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Abstract

This paper studies nonparametric estimation of parameters of multivariate Hawkes processes.
We consider the Bayesian setting and derive posterior concentration rates. First rates are derived
for L1-metrics for stochastic intensities of the Hawkes process. We then deduce rates for the L1-
norm of interactions functions of the process. Our results are exemplified by using priors based
on piecewise constant functions, with regular or random partitions and priors based on mixtures
of Betas distributions. Numerical illustrations are then proposed with in mind applications for
inferring functional connectivity graphs of neurons.

1 Introduction

In this paper we study the properties of Bayesian nonparametric procedures in the context of multivari-
ate Hawkes processes. The aim of this paper is to give some general results on posterior concentration
rates for such models and to study some families of nonparametric priors.

1.1 Hawkes processes

Hawkes processes, introduced by Hawkes (1971), are specific point processes which are extensively
used to model data whose occurrences depend on previous occurrences of the same process. To
describe them, we first consider N a point process on R. We denote by B(R) the Borel σ-algebra on
R and for any Borel set A ∈ B(R), we denote by N(A) the number of occurrences of N in A. For
short, for any t ≥ 0, Nt denotes the number of occurrences in [0, t]. We assume that for any t ≥ 0,
Nt <∞ almost surely. If Gt is the history of N until t, then, λt, the predictable intensity of N at time
t, which represents the probability to observe a new occurrence at time t given previous occurrences,
is defined by

λtdt = P(dNt = 1 | Gt−),
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where dt denotes an arbitrary small increment of t and dNt = N([t, t+dt]). For the case of univariate
Hawkes processes, we have

λt = φ

(∫ t−

−∞
h(t− s)dNs

)
,

for φ : R 7→ R+ and h : R 7→ R. We recall that the last integral means∫ t−

−∞
h(t− s)dNs =

∑
Ti∈N :Ti<t

h(t− Ti).

The case of linear Hawkes processes corresponds to φ(x) = ν + x and h(t) ≥ 0 for any t. The
parameter ν ∈ R∗+ is the spontaneous rate and h is the self-exciting function. We now assume that
N is a marked point process, meaning that each occurrence Ti of N is associated to a mark mi ∈
{1, . . . ,K}, see Daley and Vere-Jones (2003). In this case, we can identify N with a multivariate
point process and for any k ∈ {1, . . . ,K}, Nk(A) denotes the number of occurrences of N in A with
mark k. In the sequel, we only consider linear multivariate Hawkes processes, so we assume that λkt ,
the intensity of Nk, is

λkt = νk +

K∑
`=1

∫ t−

−∞
h`,k(t− u)dN `

u, (1.1)

where νk > 0 and h`,k, which is assumed to be non-negative and supported by R+, is the interaction
function of N ` on Nk. Theorem 7 of Brémaud and Massoulié (1996) shows that if the K ×K matrix
ρ, with

ρ`,k =

∫ +∞

0
h`,k(t)dt, `, k = 1, . . . ,K, (1.2)

has a spectral radius strictly smaller than 1, then there exists a unique stationary distribution for the
multivariate process N = (Nk)k=1,...,K with the previous dynamics and finite average intensity.

Hawkes processes have been extensively used in a wide range of applications. They are used to
model earthquakes Vere-Jones and Ozaki (1982); Ogata (1988); Zhuang et al. (2002), interactions in
social networks Simma and Jordan (2012); Zhou et al. (2013); Li and Zha (2014); Bacry et al. (2015);
Crane and Sornette (2008); Mitchell and Cates (2009); Yang and Zha (2013), financial data Embrechts
et al. (2011); Bacry et al. (2015, 2016, 2013); Aı̈t-Sahalia et al. (2015), violence rates Mohler et al.
(2011); Porter et al. (2012), genomes Gusto et al. (2005); Carstensen et al. (2010); Reynaud-Bouret
and Schbath (2010) or neuronal activities Brillinger (1988); Chornoboy et al. (1988); Okatan et al.
(2005); Paninski et al. (2007); Pillow et al. (2008); Hansen et al. (2015); Reynaud-Bouret et al. (2014,
2013), to name but a few.

