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CONVERGENCE OF A DEGENERATE MICROSCOPIC DYNAMICS

TO THE POROUS MEDIUM EQUATION

ORIANE BLONDEL, CLÉMENT CANCÈS, MAKIKO SASADA, AND MARIELLE SIMON

Abstract. We derive the porous medium equation from an interacting particle system
which belongs to the family of exclusion processes, with nearest neighbor exchanges. The
particles follow a degenerate dynamics, in the sense that the jump rates can vanish for
certain configurations, and there exist blocked configurations that cannot evolve. In [7] it
was proved that the macroscopic density profile in the hydrodynamic limit is governed by
the porous medium equation (PME), for initial densities uniformly bounded away from 0
and 1. In this paper we consider the more general case where the density can take those
extreme values. In this context, the PME solutions display a richer behavior, like moving
interfaces, finite speed of propagation and breaking of regularity. As a consequence, the
standard techniques that are commonly used to prove this hydrodynamic limits cannot
be straightforwardly applied to our case. We present here a way to generalize the relative
entropy method, by involving approximations of solutions to the hydrodynamic equation,
instead of exact solutions.

1. Introduction

The derivation of macroscopic partial differential equations from microscopic interact-
ing particle systems has aroused an intense research activity in the past few decades.
In particular, the family of conservative interacting particle systems with exclusion-type
constraints is rich enough to provide significant results. One aims at showing that the
macroscopic density profile for these models under time rescaling evolves according to
some deterministic partial differential equation. The space-time scaling limit procedure
which is at play here is called hydrodynamic limit. The simplest example in that family is
the symmetric simple exclusion process (SSEP), for which the macroscopic hydrodynamic
equation is the linear heat equation [9, Chapter 2.2].

In [7], Gonçalves et al. designed an exclusion process with local kinetic constraints, in
order to obtain the porous medium equation (PME) as the macroscopic limit equation. The
class of kinetically constrained lattice gases has been introduced in the physical literature
in the 1980’s (we refer to [1, 11] for a review) and is used to model liquid/glass transitions.
The PME is a partial differential equation which reads in dimension one as

Btρ “ Buupρ
mq, (1.1)

where m is an positive integer which satisfies m > 2. The PME belongs to the class
of diffusion equations, with diffusion coefficient Dpρq “ mρm´1. Since Dpρq vanishes as
ρ Ñ 0, the PME is not parabolic, and its solutions can be compactly supported at each
fixed time, the boundary of the positivity set tρ ą 0u moving at finite speed. Another
important feature is that if the initial condition ρini of (1.1) is allowed to vanish, then
the solution ρpt, uq can have gradient discontinuities across the interfaces which separate
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Figure 1. Allowed jumps are denoted byX. Forbidden jumps are denoted
by X.

the positivity set tρ ą 0u from its complement. We refer to the monograph [16] for an
extended presentation of the mathematical properties of the PME.

We consider in this paper the following particle system (given by [7]). The setting is
one-dimensional and periodic: particles are distributed on the points of the finite torus of
size N denoted by TN “ Z{NZ. We impose the exclusion restriction: no two particles
can occupy the same site. A particle at x jumps to an empty neighboring site, say x` 1,
at rate 2 if there are particles at x´ 1 and x` 2, at rate 1 if there is only one particle in
tx´ 1, x` 2u, and rate 0 else. The jump rate from x` 1 to x is given by the same rule.

As explained in [7], this constrained exclusion process permits to derive the PME (1.1)
with m “ 2, when the process is accelerated in the diffusive time scale tN2. However, in
that paper the authors need to assume that the initial profile ρini is uniformly bounded
away from 0 and 1, namely that it satisfies an ellipticity condition of the form 0 ă c´ 6
ρini 6 c` ă 1. With this assumption, the PME is uniformly parabolic and in particular
does not display its more interesting features: finite speed of propagation and gradient
discontinuities. The authors in [7] manage to circle around the problem by perturbing the
microscopic dynamics with a slowed SSEP. This way, they gain ergodicity of the Markov
process and can derive the PME using the well-known entropy method introduced in [8].

In this paper, we do not assume the ellipticity condition on ρini and we keep the original
model described above. We believe this is the first derivation of a moving boundary prob-
lem from a conservative and degenerate microscopic dynamics (see [6, 15] for derivations
in non-conservative or non-degenerate settings). Our choice of initial condition makes the
entropy method and the relative entropy method fail (these techniques are explained in
detail in [9]). Indeed, the lack of ergodicity breaks any hope to use the entropy method
and the special features of the PME are a serious obstacle to using the relative entropy
method. Let us explain why and describe how we manage anyway here.

The relative entropy method was introduced for the first time by Yau [17], and its main
idea is the following: since the particle system has a family of product invariant measures
indexed by the density (here, the Bernoulli product measure νNρ ), one can use the non-

homogeneous product measures νNρpt,uq with slowly varying parameter associated with the

solution ρpt, uq to (1.1), and compare it to the state at macroscopic time t of the diffusively
accelerated Markov process. The latter is denoted below by µNt , it is a probability law
on t0, 1uTN . If one expects the PME to be the correct hydrodynamic equation, these two
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measures should be close, and this can be seen from the investigation of the time evolution
of the relative entropy HpµNt |ν

N
ρpt,uqq.

In our case, two obstacles appear straight away. The first one is that ρpt, uq can take
values 0 and 1, and therefore the above entropy will generally be infinite. The second one
is that the solution ρpt, uq has poor analytic properties as soon as ρini vanishes, which will
complicate the control of the time evolution of the entropy. To remove these obstacles,
we modify the original investigation by considering an approximation of ρpt, uq, denoting
ahead by ρN pt, uq, which satisfies two important properties:

(i) it is bounded away from 0 and 1 and regular;
(ii) the sequence pρN q uniformly converges to ρ on compactly supported time intervals.

As we will see in the text, these two properties are not enough to apply straightforwardly
Yau’s method: we also need sharp controls on several derivatives of ρ. Moreover, the
usual one-block estimate (which is at the core of the relative entropy method) requires
understanding the interface between the positivity set of ρ and its complement. These are
the main ingredients of our proof.

Finally, note that our result could be easily generalized to the case m > 3, as in [7].
More generally, the idea of plugging an approximation of the solution into the relative
entropy method should apply to other degenerate particle systems and allow to derive other
degenerate parabolic equations. The additional work with respect to what we present here
would be to derive the corresponding analytic estimates on the solution to the PME (see
mainly Proposition 3.3 and the estimates in Section 4). The complexity of this program
in higher dimensions is the reason we kept d “ 1.

Here follows an outline of the paper. In Section 2, we introduce and define the model
with its notations, and we state our hydrodynamic limit result. In Section 3, we start with
recalling some specificities of the solutions to the porous medium equation, then we give
an crucial property of the boundary of the positivity set. We also define an approximation
of the solution ρN and study its convergence. Finally we expose the strategy of the proof
of the hydrodynamic limit through the control of HpµNt |ν

N
ρN pt,uq

q, which generalizes the

usual relative entropy method. The estimates that we need about the derivatives of ρN are
proved in Section 4. The proof of the hydrodynamic limit, and in particular the one-block
estimate, is completed in Section 5.

2. Hydrodynamics limits

2.1. Context. Let us introduce with more details the microscopic dynamics which was
first given in [7], and which we described in the introduction. For any x P TN , we set
ηpxq “ 1 if x is occupied, and ηpxq “ 0 if x is empty, which makes our state space t0, 1uTN .
The dynamics can be entirely encoded by the infinitesimal generator LN which acts on
functions f : t0, 1uTN Ñ R as

LNfpηq :“
ÿ

x,yPTN
|x´y|“1

rx,ypηqηpxqp1´ ηpyqq
`

fpηx,yq ´ fpηq
˘

, (2.1)

where

rx,x`1pηq “ rx`1,xpηq “ ηpx´ 1q ` ηpx` 2q,
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and

ηx,ypzq “

$

’

&

’

%

ηpyq if z “ x,

ηpxq if z “ y,

ηpzq otherwise.

The initial configuration is random, distributed according to some initial probability mea-
sure µN0 on t0, 1uTN . We denote by pηNt qt>0 the Markov process generated by N2LN (note
that it is equivalent to accelerate time by a factor N2) and starting from the initial state
µN0 . For any fixed t > 0, the probability law of tηNt pxq ; x P TNu on the state space
t0, 1uTN is denoted by µNt .

In the following we also denote by PµN0 the probability measure on the space of trajec-

tories DpR`, t0, 1uTN q induced by the initial state µN0 and the accelerated Markov process
pηNt qt>0. Its corresponding expectation is denoted by EµN0 .

2.2. Product Bernoulli measures. For any α P r0, 1s, let νNα be the Bernoulli product
measure on t0, 1uTN with marginal at site x P TN given by

νNα
 

η : ηpxq “ 1
(

“ α.

In other words, we put a particle at each site x with probability α, independently of the
other sites. Similarly, we define να as the Bernoulli product measure on t0, 1uZ. We denote
by Eα the expectation with respect to να, and note that Eαrηp0qs “ α. One can easily
check that the product measures tνNα ; α P r0, 1su are reversible for the Markov process
pηNt q.

As the size N of the system goes to 8, the discrete torus TN tends to the full lattice
Z. Therefore, we will need to consider functions on the space t0, 1uZ. Let ϕ : t0, 1uZ Ñ R
be a local function, in the sense that ϕpηq depends on η only through a finite number of
coordinates, and therefore ϕ is necessarily bounded. We then denote by ϕpαq its average
with respect to the measure να:

ϕpαq :“ Eαrϕpηqs.

Note that α ÞÑ ϕpαq is continuous for every local function ϕ.
The one-dimensional continuous torus is denoted by T “ R{Z. Let us now define

the non-homogeneous product measure νNρp¨q on t0, 1uTN associated with a density profile

ρ : TÑ r0, 1s, whose marginal at site x P TN is given by

νNρp¨q
 

η : ηpxq “ 1
(

“ 1´ νNρp¨q
 

η : ηpxq “ 0
(

“ ρ
`

x
N

˘

. (2.2)

We denote by ENρp¨q the expectation with respect to νNρp¨q. If ρp¨q is continuous on T and if

ϕ : t0, 1uZ Ñ R is local, then the following Riemann convergence holds:

1

N

ÿ

xPTN

ENρp¨q
“

τxϕpηq
‰

ÝÝÝÝÑ
NÑ8

ż

T
Eρpuq

“

ϕpηq
‰

du “

ż

T
ϕ
`

ρpuq
˘

du. (2.3)

Moreover, if a sequence of continuous profiles ρN p¨q converges uniformly to ρp¨q on T, then

1

N

ÿ

xPTN

ENρN p¨q
“

τxϕpηq
‰

ÝÝÝÝÑ
NÑ8

ż

T
Eρpuq

“

ϕpηq
‰

du. (2.4)

The last convergence property will be used several times in the paper.
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2.3. Statement of the main result. Let ρini P L8pT; r0, 1sq be an initial density profile.
Our goal is to consider the hydrodynamic limit of the microscopic dynamics described in
Section 2. As already pointed out by Gonçalves et al. [7], the underlying macroscopic
equation is expected to be the porous medium equation (PME)

#

Btρ “ Buupρ
2q in p0,8q ˆ T,

ρ|t“0
“ ρini in T.

