTq
⩽ CpεN q3´3m.

Finally we have
ż T

0

ˇ

ˇ

ˇ

1

N

ÿ

xPTN

FN
`

t, xN
˘

´

ż

T
FN pt, uq du

ˇ

ˇ

ˇ
dt ⩽ CpεN q3´3m

N
1
2

,

which vanishes as N Ñ 8 from Assumption 3.8. □

5.3. Average over large boxes. To end the proof of Proposition 3.9, we want to take
advantage of the Taylor expansion that seems to arise in (5.5) and (5.6). Note that the
factor in front of pηpxq ´ ρN pt, xN qq in that expression can be simplified as:

BtλN pt, uq “ BuuλN pt, uqh
1
pρN pt, uqq ` pBuλN q2pt, uqg1pρN pt, uqq.

First of all, we are going to replace ηpxq by its empirical average over large boxes. More
precisely, let us estimate the error (integrated in time) made by this replacement, which
writes as follows

εN,ℓpT q :“

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

ÿ

xPTN

BtλN
`

t, xN
˘

´

ηpxq ´ ηpℓqpxq

¯

dµNt dt

ˇ

ˇ

ˇ

ˇ

,

where for any ℓ P N, we denote by ηpℓqpxq the space average of the configuration η on the
box of size 2ℓ` 1 centered around x:

ηpℓqpxq “
1

2ℓ` 1

ÿ

|y´x|⩽ℓ
ηpyq.
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Performing an integration by parts, using the Taylor formula and the Cauchy-Schwarz
inequality, one can easily show that for any ℓ P N, there exists a constant Cpℓq ą 0 such
that

εN,ℓpT q ⩽ Cpℓq

ˆ
ĳ

r0,T sˆT

ˇ

ˇBuBtλN pt, uq
ˇ

ˇ

2
dtdu

˙
1
2

⩽ CpℓqpεN q3´3m,

the last inequality following from Proposition 4.3. Therefore, under Assumption 3.8,

lim
ℓÑ8

lim
NÑ8

εN,ℓpT q

N
“ 0.

The next step consists in replacing in (5.5) the local function τxhpηq by the spatial average
1

2ℓ` 1

ÿ

|y´x|⩽ℓ
τyhpηq

for ℓ sufficiently large and then by its mean value hpηpℓqpxqq. In the same way, in (5.6) we
will replace τxgpηq by gpηpℓqpxqq. This step is more involved, and is done thanks to the
one-block estimate proved in the following section. Once again, because of the degeneracy
of the limit profile ρpt, ¨q (which can vanish), new arguments are needed w.r.t. [15].

5.4. The one-block estimate.

Lemma 5.2 (One-block estimate). Let ε ą 0. For every local function ψ : t0, 1uZ Ñ R
there exists γ0 ą 0 and L0 ă 8 such that: for all ℓ ě L0 there exists N0 “ N0pℓq such
that for any N ě N0 we have

ż T

0

ż

1

N

ÿ

xPTN

τxVℓ,ψpηqfNt pηqναpdηqdt ď
1

γ0N

ż T

0
HN ptqdt` ε, (5.16)

where
Vℓ,ψpηq :“

ˇ

ˇ

ˇ

ˇ

1

2ℓ` 1

ÿ

|y|⩽ℓ
τyψpηq ´ ψ

`

ηpℓqp0q
˘

ˇ

ˇ

ˇ

ˇ

.

We will apply Lemma 5.2 with ψpηq “ hpηq and gpηq.

Proof of Lemma 5.2. For x P TN , ℓ P N, let

Qx,ℓ “

!