Parametric inference for Hawkes models based on the likelihood is the most common in the liter-
ature and we refer the reader to Ogata (1988); Carstensen et al. (2010) for instance. Non-parametric
estimation has first been considered by Reynaud-Bouret and Schbath Reynaud-Bouret and Schbath
(2010) who proposed a procedure based on minimization of an `2-criterion penalized by an `0-penalty
for univariate Hawkes processes. Their results have been extended to the multivariate setting by
Hansen, Reynaud-Bouret and Rivoirard Hansen et al. (2015) where the `0-penalty is replaced with an
`1-penalty. The resulting Lasso-type estimate leads to an easily implementable procedure providing
sparse estimation of the structure of the underlying connectivity graph. To generalize this procedure
to the high-dimensional setting, Chen, Witten and Shojaie Chen et al. (2017) proposed a simple and
computationally inexpensive edge screening approach, whereas Bacry, Gaı̈ffas and Muzy Bacry et al.
(2015) combine `1 and trace norm penalizations to take into account the low rank property of their
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self-excitement matrix. Very recently, to deal with non-positive interaction functions, Chen, Shojaie,
Shea-Brown and Witten Chen et al. (2017) combine the thinning process representation and a cou-
pling construction to bound the dependence coefficient of the Hawkes process. Other alternatives
based on spectral methods Bacry et al. (2012) or estimation through the resolution of a Wiener-Hopf
system Bacry and Muzy (2016) can also been found in the literature. These are all frequentist meth-
ods; Bayesian approaches for Hawkes models have received much less attention. To the best of our
knowledge, the only contributions for the Bayesian inference are due to Rasmussen Rasmussen (2013)
and Blundell, Beck and Heller Blundell et al. (2012) who explored parametric approaches and used
MCMC to approximate the posterior distribution of the parameters.

1.2 Our contribution

In this paper, we study nonparametric posterior concentration rates when T → +∞, for estimating
the parameter f = ((νk)k=1,...,K , (h`,k)k,`=1,...,K) by using realizations of the multivariate process
(Nk

t )k=1,...,K for t ∈ [0, T ]. Analyzing asymptotic properties in the setting where T → +∞ means
that the observation time becomes very large hence providing a large number of observations. Note
that along the paper, K, the number of observed processes, is assumed to be fixed and can be viewed
as a constant. Considering K → +∞ is a very challenging problem beyond the scope of this paper.
Using the general theory of Ghosal and van der Vaart (2007a), we express the posterior concentration
rates in terms of simple and usual quantities associated to the prior on f and under mild conditions on
the true parameter. Two types of posterior concentration rates are provided: the first one is in terms
of the L1-distance on the stochastic intensity functions (λk)k=1,...,K and the second one is in terms of
the L1-distance on the parameter f (see precise notations below). To the best of our knowledge, these
are the first theoretical results on Bayesian nonparametric inference in Hawkes models. Moreover,
these are the first results on L1-convergence rates for the interaction functions h`,k. In the frequentist
literature, theoretical results are given in terms of either the L2-error of the stochastic intensity, as
in Bacry et al. (2015) and Bacry and Muzy (2016), or in terms of the L2-error on the interaction
functions themselves, the latter being much more involved, as in Reynaud-Bouret and Schbath (2010)
and Hansen et al. (2015). In Reynaud-Bouret and Schbath (2010), the estimator is constructed using
a frequentist model selection procedure with a specific family of models based on piecewise constant
functions. In the multivariate setting of Hansen et al. (2015), more generic families of approximation
models are considered (wavelets of Fourier dictionaries) and then combined with a Lasso procedure,
but under a somewhat restrictive assumption on the size of models that can be used to construct
the estimators (see Section 5.2 of Hansen et al. (2015)). Our general results do not involve such
strong conditions and therefore allow us to work with approximating families of models that are
quite general. In particular, we can apply them to two families of prior models on the interaction
functions h`,k: priors based on piecewise constant functions, with regular or random partitions and
priors based on mixtures of Betas distributions. From the posterior concentration rates, we also deduce
a frequentist convergence rate for the posterior mean, seen as a point estimator. We finally propose an
MCMC algorithm to simulate from the posterior distribution for the priors constructed from piecewise
constant functions and a simulation study is conducted to illustrate our results.