(2.5)

This equation is of degenerate parabolic type. It is well known that the notion of strong
solution —i.e., ρ P C1,2pR` ˆ Tq— is not suitable to get the well-posedness of the prob-
lem (2.5) unless ρini remains bounded away from 0. Indeed, the space derivative of ρ may
be discontinuous at the boundary of the set tρ ą 0u (see for instance [16]). This motivates
the introduction of the following notion of weak solutions.

Definition 2.1. A function ρ P L8pR` ˆ T; r0, 1sq is said to be a weak solution to (2.5)
corresponding to the initial profile ρini if Bupρ

2q P L2pR` ˆ Tq and
ĳ

R`ˆT

ρ Btξ dudt`

ż

T
ρini ξp0, ¨qdu´

ĳ

R`ˆT

Bupρ
2qBuξ dudt “ 0, for all ξ P C1

c pR` ˆTq.

(2.6)

What we call a weak solution corresponds to what is called an energy solution in
Vazquez’ monograph (see [16, Section 5.3.2]). The classical existence theory based on
compactness arguments (see for instance [16, Therorem 5.5]) can be extended to our
periodic setting without any difficulty. The uniqueness of the weak solution and the
fact that they remain bounded between 0 and 1 are consequences of the following L1-
contraction/comparison principle (see [16, Proposition 6.1]): let ρini and ρ̌ini be two initial
profiles in L8pT; r0, 1sq, and let ρ and ρ̌ be corresponding weak solutions, then

ż

T
pρpt, uq ´ ρ̌pt, uqq`du ď

ż

T
pρinipuq ´ ρ̌inipuqq`du, for any t ě 0, (2.7)

where a` “ maxpa, 0q denotes the positive part of a. In the above relation, we have used
the fact that any weak solution to (2.5) belongs to CpR`;L1pTqq (see for instance [3]).

In what follows, we assume that:

‚ the initial profile ρini is Lipchitz continuous, namely there exists CLip ą 0 such
that

›

›Buρ
ini
›

›

8
6 CLip, (2.8)

where } ¨ }8 denotes the usual L8-norm;
‚ the set

P0 :“
 

u P T ; ρinipuq ą 0
(

(2.9)

has a finite number of connected components.

Note that this assumption is much less restrictive than the one given in [7], where ρini

was supposed to be uniformly bounded away from 0 and 1. In particular, we authorize
vanishing initial profiles. Our main result reads as follows:
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Theorem 2.1. We assume that the initial microscopic system of particles tη0pxq ; x P
TNu is distributed according to µN0 “ νN

ρinip¨q
. Then, the following local equilibrium con-

vergence holds at any macroscopic time t ą 0: for any continuous function G : T Ñ R,
any local function ϕ : t0, 1uZ Ñ R

lim
NÑ8

EµN0

„
ˇ

ˇ

ˇ

ˇ

1

N

ÿ

xPTN

G
´ x

N

¯

τxϕ
`

ηNt
˘

´

ż

T
Gpuqϕ

`

ρpt, uq
˘

du

ˇ

ˇ

ˇ

ˇ



“ 0, (2.10)

where ρ is the unique weak solution of (2.5) in the sense of Definition 2.1.

3. Porous medium equation: analytic results

Let us give here some properties of the solution to the (PME) to be used in the sequel.
Sometimes we prove the results only partially, and we invite the reader to check the details
of the proofs in the monograph [16] written by J.L.Vazquez. Precise references will be given
for each result.

If the porous medium equation starts with an initial profile which vanishes, then the
solution at any later time can have discontinuous gradients across the interfaces at which
the function becomes positive. This is a problem when one tries to prove hydrodynamic
limits. The best way to tackle discontinuity problems is to slightly perturb the initial
condition, by making it positive, and bounded away from 1.

In Section 3.1, we state some properties of the PME starting from an initial profile
which can lead to singularities at positive times. In Section 3.2 we modify the initial
condition so as to regularize the solution of the PME and gain better control estimates.
In Section 3.3 we expose the strategy to prove Theorem 2.1.

In the following we denote by } ¨ }p the usual Lp-norm, whenever the integration spaces
are clear to the reader. Otherwise, the LppΩq-norm will be denoted by } ¨ }LppΩq.

3.1. The porous medium equation (PME). We start with recalling some properties of
the unique weak solution ρpt, uq to (2.5). Our first statement is related to the continuity
of the weak solutions to the porous medium equation. Such a regularity result can be
deduced from [16, Section 7.7]. It is also a straightforward consequence of the forthcoming
Proposition 3.6.

Proposition 3.1 (Regularity of the solution). The unique weak solution to (2.5) is con-
tinuous on R` ˆ T.

Let us denote by Å the interior of the subset A Ă T and by A its closure. For all t > 0,
we denote by

Pt :“
 

u P T : ρpt, uq ą 0
(

the positivity set of ρpt, ¨q, which is an open subset of T since ρpt, ¨q is continuous. Finally
we denote by

Γt :“ BPt “ PtzPt (3.1)

the interface between the positivity set Pt of ρpt, ¨q and the complementary

Zt :“

˝
hkkkkkkkkkkkkikkkkkkkkkkkkj

tu P T : ρpt, uq “ 0u “ TzPt (3.2)
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of its support. Note that Γt is closed, and is a nowhere dense set, but it can a priori have
positive Lebesgue measure. Actually, we will prove in Lemma 3.4 below that from our
assumption (2.9) on P0, this does not happen and LebpΓtq “ 0 for any t ą 0.

Remark 3.2. Let us underline that the derivatives of ρ can have jump discontinuities on
the so-called free boundary

ď

tPr0,T s

ttu ˆ Γt,

but ρ is smooth outside of this set. We refer the reader to [16, Chapter 14] for the general
theory and also [16, Chapter 4] for several examples.

In what follows, the notation Leb stands for the usual Lebesgue measure restricted on
T, and |B| denotes the cardinality of the discrete subset B Ă TN .

Proposition 3.3 (Positivity intervals). For any δ ą 0 and t P r0, T s we denote by

Γtpδq “
!

u P T ; 0 ă ρpt, uq ă δ
)

. (3.3)

We have
ż T

0
Leb pΓtpδqqdt ÝÝÝÑ

δÑ0
0. (3.4)

Proof. The proof follows from the following technical lemma, which we will prove ahead
in Appendix B.

Lemma 3.4 (Connected components of the positivity set). For any t ą 0, Pt has a finite
number of connected components.

With this lemma, since Pt has a finite number of connected components for any t ą 0,
Γt is a finite union of points, and therefore LebpΓtq “ 0. Since

Γt “
č

δą0

!

u P T ; 0 ă ρpt, uq ă δ
)

“
č

δą0

Γtpδq,

it follows from the monotonicity of the Lebesgue measure that

0 “ LebpΓtq “ lim
δÑ0

LebpΓtpδqq, for any t P r0, T s.

Moreover, since Γtpδq Ă T, we get that LebpΓtpδqq ď 1 for all t P r0, T s. Hence (3.4)
follows from Lebesgue’s dominated convergence Theorem. �

3.2. The regularized initial condition. In order to prove Theorem 2.1, we need to
introduce a regularized approximate solution to the PME. This is the goal of this section.

Let pεN qNPN be a vanishing sequence such that εN P p0,
1
2q. The speed at which εN Ñ 0

will be made more precise later on.
Let h P C8pR;R`q be such that

piq Suppphq Ă p´1, 1q,

ż

R
hpyqdy “ 1, (3.5)

piiq hpyq “ hp´yq, (3.6)

piiiq Byhpyq 6 0, if y > 0. (3.7)

Denote Ch :“ }h}8. It follows from (3.6) and (3.7) that }Byh}1 “ 2Ch. Let us define
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(1) the regularizing approximation of the unit :

hN pyq “ ε´1
N hpε´1

N yq

which satisfies SuppphN q Ă p´εN , εN q,

›

›hN
›

›

1
“ 1,

›

›hN
›

›

8
“
Ch
εN

,
›

›ByhN
›

›

1
“

2Ch
εN

, (3.8)

(2) the truncated and regularized initial data ρini
N : TÑ rεN , 1´ εN s defined by

ρini
N “ rρini

N ‹ hN , (3.9)

where ‹ is the usual convolution product on T and rρini
N is defined as

rρini
N “ max

 

εN ; min
`

1´ εN ; ρini
˘(

.

The initial data ρini
N satisfies the following three properties:

(a) Regularity : ρini
N is smooth on T,

(b) Boundedness:

εN 6 ρ
ini
N 6 1´ εN , and

›

›Buρ
ini
N

›

›

8
6 CLip, (3.10)

(c) Uniform convergence towards ρini:
›

›ρini
N ´ ρini

›

›

8
6 pCLip ` 1qεN ÝÝÝÝÑ

NÑ8
0. (3.11)

Let us now define the regularized solution ρN on R` ˆ T as the solution to

BtρN pt, uq “ Buu
`

ρ2
N

˘

pt, uq, pt, uq P R` ˆ T,

ρN p0, uq “ ρini
N puq.

(3.12)

This solution will play a central role in the proof of Theorem 2.1. Let start here with two
major properties of ρN .

Proposition 3.5. Problem (3.12) admits a unique strong solution ρN P C8pr0, T s ˆ Tq
which satisfies

εN 6 ρN 6 1´ εN .

Proof. The uniqueness of the weak (then strong) solution follows from the monotonicity
of the porous medium equation, which yields L1-contraction and a comparison principle
(see for instance [4]). It follows from this comparison principle that εN 6 ρN 6 1 ´ εN
a.e. in r0, T s ˆ T. Therefore, the solution remains bounded away from the degeneracy
ρ “ 0 of the PME (2.5). The problem (3.12) is then uniformly parabolic. It follows from
the classical regularity theory for parabolic equations (see for instance [10]) that ρN is
smooth. See also [16, Theorem 3.1, Proposition 12.13]. �

Proposition 3.6 (Uniform convergence). The sequence pρN qNPN converges uniformly in
r0, T s ˆ T towards the unique weak solution to (2.5).

