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CONVERGENCE OF A DEGENERATE MICROSCOPIC DYNAMICS
TO THE POROUS MEDIUM EQUATION

ORIANE BLONDEL, CLEMENT CANCES, MAKIKO SASADA, AND MARIELLE SIMON

ABSTRACT. We derive the porous medium equation from an interacting particle system
which belongs to the family of exclusion processes, with nearest neighbor exchanges. The
particles follow a degenerate dynamics, in the sense that the jump rates can vanish for
certain configurations, and there exist blocked configurations that cannot evolve. In [7] it
was proved that the macroscopic density profile in the hydrodynamic limit is governed by
the porous medium equation (PME), for initial densities uniformly bounded away from 0
and 1. In this paper we consider the more general case where the density can take those
extreme values. In this context, the PME solutions display a richer behavior, like moving
interfaces, finite speed of propagation and breaking of regularity. As a consequence, the
standard techniques that are commonly used to prove this hydrodynamic limits cannot
be straightforwardly applied to our case. We present here a way to generalize the relative
entropy method, by involving approximations of solutions to the hydrodynamic equation,
instead of exact solutions.

1. INTRODUCTION

The derivation of macroscopic partial differential equations from microscopic interact-
ing particle systems has aroused an intense research activity in the past few decades.
In particular, the family of conservative interacting particle systems with exclusion-type
constraints is rich enough to provide significant results. One aims at showing that the
macroscopic density profile for these models under time rescaling evolves according to
some deterministic partial differential equation. The space-time scaling limit procedure
which is at play here is called hydrodynamic limit. The simplest example in that family is
the symmetric simple exclusion process (SSEP), for which the macroscopic hydrodynamic
equation is the linear heat equation [9, Chapter 2.2].

In [7], Gongalves et al. designed an exclusion process with local kinetic constraints, in
order to obtain the porous medium equation (PME) as the macroscopic limit equation. The
class of kinetically constrained lattice gases has been introduced in the physical literature
in the 1980’s (we refer to [1, 11] for a review) and is used to model liquid/glass transitions.
The PME is a partial differential equation which reads in dimension one as

Orp = Cuu(p™), (1.1)

where m is an positive integer which satisfies m > 2. The PME belongs to the class
of diffusion equations, with diffusion coefficient D(p) = mp™ L. Since D(p) vanishes as
p — 0, the PME is not parabolic, and its solutions can be compactly supported at each
fixed time, the boundary of the positivity set {p > 0} moving at finite speed. Another
important feature is that if the initial condition p™ of (1.1) is allowed to vanish, then
the solution p(t,u) can have gradient discontinuities across the interfaces which separate
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FIGURE 1. Allowed jumps are denoted by . Forbidden jumps are denoted
by X.

the positivity set {p > 0} from its complement. We refer to the monograph [16] for an
extended presentation of the mathematical properties of the PME.

We consider in this paper the following particle system (given by [7]). The setting is
one-dimensional and periodic: particles are distributed on the points of the finite torus of
size N denoted by Txy = Z/NZ. We impose the exclusion restriction: no two particles
can occupy the same site. A particle at x jumps to an empty neighboring site, say « + 1,
at rate 2 if there are particles at x — 1 and x + 2, at rate 1 if there is only one particle in
{x — 1,2 + 2}, and rate 0 else. The jump rate from x + 1 to x is given by the same rule.

As explained in [7], this constrained exclusion process permits to derive the PME (1.1)
with m = 2, when the process is accelerated in the diffusive time scale tN2. However, in
that paper the authors need to assume that the initial profile p™ is uniformly bounded
away from 0 and 1, namely that it satisfies an ellipticity condition of the form 0 < ¢_ <
p™M < ¢y < 1. With this assumption, the PME is uniformly parabolic and in particular
does not display its more interesting features: finite speed of propagation and gradient
discontinuities. The authors in [7] manage to circle around the problem by perturbing the
microscopic dynamics with a slowed SSEP. This way, they gain ergodicity of the Markov
process and can derive the PME using the well-known entropy method introduced in [8].

In this paper, we do not assume the ellipticity condition on p™ and we keep the original
model described above. We believe this is the first derivation of a moving boundary prob-
lem from a conservative and degenerate microscopic dynamics (see [6, 15] for derivations
in non-conservative or non-degenerate settings). Our choice of initial condition makes the
entropy method and the relative entropy method fail (these techniques are explained in
detail in [9]). Indeed, the lack of ergodicity breaks any hope to use the entropy method
and the special features of the PME are a serious obstacle to using the relative entropy
method. Let us explain why and describe how we manage anyway here.

The relative entropy method was introduced for the first time by Yau [17], and its main
idea is the following: since the particle system has a family of product invariant measures

indexed by the density (here, the Bernoulli product measure VFJ)V ), one can use the non-

homogeneous product measures Vé\(ft,u) with slowly varying parameter associated with the
solution p(t,u) to (1.1), and compare it to the state at macroscopic time ¢ of the diffusively
accelerated Markov process. The latter is denoted below by p¥, it is a probability law
on {0,1}T~. If one expects the PME to be the correct hydrodynamic equation, these two
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measures should be close, and this can be seen from the investigation of the time evolution
of the relative entropy H (ui" |y'£\(’t’u)).

In our case, two obstacles appear straight away. The first one is that p(t,u) can take
values 0 and 1, and therefore the above entropy will generally be infinite. The second one
is that the solution p(t,u) has poor analytic properties as soon as p™ vanishes, which will
complicate the control of the time evolution of the entropy. To remove these obstacles,
we modify the original investigation by considering an approximation of p(¢,u), denoting
ahead by pn(t,u), which satisfies two important properties:

(i) it is bounded away from 0 and 1 and regular;
(ii) the sequence (py) uniformly converges to p on compactly supported time intervals.

As we will see in the text, these two properties are not enough to apply straightforwardly
Yau’s method: we also need sharp controls on several derivatives of p. Moreover, the
usual one-block estimate (which is at the core of the relative entropy method) requires
understanding the interface between the positivity set of p and its complement. These are
the main ingredients of our proof.

Finally, note that our result could be easily generalized to the case m > 3, as in [7].
More generally, the idea of plugging an approximation of the solution into the relative
entropy method should apply to other degenerate particle systems and allow to derive other
degenerate parabolic equations. The additional work with respect to what we present here
would be to derive the corresponding analytic estimates on the solution to the PME (see
mainly Proposition 3.3 and the estimates in Section 4). The complexity of this program
in higher dimensions is the reason we kept d = 1.

Here follows an outline of the paper. In Section 2, we introduce and define the model
with its notations, and we state our hydrodynamic limit result. In Section 3, we start with
recalling some specificities of the solutions to the porous medium equation, then we give
an crucial property of the boundary of the positivity set. We also define an approximation
of the solution py and study its convergence. Finally we expose the strategy of the proof
of the hydrodynamic limit through the control of H (u" \ng (t,u))7 which generalizes the
usual relative entropy method. The estimates that we need about the derivatives of py are
proved in Section 4. The proof of the hydrodynamic limit, and in particular the one-block
estimate, is completed in Section 5.