1.3 Overview of the paper

In Section 2, Theorem 1 first states the posterior convergence rates obtained for stochastic intensities.
Theorem 2 constitues a variation of this first result. From these results, we derive L1-rates for the
parameter f (see Theorem 3) and for the posterior mean (see Corollary 1). Examples of prior models
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satisfying conditions of these theorems are given in Section 2.3. In Section 3, numerical results are
provided.

1.4 Notations and assumptions

We denote by f0 = ((ν0
k)k=1,...,K , (h

0
`,k)k,`=1,...,K) the true parameter and assume that the interaction

functions h0
`,k are supported by a compact interval [0, A], with A assumed to be known. Given a

parameter f = ((νk)k=1,...,K , (h`,k)k,`=1,...,K), we denote by ‖ρ‖ the spectral norm of the matrix ρ
associated with f and defined in (1.2). We recall that ‖ρ‖ provides an upper bound of the spectral
radius of ρ and we set

H = {(h`,k)k,`=1,...,K ; h`,k ≥ 0, support(h`,k) ⊂ [0, A], ρ`,k <∞, ∀ k, ` = 1, . . . ,K, ‖ρ‖ < 1}

and

F = {f = ((νk)k=1,...,K , (h`,k)k,`=1,...,K); 0 < νk <∞, ∀ k = 1, . . . ,K, (h`,k)k,`=1,...,K ∈ H}.

We assume that f0 ∈ F and denote by ρ0 the matrix such that ρ0
`,k =

∫ A
0 h0

`,k(t)dt.
For any function h : R 7→ R, we denote by ‖h‖p the Lp-norm of h. With a slight abuse of no-

tations, we also use for f = ((νk)k=1,...,K , (h`,k)k,`=1,...,K) and f ′ = ((νk)k=1,...,K , (h
′
`,k)k,`=1,...,K)

belonging to F

‖f − f ′‖1 =

K∑
k=1

|νk − ν ′k|+
K∑
k=1

K∑
`=1

‖h`,k − h′`,k‖1. (1.3)

Finally, we consider d1,T , the following stochastic distance on F :

d1,T (f, f ′) =
1

T

K∑
k=1

∫ T

0
|λkt (f)− λkt (f ′)|dt,

where λkt (f) and λkt (f
′) denote the stochastic intensity (introduced in (1.1)) associated with f and f ′

respectively. We denote by N (u,H0, d) the covering number of a set H0 by balls with respect to the
metric d with radius u. We set for any `, µ0

` the mean of λ`t(f0) under P0

µ0
` = E0[λ`t(f0)],

where P0 denotes the stationary distribution associated with f0 and E0 is the expectation associated
with P0. We also write uT . vT if |uT /vT | is bounded when T → +∞ and similarly uT & vT if
|vT /uT | is bounded.

2 Main results

This section contains main results of the paper. We first provide an expression for the posterior
distribution.
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2.1 Posterior distribution

Using Proposition 7.3.III of Daley and Vere-Jones (2003), and identifying a multivariate Hawkes
process as a specific marked Hawkes process, we can write the log-likelihood function of the process
observed on the interval [0, T ], conditional on G0− = σ

(
Nk
t , t < 0, 1 ≤ k ≤ K

)
, as

LT (f) :=

K∑
k=1

[∫ T

0
log(λkt (f))dNk

t −
∫ T

0
λkt (f)dt

]
. (2.1)

With a slight abuse of notation, we shall also denote LT (λ) instead of LT (f).
Recall that we restrict ourselves to the setup where for all `, k, h`,k has support included in

[0, A] for some fixed A > 0. This hypothesis is very common in the context of Hawkes pro-
cesses, see Hansen et al. (2015). Note that, in this case, the conditional distribution of (Nk)k=1,...,K

observed on the interval [0, T ] given G0− is equal to its conditional distribution given G[−A,0[ =

σ
(
Nk
t ,−A ≤ t < 0, 1 ≤ k ≤ K

)
.