Proof. It follows from the comparison principle (2.7) that
ż

T
|ρpt, uq ´ ρN pt, uq|du ď

ż

T
|ρinipuq ´ ρini

N puq|du, for any t P r0, T s.

Hence, we deduce from estimate (3.11) that pρN qNPN converges in Cpr0, T s;L1pTqq towards
ρ. Therefore, it suffices to show that pρN qNPN is relatively compact in Cpr0, T s ˆ Tq to
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conclude the proof of Proposition 3.6 thanks to the uniqueness of the limit value. Our
proof mainly follows the program of [16, Section 7.7]. We first need to introduce the
fractional Sobolev spaces HspTq. We refer to [5] for an overview on fractional Sobolev
spaces. Since we are in the simple situation where the domain is the one-dimensional
torus, such spaces are very easy to define and to manipulate with Fourier series (see also
our Appendix A).

Definition 3.1. Let s P r0, 1s. A function ρ : TÑ R belongs to HspTq iff

}ρ}HspTq :“

ˆ

ÿ

kPZ

`

1` 4π2|k|2
˘s
|pρk|

2

˙
1
2

ă 8,

where the Fourier coefficient pρk reads as

pρk :“

ż

T
ρpuqe´i2πkudu. (3.13)

From Parseval’s relation, we have

}ρ}2H1pTq “ }ρ}
2
L2pTq ` }Buρ}

2
L2pTq.

Multiply the PME (3.12) by Bt
`

ρ2
N

˘

and then integrate over p0, t‹qˆT for some arbitrary
t‹ P r0, T s to get

AN pt
‹q `BN pt

‹q “ 0,

where

AN pt
‹q “

ĳ

p0,t‹qˆT

BtρN Bt
`

ρ2
N

˘

dtdu, BN pt
‹q “

ĳ

p0,t‹qˆT

Bu
`

ρ2
N

˘

But
`

ρ2
N

˘

dtdu.

The bound |ρN | ď 1 yields

AN pt
‹q ě

1

2

ĳ

p0,t‹qˆT

|BtvN |
2 dtdu,

where we have set vN :“ pρN q
2. On the other hand,

BN pt
‹q “

1

2

ż

T

ˇ

ˇBuvN pt
‹, uq

ˇ

ˇ

2
du´

1

2

ż

T

ˇ

ˇ

ˇ
Bu

´

`

ρini
N

˘2
¯ˇ

ˇ

ˇ

2
du.

(3.10) provides that

1

2

ż

T

ˇ

ˇ

ˇ
Bu

`

ρini
N

˘2
ˇ

ˇ

ˇ

2
du ď 2C2

Lip.

Hence, we obtain that
ĳ

p0,t‹qˆT

|BtvN |
2 dtdu`

ż

T
|BuvN pt

‹, uq|2 du ď 4C2
Lip, for any t‹ P r0, T s.
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To sum up, we have the following (uniform w.r.t. N) estimates on the sequence pvN qN :

›

›vN
›

›

8
ď 1, (3.14)

›

›BtvN
›

›

L2pp0,T qˆTq ď 2CLip, (3.15)

sup
tPr0,T s

›

›BuvN pt, ¨q
›

›

L2pTq ď 2CLip. (3.16)

It follows from (3.16) and the Cauchy-Schwarz inequality that

|vN pt, uq ´ vN pt, puq| ď 2CLip|u´ pu|
1
2 , for any u, pu P T, t P r0, T s. (3.17)

Similarly, we deduce from (3.14) and (3.15) that pvN qN is uniformly bounded in the space

C0, 1
2

`

r0, T s;L2pTq
˘

, i.e.,

›

›vN ptq ´ vN pptq
›

›

L2pTq ď 2CLip|t´ pt|
1
2 , for any t,pt P r0, T s. (3.18)

Using Hölder’s inequality and Definition 3.1, we get that
›

›vN ptq´vN pptq
›

›

HspTq ď
›

›vN ptq ´ vN pptq
›

›

s

H1pTq

›

›vN ptq ´ vN pptq
›

›

1´s

L2pTq, for any t,pt P r0, T s.

Combining it with (3.16) and (3.18), this provides
›

›vN ptq ´ vN pptq
›

›

HspTq ď C|t´ pt|
1´s
2 , for any t,pt P r0, T s,

where C “ 2CLippT ` 4q
s
2 .

Choosing s P p1
2 , 1q and using the continuous embedding of HspTq in CpTq (which is

proved, for the sake of completeness, in Appendix A), we get that

|vN pt, uq ´ vN ppt, uq| ď C|t´ pt|
1´s
2 , for any u P T, t,pt P r0, T s. (3.19)

The combination of (3.17) with (3.19) provides: for any u, pu P T, and t,pt P r0, T s,

|vN pt, uq ´ vN ppt, puq| ď |vN pt, uq ´ vN ppt, uq| ` |vN ppt, uq ´ vN ppt, puq|

ď max
 

C, 2pCLipq
1
2

(

´

|t´ pt|
1´s
2 ` |u´ pu|

1
2

¯

.

Therefore, one can apply Arzela-Ascoli’s Theorem and claim that pvN qN is relatively
compact in Cpr0, T s ˆ Tq, and thus so is pρN qN “

`?
vN

˘

N
. This ends the proof. �

3.3. Strategy of the proof. In the following, for any probability measures µ, ν on
t0, 1uTN we denote by Hpµ|νq the relative entropy of µ with respect to ν, defined as
usual by

Hpµ|νq “ sup
f

"
ż

fdµ´ log

ż

efdν

*

,

where the supremum is carried over all real valued functions. The following entropy
inequality is going to be useful: for any γ ą 0, we have

ż

fdµ 6
1

γ

´

log

ż

eγfdν `Hpµ|νq
¯

. (3.20)
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Recall that we denote by ENρN pt,¨q the expectation with respect to the non-homogeneous

Bernoulli product measure νNρN pt,¨q. Fix α P p0, 1q and an invariant measure να. We

introduce the density

ψNt pηq :“
dνNρN pt,¨q

dνα
pηq “

1

ZNt
exp

ˆ

ÿ

xPTN

ηpxq λN

´

t,
x

N

¯

˙

,

where

λN pt, uq “ log

ˆ

ρN pt, uqp1´ αq

αp1´ ρN pt, uqq

˙

, (3.21)

and ZNt is the normalization constant. Note that λN is well defined thanks to Proposition
3.5. Recall moreover that µNt is the distribution of the accelerated process at time tN2

and denote its density with respect to να as

fNt :“
dµNt
dνα

.

Finally, we are interested in the relative entropy

HN ptq :“ H
`

µNt |ν
N
ρN pt,¨q

˘

“

ż

fNt pηq log
´ fNt pηq

ψNt pηq

¯

dναpηq. (3.22)

The proof of Theorem 2.1 is based on the investigation of the time evolution of that
entropy HN ptq. This strategy is inspired by the relative entropy method which is exposed
in details for instance in [9, Chapter 6]. However, in our case the standard method cannot
work: the usual scheme works with the relative entropy of µNt with respect to the product
measure νNρpt,¨q, associated with the true weak solution of the PME (2.5). As we have seen

in Section 3.1, this solution has poor regularity properties, and more importantly, it can
vanish on non-trivial intervals. This would make the relative entropy take infinite values
for presumably long times.

This is why we work with a different relative entropy: here, HN ptq defined in (3.22)
involves the non-homogeneous product measure νNρN pt,¨q, which is associated with the reg-

ularized solution ρN , defined in (3.12). Since ρN is smooth and bounded away from 0 and
1, the relative entropy is always finite. Since pρN q uniformly converges to ρ on r0, T s ˆT,
one might believe that the arguments of [9] can be easily adapted. However, one needs
much more than uniform convergence. In particular, sharp controls on the derivatives of
ρN are also needed, as explained in the rest of the paper.

Let us conclude this section with two important results concerning HN ptq. At the end
of this paragraph we will show how do they imply Theorem 2.1. First of all, at t “ 0, the
initial relative entropy is of order NεN | log εN | as N Ñ8, namely:

Lemma 3.7.

HN p0q “ H
`

µN0 |ν
N
ρiniN p¨q

˘

“ H
`

νNρini |ν
N
ρiniN p¨q

˘

“ OpNεN | log εN |q “ opNq, as N Ñ8.

This lemma is proved in Section 5.1. Next, we are able to control the entropy production
on a finite time interval, thanks to all the sharp estimates that we will obtain in Section
4. This is where we need to make an assumption on the convergence speed of pεN q. From
now on we suppose that

lim
NÑ8

Nε6
N “ `8. (3.23)



12 ORIANE BLONDEL, CLÉMENT CANCÈS, MAKIKO SASADA, AND MARIELLE SIMON

Proposition 3.8 (Entropy production). Assuming (3.23), there exists a constant κ ą 0
such that

HN pT q 6 κ
ż T

0
HN psqds` oT pNq,

where oT pNq stands for a sequence of real numbers CT,N such that CT,N{N Ñ 0 as N Ñ8.

We prove this result in Section 5.2.
From Gronwall’s inequality and Lemma 3.7, we conclude:

Corollary 3.9. For any t ą 0,

H
`

µNt | ν
N
ρN pt,¨q

˘

“ HN ptq “ otpNq, as N Ñ8.