2. HYDRODYNAMICS LIMITS

2.1. Context. Let us introduce with more details the microscopic dynamics which was
first given in [7], and which we described in the introduction. For any = € Ty, we set
n(z) = 1if  is occupied, and n(z) = 0 if z is empty, which makes our state space {0, 1}T~,
The dynamics can be entirely encoded by the infinitesimal generator £y which acts on
functions f : {0,1}™¥ — R as

Lyfm) = raymn(@)(1—nw)(f@") = f(n), (2.1)

z,yeT N
lz—y|=1

where
""z,x-i—l(n) = T$+1,x(77) = ﬂ(m - 1) + 77(33 + 2)7
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and
ny) ifz =,
n(z) = y () if 2=y,
n(z)  otherwise.
The initial configuration is random, distributed according to some initial probability mea-
sure Y on {0, 1}T¥. We denote by (n;")i=0 the Markov process generated by N2Ly (note
that it is equivalent to accelerate time by a factor N2) and starting from the initial state
pdY. For any fixed t > 0, the probability law of {n}'(z) ; = € Ty} on the state space
{0, 1}~ is denoted by pi.
In the following we also denote by ]P)u(])\l the probability measure on the space of trajec-
tories D(R., {0, 1}T¥) induced by the initial state 4 and the accelerated Markov process
(nN)¢=0. Its corresponding expectation is denoted by B

2.2. Product Bernoulli measures. For any a € [0,1], let Y be the Bernoulli product
measure on {0, 1}T~ with marginal at site x € Ty given by

v {n : n(z) =1} = a.
In other words, we put a particle at each site x with probability «, independently of the
other sites. Similarly, we define v, as the Bernoulli product measure on {0, 1}%. We denote
by E, the expectation with respect to v4, and note that E,[n(0)] = a. One can easily
check that the product measures {vY ; « € [0,1]} are reversible for the Markov process

(77t )-

As the size N of the system goes to oo, the discrete torus T tends to the full lattice
Z. Therefore, we will need to consider functions on the space {0,1}%. Let ¢ : {0,1}* — R
be a local function, in the sense that ¢(n) depends on 7 only through a finite number of
coordinates, and therefore ¢ is necessarily bounded. We then denote by p(«) its average
with respect to the measure v,;:

?(a) := Ealp(n)]-
Note that o — ®(«) is continuous for every local function .
The one-dimensional continuous torus is denoted by T = R/Z. Let us now define
the non-homogeneous product measure l/p( on {0, 1}T~ associated with a density profile

p: T — [0,1], whose margmal at site x € Ty is given by
v {n = (@) =1} =1—vy{n : n(@) =0} = p(%). (2.2)
We denote by EY o) the expectation with respect to vV () If p(-) is continuous on T and if

¢ : {0,1}? — R is local, then the following Riemann convergence holds:

N >3 BN [reem)] —— | Epe()] du:fTw(p(u)) du. (2.3)

N
xETN —® T

Moreover, if a sequence of continuous profiles py(-) converges uniformly to p(-) on T, then

Z E 7'190 )] N TE( )[ (77)] du. (2.4)

N—0
IEETN -

The last convergence property will be used several times in the paper.
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2.3. Statement of the main result. Let p™ € L®(T; [0, 1]) be an initial density profile.
Our goal is to consider the hydrodynamic limit of the microscopic dynamics described in
Section 2. As already pointed out by Gongalves et al. [7], the underlying macroscopic
equation is expected to be the porous medium equation (PME)

{atp = Ouu(p?) in (0,00) x T,

i . (2.5)
Plieg =P in T.

This equation is of degenerate parabolic type. It is well known that the notion of strong
solution —i.e., p € CH2(R; x T)— is not suitable to get the well-posedness of the prob-
lem (2.5) unless p'™ remains bounded away from 0. Indeed, the space derivative of p may
be discontinuous at the boundary of the set {p > 0} (see for instance [16]). This motivates
the introduction of the following notion of weak solutions.

Definition 2.1. A function p € L% (R, x T;[0,1]) is said to be a weak solution to (2.5)
corresponding to the initial profile p™ if 0,(p?) € L*(Ry x T) and

” p 0:& dudt +J P (0, )du — H Ou(p?)0u€ dudt = 0, for all £ e CLHR, x T).
T
Ry xT Ry xT
(2.6)

What we call a weak solution corresponds to what is called an energy solution in
Vazquez’ monograph (see [16, Section 5.3.2]). The classical existence theory based on
compactness arguments (see for instance [16, Therorem 5.5]) can be extended to our
periodic setting without any difficulty. The uniqueness of the weak solution and the
fact that they remain bounded between 0 and 1 are consequences of the following L'-
contraction/comparison principle (see [16, Proposition 6.1]): let p™ and p™ be two initial
profiles in L*(T; [0, 1]), and let p and p be corresponding weak solutions, then

[ttt = st tau< [ (o) - @) e, oranyezo. @)
T T

where a™ = max(a,0) denotes the positive part of a. In the above relation, we have used
the fact that any weak solution to (2.5) belongs to C(R.; L*(T)) (see for instance [3]).

In what follows, we assume that:

e the initial profile p™ is Lipchitz continuous, namely there exists CLip > 0 such

that
[0up™ ], < Crip, (2.8)
where || - |5 denotes the usual L*-norm;
e the set
Po:={ueT; P (u) > 0} (2.9)

has a finite number of connected components.

Note that this assumption is much less restrictive than the one given in [7], where p™
was supposed to be uniformly bounded away from 0 and 1. In particular, we authorize
vanishing initial profiles. Our main result reads as follows:
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Theorem 2.1. We assume that the initial microscopic system of particles {no(z) ; = €
Ty} is distributed according to ,uév = V/]]Ym(.). Then, the following local equilibrium con-
vergence holds at any macroscopic time t > 0: for any continuous function G : T — R,
any local function ¢ : {0,1}* - R

]17 Z G<]:ff Te P 17t JG u))du

lim E N|:
.’IJGTN

Noow Ho

] — 0, (2.10)

where p is the unique weak solution of (2.5) in the sense of Definition 2.1.

3. POROUS MEDIUM EQUATION: ANALYTIC RESULTS

Let us give here some properties of the solution to the (PME) to be used in the sequel.
Sometimes we prove the results only partially, and we invite the reader to check the details
of the proofs in the monograph [16] written by J.L.Vazquez. Precise references will be given
for each result.

If the porous medium equation starts with an initial profile which vanishes, then the
solution at any later time can have discontinuous gradients across the interfaces at which
the function becomes positive. This is a problem when one tries to prove hydrodynamic
limits. The best way to tackle discontinuity problems is to slightly perturb the initial
condition, by making it positive, and bounded away from 1.

In Section 3.1, we state some properties of the PME starting from an initial profile
which can lead to singularities at positive times. In Section 3.2 we modify the initial
condition so as to regularize the solution of the PME and gain better control estimates.
In Section 3.3 we expose the strategy to prove Theorem 2.1.

In the following we denote by | - |, the usual LP-norm, whenever the integration spaces
are clear to the reader. Otherwise, the LP(£2)-norm will be denoted by | - | zr()-

3.1. The porous medium equation (PME). We start with recalling some properties of
the unique weak solution p(t,u) to (2.5). Our first statement is related to the continuity
of the weak solutions to the porous medium equation. Such a regularity result can be
deduced from [16, Section 7.7]. It is also a straightforward consequence of the forthcoming
Proposition 3.6.

Proposition 3.1 (Regularity of the solution). The unique weak solution to (2.5) is con-
tinuous on Ry x T.

Let us denote by A the interior of the subset A = T and by A its closure. For all t > 0
we denote by

Pri={ueT : p(tu) >0}

the positivity set of p(t,-), which is an open subset of T since p(t, -) is continuous. Finally
we denote by

[y := 0Py = P\ Py (3.1)
the interface between the positivity set P, of p(t,-) and the complementary

>0

Zyi={ueT : p(t,u) =0} =T\P; (3.2)
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of its support. Note that I'; is closed, and is a nowhere dense set, but it can a priori have
positive Lebesgue measure. Actually, we will prove in Lemma 3.4 below that from our
assumption (2.9) on Py, this does not happen and Leb(I';) = 0 for any ¢ > 0.

Remark 3.2. Let us underline that the derivatives of p can have jump discontinuities on
the so-called free boundary
U {t} X Fta

te[0,T7]
but p is smooth outside of this set. We refer the reader to [16, Chapter 14] for the general
theory and also [16, Chapter 4] for several examples.

In what follows, the notation Leb stands for the usual Lebesgue measure restricted on
T, and |B| denotes the cardinality of the discrete subset B < Ty.