Hence, in the following, we assume that we observe the process (Nk)k=1,...,K on [−A, T ], but we
base our inference on the log-likelihood (2.1), which is associated to the observation of (Nk)k=1,...,K

on [0, T ]. We consider a Bayesian nonparametric approach and denote by Π the prior distribution on
the parameter f = ((νk)k=1,...,K , (h`,k)k,`=1,...,K). The posterior distribution is then formally equal
to

Π (B|N,G0−) =

∫
B exp(LT (f))dΠ(f |G0−)∫
F exp(LT (f))dΠ(f |G0−)

.

We approximate it by the following pseudo-posterior distribution, which we write Π (·|N)

Π (B|N) =

∫
B exp(LT (f))dΠ(f)∫
F exp(LT (f))dΠ(f)

, (2.2)

which thus corresponds to choosing dΠ(f) = dΠ(f |G−0 ).

2.2 Posterior convergence rates for d1,T and L1-metrics

In this section we give two results of posterior concentration rates, one in terms of the stochastic
distance d1,T and another one in terms of the L1-distance, which constitutes the main result of this
paper. We define

ΩT =

{
max

`∈{1,...,K}
sup
t∈[0,T ]

N `[t−A, t) ≤ Cα log T

}
∩

{
K∑
`=1

∣∣∣∣N `[−A, T ]

T
− µ0

`

∣∣∣∣ ≤ δT
}

with δT = δ0(log T )3/2/
√
T and δ0 > 0 and Cα two positive constants not depending on T . From

Lemmas 3 and 4 in Section 4.7, we have that for all α > 0 there exist Cα > 0 and δ0 > 0 only
depending on α and f0 such that

P0 (Ωc
T ) ≤ T−α, (2.3)

when T is large enough. In the sequel, we take α > 1 and Cα accordingly. Note in particular that,
on ΩT ,

K∑
`=1

N `[−A, T ] ≤ N0T,

with N0 = 1 +
∑K

`=1 µ
0
` , when T is large enough. We then have the following theorem.
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Theorem 1. Consider the multivariate Hawkes process (Nk)k=1,...,K observed on [−A, T ], with like-
lihood given by (2.1). Let Π be a prior distribution on F . Let εT be a positive sequence such that
εT = o(1) and

log log(T ) log3(T ) = o(Tε2T ).

For B > 0, we consider

B(εT , B) :=

{
(νk, (h`,k)`)k : max

k
|νk − ν0

k | ≤ εT , max
`,k
‖h`,k − h0

`,k‖2 ≤ εT , max
`,k
‖h`,k‖∞ ≤ B

}
and assume following conditions are satisfied for T large enough.

(i) There exists c1 > 0 and B > 0 such that

Π (B(εT , B)) ≥ e−c1Tε2T .

(ii) There exists a subsetHT ⊂ H, such that

Π (HcT )

Π (B(εT , B))
≤ e−(2κT+3)Tε2T ,

where κT := κ log(r−1
T ) � log log T , with rT defined in (4.11) and κ defined in (4.9).

(iii) There exist ζ0 > 0 and x0 > 0 such that

logN (ζ0εT ,HT , ‖.‖1) ≤ x0Tε
2
T .

Then, there exist M > 0 and C > 0 such that

E0

[
Π
(
d1,T (f0, f) > M

√
log log TεT |N

)]
≤ C log log(T ) log3(T )

Tε2T
+ P0(Ωc

T ) + o(1) = o(1).

Assumptions (i), (ii) and (iii) are very common in the literature about posterior convergence rates.
As expressed by Assumption (ii), some conditions are required on the prior on HT but not on FT .
Except the usual concentration property of ν around ν0 expressed in the definition ofB(εT , B), which
is in particular satisfied if ν has a positive continuous density with respect to Lebesgue measure, we
have no further condition on the tails of the distribution of ν.