η :
x`ℓ´1
ÿ

y“x´ℓ

ηpxqηpx` 1q ě 1
)

the set of configurations in which there are two neighbouring particles within distance ℓ
of x (in particular the box of radius ℓ around x contains a mobile cluster). We split the
left hand side in (5.16) as follows:

ż T

0

ż

1

N

ÿ

xPTN

τxVℓ,ψpηq1Qx,ℓ
pηqfNt pηqναpdηqdt (5.17)

`

ż T

0

ż

1

N

ÿ

xPTN

τxVℓ,ψpηq1Qc
x,ℓ

pηqfNt pηqναpdηqdt. (5.18)
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As indicated in [15, Section 3.1], the restriction to the irreducible set Qx,ℓ in (5.17) allows
us to repeat standard arguments, and to conclude that

lim sup
ℓÑ8

lim sup
NÑ8

ż T

0

ż

1

N

ÿ

xPTN

τxVℓ,ψpηq1Qx,ℓ
pηqfNt pηqναpdηqdt “ 0. (5.19)

Let us now deal with the other term (5.18). By the entropy inequality (3.25), the term
inside the time integral

şT
0 can be bounded above by

H
`

µNt |νNρN pt,¨q

˘

γN
`

1

γN
log

ż

exp

ˆ

γ
ÿ

xPTN

τxVℓ,ψpηq1Qc
x,ℓ

pηq

˙

νNρN pt,¨qpdηq (5.20)

for any γ ą 0. Recall that ε ą 0 is fixed. We need to show that we can choose γ ą 0 such
that

lim sup
ℓÑ8

lim sup
NÑ8

ż T

0

1

γN
log

ż

exp

ˆ

γ
ÿ

xPTN

τxVℓ,ψpηq1Qc
x,ℓ

pηq

˙

νNρN pt,¨qpdηqdt ď ε. (5.21)

Now, contrary to [15], we made no assumption to ensure that νNρpt,¨qpQ
c
x,ℓq decays expo-

nentially in ℓ for all x. In fact, this is plain wrong when ρpt, ¨q vanishes on an interval.

Let ℓ0 be such that the support of ψ is contained in t´ℓ0, . . . , ℓ0u and C :“ 2}ψ}8

(which clearly does not depend on ℓ). From the uniform convergence stated and proved in
Proposition 3.6, we know that there exists a vanishing sequence of positive numbers pδ

p1q

N q

such that: for any u P T, any t P r0, T s, and N P N,
ˇ

ˇρN pt, uq ´ ρpt, uq
ˇ

ˇ ⩽ δ
p1q

N . (5.22)

Since ρN ě εN (see Proposition 3.5) while ρ can be equal to 0, it is natural to impose that
δ

p1q

N ě εN . Without loss of generality, we can assume that the sequence
`

δ
p1q

N

˘

is decreasing.
Moreover, the sequence pρN q is equicontinuous on r0, T s ˆ T, and therefore, there exists a
nondecreasing continuous modulus of continuity w : r0, 1s Ñ R` with wp0q “ 0 such that
for any u, v P T, t P r0, T s, ε ą 0 and N P N,

|u´ v| ⩽ ε ñ
ˇ

ˇρN pt, uq ´ ρN pt, vq
ˇ

ˇ ⩽ wpεq. (5.23)

Let us denote
δN :“ δ

p1q

N ` w
`

ℓ`ℓ0`1
N

˘

ÝÝÝÝÑ
NÑ8

0, (5.24)

then it follows from the monotonicity of
`

δ
p1q

N

˘

N
and of w that pδN qN is decreasing.

We are going to split TN into three sets of points: the good ones, the almost zeroes and
the bad ones. Namely, for any δ ą 0, and any vanishing sequence pαN q such that αN ⩽ δ,
let

GN,ℓt pδq :“
!

x P TN : ρN pt, ¨q ě δ on
“

x´ℓ´ℓ0
N , x`ℓ`ℓ0

N

‰

)

, (5.25)

ZN,ℓt pαN q :“
!

x P TN : ρN pt, ¨q ⩽ αN on
“

x´ℓ´ℓ0
N , x`ℓ`ℓ0

N

‰

)

, (5.26)