Then, one has to prove that Corollary 3.9 is sufficient to show the local equilibrium
result (2.10) stated in Theorem 2.1. To do so, one needs to know that the approximate
solution ρN pt, ¨q converges uniformly to ρpt, ¨q in T (which does hold from Proposition 3.6),
and that the solution ρpt, ¨q is continuous. We have all in hands to conclude the proof of
Theorem 2.1:

Proof of Theorem 2.1. One has to compute the limit of the left hand side of (2.10). For
the sake of clarity, we assume that the local function ϕ only depends on the configuration
value at 0, namely: ϕpηq “ ϕpηp0qq. Recall that we want to prove that the expectation

EµN0

„ˇ

ˇ

ˇ

ˇ

1

N

ÿ

xPTN

G
´ x

N

¯

τxϕ
`

ηNt
˘

´

ż

T
Gpuqϕ

`

ρpt, uq
˘

du

ˇ

ˇ

ˇ

ˇ



(3.24)

vanishes as N Ñ 8. Note that G and ρpt, ¨q are continuous and bounded. Then, for any
fixed t ą 0, we easily replace

ż

T
Gpuqϕ

`

ρpt, uq
˘

du with 1
N

ÿ

xPTN

G
`

x
N

˘

ϕ
`

ρpt, xN q
˘

,

paying a small price of order otp1q. Next, we perform an integration by parts, and we
bound as follows:

ż

ˇ

ˇ

ˇ

ˇ

1
N

ÿ

xPTN

G
`

x
N

˘

ϕpηpxqq ´ 1
N

ÿ

xPTN

G
`

x
N

˘

ϕ
`

ρpt, xN q
˘

ˇ

ˇ

ˇ

ˇ

dµNt pηq

6
ż

1
N

ÿ

xPTN

ˇ

ˇ

ˇ

ˇ

1
2``1

ÿ

|y´x|6`

`

G
`

y
N

˘

´G
`

x
N

˘˘

ϕpηpyqq

ˇ

ˇ

ˇ

ˇ

dµNt pηq (3.25)

`

ż

1
N

ÿ

xPTN

ˇ

ˇ

ˇ

ˇ

1
2``1G

`

x
N

˘

ÿ

|y´x|6`

`

ϕpηpyqq ´ ϕ
`

ρpt, xN q
˘˘

ˇ

ˇ

ˇ

ˇ

dµNt pηq. (3.26)

Since G is smooth, the first limit (3.25) vanishes as N Ñ 8 and then ` Ñ 8. Since G is
bounded, (3.24) vanishes if we are able to prove that

lim sup
`Ñ8

lim sup
NÑ8

ż
ˆ

1

N

ÿ

xPTN

ˇ

ˇ

ˇ

1

2`` 1

ÿ

|y´x|6`

ϕpηpyqq ´ ϕ
`

ρ
`

t, xN
˘˘

ˇ

ˇ

ˇ

˙

dµNt pηq “ 0.
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By the entropy inequality (3.20), for every γ ą 0, we bound the expectation under the
previous limit by

HN ptq

γN
`

1

γN
logENρN pt,¨q

„

exp
´

γ
ÿ

xPTN

ˇ

ˇ

ˇ

1

2`` 1

ÿ

|y´x|6`

ϕpηpyqq ´ ϕ
`

ρ
`

t, xN
˘˘

ˇ

ˇ

ˇ

¯



.

From Corollary 3.9, the first term above vanishes as N Ñ8. As for the second term, we
use the fact that νNρN pt,¨q is a product measure, and from Hölder’s inequality we bound it

from above by

1

γN

ÿ

xPTN

1

2`` 1
logENρN pt,¨q

„

exp
´

γ
ˇ

ˇ

ˇ

ÿ

|y´x|6`

ϕpηpyqq ´ ϕ
`

ρ
`

t, xN
˘˘

ˇ

ˇ

ˇ

¯



. (3.27)

Since the profile ρpt, ¨q is continuous on T, and the function ρN pt, ¨q converges uniformly
to ρpt, ¨q (from Proposition 3.6) we deduce that (3.27) converges as N Ñ8 to

1

γ

ż

T

1

2`` 1
logEρpt,uq

„

exp
´

γ
ˇ

ˇ

ˇ

ÿ

|y|6`

ϕpηpyqq ´ ϕpρpt, uqq
ˇ

ˇ

ˇ

¯



du,

see also (2.4). To conclude the proof, we proceed as in [9, Chapter 6.1]: use the inequalities

ex 6 1` x` 1
2x

2e|x| and logp1` xq 6 x. Finally, choose γ “ ε{p2`` 1q. From the law of
large numbers, last expression vanishes as `Ñ8 and then εÑ 0. �

4. Norm bounds: statement and proof

In this section we state and prove the bounds on the derivatives of the regularized
solution, that are needed for Proposition 3.8. The latter will be proved further in Section
5.

Proposition 4.1. For any N P N,

sup
pt,uqPr0,T sˆT

ˇ

ˇBuρN pt, uq
ˇ

ˇ 6 CLip,

where CLip has been defined in (2.8).

Proof. Let us define

wN :“ BuρN ` CLip, wini
N :“ Buρ

ini
N ` CLip for any N P N, (4.1)

then wini
N ě 0 thanks to (3.10). Moreover, wN is smooth and satisfies wN p0, ¨q “ wini

N and

BtwN ´ Bu
`

2ρNBuwN ` 2pwN q
2 ´ 4CLipwN

˘

“ 0, for any N ě 0. (4.2)

Multiplying (4.2) by ´w´N “ minp0, wN q and integrating over T yields

d

dt

ż

T

`

w´N
˘2

2
du`

ż

T
2ρN

`

Buw
´
N

˘2
du´

ż

T
BuΨpwN qdu “ 0,

where we have set

Ψpyq “

#

2
3y

3 ´ 2CLipy
2 if y ď 0,

0 otherwise.

Indeed, it follows from the chain-rule property (see for instance [13, Lemma 1.1]) that

´w´N BtwN “
1
2Bt

`

w´N
˘2
, ´Buw

´
N BuwN “

`

Buw
´
N

˘2
,
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and
`

2pwN q
2 ´ 4CLipwN

˘

Buw
´
N “ ´BuΨpwN q.

Since wN is periodic, one gets
ż

T
BuΨpwN qdu “ 0.

Therefore, the function

t ÞÑ

ż

T

`

w´N
˘2
pt, uq

2
du

is non-increasing, takes nonnegative values and vanishes for t “ 0. Therefore, it is constant
equal to 0, hence wN p¨, tq ě 0 for all t ě 0. Owing to the definition (4.1) of wN , we get
that BuρN ě ´CLip. Proving that BuρN ď CLip is similar. �

Proposition 4.2. For any N P N,
ĳ

r0,T sˆT

ˇ

ˇBuuρN pt, uq
ˇ

ˇ

2
dtdu 6

pCLipq
2

4εN
.

Proof. If fN “ BuρN and f ini
N “ Buρ

ini
N , then fN satisfies the equation

BtfN ´ Bu
`

2ρNBufN ` 2f2
N

˘

“ 0, for any N P N. (4.3)

Multiplying (4.3) by fN and integrating over T yields

d

dt

ż

T

|fN |
2

2
du` 2

ż

T
ρN |BufN |

2 du`
2

3

ż

T
BupfN q

3 du “ 0. (4.4)

Since fN is periodic, the third integral in the above equality is equal to 0. Therefore,
integrating (4.4) w.r.t. time over r0, T s yields

ĳ

r0,T sˆT

ρN |BufN |
2 dtdu ď

1

4

ż

T
|f ini
N |

2du, for any N P N.

Using that ρN ě εN (see Proposition 3.5), one gets that
ĳ

r0,T sˆT

|BuuρN |
2 dtdu “

ĳ

r0,T sˆT

|BufN |
2 dtdu ď

1

4εN

ż

T
|Buρ

ini
N |

2 du ď
pCLipq

2

4εN
,

for any N P N. �

Proposition 4.3. There exists C0pT q ą 0 such that, for any N P N,

sup
tPr0,T s

ż

T

ˇ

ˇBuuρN pt, uq
ˇ

ˇ

2
du 6

C0pT q

ε2
N

(4.5)

ĳ

r0,T sˆT

ˇ

ˇBuuuρN pt, uq
ˇ

ˇ

2
dtdu 6

C0pT q

ε3
N

. (4.6)
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Proof. For all N P N, we set gN “ BuuρN , then it satisfies

BtgN ´ Bu p2ρNBugN ` 6fNgN q “ 0, (4.7)

where fN “ BuρN , and pgN q|t“0
“ Buuρ

ini
N . Multiplying (4.7) by gN and integrating over

p0, t‹q ˆ T for some arbitrary t‹ P r0, T s provides

1

2

ż

T
|gN |

2pt‹, uqdu´
1

2

ż

T

ˇ

ˇBuuρ
ini
N

ˇ

ˇ

2
du`

ĳ

p0,t‹qˆT

2ρN |BugN |
2dtdu`

ĳ

p0,t‹qˆT

6fNgNBugNdtdu “ 0.

Using the elementary inequality

6fNgNBugN ě ´
6|fN |

2|gN |
2

ρN
´

3

2
ρN |BugN |

2,

one gets that
ż

T
|gN |

2pt‹, uqdu`

ĳ

p0,t‹qˆT

ρN |BugN |
2dtdu ď AN `BN pt

‹q, (4.8)

where we have set

AN “

ż

T

ˇ

ˇBuuρ
ini
N

ˇ

ˇ

2
du, BN pt

‹q “ 12

ĳ

p0,t‹qˆT

|fN |
2|gN |

2

ρN
dtdu.

The lower bound ρN ě εN (see Proposition 3.5) together with the L8-estimate on fN
(given in Proposition 4.1) ensure that

BN pt
‹q ď

12C2
Lip

εN

ĳ

p0,t‹qˆT

|gN |
2dtdu.

Then it follows from Proposition 4.2 that

BN pt
‹q ď

3C4
Lip

ε2
N

, for any t‹ P r0, T s. (4.9)

Let us now focus on AN . One has clearly AN ď
›

›Buuρ
ini
N

›

›

2

8
. The definition (3.9) of ρini

N
implies that

ˇ

ˇBuuρ
ini
N puq

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ż

T
Burρ

ini
N pyqBuhN pu´ yqdy

ˇ

ˇ

ˇ

ˇ

ď
›

›Burρ
ini
N

›

›

8
}BuhN}1 , for any u P T.

Therefore, we deduce from (3.8) and (3.10) that

AN ď 4
´CLipCh

εN

¯2
. (4.10)

From (4.8) we get

sup
tPr0,T s

ż

T

ˇ

ˇBuuρN pt, uq
ˇ

ˇ

2
du “ sup

tPr0,T s

ż

T
|gN |

2pt, uqdu 6 AN ` sup
tPr0,T s

BN ptq.
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The combination of (4.9) and (4.10) leads to (4.5) with C0 “ C2
Lipp3C

2
Lip ` 4C2

hq. In the

same way, from (4.8), and using the fact that ρN > εN (recall Proposition 3.5), we have:
ĳ

r0,T sˆT

ˇ

ˇBuuuρN pt, uq
ˇ

ˇ

2
dtdu “

ĳ

r0,T sˆT

ˇ

ˇBugN pt, uq
ˇ

ˇ

2
dtdu 6

1

εN

`

AN `BN pT q
˘

,

and similarly we obtain (4.6). �

5. Relative entropy estimates

In this section we prove Lemma 3.7 and Proposition 3.8.