Remark 1. As appears in the proof of Theorem 1, the term
√

log log T appearing in the posterior
concentration rate can be dropped if B(εT , B) is replaced by

B∞(εT , B) =

{
(νk, (h`,k)`)k : max

k
|νk − ν0

k | ≤ εT , max
`,k
‖h`,k − h0

`,k‖∞ ≤ εT
}
,

in Assumption (i). In this case, rT = 1/2 in Assumption (ii) and κT does not depend on T . This is
used for instance in Section 2.3.1 to study random histograms priors whereas mixtures of Beta priors
are controlled using the L2-norm.

Similarly to other general theorems on posterior concentration rates, we can consider some vari-
ants. Since the metric d1,T is stochastic, we cannot use slices in the form d1,T (f0, f) ∈ (jεT , (j +
1)εT ) as in Theorem 1 of Ghosal and van der Vaart (2007a), however we can consider other forms of
slices, using a similar idea as in Theorem 5 of Ghosal and van der Vaart (2007b). This is presented in
the following theorem.
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Theorem 2. Consider the setting and assumptions of Theorem 1 except that assumption (iii) is re-
placed by the following one: There exists a sequence of sets (HT,i)i≥1 ⊂ H with ∪iHT,i = HT and
ζ0 > 0 such that

∞∑
i=1

N (ζ0εT ,HT,i, ‖.‖1)
√

Π(HT,i)e−x0Tε2T = o(1), (2.4)

for some positive constant x0 > 0. Then, there exists M > 0 such that

E0

[
Π
(
d1,T (f0, f) > M

√
log log TεT |N

)]
= o(1).

The posterior concentration rates of Theorems 1 and 2 are in terms of the metric d1,T on the
intensity functions, which are data dependent and therefore not completely satisfying to understand
concentration around the objects of interest namely f0. We now use Theorem 1 to provide a general
result to derive a posterior concentration rate in terms of the L1-norm.

Theorem 3. Assume that the prior Π satisfies following assumptions.

(i) There exists εT = o(1) such that εT ≥ δT (see the definition of ΩT ) and c1 > 0 such that

E0

[
Π
(
AcεT |N

)]
= o(1) & P0

(
DT < e−c1Tε

2
T

)
= o(1),

where DT =
∫
F e

LT (f)−LT (f0)dΠ(f) and AεT = {f ; d1,T (f0, f) ≤ εT }.

(ii) The prior on ρ satisfies : for all u0 > 0, when T is large enough,

Π(‖ρ‖ > 1− u0(log T )1/6ε
1/3
T ) ≤ e−2c1Tε2T . (2.5)

Then, for any wT → +∞,

E0 [Π (‖f − f0‖1 > wT εT |N)] = o(1). (2.6)

Remark 2. Condition (i) of Theorem 3 is in particular verified under the assumptions of Theorem 1,
with εT = MεT

√
log log T for M a constant.

Remark 3. Compared to Theorem 1, we also assume (ii), i.e. that the prior distribution puts very
little mass near the boundary of space {f ; ‖ρ‖ < 1}. In particular, if under Π, ‖ρ‖ has its support
included in [0, 1− ε] for a fixed small ε > 0 then (2.5) is verified.

A consequence of previous theorems is that the posterior mean f̂ = Eπ[f |N ] is converging to f0

at the rate εT , which is described by the following corollary.

Corollary 1. Under the assumptions of Theorem 1 or Theorem 2, together with (2.5) with εT =√
log log TεT and if

∫
F ‖f‖1dΠ(f) < +∞, then for any wT → +∞

P0

(
‖f̂ − f0‖1 > wT εT

)
= o(1).

The proof of Corollary 1 is given in Section 4.6. We now illustrate these general results on specific
prior models.
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2.3 Examples of prior models

The advantage of Theorems 1 and 3 is that the conditions required on the priors on the functions hk,`
are quite standard, in particular if the functions hk,` are parameterized in the following way

hk,` = ρk,`h̄k,`,

∫ A

0
h̄k,`(u)du = 1.