Proposition 3.3 (Positivity intervals). For any 6 > 0 and t € [0,T] we denote by

I'y(9) = {ue']l‘; 0 < p(t,u) <5}. (3.3)
We have -
f Leb (I'4(6)) dt — 0. (3.4)
0 6—0

Proof. The proof follows from the following technical lemma, which we will prove ahead
in Appendix B.

Lemma 3.4 (Connected components of the positivity set). For anyt > 0, P; has a finite
number of connected components.

With this lemma, since P; has a finite number of connected components for any ¢ > 0,
I'; is a finite union of points, and therefore Leb(I';) = 0. Since

thﬂ{ue’]l‘ 0 < p(t,u) <5} ML),

6>0 6>0
it follows from the monotonicity of the Lebesgue measure that

0 = Leb(Ty) = (%irr(l] Leb(I'4(9)), for any t € [0, T7].

Moreover, since I';(0) < T, we get that Leb(I'x(6)) < 1 for all ¢ € [0,7]. Hence (3.4)
follows from Lebesgue’s dominated convergence Theorem. (I

3.2. The regularized initial condition. In order to prove Theorem 2.1, we need to
introduce a regularized approximate solution to the PME. This is the goal of this section.
Let (en)nen be a vanishing sequence such that ey € (0, ). The speed at which ey — 0
will be made more precise later on.
Let h € C*(R;R;) be such that

@) Swp(h) = (<11, | oy =1, (3.5)
(i) hly) = h(—y), (3.6)

(i) O,h(y) <0, ify>0. (3.7)
Denote C}, := ||hlw. It follows from (3.6) and (3.7) that [d,h|1 = 2C}. Let us define
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(1) the regularizing approximation of the unit:

hn(y) = ey’ hley'y)
which satisfies Supp(hn) < (—en,en),

Ch, 20},
vl =1 Al = o ol = 75 (3.8)
(2) the truncated and reqularized initial data p¥ : T — [en,1 — en] defined by
P = P By, (3.9)

where * is the usual convolution product on T and ”]{}1 is defined as

~ini

PN = max {5N ; min (1 — EN,plm)}.

The initial data pi“i satisfies the following three properties:
(a) Regularity: p¥ is smooth on T,
(b) Boundedness:

plf\}‘ 1—epn, and H(?u m‘” < Clip, (3.10)
(c) Umjform convergence towards p™
PR = P < (Crip + ey ———0 (3.11)

Let us now define the regularized solution py on Ry x T as the solution to
Orpn (t,u) = Ouu (P (£, ), (t,u) e Ry x T,
pn(0,u) = i (u).

This solution will play a central role in the proof of Theorem 2.1. Let start here with two
major properties of py.

(3.12)

Proposition 3.5. Problem (3.12) admits a unique strong solution py € C*([0,T] x T)
which satisfies

<pnv <1 —en.

Proof. The uniqueness of the weak (then strong) solution follows from the monotonicity
of the porous medium equation, which yields L'-contraction and a comparison principle
(see for instance [4]). It follows from this comparison principle that exy < py < 1 —epn
a.e. in [0,T] x T. Therefore, the solution remains bounded away from the degeneracy
p = 0 of the PME (2.5). The problem (3.12) is then uniformly parabolic. It follows from
the classical regularity theory for parabolic equations (see for instance [10]) that py is
smooth. See also [16, Theorem 3.1, Proposition 12.13]. O

Proposition 3.6 (Uniform convergence). The sequence (pn)nen converges uniformly in
[0,T] x T towards the unique weak solution to (2.5).

Proof. 1t follows from the comparison principle (2.7) that
| 1ot = px(t.wldu < [ 19" (w) ~ pRi(wldu, for any < [0,7).
T T

Hence, we deduce from estimate (3.11) that (pn)nyen converges in C([0, T]; L*(T)) towards
p. Therefore, it suffices to show that (pn)yey is relatively compact in C([0,T] x T) to
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conclude the proof of Proposition 3.6 thanks to the uniqueness of the limit value. Our
proof mainly follows the program of [16, Section 7.7]. We first need to introduce the
fractional Sobolev spaces H*(T). We refer to [5] for an overview on fractional Sobolev
spaces. Since we are in the simple situation where the domain is the one-dimensional
torus, such spaces are very easy to define and to manipulate with Fourier series (see also
our Appendix A).

Definition 3.1. Let s € [0,1]. A function p: T — R belongs to H*(T) iff

1
5 2
ol ::(Z<1+4w2|k12> mw?) <o,

keZ

where the Fourier coefficient py reads as

Pk = f plu)e™ 2 kudy, (3.13)
T

From Parseval’s relation, we have
2 2 2
lol ey = Il z2 ) + 10uplzz(ry:

Multiply the PME (3.12) by 0, (p%v) and then integrate over (0,¢*) x T for some arbitrary
t* € [0,T] to get

An(t*) + By(t") = 0,
where

Ave) = [[ aeva (e, Bu@) = ([ 0u (k) au (o) drau
(

(Ovt*)XT O,t*)XT

The bound |pn| < 1 yields
* 1 2
An(t) = 5 |Oron|” dtdu,
(0,t*)xT

where we have set vy := (px)?. On the other hand,

2w (o))

1 1
By(t*) = 3 L ERONGE U)|2du 3 JT

T

ﬂ o | dtdu + f Puuy (", w)? du < 4CE,,  for any t* € [0,T].
(0,t*)xT B

20 (pijr\lfi)Qfdu <202,

Hence, we obtain that
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To sum up, we have the following (uniform w.r.t. V) estimates on the sequence (vn)y:

Jon,, <1, (3.14)
HatUNHLQ((O,T)X’]I‘) < 2CLip, (3.15)
sup [duun(t, -)HLQ(T) < 2CLp. (3.16)

te[0,T]
It follows from (3.16) and the Cauchy-Schwarz inequality that
lun(t,u) —on(t,u)| < 2CLip|u — z’Z|%, for any w,ueT, te[0,T]. (3.17)

Similarly, we deduce from (3.14) and (3.15) that (vy)y is uniformly bounded in the space
%z ([0,T]); L2(T)), i.e.,

|lon (t) — oy (1) HLZ(T) < 2CLip|t — ﬂ%, for any t,t € [0,T]. (3.18)
Using Holder’s inequality and Definition 3.1, we get that
[on (O)=on @) o py < [on(®) = on @31y Jon () —on (D) ”2;511*)7 for any t,% € [0,T].
Combining it with (3.16) and (3.18), this provides

o (t) — vN(f)’ Ho(T) S Clt — ﬂl%s, for any t,t e [0,T],

where C' = 201, (T + 4)>.

Choosing s € (3,1) and using the continuous embedding of H*(T) in C(T) (which is
proved, for the sake of completeness, in Appendix A), we get that

lun (t, 1) — v (t,u)| < C]t—ﬂ%, for any we T, t,t € [0,T]. (3.19)
The combination of (3.17) with (3.19) provides: for any u, 7 € T, and ¢, € [0, T],
fow(t,w) — o (5, 2)] < Juw (t,0) — ow (B 0)] + o (B u) — ox(B )]
1-s

< max {C,2(Cuip)t} (It=1"7" + ju—1al?).