5.1. Proof of Lemma 3.7. We say that a configuration η P t0, 1uTN is ρ-compatible with
a profile ρ : TÑ r0, 1s if

ηpxq “ ρ
`

x
N

˘

whenever ρ
`

x
N

˘

“ 0 or 1.

Recall Definition 2.2. Since ρini
N P rεN , 1´ εN s, we can easily compute

HN p0q “
ÿ

η ρini–comp.

νNρinipηq

#

ÿ

x : ρinip x
N
q“0

log
1

1´ ρini
N p

x
N q
`

ÿ

x : ρinip x
N
q“1

log
1

ρini
N p

x
N q

`
ÿ

x : ρinip x
N
qPp0,1q

˜

ηpxq log
ρinip xN q

ρini
N p

x
N q
` p1´ ηpxqq log

1´ ρinip xN q

1´ ρini
N p

x
N q

¸+

,

where the first sum is over configurations η P t0, 1uTN compatible with the density profile
ρini. Then,

HN p0q “
ÿ

x : ρinip x
N
q“0

log
1

1´ ρini
N p

x
N q
`

ÿ

x : ρinip x
N
q“1

log
1

ρini
N p

x
N q

(5.1)

`
ÿ

x : ρinip x
N
qPp0,1q

˜

ρini
`

x
N

˘

log
ρinip xN q

ρini
N p

x
N q
`
`

1´ ρini
`

x
N

˘˘

log
1´ ρinip xN q

1´ ρini
N p

x
N q

¸

(5.2)

The lemma then follows from (3.11): indeed, there exists C ą 0 such that for all x P TN ,

ρini
`

x
N

˘

“ 0 ùñ

ˇ

ˇ

ˇ

ˇ

log
1

1´ ρini
N

`

x
N

˘

ˇ

ˇ

ˇ

ˇ

ď CεN , (5.3)

ρini
`

x
N

˘

“ 1 ùñ

ˇ

ˇ

ˇ

ˇ

log
1

ρini
N

`

x
N

˘

ˇ

ˇ

ˇ

ˇ

ď CεN . (5.4)

Therefore, we can bound (5.1) by CNεN . In order to bound the first term in (5.2), note
that (using again (3.11)) there exists C ą 0 such that

‚ if ρinip xN q ď 2εN pCLip ` 1q, then

ρini
`

x
N

˘

log
ρinip xN q

ρini
N p

x
N q

ď CεN | log εN |,
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‚ if ρinip xN q ą 2εN pCLip ` 1q, then
ˇ

ˇ

ˇ

ˇ

ˇ

ρinip xN q ´ ρ
ini
N p

x
N q

ρinip xN q

ˇ

ˇ

ˇ

ˇ

ˇ

ă
1

2

and
ˇ

ˇ

ˇ

ˇ

ˇ

ρini
`

x
N

˘

log
ρinip xN q

ρini
N p

x
N q

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ρini
`

x
N

˘

log

ˆ

1´
ρinip xN q ´ ρ

ini
N p

x
N q

ρinip xN q

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
ˇ

ˇρini
`

x
N

˘

´ ρini
N

`

x
N

˘
ˇ

ˇ ď CpCLip ` 1qεN .

The second term in (5.2) is bounded similarly. Lemma 3.7 follows.

We now turn to the proof of Proposition 3.8, which is the central result of this work.

5.2. Entropy production. First of all, the following well-known entropy estimate is due
to Yau [17]:

BtHN ptq 6
ż
"

N2LNψNt
ψNt

´ Bt logpψNt q

*

dµNt .

Let us denote

hpηq :“ ηp0qηp1q ` ηp0qηp´1q ´ ηp´1qηp1q

gpηq :“ 1
2pηp´1q ` ηp2qqpηp0q ´ ηp1qq2.

Note that gpρq “ 2ρ2p1 ´ ρq and hpρq “ ρ2, and also |hpηq| 6 2 and |gpηq| 6 1 for any η.
We first prove the following technical result:

Lemma 5.1. Assume (3.23), namely ε6
NN Ñ8. Then

ż
"

N2LNψNt
ψNt

´ Bt logpψNt q

*

dµNt

“

ż

ÿ

xPTN

BuuλN
`

t, xN
˘

"

τxhpηq ´ h
`

ρN
`

t, xN
˘˘

´ h
1`

ρN
`

t, xN
˘˘

´

ηpxq ´ ρN
`

t, xN
˘

¯

*

dµNt

(5.5)

`

ż

ÿ

xPTN

pBuλN q
2
`

t, xN
˘

"

τxgpηq ´ g
`

ρN
`

t, xN
˘˘

´ g1
`

ρN
`

t, xN
˘˘

´

ηpxq ´ ρN
`

t, xN
˘

¯

*

dµNt

(5.6)

` δpt,Nq,

where
1

N

ˇ

ˇ

ˇ

ˇ

ż T

0
δpt,Nqdt

ˇ

ˇ

ˇ

ˇ

ÝÝÝÝÑ
NÑ8

0.

Proof. Fix t P r0, T s. For the sake of brevity we denote λNx :“ λN pt,
x
N q.
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Step 1 – Part coming from the generator: First we have

N2LNψNt
ψNt

“N2
ÿ

xPTN

`

ηpx´ 1q ` ηpx` 2q
˘

ηpxq
`

1´ ηpx` 1q
˘

´

eλ
N
x`1´λ

N
x ´ 1

¯

(5.7)

`N2
ÿ

xPTN

`

ηpx´ 1q ` ηpx` 2q
˘

ηpx` 1q
`

1´ ηpxq
˘

´

eλ
N
x ´λ

N
x`1 ´ 1

¯

. (5.8)

In (5.7) and (5.8) we write the exponential as the infinite sum: ez ´ 1 “
ř

k>1
zk

k! . The
first order term pk “ 1q gives:

N2
ÿ

xPTN

`

ηpx´ 1q ` ηpx` 2q
˘`

ηpxq ´ ηpx` 1q
˘`

λNx`1 ´ λ
N
x

˘

“ N2
ÿ

xPTN

τxhpηq
`

λNx`1 ` λ
N
x´1 ´ 2λNx

˘

. (5.9)

In order to replace the discrete Laplacian by its continuous version, let us estimate the
following error

rN ptq :“

ˇ

ˇ

ˇ

ˇ

ż

ÿ

xPTN

τxhpηq
´

N2
`

λNx`1 ` λ
N
x´1 ´ 2λNx

˘

´ BuuλN
`

t, xN
˘

¯

dµNt

ˇ

ˇ

ˇ

ˇ

.

6 2
ÿ

xPTN

ˇ

ˇ

ˇ

ˇ

´

N2
`

λNx`1 ` λ
N
x´1 ´ 2λNx

˘

´ BuuλN
`

t, xN
˘

¯

ˇ

ˇ

ˇ

ˇ

,

where the last inequality comes from the fact |hpηq| 6 2. We use the Taylor formula for
the smooth function u ÞÑ λN pt, uq in order to obtain

N2pλNx`1 ` λ
N
x´1 ´ 2λNx q ´ BuuλN

`

t, xN
˘

“
N2

2

ż x`1
N

x
N

BuuuλN pt, uq
`

x`1
N ´ u

˘2
du´

N2

2

ż x
N

x´1
N

BuuuλN pt, uq
`

x´1
N ´ u

˘2
du. (5.10)

We start with the first integral in (5.10). The second one is very similar and the same
argument will work. We use several times the Cauchy-Schwarz inequality in order to write

N2
ÿ

xPTN

ˇ

ˇ

ˇ

ˇ

ż x`1
N

x
N

BuuuλN pt, uq
`

x`1
N ´ u

˘2
du

ˇ

ˇ

ˇ

ˇ

6 N2
ÿ

xPTN

"ˆ
ż x`1

N

x
N

ˇ

ˇBuuuλN
ˇ

ˇ

2
pt, uq du

˙
1
2
ˆ
ż x`1

N

x
N

`

x`1
N ´ u

˘4
du

˙
1
2
*

6
N2

?
5N

5
2

ÿ

xPTN

ˆ
ż x`1

N

x
N

ˇ

ˇBuuuλN
ˇ

ˇ

2
pt, uq du

˙
1
2

6
N2

?
5N

5
2

?
N

"

ÿ

xPTN

ż x`1
N

x
N

ˇ

ˇBuuuλN
ˇ

ˇ

2
pt, uq du

*
1
2

“
1
?

5

›

›BuuuλN pt, ¨q
›

›

2
. (5.11)
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Since λN is a function of ρN , one can easily obtain some norm bounds on λN and its
derivatives, using the ones that we got in Section 4. This is done in Appendix C. Precisely
in Proposition C.2, we prove that

ĳ

r0,T sˆT

ˇ

ˇBuuuλN
ˇ

ˇ

2
pt, uq dtdu 6

C

ε6
N

,

for some C ą 0. We let the reader repeat the argument for the second integral in (5.10),
and deduce the following:

ż T

0
rN ptq dt 6

C 1
?
T

ε3
N

, (5.12)

for some C 1 ą 0. From the assumption ε3
NN Ñ 8, we then have 1

N

şT
0 rN ptqdt Ñ 0.

Therefore, the first order term (k “ 1) gives the first contribution in (5.5), namely
ż

ÿ

xPTN

BuuλN
`

t, xN
˘

τxhpηq dµNt

plus an error rN ptq that we include in δpt,Nq.
In the same way, the second order term (k “ 2) gives

N2
ÿ

xPTN

1

2

`

ηpx´ 1q ` ηpx` 2q
˘`

ηpxq ´ 2ηpxqηpx` 1q ` ηpx` 1q
˘`

λNx`1 ´ λ
N
x

˘2

“ N2
ÿ

xPTN

τxgpηq
`

λNx`1 ´ λ
N
x

˘2
. (5.13)

We want here to estimate the error

sN ptq :“

ˇ

ˇ

ˇ

ˇ

ż

ÿ

xPTN

τxgpηq
´

N2pλNx`1 ´ λ
N
x q

2 ´ pBuλN q
2
`

t, xN
˘

¯

dµNt

ˇ

ˇ

ˇ

ˇ

.

As before, the Taylor formula and the Cauchy-Schwarz inequality allows us to bound

sN ptq 6 2N
ÿ

xPTN

ˇ

ˇ

ˇ

ˇ

!