BN,ℓ
t pδ, αN q :“ TNz

`

GN,ℓt pδq Y ZN,ℓt pαN q
˘

. (5.27)
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The parameters δ ą 0 and αN Ñ 0 will be chosen ahead. We want to study the limit as
N Ñ 8 of the cardinality of these sets of points (renormalized by N). For that purpose,
let us introduce the following sets: for any δ ą 0, t P r0, T s, let

Gtpδq :“
!

u P T : ρpt, uq ě δ
)

,

Ztpδq :“

˝
hkkkkkkkkkkkkkikkkkkkkkkkkkkj

!

u P T : ρpt, uq “ 0
)

YΓtpδq,

Btpδq :“
!

u P T : 0 ă ρpt, uq ă δ
)

Ă Γtpδq,

where Γtpδq has been defined in (3.3). Note first that
Tz

`

Gtpδq Y Zt
˘

“ Btpδq Y Γt,

where Zt and Γt have been defined respectively in (3.2) and (3.1). Therefore, since
LebpΓtq “ 0 (recall the proof of Proposition 3.3) the two remaining sets above have the
same Lebesgue measure:

Leb
`

Btpδq
˘

“ Leb
´

Tz
`

Gtpδq Y Zt
˘

¯

. (5.28)

We are going to make use of the following lemma:

Lemma 5.3. Recall that δN has been defined in (5.24). For any ℓ, ℓ0 P N fixed, and δ ą 0,
the following convergences hold:

lim
NÑ8

1

N

ˇ

ˇ

ˇ
GN,ℓt pδ ´ δN q

ˇ

ˇ

ˇ
“ Leb

`

Gtpδq
˘

(5.29)

lim
NÑ8

1

N

ˇ

ˇ

ˇ
ZN,ℓt pδN q

ˇ

ˇ

ˇ
“ Leb

`

Zt
˘

(5.30)

and therefore from (5.28):

lim
NÑ8

1

N

ˇ

ˇ

ˇ
BN,ℓ
t pδ ´ δN , δN q

ˇ

ˇ

ˇ
“ Leb

`

Btpδq
˘

.

We will prove Lemma 5.3 further. Let us first end the proof of Lemma 5.2, more
precisely of (5.16). Fix δ ą 0 as a parameter that will vanish at the end of this paragraph,
after letting N Ñ 8 and ℓ Ñ 8. Take the expression under the limit in the left hand side
of (5.21), and take N sufficiently large such that δ ´ δN ą δN . We divide the sum that
appears there into three sums:

‚ one over BN,ℓ
t pδ ´ δN , δN q,

‚ one over ZN,ℓt pδN q,
‚ and the last one over GN,ℓt pδ ´ δN q,

since by definition their union gives TN . We bound each sum as follows: first, since Vℓ,ψpηq

is bounded by C, we have
ÿ

xPBN,ℓ
t pδ´δN ,δN q

τxVℓ,ψpηq1Qc
x,ℓ

pηq ⩽ C
ˇ

ˇ

ˇ
BN,ℓ
t pδ ´ δN , δN q

ˇ

ˇ

ˇ
.

Then note that the two sums over ZN,ℓt pδN q and GN,ℓt pδ ´ δN q are functions with disjoint
supports; since the measure is product, the average factorizes. To bound the term with
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the sum over ZN,ℓt pδN q, note that, if ηpx ` yq “ 0 for all |y| ď ℓ ` ℓ0, then τxVℓ,ψpηq “ 0.
Moreover, if a non-decreasing function1 has support in

␣

x P TN : ρN pt, xN q ⩽ δN
(

, we can
replace νNρN pt,¨q by the homogeneous measure νδN when overestimating its expectation (as
we do in the second inequality below). Consequently, we can bound