Therefore, one can apply Arzela-Ascoli’s Theorem and claim that (vy), is relatively
compact in C([0,T] x T), and thus so is (px)y = (v/on) - This ends the proof. O

3.3. Strategy of the proof. In the following, for any probability measures u,v on
{0,1}™ we denote by H(u|v) the relative entropy of u with respect to v, defined as

usual by
H(ulv) = sup { ffd,u - logfefdl/},
f

where the supremum is carried over all real valued functions. The following entropy
inequality is going to be useful: for any v > 0, we have

deu < }y(logfe”fdu + H(u]v)) (3.20)
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Recall that we denote by Ei)VN(t ) the expectation with respect to the non-homogeneous

N

Bernoulli product measure v Fix o € (0,1) and an invariant measure v,. We

PN (tv') ’
introduce the density
dvv 1
Nipy.— Pty 2 z
)= =2 0) = e (] nte) (1))

IEETN

where

>\N(t7 u) = log (a(l - ,ON(tv u))

and Z}¥ is the normalization constant. Note that Ay is well defined thanks to Proposition
3.5. Recall moreover that )" is the distribution of the accelerated process at time tN?
and denote its density with respect to v, as

dul
ft]V = d L ‘
Vo

Finally, we are interested in the relative entropy
f (n)

H(t) = H (I 0) = | 1) log (S ). (3:22)

The proof of Theorem 2.1 is based on the investigation of the time evolution of that
entropy Hn (t). This strategy is inspired by the relative entropy method which is exposed
in details for instance in [9, Chapter 6]. However, in our case the standard method cannot
work: the usual scheme works with the relative entropy of ué\f with respect to the product
measure l/;\([ Y associated with the true weak solution of the PME (2.5). As we have seen

t7
in Section 3.1, this solution has poor regularity properties, and more importantly, it can

vanish on non-trivial intervals. This would make the relative entropy take infinite values
for presumably long times.

This is why we work with a different relative entropy: here, Hy () defined in (3.22)
involves the non-homogeneous product measure V[])\J[\r (t,)? which is associated with the reg-

ularized solution py, defined in (3.12). Since py is smooth and bounded away from 0 and
1, the relative entropy is always finite. Since (py) uniformly converges to p on [0,7] x T,
one might believe that the arguments of [9] can be easily adapted. However, one needs
much more than uniform convergence. In particular, sharp controls on the derivatives of
pn are also needed, as explained in the rest of the paper.

Let us conclude this section with two important results concerning Hx(t). At the end
of this paragraph we will show how do they imply Theorem 2.1. First of all, at t = 0, the
initial relative entropy is of order Ney|logen| as N — o0, namely:

Lemma 3.7.

Hn(0) = H(uévhj%i(‘)) = H(VZ)YMW;VW(.)) = O(Nepn|logen|) = o(N), as N — .

This lemma is proved in Section 5.1. Next, we are able to control the entropy production
on a finite time interval, thanks to all the sharp estimates that we will obtain in Section
4. This is where we need to make an assumption on the convergence speed of (ex). From
now on we suppose that

lim Ne% = +oo. (3.23)
N—oo
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Proposition 3.8 (Entropy production). Assuming (3.23), there exists a constant k > 0
such that

T
HN(T) < RL Hn(s)ds + or(N),

where o (N) stands for a sequence of real numbers Cr n such that Cp n/N — 0 as N — 0.

We prove this result in Section 5.2.
From Gronwall’s inequality and Lemma 3.7, we conclude:

Corollary 3.9. For anyt > 0,
H(u [ V) 0y) = Ha(t) = oi(N),  as N — 0.

Then, one has to prove that Corollary 3.9 is sufficient to show the local equilibrium
result (2.10) stated in Theorem 2.1. To do so, one needs to know that the approximate
solution py (¢, ) converges uniformly to p(t,-) in T (which does hold from Proposition 3.6),
and that the solution p(t,-) is continuous. We have all in hands to conclude the proof of
Theorem 2.1:

Proof of Theorem 2.1. One has to compute the limit of the left hand side of (2.10). For
the sake of clarity, we assume that the local function ¢ only depends on the configuration
value at 0, namely: ¢(n) = ¢(n(0)). Recall that we want to prove that the expectation

[ 2 G( )w m) — JTG( )? (p(t, ))dU] (3.24)

zeTn
vanishes as N — o. Note that G and p(¢,-) are continuous and bounded. Then, for any
fixed t > 0, we easily replace

J e man w3 oz)p(0 ).

xETN

paying a small price of order o4(1). Next, we perform an integration by parts, and we
bound as follows:

[F 3 atoremen -4 X G(ﬁ)so(p(t,ﬁ))‘duiv(n)

zeT N zeTn

f =03 (G(zyv)—G(ﬁ))so(n(y))'duiv(n) (3.25)
zeTn ly—z|<

f O lEaCGE) X (so(n(y))—so(p(taﬁ)))‘duiv(n)- (3.26)
zelTn ly—xl<e

Since G is smooth, the first limit (3.25) vanishes as N — o0 and then ¢ — co. Since G is
bounded, (3.24) vanishes if we are able to prove that

limsuplimsupf< Z ‘%_1_1
—z|<

£—0 N—w0 Z
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By the entropy inequality (3.20), for every v > 0, we bound the expectation under the
previous limit by

H';V]\(f) JWTVI {eXp( Z ’2“1 w(n(y))—w(p(t,j@))’)].

—z|<l

From Corollary 3.9, the first term above vanishes as N — 00. As for the second term, we
use the fact that ng (t.) is a product measure, and from Hélder’s inequality we bound it

from above by

;VJC;N %i 7lo sE) . )[exp (v’ > e) —@(p(t,ﬁ))‘)}. (3.27)

ly—z|<L

Since the profile p(t,-) is continuous on T, and the function px(t,-) converges uniformly
to p(t,-) (from Proposition 3.6) we deduce that (3.27) converges as N — o to

S ety o8B | o0 (5 |3 et ) ~lote, )| au

ly|<e
see also (2.4). To conclude the proof, we proceed as in [9, Chapter 6.1]: use the inequalities
T<l+a+3 z2el*l and log(1 + x) < z. Finally, choose v = ¢/(2¢ + 1). From the law of
large numbers, last expression vanishes as £ — o0 and then £ — 0. (I

4. NORM BOUNDS: STATEMENT AND PROOF

In this section we state and prove the bounds on the derivatives of the regularized
solution, that are needed for Proposition 3.8. The latter will be proved further in Section
5.

Proposition 4.1. For any N € N,

sup  |dupn(t,u)| < CLip,
(t,u)e[0,T]xT

where Crip has been defined in (2.8).
Proof. Let us define
w = dupn + Cip, Wi = Oupti + Cryy forany N eN, (4.1)
then w'¥ > 0 thanks to (3.10). Moreover, wy is smooth and satisfies wy (0, ) = wi¥ and
OrwN — Oy (2pN5uwN + 2(wN)2 — 4CLipr) =0, for any N > 0. (4.2)
Multiplying (4.2) by —w, = min(0,wy) and integrating over T yields

\2
g (wN) du + f 20N (@uw&)Z du — J Ou¥(wy)du = 0,
dt Jp 2 T T

where we have set

(y) = 39° = 2Cupy® ify <0,
0 otherwise.

Indeed, it follows from the chain-rule property (see for instance [13, Lemma 1.1]) that

—wy GWN = %(% (w&)Q, — Oy Wy OyWN = ((9uw;])2,
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and
(2(11)]\[)2 — 4C’Lipr) auw](, = *au‘lf(wN).
Since wy is periodic, one gets

J 0wV (wy)du = 0.
T

Therefore, the function
2
t
T 2

is non-increasing, takes nonnegative values and vanishes for ¢ = 0. Therefore, it is constant
equal to 0, hence wy(-,¢) = 0 for all ¢t > 0. Owing to the definition (4.1) of wy, we get
that d,pn = —ClLip. Proving that d,pn < CLip is similar. O

Proposition 4.2. For any N € N,
CLip)?
Jf |é’wpg\f(t,u)|2 dtdu < @.
4€N
[0,T]xT

Proof. If fn = Oupn and fi = 0,p then fx satisfies the equation

OfN — Ou (2pN0ufn +2f%) =0,  forany NeN. (4.3)
Multiplying (4.3) by fn and integrating over T yields
d !fN\ _
dt du + 2 pN|é’qu| du—l— 8 fN du = 0. (4.4)

Since fy is periodic, the third integral in the above equality is equal to 0. Therefore,
integrating (4.4) w.r.t. time over [0,7"] yields

fj pn |0ufn|? dtdu < f | 0012, for any N e N.
[0,T]xT T
Using that py = ey (see Proposition 3.5), one gets that

ff |auupN| dtdu = ff |(9qu| dtdu < f |Oup lm (CLlp) :
4€N

[0,T]xT [0,T]xT

for any N € N. O

Proposition 4.3. There ezists Co(T) > 0 such that, for any N € N,

sup j |0uupN (t,u | du < COgT) (4.5)
te[0,T7] N

Co(T)
Jf }ﬁuuupN t,u) ’ dtdu < 5?\/ . (4.6)

[0,T]xT
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Proof. For all N € N; we set gy = Ouupn, then it satisfies
OtgN — Ou (2pNOugn +6fNgN) = 0, (4.7)

ini

where fy = Oypn, and (gN)|t . = Ouup'. Multiplying (4.7) by gy and integrating over
(0,t*) x T for some arbitrary ¢t* € [0, T] provides

f lgn 2 (t*,u du—f |8uu lf\}‘{ du+ ff 2pN|Ougn [2dtdu+ JJ 6fNgNOugndtdu = 0.