BuλN
`

t, xN
˘

ż x`1
N

x
N

BuuλN pt, uq
`

x`1
N ´ u

˘

du
)

ˇ

ˇ

ˇ

ˇ

`N2
ÿ

xPTN

"
ż x`1

N

x
N

BuuλN pt, uq
`

x`1
N ´ u

˘

du

*2

6
2N

?
3N3{2

›

›BuλN pt, ¨q
›

›

8

ÿ

xPTN

"
ż x`1

N

x
N

ˇ

ˇBuuλN pt, uq
ˇ

ˇ

2
du

*
1
2

`
N2

3N3

ÿ

xPTN

ż x`1
N

x
N

ˇ

ˇBuuλN pt, uq
ˇ

ˇ

2
du

6
2
?

3

›

›BuλN pt, ¨q
›

›

8

›

›BuuλN pt, ¨q
›

›

2
`

1

3N

›

›BuuλN pt, ¨q
›

›

2

2

6 C

ˆ

1

ε3
N

`
1

Nε4
N

˙



20 ORIANE BLONDEL, CLÉMENT CANCÈS, MAKIKO SASADA, AND MARIELLE SIMON

for some C ą 0, where the last inequality follows from Proposition C.2. Therefore, we

also get that 1
N

şT
0 sN ptq dtÑ 0, and the second order term gives the first contribution in

(5.6), namely
ż

ÿ

xPTN

pBuλN q
2
`

t, xN
˘

τxgpηq dµNt ,

plus that error sN ptq that we include in δpt,Nq.
Finally, we show that none of the higher order terms (k ě 3) contributes and they are

all included in δpt,Nq. Precisely, we estimate

N2

ż T

0

1

N

ÿ

xPTN

ÿ

k>3

|λNx`1 ´ λ
N
x |

k

k!
dt (5.14)

and show that this quantity vanishes as N Ñ8. Using Proposition C.2, we bound (5.14)
from above by

N2

ż T

0

ÿ

k>3

}BuλN pt, ¨q}
k
8

k! Nk
dt 6 TN2

ÿ

k>3

Ck

k! pNεN qk

“ TN2
´

eC{pNεN q ´
C2

2pNεN q2
´

C

NεN
´ 1

¯

.

with C “ CLip{2. For any x P r0, 1s we have ex ´ x2

2 ´ x ´ 1 6 x3, therefore the last
expression above is bounded by

TC3 N2

pNεN q3
“
TC3

Nε3
N

ÝÝÝÝÑ
NÑ8

0,

from assumption (3.23).

Step 2 – Part coming from logpψNt q: The term with logpψNt q can be explicitly com-
puted as

Bt logpψNt q “
ÿ

xPTN

BtλN
`

t, xN
˘

”

ηpxq ´

ż

ηpxqψNt pηqdναpηq
ı

“
ÿ

xPTN

BtλN
`

t, xN
˘

”

ηpxq ´ ρN
`

t, xN
˘

ı

.

A straightforward computation (see Proposition C.1) gives

BtλN “ BuuλN h
1
pρN q ` pBuλN q

2 g1pρN q.

Therefore, this term appears exactly on that form in (5.5) and (5.6).

Step 3 – Additional term: Note that in (5.5) and (5.6) there is an extra term, that
does not appear from the previous computations. Therefore, we have to substract it, and
use the triangular inequality to estimate it. We show that that term is actually of order
opNq when integrated in time between 0 and T , and therefore goes in δpt,Nq. Indeed, the
extra term reads

ÿ

xPTN

FN
`

t, xN
˘
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where
FN pt, uq :“ BuuλN pt, uq hpρN pt, uqq ` pBuλN q

2pt, uq gpρN pt, uqq.

We want to show that
1

N

ˇ

ˇ

ˇ

ˇ

ż T

0

ÿ

xPTN

FN
`

t, xN
˘

dt

ˇ

ˇ

ˇ

ˇ

ÝÝÝÝÑ
NÑ8

0. (5.15)

First, note that, for any t ą 0,
ż

T
FN pt, uq du “

ż

T
Bu

´ρN BuρN
1´ ρN

¯

pt, uq du “ 0,

Therefore, to prove (5.15) it is enough to prove that the following quantity vanishes:
ż T

0

ˇ

ˇ

ˇ

1

N

ÿ

xPTN

FN
`

t, xN
˘

´

ż

T
FN pt, uq du

ˇ

ˇ

ˇ
dt 6

ż T

0

ÿ

xPTN

ż x`1
N

x
N

ˇ

ˇ

ˇ
FN

`

t, xN
˘

´ FN pt, uq
ˇ

ˇ

ˇ
dudt.

From the Cauchy-Schwarz inequality, we have for any k P TN and u P r xN ,
x`1
N s,

ż T

0

ˇ

ˇ

ˇ
FN

`

t, xN
˘

´ FN pt, uq
ˇ

ˇ

ˇ
dt 6

ż T

0

ż u

x
N

ˇ

ˇBuFN pt, uq
ˇ

ˇ dudt 6
?
T
ˇ

ˇu´ x
N

ˇ

ˇ

1
2
›

›BuFN
›

›

L2pr0,T sˆTq.

One can check that

BuFN “
ρN BuuuρN

1´ ρN
`

3BuuρN BuρN
p1´ ρN q2

`
2pBuρN q

3

p1´ ρN q3
.

Therefore, from all the results of Section 4, we get

›

›BuFN
›

›

L2pr0,T sˆTq 6
CpT q

ε3
N

.

Finally we have
ż T

0

ˇ

ˇ

ˇ

1

N

ÿ

xPTN

FN
`

t, xN
˘

´

ż

T
FN pt, uq du

ˇ

ˇ

ˇ
dt 6

CpT q

N
1
2 ε3

N

,

which vanishes as N Ñ8 from assumption (3.23). �

5.3. Average over large boxes. To end the proof of Proposition 3.8, we want to take
advantage of the Taylor expansion that seems to arise in (5.5) and (5.6). Note that the
factor in front of pηpxq ´ ρN pt,

x
N qq in that expression can be simplified as:

BtλN pt, uq “ BuuλN pt, uqh
1
pρN pt, uqq ` pBuλN q

2pt, uqg1pρN pt, uqq.

First of all, we are going to replace ηpxq by its empirical average over large boxes. More
precisely, let us estimate the error (integrated in time) made by this replacement, which
writes as follows

εN,`pT q :“

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

ÿ

xPTN

BtλN
`

t, xN
˘

´

ηpxq ´ ηp`qpxq
¯

dµNt dt

ˇ

ˇ

ˇ

ˇ

,

where for any ` P N, we denote by ηp`qpxq the space average of the configuration η on the
box of size 2`` 1 centered around x:

ηp`qpxq “
1

2`` 1

ÿ

|y´x|6`

ηpyq.
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Performing an integration by parts, using the Taylor formula and the Cauchy-Schwarz
inequality, one can easily show that for any ` P N, there exists a constant Cp`q ą 0 such
that

εN,`pT q 6 Cp`q

ˆ
ĳ

r0,T sˆT

ˇ

ˇBuBtλN pt, uq
ˇ

ˇ

2
dtdu

˙
1
2

6
Cp`q

ε3
N

,

the last inequality following from Proposition C.2. Therefore, under assumption (3.23),

lim
`Ñ8

lim
NÑ8

εN,`pT q

N
“ 0.

The next step consists in replacing in (5.5) the local function τxhpηq by the spatial average

1

2`` 1

ÿ

|y´x|6`

τyhpηq

for ` sufficiently large and then by its mean value hpηp`qpxqq. In the same way, in (5.6) we

will replace τxgpηq by gpηp`qpxqq. This step is more involved, and is done thanks to the
one-block estimate proved in the following section. Once again, because of the degeneracy
of the limit profile ρpt, ¨q (which can vanish), new arguments are needed w.r.t. [7].

5.4. The one-block estimate.

Lemma 5.2 (One-block estimate). Let ε ą 0. For every local function ψ : t0, 1uZ Ñ R
there exists γ0 ą 0 and L0 ă 8 such that: for all ` ě L0 there exists N0 “ N0p`q such
that for any N ě N0 we have

ż T

0

ż

1

N

ÿ

xPTN

τxV`,ψpηqf
N
t pηqναpdηqdt ď

1

γ0N

ż T

0
HN ptqdt` ε, (5.16)

where

V`,ψpηq :“

ˇ

ˇ

ˇ

ˇ

1

2`` 1

ÿ

|y|6`

τyψpηq ´ ψ
`

ηp`qp0q
˘

ˇ

ˇ

ˇ

ˇ

.

We will apply Lemma 5.2 with ψpηq “ hpηq and gpηq.

Proof of Lemma 5.2. For x P TN , ` P N, let

Qx,` “

!

η :
x``´1
ÿ

y“x´`

ηpxqηpx` 1q ě 1
)

the set of configurations in which there are two neighbouring particles within distance `
of x (in particular the box of radius ` around x contains a mobile cluster). We split the
left hand side in (5.16) into

ż T

0

ż

1

N

ÿ

xPTN

τxV`,ψpηq1Qx,`
pηqfNt pηqναpdηqdt (5.17)

`

ż T

0

ż

1

N

ÿ

xPTN

τxV`,ψpηq1Qc
x,`
pηqfNt pηqναpdηqdt. (5.18)
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As indicated in [7], the restriction to the irreducible set Qx,` in (5.17) allows us to repeat
standard arguments, and to conclude that

lim sup
`Ñ8

lim sup
NÑ8

ż T

0

ż

1

N

ÿ

xPTN

τxV`,ψpηq1Qx,`
pηqfNt pηqναpdηqdt “ 0. (5.19)

Let us now deal with the other term (5.18). By the entropy inequality (3.20), the term

inside the time integral
şT
0 can be bounded above by

H
`

µNt |ν
N
ρN pt,¨q

˘

γN
`

1

γN
log

ż

exp

ˆ

γ
ÿ

xPTN

τxV`,ψpηq1Qc
x,`
pηq

˙

νNρN pt,¨qpdηq (5.20)

for any γ ą 0. Recall that ε ą 0 is fixed. We need to show that we can choose γ ą 0 such
that

lim sup
`Ñ8

lim sup
NÑ8

ż T

0

1

γN
log

ż

exp

ˆ

γ
ÿ

xPTN

τxV`,ψpηq1Qc
x,`
pηq

˙

νNρN pt,¨qpdηqdt ď ε. (5.21)

Now, contrary to [7], we made no assumption to ensure that νNρpt,¨qpQ
c
x,`q decays exponen-

tially in ` for all x. In fact, this is plain wrong when ρpt, ¨q vanishes on an interval.