ż

exp

ˆ

γ
ÿ

xPZN,ℓ
t pδN q

τxVℓ,ψpηq1Qc
x,ℓ

pηq

˙

νNρN pt,¨qpdηq

⩽
ż

exp

ˆ

γC
ÿ

xPZN,ℓ
t pδN q

1␣
D |y|ďℓ`ℓ0 : ηpx`yq“1

(

˙

νNρN pt,¨qpdηq

⩽
ż

exp

ˆ

γC
ÿ

xPZN,ℓ
t pδN q

1␣
D |y|ďℓ`ℓ0 : ηpx`yq“1

(

˙

νδN pdηq

⩽
ż

exp

ˆ

γC
ÿ

yPTN

ηpyqp2ℓ` 2ℓ0 ` 1q

˙

νδN pdηq

⩽
´

δN
`

eγCp2ℓ`2ℓ0`1q ´ 1
˘

` 1
¯N

.

Finally, for any x P GN,ℓt pδ ´ δN q, and any t P r0, T s, we know that

νNρN pt,¨q

`

Qc
x,ℓ

˘

⩽
`

1 ´ pδ ´ δN q2
˘ℓ
.

Therefore, we bound the term under the limit in (5.21) as follows:
ż T

0

1

γN
log

ż

exp

ˆ

γ
ÿ

xPTN

τxVℓ,ψpηq1Qc
x,ℓ

pηq

˙

νNρN pt,¨qpdηqdt

⩽
ż T

0

C
ˇ

ˇBN,ℓ
t pδ ´ δN , δN q

ˇ

ˇ

N
dt

`
T

γ
log

`

1 `
`

eγCp2ℓ`2ℓ0`1q ´ 1
˘

δN
˘

`

ż T

0

1

γNp2ℓ` 1q

ÿ

xPGN,ℓ
t pδ´δN q

log
´

νNρN pt,¨q

`

Qc
x,ℓ

˘`

exppγp2ℓ` 1qCq ´ 1
˘

` 1
¯

dt

⩽
ż T

0

C
ˇ

ˇBN,ℓ
t pδ ´ δN , δN q

ˇ

ˇ

N
dt (5.31)

`
T

γ
log

`

1 `
`

eγCp2ℓ`2ℓ0`1q ´ 1
˘

δN
˘

(5.32)

`
T

γp2ℓ` 1q

´

exppγp2ℓ` 1qCq ´ 1
¯

`

1 ´ pδ ´ δN q2
˘ℓ
. (5.33)

1A function f : t0, 1uTN Ñ R is said to be non-decreasing if fpηq ď fpη1q as soon as η ≼ η1, where ≼
denotes the coordinate-wise order in t0, 1uTN
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We first take N Ñ 8, then ℓ Ñ 8 and then δ Ñ 0. We treat each term separately: from
Lemma 5.3, Fatou’s lemma, and the fact that Btpδq Ă Γtpδq we obtain:

lim
δÑ0

lim sup
ℓÑ8

lim sup
NÑ8

ż T

0

1

N

ˇ

ˇ

ˇ
BN,ℓ
t pδ ´ δN , δN q

ˇ

ˇ

ˇ
dt ď lim

δÑ0

ż T

0
Leb

`

Btpδq
˘

dt

⩽ lim
δÑ0

ż T

0
Leb

`

Γtpδq
˘

dt “ 0,

where the last equality follows from Proposition 3.3. The second term (5.32) easily vanishes
since δN Ñ 0. Finally, for the last term (5.33), we choose γ ą 0 such that 2γC ` logp1 ´

δ2q ă 0 and the result follows. □

We now go back to the proof of Lemma 5.3.

Proof of Lemma 5.3. The proof is based on the following fact: for any δ ą 0 and N
sufficiently large,

Gtpδq Ă
1

N
GN,ℓt pδ ´ δN q Ă Gtpδ ´ 2δN q, (5.34)

Zt Ă
1

N
ZN,ℓt pδN q Ă Ztp2δN q. (5.35)

Let us prove the first inclusion in (5.34), namely: if u P Gtpδq then, for any N sufficiently
large, tuN u P GN,ℓt pδ ´ δN q.