(0,t*)xT (0,t*)xT
Using the elementary inequality
6//n*lgnl*> 3
6fNgNOugN = Owlgnl” ~pNlOugnl?,
PN 2
one gets that
J lgn 2 (t*, w)du + Jf pn|Ougn |Pdtdu < Ax + By (t*), (4.8)
T
(0,t*)xT
where we have set
[fnlPlgn

Ay = f |5uupml‘ du, Byn(t*) =12 dtdu.

(0,t*)xT

PN

The lower bound py = ey (see Proposition 3.5) together with the L®-estimate on fy
(given in Proposition 4.1) ensure that

12051
Ba(t) < —Lip f f g [2dtdu.

(0,t*)xT
Then it follows from Proposition 4.2 that

. SCﬁlp .
By(t") < 2 for any t* € [0,T7]. (4.9)

Let us now focus on Ayn. One has clearly Ay < Hé‘uupm‘H The definition (3.9) of pm‘
implies that

|Ouu PN (u)] = U Oup i (y)Ouhn (u — ) ‘ H(?uMmH |Ouhn |y for any we T.
Therefore, we deduce from (3.8) and (3.10) that
. 2
Ay < 4(70”"0") : (4.10)
EN

From (4.8) we get

sup [ [ouup(t.)fdu = sup | lonl?(tu)du < Ay + sup B(o)
te[0,T] te[0,T] JT te[0,T]
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The combination of (4.9) and (4.10) leads to (4.5) with Cy = Cﬁlp(BCEip +4C?). In the

same way, from (4.8), and using the fact that py > en (recall Proposition 3.5), we have:

Jf |6uuupN (t,u ‘ dtdu = Jf |0ugN (t,u ’ dtdu < (AN + BN(T))
[0,T]xT [0,T]xT
and similarly we obtain (4.6). O

5. RELATIVE ENTROPY ESTIMATES

In this section we prove Lemma 3.7 and Proposition 3.8.

5.1. Proof of Lemma 3.7. We say that a configuration n € {0, 1}~ is p-compatible with
a profile p: T — [0, 1] if

n(z) = p(%) whenever p(%) =0or 1.

Recall Definition 2.2. Since plf\}‘ € [en,1 — en], we can easily compute

Hy(0) = Z Vﬁm(ﬁ){ Z logl_}ni() + | Z log pinil( )

n pMi-comp. z: pi( %)=

0
1og o) L (1 _ (e 1og L)
+$:pim§)e(0,1) (n( )1 g izt (1 —n(x))log —pini(]@)) }

where the first sum is over configurations n € {0, 1}~ compatible with the density profile
p"™. Then,

1 1
x: pini(£)=0 pN N x: pini(£)=1 PN N

o ini( % o 1 _ pini(z
+ Z plm(%)logp (N) +(1_p1n1(%))10g p (];[) (52)
)<(0.) fi L=avy

x: pini(£)e N (%) pN( )

The lemma then follows from (3.11): indeed, there exists C' > 0 such that for all z € Ty,

P (E) =0 — 10g’ < Cey, (5.3)
(%) 1= PR (%)
pini(%) =1 = log% < Cey. (5.4)
PN (%)

Therefore, we can bound (5.1) by CNey. In order to bound the first term in (5.2), note
that (using again (3.11)) there exists C' > 0 such that

o if p"i(%) < 2en(CLip + 1), then

P (%)

P(F)

P (£) log < Cenllogen|,
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o if p"i(%) > 2en(CLip + 1), then

pU(%) — R
PR)

)

2\&

and

p
<C|pini(]a\:[) plzi}l( )| < CO(Crip + 1)en.

The second term in (5.2) is bounded similarly. Lemma 3.7 follows.

We now turn to the proof of Proposition 3.8, which is the central result of this work.

5.2. Entropy production. First of all, the following well-known entropy estimate is due

to Yau [17]:
2 N
citte) < [ {22 — noguf b
t

Let us denote
h(n) :==n(0)n(1) +n(0)n(—1) — n(-1)n(1)
g(n) = 3(n(=1) +n(2))(n(0) = n(1))*.

Note that g(p) = 2p%(1 — p) and h(p) = p?, and also |h(n)| < 2 and |g(n)| < 1 for any 7.
We first prove the following technical result:

Lemma 5.1. Assume (3.23), namely ey N — o0. Then

N2L N
f { NENVE oy tog(u >}duiv

"
- 3 awnle 7) L)~ o (1 £)) T (o (1)) () — (0 ) Ja
(5.5)
L;TN (Oun)? ﬁ){ug(n) ~g(pn(t, %)) _gl(PN(t,%))(n(x) _pN(t,;@))}dﬂév
(5.6)
+4(t,N),
where i
E fo 5(t, N)dt‘ —

Proof. Fix t € [0, T]. For the sake of brevity we denote Y := An(t, £).
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STEP 1 — PART COMING FROM THE GENERATOR: First we have

]\7251?\{[1/& _N? Z (z—1)+n(z+2)n)(1 —n(z+1)) (e)‘i\;l*)‘i\f _ 1) (5.7)

xETN

+ N2 (g(z — 1) + nlx + 2))n(e + 1) (1 - n(z)) (eW*AiVH - 1). (5.8)

xETN

In (5.7) and (5.8) we write the exponential as the infinite sum: e* —1 = 3, ., Zk—’: The
first order term (k = 1) gives:

N2> (n(x = 1)+ n(z +2)) (n(=) — n(z + 1)) (AN, = AY)

:EETN

= N2 > mh(n) (AN + A —2AY). (5.9)

In order to replace the discrete Laplacian by its continuous version, let us estimate the
following error

U > Th N2 (A + A0 =200 = duuAn (¢, %)) dpy .

Z‘ETN

<2 )

:DETN

(N2 )‘r+1 + Aiv—l - 2)‘5) — OuuAN (t7 %))

)

where the last inequality comes from the fact |h(n)| < 2. We use the Taylor formula for
the smooth function u — An(¢,u) in order to obtain

N2+ M =200 — G (8 £)

NQ z+1 N2 @
- J; Ounn AN (8, w) (S — u)2 du — - LNl O AN (8, w) (52 — u)2 du. (5.10)
~ ~

We start with the first integral in (5.10). The second one is very similar and the same
argument will work. We use several times the Cauchy-Schwarz inequality in order to write

41
N2Z

" (9uuu)\N(t,u)(’”T+1 - u)2 du

[L’ETN %
o = :
< N? Z {(J |8uuu)\N‘2(t,u) du> <J (‘”TH — u)4 du> }
zeT N % %
N2 (J‘I;l 9 %
< OuuuN| (¢, 1) du)
x/ENg gN % | |
< { J |6uuu)\N| (t,u du}
\/7N7 CE;N N
1

= ﬁHauuu)\N(t, )y (5.11)
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Since Ay is a function of py, one can easily obtain some norm bounds on Ay and its
derivatives, using the ones that we got in Section 4. This is done in Appendix C. Precisely
in Proposition C.2, we prove that

” |OuuAn | () didu < g
N

[0,T]xT

for some C' > 0. We let the reader repeat the argument for the second integral in (5.10),
and deduce the following;:

T /

c'NT

J rt) at < CYT. (5.12)
0 N

for some C’ > 0. From the assumption €3, N — o0, we then have N So ry(t)dt — 0.