Let `0 be such that the support of ψ is contained in t´`0, . . . , `0u and C :“ 2}ψ}8
(which clearly does not depend on `). From the uniform convergence stated and proved in

Proposition 3.6, we know that there exists a vanishing sequence of positive numbers pδ
p1q
N q

such that: for any u P T, any t P r0, T s, and N P N,
ˇ

ˇρN pt, uq ´ ρpt, uq
ˇ

ˇ 6 δp1qN . (5.22)

Since ρN ě εN (see Proposition 3.5) while ρ can be equal to 0, it is natural to impose that

δ
p1q
N ě εN . Without loss of generality, we can assume that the sequence

`

δ
p1q
N

˘

is decreasing.
Moreover, the sequence pρN q is equicontinuous on r0, T s ˆT, and therefore, there exists a
nondecreasing continuous modulus of continuity w : r0, 1s Ñ R` with wp0q “ 0 such that
for any u, v P T, t P r0, T s, ε ą 0 and N P N,

|u´ v| 6 ε ñ
ˇ

ˇρN pt, uq ´ ρN pt, vq
ˇ

ˇ 6 wpεq. (5.23)

Let us denote

δN :“ δ
p1q
N ` w

`

```0`1
N

˘

ÝÝÝÝÑ
NÑ8

0, (5.24)

then it follows from the monotonicity of
`

δ
p1q
N

˘

N
and of w that pδN qN is decreasing.

We are going to split TN into three sets of points: the good ones, the almost zeroes and
the bad ones. Namely, for any δ ą 0, and any vanishing sequence pαN q such that αN 6 δ,
let

GN,`t pδq :“
!

x P TN : ρN pt, ¨q ě δ on
“

x´`´`0
N , x````0N

‰

)

, (5.25)

ZN,`t pαN q :“
!

x P TN : ρN pt, ¨q 6 αN on
“

x´`´`0
N , x````0N

‰

)

, (5.26)

BN,`
t pδ, αN q :“ TNz

`

GN,`t pδq Y ZN,`t pαN q
˘

. (5.27)
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The parameters δ ą 0 and αN Ñ 0 will be chosen ahead. We want to study the limit as
N Ñ 8 of the cardinality of these sets of points (renormalized by N). For that purpose,
let us introduce the following sets: for any δ ą 0, t P r0, T s, let

Gtpδq :“
!

u P T : ρpt, uq ě δ
)

,

Ztpδq :“

˝
hkkkkkkkkkkkkkikkkkkkkkkkkkkj

!

u P T : ρpt, uq “ 0
)

YΓtpδq,

Btpδq :“
!

u P T : 0 ă ρpt, uq ă δ
)

Ă Γtpδq,

where Γtpδq has been defined in (3.3). Note first that

Tz
`

Gtpδq Y Zt
˘

“ Btpδq Y Γt,

where Zt and Γt have been defined respectively in (3.2) and (3.1). Therefore, since
LebpΓtq “ 0 (recall the proof of Proposition 3.3) the two remaining sets above have the
same Lebesgue measure:

Leb
`

Btpδq
˘

“ Leb
´

Tz
`

Gtpδq Y Zt
˘

¯

. (5.28)

We will make use of the following lemma:

Lemma 5.3. Recall that δN has been defined in (5.24). For any `, `0 P N fixed, and δ ą 0,
the following convergences hold:

lim
NÑ8

1

N

ˇ

ˇ

ˇ
GN,`t pδ ´ δN q

ˇ

ˇ

ˇ
“ Leb

`

Gtpδq
˘

(5.29)

lim
NÑ8

1

N

ˇ

ˇ

ˇ
ZN,`t pδN q

ˇ

ˇ

ˇ
“ Leb

`

Zt
˘

(5.30)

and therefore from (5.28):

lim
NÑ8

1

N

ˇ

ˇ

ˇ
BN,`
t pδ ´ δN , δN q

ˇ

ˇ

ˇ
“ Leb

`

Btpδq
˘

.

We will prove Lemma 5.3 further. Let us first end the proof of Lemma 5.2, more
precisely of (5.16). Fix δ ą 0 as a parameter that will vanish at the end of this paragraph,
after letting N Ñ8 and `Ñ8. Take the expression under the limit in the left hand side
of (5.21), and take N sufficiently large such that δ ´ δN ą δN . We divide the sum that
appears there into three sums:

‚ one over BN,`
t pδ ´ δN , δN q,

‚ one over ZN,`t pδN q,

‚ and the last one over GN,`t pδ ´ δN q,

since by definition their union gives TN . We bound each sum as follows: first, since V`,ψpηq
is bounded by C, we have

ÿ

xPBN,`
t pδ´δN ,δN q

τxV`,ψpηq1Qc
x,`
pηq 6 C

ˇ

ˇ

ˇ
BN,`
t pδ ´ δN , δN q

ˇ

ˇ

ˇ
.

Then note that the two sums over ZN,`t pδN q and GN,`t pδ ´ δN q are functions with disjoint
supports; since the measure is product, the average factorizes. To bound the term with
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the sum over ZN,`t pδN q, note that, if ηpx` yq “ 0 for all |y| ď `` `0, then τxV`,ψpηq “ 0.

Moreover, if a non-decreasing function1 has support in
 

x P TN : ρN pt,
x
N q 6 δN

(

, we can

replace νNρN pt,¨q by the homogeneous measure νδN when overestimating its expectation (as

we do in the second inequality below). Consequently, we can bound

ż

exp

ˆ

γ
ÿ

xPZN,`
t pδN q

τxV`,ψpηq1Qc
x,`
pηq

˙

νNρN pt,¨qpdηq

6
ż

exp

ˆ

γC
ÿ

xPZN,`
t pδN q

1 
D |y|ď```0 : ηpx`yq“1

(

˙

νNρN pt,¨qpdηq

6
ż

exp

ˆ

γC
ÿ

xPZN,`
t pδN q

1 
D |y|ď```0 : ηpx`yq“1

(

˙

νδN pdηq

6
ż

exp

ˆ

γC
ÿ

yPTN

ηpyqp2`` 2`0 ` 1q

˙

νδN pdηq

6
´

δN
`

eγCp2``2`0`1q ´ 1
˘

` 1
¯N

.

Finally, for any x P GN,`t pδ ´ δN q, and any t P r0, T s, we know that

νNρN pt,¨q
`

Qc
x,`

˘

6
`

1´ pδ ´ δN q
2
˘`
.

Therefore, we bound the term under the limit in (5.21) as follows:

ż T

0

1

γN
log

ż

exp

ˆ

γ
ÿ

xPTN

τxV`,ψpηq1Qc
x,`
pηq

˙

νNρN pt,¨qpdηqdt

6
ż T

0

C
ˇ

ˇBN,`
t pδ ´ δN , δN q

ˇ

ˇ

N
dt

`
T

γ
log

`

1`
`

eγCp2``2`0`1q ´ 1
˘

δN
˘

`

ż T

0

1

γNp2`` 1q

ÿ

xPGN,`
t pδ´δN q

log
´

νNρN pt,¨q
`

Qc
x,`

˘`

exppγp2`` 1qCq ´ 1
˘

` 1
¯

dt

6
ż T

0

C
ˇ

ˇBN,`
t pδ ´ δN , δN q

ˇ

ˇ

N
dt (5.31)

`
T

γ
log

`

1`
`

eγCp2``2`0`1q ´ 1
˘

δN
˘

(5.32)

`
T

γp2`` 1q

´

exppγp2`` 1qCq ´ 1
¯

`

1´ pδ ´ δN q
2
˘`
. (5.33)

1A function f : t0, 1u
TN Ñ R is said to be non-decreasing if fpηq ď fpη1q as soon as η 4 η1, where 4

denotes the coordinate-wise order in t0, 1u
TN
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We first take N Ñ 8, then `Ñ 8 and then δ Ñ 0. We treat each term separately: from
Lemma 5.3, Fatou’s lemma, and the fact that Btpδq Ă Γtpδq we obtain:

lim
δÑ0

lim sup
`Ñ8

lim sup
NÑ8

ż T

0

1

N

ˇ

ˇ

ˇ
BN,`
t pδ ´ δN , δN q

ˇ

ˇ

ˇ
dt ď lim

δÑ0

ż T

0
Leb

`

Btpδq
˘

dt

6 lim
δÑ0

ż T

0
Leb

`

Γtpδq
˘

dt “ 0,

where the last equality follows from Proposition 3.3. The second term (5.32) easily vanishes
since δN Ñ 0. Finally, for the last term (5.33), we choose γ ą 0 such that 2γC ` logp1´
δ2q ă 0 and the result follows. �

We now go back to the proof of Lemma 5.3 .

Proof of Lemma 5.3. The proof is based on the following fact: for any δ ą 0 and N
sufficiently large,

Gtpδq Ă
1

N
GN,`t pδ ´ δN q Ă Gtpδ ´ 2δN q, (5.34)

Zt Ă
1

N
ZN,`t pδN q Ă Ztp2δN q. (5.35)

Let us prove the first inclusion in (5.34), namely: if u P Gtpδq then, for any N sufficiently

large, tuN u P GN,`t pδ ´ δN q.

Let u P Gtpδq and y P
“

tuNu´`´`0
N , tuNu````0

N

‰

, which implies |y ´ u| 6 ```0`1
N .

Using (5.22) and (5.23) we get

ρN pt, yq > ρN pt, uq ´ w
`