Let u P Gtpδq and y P
“ tuNu´ℓ´ℓ0

N , tuNu`ℓ`ℓ0
N

‰

, which implies |y ´ u| ⩽ ℓ`ℓ0`1
N . Using

(5.22) and (5.23) we get

ρN pt, yq ⩾ ρN pt, uq ´ w
`

ℓ`ℓ0`1
N

˘

⩾ ρpt, uq ´ δ
p1q

N ´ w
`

ℓ`ℓ0`1
N

˘

⩾ δ ´ δN ,

which proves the claim. The same argument works to prove the symmetric inclusion,
namely: if x P GN,ℓt pδ ´ δN q then x

N P Gtpδ ´ 2δN q. As a result, (5.34) follows. The proof
of the second series of inclusions (5.35) is very similar and we let the reader to check it.

In order to prove (5.29), it is enough to use (5.34) and to show that the Lebesgue
measures converge, namely:

Leb
`

Gtpδ ´ 2δN q
˘

ÝÝÝÝÑ
NÑ8

Leb
`

Gtpδq
˘

.

This is indeed the case since pδN q is a decreasing sequence and therefore the family of sets
`

Gtpδ ´ 2δN q
˘

is decreasing for inclusion.
Therefore, thanks to the continuity of the Lebesgue measure, there holds

LebpGtpδqq “ Leb
`

č

Ně1

Gtpδ ´ 2δN q
˘

“ lim
NÑ8

Leb
`

Gtpδ ´ 2δN q
˘

.

A very similar argument can be worked out to prove (5.30). For that case, first note that

Zt Y Γt “
č

Ně1

Ztp2δN q,

and then one is able to conclude the proof, since the boundary set Γt satisfies LebpΓtq “ 0
(from Proposition 3.3). □
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5.5. Conclusion. Putting together the computation of the entropy production in Lemma
5.1, and then the replacements done in Section 5.3 and Lemma 5.2, up to now we have
proved the following:

Corollary 5.4. There exists γ0 ą 0 and ℓ0 P N, such that, for any ℓ ⩾ ℓ0, there exists
N0 “ N0pℓ0q such that, for any N ⩾ N0,

HN pT q ´ HN p0q ⩽ 1

γ0

ż T

0
HN ptq dt` εT pN, ℓq (5.36)

`

ż T

0

ż

ÿ

xPTN

BuuλN
`

t, xN
˘

H
´

ηpℓqpxq, ρ
`

t, xN
˘

¯

dµNt dt (5.37)

`

ż T

0

ż

ÿ

xPTN

pBuλN q2
`

t, xN
˘

G
´

ηpℓqpxq, ρ
`

t, xN
˘

¯

dµNt dt, (5.38)

where
Hpa, bq :“ hpaq ´ hpbq ´ h

1
pbqpa´ bq

Gpa, bq :“ gpaq ´ gpbq ´ g1pbqpa´ bq

and
lim sup
ℓÑ8

lim sup
NÑ8

εT pN, ℓq

N
“ 0.

In this last paragraph we show that (5.37) and (5.38) are bounded from above by a
constant times (5.36). We treat only (5.37), the same argument works for (5.38). Note
that applying the entropy inequality, we can bound (5.37) above by
1

γ

ż T

0
HN ptq dt`

1

γ

ż T

0
logENρN pt,¨q

„

exp

"

γ
ÿ

xPTN

BuuλN
`

t, xN
˘

H
`

ηpℓqpxq, ρN
`

t, xN
˘˘

*ȷ

dt,

for any γ ą 0. The first term will be added to (5.36). A large deviation argument will
allow us to chose γ ą 0 such that the second term vanishes:

Lemma 5.5 (Large deviation estimate). There exists γ ą 0 such that, for all t P r0, T s,

lim sup
ℓÑ8

lim sup
NÑ8

1

N
logENρN pt,¨q

„

exp

"

γ
ÿ

xPTN

BuuλN
`

t, xN
˘

H
`

ηpℓqpxq, ρN
`

t, xN
˘˘

*ȷ

⩽ 0.