Therefore, the first order term (k = 1) gives the first contrlbutlon in (5.5), namely

f D Owdn (b %) ah(n) du
xETN

plus an error ry(t) that we include in 6(¢, N).
In the same way, the second order term (k = 2) gives

N* ) %(n<x—1>+n<x+2>)(n<x>—2n<m>n<x+1>+n<x+1>)(AiV+1 AY)”

IETN
2
= N? Y g (A —AY)" (5.13)
xe']TN
We want here to estimate the error

U > Teg(n N2 AN = A2 - (6u>\N)2(t,%)>duiV.

(IJETN

As before, the Taylor formula and the Cauchy-Schwarz inequality allows us to bound

<2N )]

z+1

{a A (t ) f Bun A (£, u) (L — )du}

CEGTN
z+1 2
N2 Y U Duu () (252 )du}
:EETN N
2N = 2 2
<« 2 o], { [ 7wt du}
INS ZJ lﬁuu)\Ntu’ du
3 :EETN
\fHﬁ AN () |Cuudn (8, )], + H&WAN 3]

1 1
<C| =+ —+
<5§’V Ns%)
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for some C > 0, Where the last inequality follows from Proposition C.2. Therefore, we
also get that + So sy (t) dt — 0, and the second order term gives the first contribution in
(5.6), namely

J D1 (0uAN)? (t %) Teg(n) dpf,

ZBETN

plus that error sy (¢) that we include in 6(¢, N).
Finally, we show that none of the higher order terms (k > 3) contributes and they are
all included in §(¢, N). Precisely, we estimate

NQJT 1 S Y ’)‘x-i-l

zeTn k>3

AN k
" a (5.14)

and show that this quantity vanishes as N — c0. Using Proposition C.2, we bound (5.14)
from above by

0 k>3 k' Nk k>3 K (New)

C? C
= TN?(C/(Nen) _ — ~1).
(6 Q(NEN)2 N€N )

with C' = Ctip/2. For any z € [0,1] we have e* — % —x — 1 < 23, therefore the last
expression above is bounded by

N?  TC?
(NéN)g B Ne’;‘?v N—

TC? 0,

from assumption (3.23).

STEP 2 — PART COMING FROM log(¢){¥): The term with log(z;") can be explicitly com-
puted as

orlog(wl) = 37 okt %) [n@) — [ n(@)w v

zeTn
= 3 (6 R)[e) — on (6 %) |

CCETN

2\&

A straightforward computation (see Proposition C.1) gives

OAN = O B (pn) + (2udn)? T (o)
Therefore, this term appears exactly on that form in (5.5) and (5.6).

STEP 3 — ADDITIONAL TERM: Note that in (5.5) and (5.6) there is an extra term, that
does not appear from the previous computations. Therefore, we have to substract it, and
use the triangular inequality to estimate it. We show that that term is actually of order
o(N) when integrated in time between 0 and T, and therefore goes in 6(¢, N). Indeed, the

extra term reads
>, Fnlt %)

:BETN
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where

Fy(t,u) := duuAn (t,u) h(pn (t,u)) + (Qudn)? (t,w) Glon (t,w).
We want to show that

UOT S Fn(t, &) dt’ —— 0. (5.15)

First, note that, for any t > 0,

PN auION
Fy(t,u)du= | 0y —)(t,u) du =0,
ﬁr w(tu) du JT <1—PN )( W) du

Therefore, to prove (5.15) it is enough to prove that the following quantity vanishes:

f ’N FN (t: %) JFN (t,u d“’dt f Z J ’FN %) FN(t,u)‘dudt.

From the Cauchy-Schwarz inequality, we have for any k € Ty and u € [, “”TH],

zeTn

“FN %)~ Fa(t,u)| JJ{& Fy(t, )| dudt < VTlu— &3 [0uFN| 1o go 1y

One can check that

PN auuu,ON 3auupN au,ON 2(aupN)3
1 —pnN (1—pn)? (1=pn)*

Therefore, from all the results of Section 4, we get

OuFN =

C(T)

HauFNHL2([0,T]><']I‘) S 5?\7

Finally we have

T
J % 2 Fy(t, &) —JTFN(t,u) duldt < C(Ti :

which vanishes as N — oo from assumption (3.23). O

5.3. Average over large boxes. To end the proof of Proposition 3.8, we want to take
advantage of the Taylor expansion that seems to arise in (5.5) and (5.6). Note that the
factor in front of (1(z) — pn (%, %)) in that expression can be simplified as:

First of all, we are going to replace n(z) by its empirical average over large boxes. More

precisely, let us estimate the error (integrated in time) made by this replacement, which
writes as follows

5N€

j S et %) (n(x) — 09 (@) dp ]

zeTn

where for any £ € N, we denote by n(* )($) the space average of the configuration n on the
box of size 2¢ 4+ 1 centered around z:

0@ = —— 3 ).

20+1
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Performing an integration by parts, using the Taylor formula and the Cauchy-Schwarz
inequality, one can easily show that for any ¢ € N, there exists a constant C'(¢) > 0 such
that

1

ene(T) < C(E)( J] ‘auat/\N(t,U)’2 dtdu) ’ < @7
€

[0,T]xT N

the last inequality following from Proposition C.2. Therefore, under assumption (3.23),

EN’E(T)

lim lim =0.

{—o0 N—0
The next step consists in replacing in (5.5) the local function 7,h(n) by the spatial average

1
20+ 1 2, T

ly—az|<e

for ¢ sufficiently large and then by its mean value A(n(¥)(z)). In the same way, in (5.6) we
will replace 7,g(n) by g(n)(x)). This step is more involved, and is done thanks to the
one-block estimate proved in the following section. Once again, because of the degeneracy
of the limit profile p(¢,-) (which can vanish), new arguments are needed w.r.t. [7].

5.4. The one-block estimate.

Lemma 5.2 (One-block estimate). Let € > 0. For every local function v : {0,1}* — R
there exists v9 > 0 and Ly < oo such that: for all £ = Lo there exists No = Ny(¢) such
that for any N = Ny we have

T N . (T
fo fN Z TeVeu (M) fi (Mva(dn)dt < ’Y()Nfo Hy(t)dt + e, (5.16)

zeTn
where

Visln) o= |57 3 o) - B(0(0)|

lyl<t
We will apply Lemma 5.2 with ¢(n) = h(n) and g(n).

Proof of Lemma 5.2. For x € Ty, £ € N, let
z+l—1
Que={n: Y n@m(+1) =1}
y=x—~
the set of configurations in which there are two neighbouring particles within distance /¢

of z (in particular the box of radius ¢ around z contains a mobile cluster). We split the
left hand side in (5.16) into

T
J J % > e Vewmio, () N (n)va(dn)dt (5.17)
0 zeTn
T
* JO fif > TaVew(mlas, () fY (n)va(dn)dt. (5.18)

IETN
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As indicated in [7], the restriction to the irreducible set Q, in (5.17) allows us to repeat
standard arguments, and to conclude that

T

. . 1

lim sup hmsupf fN Z 72 Vew(n)la,, () N (n)va(dn)dt = 0. (5.19)
{—00 N—-ow JO 2eTyn

Let us now deal with the other term (5.18). By the entropy inequality (3.20), the term

inside the time integral Sg can be bounded above by

H(Miv|ygv(t7))

1
ey o [ (v B mVismler, 00 )o@ (520

xETN

for any v > 0. Recall that € > 0 is fixed. We need to show that we can choose v > 0 such
that

T

1

lim sup lim supf — logjexp (fy Z T2 Vi (1) 1ge 8(17)) ng(t ydn)dt <e.  (5.21)
{—oo  N—oo JO FYN 2T N © ’

Now, contrary to [7], we made no assumption to ensure that V/])\(f t,.)(Q;E) decays exponen-

tially in ¢ for all z. In fact, this is plain wrong when p(t, -) vanishes on an interval.