```0`1
N

˘

> ρpt, uq ´ δp1qN ´ w
`

```0`1
N

˘

> δ ´ δN ,

which proves the claim. The same argument works to prove the symmetric inclusion,

namely: if x P GN,`t pδ ´ δN q then x
N P Gtpδ ´ 2δN q. As a result, (5.34) follows. The proof

of the second series of inclusions (5.35) is very similar and we let the reader to check it.
In order to prove (5.29), it is enough to use (5.34) and to show that the Lebesgue

measures converge, namely:

Leb
`

Gtpδ ´ 2δN q
˘

ÝÝÝÝÑ
NÑ8

Leb
`

Gtpδq
˘

.

This is indeed the case since pδN q is a decreasing sequence and therefore the family of sets
`

Gtpδ ´ 2δN q
˘

is decreasing for inclusion.
Therefore, thanks to the continuity of the Lebesgue measure, there holds

LebpGtpδqq “ Leb
`

č

Ně1

Gtpδ ´ 2δN q
˘

“ lim
NÑ8

Leb
`

Gtpδ ´ 2δN q
˘

.

A very similar argument can be worked out to prove (5.30). For that case, first note that

Zt Y Γt “
č

Ně1

Ztp2δN q,

and then one is able to conclude the proof, since the boundary set Γt satisfies LebpΓtq “ 0
(from Proposition 3.3). �
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5.5. Conclusion. Putting together the computation of the entropy production in Lemma
5.1, and then the replacements done in Section 5.3 and Lemma 5.2, up to know we have
proved the following:

Corollary 5.4. There exists γ0 ą 0 and `0 P N, such that, for any ` > `0, there exists
N0 “ N0p`0q such that, for any N > N0,

HN pT q ´HN p0q 6
1

γ0

ż T

0
HN ptq dt` εT pN, `q (5.36)

`

ż T

0

ż

ÿ

xPTN

BuuλN
`

t, xN
˘

H
´

ηp`qpxq, ρ
`

t, xN
˘

¯

dµNt dt (5.37)

`

ż T

0

ż

ÿ

xPTN

pBuλN q
2
`

t, xN
˘

G
´

ηp`qpxq, ρ
`

t, xN
˘

¯

dµNt dt, (5.38)

where

Hpa, bq :“ hpaq ´ hpbq ´ h
1
pbqpa´ bq

Gpa, bq :“ gpaq ´ gpbq ´ g1pbqpa´ bq

and

lim sup
`Ñ8

lim sup
NÑ8

εT pN, `q

N
“ 0.

In this last paragraph we show that (5.37) and (5.38) are bounded from above by a
constant times (5.36). We treat only (5.37), the same argument works for (5.38). Note
that applying the entropy inequality, we can bound (5.37) above by

1

γ

ż T

0
HN ptq dt`

1

γ

ż T

0
logENρN pt,¨q

„

exp

"

γ
ÿ

xPTN

BuuλN
`

t, xN
˘

H
`

ηp`qpxq, ρN
`

t, xN
˘˘

*

dt,

for any γ ą 0. The first term will be added to (5.36). A large deviation argument will
allow us to chose γ ą 0 such that the second term vanishes:

Lemma 5.5 (Large deviation estimate). There exists γ ą 0 such that, for all t P r0, T s,

lim sup
`Ñ8

lim sup
NÑ8

1

N
logENρN pt,¨q

„

exp

"

γ
ÿ

xPTN

BuuλN
`

t, xN
˘

H
`

ηp`qpxq, ρN
`

t, xN
˘˘

*

6 0.

Proof. We follow the lines of [9, Chapter 6], where the rough argument is well exposed
and now standard. The main difference here consists in the presence of the approximate
solution ρN instead of ρ. A Riemann-type convergence like in (2.4) will be enough to
conclude. �

This concludes the proof of Proposition 3.8.
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Appendix A. Continuous embedding of HspTq into CpTq

Proposition A.1. For any s P p1
2 , 1q, the Sobolev space HspTq is continuously embedded

into CpTq.

Proof. In the periodic setting, the proof is very simple, so that we give it here for the sake
of completeness. Let us assume s ą 1

2 and let ρ P HspTq. Define

ρKpuq :“
ÿ

|k|6K

pρke
i2πku, for any u P T,

where pρk has been defined in (3.13). For any K P N, ρK is continuous on T. Moreover,

|ρpuq ´ ρKpuq| 6
ÿ

|k|>K`1

|pρk|

6

ˆ

ÿ

|k|>K`1

p1` 4π2|k|2qs|pρk|
2

˙
1
2
ˆ

ÿ

|k|>K`1

p1` 4π2|k|2q´s
˙

1
2

6 }ρ}HspTq RpKq,

where RpKq Ñ 0 as K Ñ 8, as the rest of a convergent sum, since s ą 1
2 . We deduce

that
}ρ´ ρK}8 ÝÝÝÝÑ

KÑ8
0. (A.1)

Thus ρ is continuous as the limit of the sequence pρKqK of continuous functions.
Moreover, from (A.1), we know that, for any u P T,

ρpuq “
ÿ

kPZ
pρke

i2πku,

and similarly as before, from the Cauchy-Schwarz inequality we easily get

}ρ}8 6 C}ρ}HspTq, with C “

ˆ

ÿ

kPZ
p1` 4π2k2q´s

˙
1
2

ă 8.

�

Appendix B. Connected components of the positivity set

In this section we prove Lemma 3.4, that we recall here for the reader’s convenience:

Lemma B.1 (Connected components of the positivity set). Denote by It the set of the
connected components of Pt for t ě 0. Then one can build an injective mapping from It
to Is for all t ě s ě 0. In particular, the function t ÞÑ #It is non-increasing.

Proof. Let t ą 0 and let pa, bq P It, i.e., ρpt, aq “ ρpt, bq “ 0 and ρpt, uq ą 0 for u P pa, bq.
Following [16, Proposition 14.1], the mapping t ÞÑ Pt is monotone:

Ps Ă Pt, for all ps, tq P r0, T s2 such that s ď t.

This ensures that
ρps, aq “ ρps, bq “ 0, @s P r0, ts. (B.1)

Since 0 ď ρ ď 1 and |Buρ| ď CLip, the weak formulation (2.6) still holds for test functions
ξ of the form ξpτ, uq “ θpτqζpuq with θ P L1 X BV pR`q and compactly supported, and
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ζ P H1pTq thanks to the density of C1pr0, T sq in BV p0, T q and of C1pTq in H1pTq for
the respective weak-‹ and weak topologies. Here, BV pR`q denotes the set of real valued
functions of bounded variations on R`, i.e., functions t ÞÑ θptq such that Btθ is a finite
Radon measure on R`. Fix s P r0, tq and ε P p0, pb´ aq{2q, then choose ξ “ θζε with

θpτq “ 1ps,tqpτq and ζεpuq “ max

ˆ

0,min

ˆ

1,
u´ a

ε
,
b´ u

ε

˙˙

in the weak formulation (2.6). This provides
ż

T
ρps, uqζεpuqdu “

ż

T
ρpt, uqζεpuqdu`

ż τ

0

1

ε

ż a`ε

a
Bxρ

2dudτ ´

ż τ

0

1

ε

ż b

b´ε
Bxρ

2dudτ.

Using (B.1), one gets that
ż

T
ρps, uqζεpuqdu “

ż

T
ρpt, uqζεpuqdu`

1

ε

ż τ

0

`

ρ2pτ, a` εq ` ρ2pτ, b´ εq
˘

dτ. (B.2)

It follows from (B.1) and on the Lipschitz continuity of ρ that

0 ď ρ2pτ, a` εq ď pCLipεq
2 , 0 ď ρ2pτ, b´ εq ď pCLipεq

2 .

These estimates together with the convergence of ζε in L1pTq towards 1pa,bq allow to pass
to the limit εÑ 0 in (B.2), leading to

ż b

a
ρps, uqdu “

ż b

a
ρpt, uqdu ą 0, @s P r0, ts.

Since ρps, ¨q is continuous and because of (B.1), this implies that there exists (at least)
one interval pα, βq Ă pa, bq such that ρps, αq “ ρps, βq “ 0 and ρps, uq ą 0 on pα, βq. Such
an interval pα, βq belongs to Is, and the mapping from It to Is sending pa, bq to pα, βq is
injective. �

Appendix C. Technical results

C.1. Derivatives. Let ρ : R` ˆ TÑ p0, 1q and define

λ “ log
´ ρ

1´ ρ

¯

.

Proposition C.1. We have

Buλ “
Buρ

ρp1´ ρq
(C.1)

Buuλ “
Buuρ

ρp1´ ρq
´
pBuρq

2p1´ 2ρq

ρ2p1´ ρq2
(C.2)

Buuuλ “
Buuuρ

ρp1´ ρq
´ 3

BuuρBuρp1´ 2ρq

ρ2p1´ ρq2
` 2

pBuρq
3p1´ 3ρ` 3ρ2q

ρ3p1´ ρq3
(C.3)

Therefore, if ρ is solution to the porous medium equation Btρ “ Buupρ
2q then

Btλ “ 2ρ Buuλ` 2ρp2´ 3ρq pBuλq
2. (C.4)
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C.2. Technical estimates on λN . Here we get some technical bounds on the norms of
λN and its derivatives, where λN has been defined in function of ρN in (3.21).

Proposition C.2. For any N P N,

sup
pt,uqPr0,T sˆT

ˇ

ˇBuλN pt, uq
ˇ

ˇ 6
CLip

εN
. (C.5)

Moreover, there exists C ą 0 such that for any t P r0, T s,
ż

T

ˇ

ˇBuuλN
ˇ

ˇ

2
pt, uq du 6

C

pεN q4
(C.6)

and finally
ĳ

r0,T sˆT

ˇ

ˇBuuuλN
ˇ

ˇ

2
pt, uq dtdu 6

C

pεN q6
(C.7)

ĳ

r0,T sˆT

ˇ

ˇBuBtλN
ˇ

ˇ

2
pt, uq dtdu 6

C

pεN q6
. (C.8)

Proof. The first bound (C.5) is straightforward from Proposition 4.1. Now we use Propo-
sition C.1. First,

›

›BuuλN pt, ¨q
›

›

2

2
6 C

ˆ

›

›BuuρN
›

›

2

2

ε2
N

`

›

›BuρN
›

›

4

8

ε4
N

˙

,

therefore (C.6) follows from Proposition 4.1 and Proposition 4.3. Note that

ˇ

ˇBuuuλN
ˇ

ˇ

2
6 C

ˆ

ˇ

ˇBuuu ρN
ˇ

ˇ

2

ε2
N

`

ˇ

ˇBuuρN
ˇ

ˇ

2 ˇ
ˇBuρN

ˇ

ˇ

2

ε4
N

`

ˇ

ˇBuρN
ˇ

ˇ

6

ε6
N

˙

.

From Proposition 4.1, Proposition 4.2 and Proposition 4.3, we easily obtain (C.7). Finally,
to get (C.8), we use (C.4) and we obtain

ˇ

ˇBuBtλN
ˇ

ˇ

2
6 C

´

ˇ

ˇBuρN
ˇ

ˇ

2ˇ
ˇBuuλN

ˇ

ˇ

2
`
ˇ

ˇBuuuλN
ˇ

ˇ

2
`
ˇ

ˇBuλN
ˇ

ˇ

4ˇ
ˇBuρN

ˇ

ˇ

2
`
ˇ

ˇBuλN
ˇ

ˇ

2ˇ
ˇBuuλN

ˇ

ˇ

2
¯

,

and therefore, from Proposition 4.1 and the first three bounds (C.5), (C.6) and (C.7), we
get (C.8). �
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E-mail address: clement.cances@inria.fr

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1, Komaba, Meguro-
ku, Tokyo, 153–8914, Japan

E-mail address: sasada@ms.u-tokyo.ac.jp

Inria, Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille
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