Proof of Lemma 5.5. We follow the lines of [18, Chapter 6], where the rough argument is
well exposed and now standard. The main difference here consists in the presence of the
approximate solution ρN instead of ρ. A Riemann-type convergence like in (2.4) will be
enough to conclude. □

This concludes the proof of Proposition 3.9.
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Appendix A. Connected components of the positivity set

In this section we prove Lemma 3.4, more precisely:

Lemma A.1 (Connected components of the positivity set). Denote by It the set of the
connected components of Pt for t ě 0. Then one can build an injective mapping from It
to Is for all t ě s ě 0. In particular, the function t ÞÑ #It is non-increasing.

Proof. Let t ą 0 and let pa, bq P It, i.e., ρpt, aq “ ρpt, bq “ 0 and ρpt, uq ą 0 for u P pa, bq.
Following [29, Proposition 14.1], the mapping t ÞÑ Pt is monotone:

Ps Ă Pt, for all ps, tq P r0, T s2 such that s ď t.

This ensures that
ρps, aq “ ρps, bq “ 0, for any s P r0, ts. (A.1)

Since 0 ď ρ ď 1 and the pressure ϖ “ m
m´1ρ

m´1 is Lipschiz continuous (Proposition 3.1),
the weak formulation (2.6) still holds for test functions ξ of the form ξpτ, uq “ θpτqζpuq

with θ P L1 X BV pR`q and compactly supported, and ζ P H1pTq thanks to the density
of C1pr0, T sq in BV p0, T q and of C1pTq in H1pTq for the respective weak-‹ and weak
topologies. Here, BV pR`q denotes the set of real valued functions of bounded variations
on R`, i.e., functions t ÞÑ θptq such that Btθ is a finite Radon measure on R`. Fix s P r0, tq
and ε P p0, pb´ aq{2q, then choose ξ “ θζε with

θpτq “ 1ps,tqpτq and ζεpuq “ max

ˆ

0,min

ˆ

1,
u´ a

ε
,
b´ u

ε

˙˙

in the weak formulation (2.6). This provides
ż

T
ρps, uqζεpuqdu “

ż

T
ρpt, uqζεpuqdu`

ż t

s

1

ε

ż a`ε

a
Bupρmqdudτ ´

ż t

s

1

ε

ż b

b´ε
Bupρmqdudτ.

Using (A.1), one gets that
ż

T
ρps, uqζεpuqdu “

ż

T
ρpt, uqζεpuqdu`

1

ε

ż t

s
pρmpτ, a` εq ` ρmpτ, b´ εqqdτ. (A.2)

It follows from (A.1) and from the Lipschitz continuity of ϖ that there exists C ą 0 such
that

0 ď ρmpτ, a` εq “
`

ρm´1pτ, a` εq
˘

m
m´1

“
`

ρm´1pτ, a` εq ´ ρm´1pτ, aq
˘

m
m´1 ď Cε

m
m´1 ,
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and in the same way
0 ď ρmpτ, b´ εq ď Cε

m
m´1 .

These estimates together with the convergence of ζε in L1pTq towards 1pa,bq allow to pass
to the limit ε Ñ 0 in (A.2), leading to

ż b

a
ρps, uqdu “

ż b

a
ρpt, uqdu ą 0, for any s P r0, ts.

Since ρps, ¨q is continuous and because of (A.1), this implies that there exists (at least)
one interval pα, βq Ă pa, bq such that ρps, αq “ ρps, βq “ 0 and ρps, uq ą 0 on pα, βq. Such
an interval pα, βq belongs to Is, and the mapping from It to Is sending pa, bq to pα, βq is
injective. □
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