Let £y be such that the support of ¢ is contained in {—/y,..., 4} and C := 2|t
(which clearly does not depend on ¢). From the uniform convergence stated and proved in

Proposition 3.6, we know that there exists a vanishing sequence of positive numbers (6](\}))
such that: for any u e T, any ¢t € [0,7], and N € N,

[ (tu) = p(t,u)| < 8. (5.22)

Since pny = ey (see Proposition 3.5) while p can be equal to 0, it is natural to impose that

51(\}) > ¢n. Without loss of generality, we can assume that the sequence (55\})) is decreasing.
Moreover, the sequence (pn) is equicontinuous on [0,7"] x T, and therefore, there exists a
nondecreasing continuous modulus of continuity w : [0, 1] — Ry with w(0) = 0 such that
for any u,ve T, te€[0,T], e >0and N e N,

lu—v|<e = |pn(t,u) — pn(t,v)] <wl(e). (5.23)
Let us denote
— s(1) 4+Lo+1

(1)

then it follows from the monotonicity of (8 and of w that (), is decreasing.

)n

We are going to split T into three sets of points: the good ones, the almost zeroes and
the bad ones. Namely, for any § > 0, and any vanishing sequence (ay) such that ay < 6,
let

GV'(0) = {zeTy: pu(t) 26 on [sfl, zih], (5.25)
ZMaw) = {weTy: pylt) <an  on [Eh, bl (5.6)

BN (s,an) = Ta\(GY(8) L 2 (an)). (5.27)
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The parameters § > 0 and ay — 0 will be chosen ahead. We want to study the limit as
N — o0 of the cardinality of these sets of points (renormalized by N). For that purpose,
let us introduce the following sets: for any 6 > 0, t € [0, 7], let

Gi(6) := {u eT : p(tyu) = 5},

weT : p(t,u) = o} OLy(8),

{ L0 < p(t,u) < 5} c Ty(6),
where I';(9) has been defined in (3.3). Note first that
T\(gt( ) o Zt) = Bt(é) \ Ft,

where Z; and I'; have been defined respectively in (3.2) and (3.1). Therefore, since
Leb(T';) = 0 (recall the proof of Proposition 3.3) the two remaining sets above have the
same Lebesgue measure:

Leb(B,(5)) = Leb (T\(gt(a) U zt)). (5.28)
We will make use of the following lemma:

Lemma 5.3. Recall that dn has been defined in (5.24). For any ¢,0y € N fized, and 6 > 0,
the following convergences hold:

lim N LGN — 5y ‘ — Leb(G:()) (5.29)
Tim N 2 ()| = Leb(2,) (5.30)

and therefore from (5.28):
Ny _
&%N BNY(S — o, ) ‘ — Leb(B,(6)).

We will prove Lemma 5.3 further. Let us first end the proof of Lemma 5.2, more
precisely of (5.16). Fix 6 > 0 as a parameter that will vanish at the end of this paragraph,
after letting N — o0 and £ — c0. Take the expression under the limit in the left hand side
of (5.21), and take N sufficiently large such that 6 — oy > dn. We divide the sum that
appears there into three sums:

e one over Biv’é(é — N, 0N),

e one over ZtN’Z(éN),

e and the last one over Giv’z(é —ON),
since by definition their union gives T . We bound each sum as follows: first, since Vp (1)
is bounded by C, we have

S mVism)lo:, () < CBY6 — dy.ow)|.
v B (5-0n 0n)

Then note that the two sums over ZtN ’g(é ~) and Giv ’é(é — dn) are functions with disjoint
supports; since the measure is product, the average factorizes. To bound the term with
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the sum over Z"(8y), note that, if n(z +y) = 0 for all |y| < ¢ + £y, then T Vep(n) = 0.
Moreover, if a non-decreasing function! has support in {a: eTn: pn(t, %) <O N}, we can
replace VZ)\][V ) by the homogeneous measure vs, when overestimating its expectation (as
we do in the second inequality below). Consequently, we can bound

fexp (’Y Z meW(WlQh(ﬁ)) V,ﬁ\fv(t,.)(dn)

zeZN " (5n)

N
< JGXP <70 Z 1{3 lyl<t+6o: n(x+y)—1}>ypN(t")(dn)

ezt (5n)

< JGXP <70 2 L i<erts: n(w+y)1}>V6N(d77)

ezt (5x)

< Jexp <7C’ Z n(y) (20 + 26y + 1)>V6N (dn)

yeTN

< <5N (670(2£+2€0+1) _ 1) I 1>N

Finally, for any z € Giv’e(é —0n), and any t € [0, 7], we know that
c ¢
Vot (Q50) < (1= (6 —0n)%)"

Therefore, we bound the term under the limit in (5.21) as follows:

71
[ e fer (v X mvistnor, o) ana

mETN

_ JT C|BN (8 — dn, )]

+ :log (1 + (e’yC(QZ-i-Qéo-i-l) _ 1)5]\/)

dt

T
1 N c
+ L 77]\7(% .y N; log (lle(t,.) (QM) (exp(fy(% +1)C) — 1) + 1>dt
EGt (5—51\])

_ JT C|BN (6 — dn, o)

N dt (5.31)
0

" :log (1+ (20T — 1)) (5.32)
+ 7(2£T+1) (eXp(v(% +1)C) — 1) (1—(5— 5N)2)£. (5.33)

LA function f : {0,1}™ — R is said to be non-decreasing if f(n) < f(1') as soon as n < 7', where <
denotes the coordinate-wise order in {0, 1}~
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We first take N — o0, then £ — o0 and then § — 0. We treat each term separately: from
Lemma 5.3, Fatou’s lemma, and the fact that B,(d) < I'y(d) we obtain:

T T
1
lim limsuplimsupf —‘BtN’Z((S - 5N,5N)‘ dt < lim | Leb(B¢(d)) dt
=0 ¢»w N—ow Jo N 6—0 Jo
T
< lim | Leb(T'4(d)) dt =0,
d—0 Jo

where the last equality follows from Proposition 3.3. The second term (5.32) easily vanishes
since oy — 0. Finally, for the last term (5.33), we choose v > 0 such that 2yC + log(1 —
52) < 0 and the result follows. O

We now go back to the proof of Lemma 5.3 .

Proof of Lemma 5.53. The proof is based on the following fact: for any § > 0 and N
sufficiently large,
1
Gi(8) < NG,{”((S —6n) < Ge(6 — 26), (5.34)

1
Z, < NZ{”(@V) < Z(26N). (5.35)

Let us prove the first inclusion in (5.34), namely: if u € G¢(d) then, for any N sufficiently
large, [ulN| € Giv’e((; —N)-

Let u € Gi(0) and y € [lUNJX,K_ZO, LUNJ;\?HZO], which implies |y — u| < L?{}H.

Using (5.22) and (5.23) we get

pn(t,y) = pn(tu) —w(E9) > p(t,u) — 6% —w(Petl) > 6 — oy,

which proves the claim. The same argument works to prove the symmetric inclusion,
namely: if z € Giv’g(é —dn) then € G¢(6 —26n). As a result, (5.34) follows. The proof
of the second series of inclusions (5.35) is very similar and we let the reader to check it.

In order to prove (5.29), it is enough to use (5.34) and to show that the Lebesgue
measures converge, namely:

This is indeed the case since (dy) is a decreasing sequence and therefore the family of sets
(G¢(6 — 26x)) is decreasing for inclusion.
Therefore, thanks to the continuity of the Lebesgue measure, there holds

Leb(G:(9)) = Leb( 1) Gi(6 — 20y)) = lim Leb(Gy(6 — 20)).
N=>1 -
A very similar argument can be worked out to prove (5.30). For that case, first note that
Zt U Ft = ﬂ Zt(Q(SN),
N=1

and then one is able to conclude the proof, since the boundary set I'; satisfies Leb(I't) = 0
(from Proposition 3.3). O
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5.5. Conclusion. Putting together the computation of the entropy production in Lemma
5.1, and then the replacements done in Section 5.3 and Lemma 5.2, up to know we have
proved the following:

Corollary 5.4. There exists 9 > 0 and o € N, such that, for any £ > £y, there exists
Ny = No(4y) such that, for any N > Ny,

1 T
Hn(T) = Hn(0) < J H(t) dt + er(N,0) (5.36)
Y0
T
+f0 f ZT] Ouun (t, %) ﬁ(n(é)(x) p(t, %)>th dt (5.37)
T N
+L L;N(aumy(t, ) G(n(@(l«),p(t, %))dugv dt,  (5.38)
where
H(a,b) == h(a) — h(b) — K (b)(a — b)
G(a,b) :=g(a) — g(b) — g (b)(a — b)
and
lim sup lim sup M = 0.

{—0 N—o0

In this last paragraph we show that (5.37) and (5.38) are bounded from above by a
constant times (5.36). We treat only (5.37), the same argument works for (5.38). Note
that applying the entropy inequality, we can bound (5.37) above by

T o e

SEETN

for any v > 0. The first term will be added to (5.36). A large deviation argument will
allow us to chose v > 0 such that the second term vanishes:

Lemma 5.5 (Large deviation estimate). There exists v > 0 such that, for all t € [0,T],

hmsuphmsupilogE [exp{ Z auu)\N ( ()(:c),pN(t,]:\C,))}] <0.
{—0 N—00 N zeT N

Proof. We follow the lines of [9, Chapter 6], where the rough argument is well exposed
and now standard. The main difference here consists in the presence of the approximate
solution py instead of p. A Riemann-type convergence like in (2.4) will be enough to
conclude. ([l

This concludes the proof of Proposition 3.8.
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APPENDIX A. CONTINUOUS EMBEDDING OF H*(T) iNTO C(T)

Proposition A.1. For any s € (,1), the Sobolev space H*(T) is continuously embedded
into C(T).

Proof. In the periodic setting, the proof is very simple, so that we give it here for the sake
of completeness. Let us assume s > % and let p € H5(T). Define

pi(u) = Z pretZmhu for any u € T,
k<K

where pj has been defined in (3.13). For any K € N, pg is continuous on T. Moreover,

lp(u) = pr(w)l < D) 7il

|[k|>K+1
1 1
2 2
<( X avammpne)’ (3 asaee)
|k|>K+1 |k|>K+1
< ol gs(ry R(K),
where R(K) — 0 as K — o0, as the rest of a convergent sum, since s > % We deduce
that
lo = prclloo ——0. (A1)
—00

Thus p is continuous as the limit of the sequence (px ) of continuous functions.
Moreover, from (A.1), we know that, for any u € T,

plu) = > pre™,
keZ

and similarly as before, from the Cauchy-Schwarz inequality we easily get
1

3
lploo < Clpllgs(ry, — with C = (2(1 + 47T2k2)—s> .
keZ

APPENDIX B. CONNECTED COMPONENTS OF THE POSITIVITY SET
In this section we prove Lemma 3.4, that we recall here for the reader’s convenience:

Lemma B.1 (Connected components of the positivity set). Denote by I; the set of the
connected components of Py for t = 0. Then one can build an injective mapping from I,
to Zs for allt = s = 0. In particular, the function t — #Z; is non-increasing.

Proof. Let t > 0 and let (a,b) € Zy, i.e., p(t,a) = p(t,b) = 0 and p(t,u) > 0 for u € (a,b).
Following [16, Proposition 14.1], the mapping ¢ — P, is monotone:
Ps < Py, for all (s,t) € [0,T]* such that s < t.
This ensures that
p(57a) = p(37b) =0, Vs e [Ovt]' (Bl)
Since 0 < p <1 and |0up| < ClLip, the weak formulation (2.6) still holds for test functions
¢ of the form &(r,u) = 6(7)¢(u) with § € L' n BV(R,) and compactly supported, and
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¢ € HY(T) thanks to the density of C'([0,T]) in BV (0,T) and of C'(T) in H(T) for
the respective weak-+ and weak topologies. Here, BV (R, ) denotes the set of real valued
functions of bounded variations on Ry, i.e., functions ¢t — 6(¢) such that 0:0 is a finite
Radon measure on R;. Fix s € [0,t) and ¢ € (0, (b — a)/2), then choose £ = 6(, with

0(7) = 1(s)(7) and (e(u) = max <O,min (1, 4 ; a, b= u>)

e

in the weak formulation (2.6). This provides

T a+e T 1 b
J p(s,u)(u)du = f p(t,u)e(u)du +J f OppPdudr — J - Opp?dudr.
T T 0 ¢Ja 0 € Jb—e

Using (B.1), one gets that

T

f p(s,u):(u)du = f p(t, u)Ce(u)du + E J (pP*(r.a+¢) + p*(1,b—¢)) dr. (B.2)
T T €

0
It follows from (B.1) and on the Lipschitz continuity of p that

0< p*(1,a+¢) < (Cripe)?, 0< p*(1,b—¢) < (CLipe)®.

These estimates together with the convergence of (. in L'(T) towards 1(4p) allow to pass
to the limit ¢ — 0 in (B.2), leading to

b b
f p(s,u)du = J p(t,u)du > 0, Vs € [0,t].

a a

Since p(s,+) is continuous and because of (B.1), this implies that there exists (at least)
one interval (a, 8) < (a,b) such that p(s,a) = p(s,3) = 0 and p(s,u) > 0 on («, 3). Such
an interval («, ) belongs to Zs, and the mapping from Z; to Z, sending (a,b) to («, 3) is
injective. (]

APPENDIX C. TECHNICAL RESULTS

C.1. Derivatives. Let p: Ry x T — (0,1) and define

_ P
A = log <71 — p)'
Proposition C.1. We have
Oup
Oy = ———— C.1
p(1—p) (©1)
aquO (@up)Z(l — 2:0)
Cuu = — C.2
p(l—p)  p*(1—p)? (©2)
uuu uu My 1-2 u 3 1-— 2
0 A= Ouwil o OuwupOup(l = 2p) o (0up)”(1 = 3p + 3p°) (C.3)

p(L—p) p*(1—p)? p3(1—p)?
Therefore, if p is solution to the porous medium equation 0yp = Ouy(p?) then

O\ = 2p Ouu + 2p(2 — 3p) (OuN)?. (C.4)
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C.2. Technical estimates on \y. Here we get some technical bounds on the norms of
Ay and its derivatives, where Ax has been defined in function of py in (3.21).

Proposition C.2. For any N € N,

sup  [0uAn (t,u)| < %. (C.5)
(t,u)e[0,T]xT EN
Moreover, there exists C > 0 such that for any t € [0,T],
2 C
JT Qudn (k) du < g (C.6)
and finally
2 C
|Cuuu AN | (¢, w) didu < en (C.7)
[0,T]xT
2 C
|0uO AN (t, u) dtdu < x) (C.8)
[0,T]xT

Proof. The first bound (C.5) is straightforward from Proposition 4.1. Now we use Propo-
sition C.1. First,

auup 2 aup 4
fourste o f < o1l 1000y,
N N

therefore (C.6) follows from Proposition 4.1 and Proposition 4.3. Note that

€% 4 e

From Proposition 4.1, Proposition 4.2 and Proposition 4.3, we easily obtain (C.7). Finally,
to get (C.8), we use (C.4) and we obtain

|aué)t)\N|2 < C<iaupN|2|auu)\N|2 + |auuu)\N|2 + |au)\N|4|aupN|2 + \au)\N|2|auu)\N|2>v

and therefore, from Proposition 4.1 and the first three bounds (C.5), (C.6) and (C.7), we
get (C.8). O
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