We thus consider priors on θ = (ν`, ρk,`, h̄k,`, k, ` ≤ K) following the scheme

ν`
iid∼ Πν , ρ = (ρk,`)k,`≤K ∼ Πρ, h̄k,`

iid∼ Πh. (2.7)

We consider Πν absolutely continuous with respect to the Lebesgue measure on R+ with positive
and continuous density πν , Πρ a probability distribution on the set of matrices with positive entries
and spectral norm ‖ρ‖ < 1, with positive density with respect to Lebesgue measures and satisfying
(2.5). We now concentrate on the nonparametric part, namely the prior distribution Πh. Then, from
Theorems 1 and 3 it is enough that Πh satisfies for each k, ` ≤ K,

Πh

(
‖h̄− h̄0

k,`‖2 ≤ εT , ‖h̄‖∞ ≤ B
)
≥ e−cT ε2T ,

for some B > 0 and c > 0 such that there exists F1,T with

F1,T ⊂
{
h : [0, A]→ R+,

∫ A

0
h(x)dx = 1

}
satisfying

Πh

(
Fc1,T

)
≤ e−CTε2T log log T , N(ζεT ;F1,T ; ‖.‖1) ≤ x0Tε

2
T , (2.8)

for ζ > 0, x0 > 0 and C > 0 large enough. Note that from remark 1, if we have that for all `, k

Πh

(
‖h̄− h̄0

k,`‖∞ ≤ εT , ‖h̄‖∞ ≤ B
)
≥ e−cT ε2T

then it is enough to verify

Πh

(
Fc1,T

)
≤ e−CTε2T , N(ζεT ;F1,T ; ‖.‖1) ≤ x0Tε

2
T , (2.9)

in place of (2.8).
These conditions have been checked for a large selection of types of priors on the set of densities.

We discuss here two cases: one based on random histograms, these priors make sense in particular in
the context of modeling neuronal interactions and the second based on mixtures of Betas, because it
leads to adaptive posterior concentration rates over a large collection of functional classes. To simplify
the presentation we assume that A = 1 but generalization to any A > 0 is straightforward.

2.3.1 Random histogram prior

These priors are motivated by the neuronal application, where one is interested in characterizing time
zones when neurons are or are not interacting (see Section 3). Random histograms have been studied
quite a lot recently for density estimation, both in semi and non parametric problems. We consider two
types of random histograms: regular partitions and random partitions histograms. Random histogram
priors are defined by: for J ≥ 1,

h̄w,t,J = δ
J∑
j=1

wj
tj − tj−1

1Ij , Ij = (tj−1, tj),

J∑
j=1

wj = 1, δ ∼ Bern(p) (2.10)

8



and
T0 = 0 < t1 < · · · < tJ = 1.

In both cases, the prior is constructed in the following hierarchical manner:

J ∼ ΠJ , e−c1xL1(x) . ΠJ(J = x), ΠJ(J > x) . e−c2xL1(x),

L1(x) = 1 or L1(x) = log x

(w1, . . . , wJ)|J ∼ Πw,

(2.11)

where c1 and c2 are two positive constants. Denoting SJ the J-dimensional simplex, we assume that
the prior on (w1, · · · , wJ) satisfies : for all M > 0, for all w0 ∈ SJ with for any j, w0j ≤ M/J and
all u > 0 small enough, there exists c > 0 such that

Πw

(
(w01 − u/J2, w01 + u/J2)× · · · × (w0J − u/J2, w0J + u/J2)

)
> e−cJ log J . (2.12)

Many probability distributions on SJ satisfy (2.12). For instance, if Πw is the Dirichlet distribution
D(α1,J , · · · , αJ,J) with c3J

−a ≤ αi,J ≤ c4, for a, c3 and c4 three positive constants, then (2.12)
holds, see for instance Castillo and Rousseau (2015). Also, consider the following hierarchical prior
allowing some the of wj’s to be equal to 0. Set

Zj
iid∼ Be(p), j ≤ J, sz =

J∑
j=1

Zj

and (j1, · · · , jsz) the indices corresponding to Zj = 1. Then,

(wj1 , · · ·wjsz ) ∼ D(α1,J , · · · , αsz ,J), c3J
−a ≤ αi,J ≤ c4

wj = 0 if Zj = 0.

Regular partition histograms correspond to tj = j/J for j ≤ J , in which case we write h̄w,J instead of
h̄w,t,J ; while in random partition histograms we put a prior on (t1, · · · , tJ). We now consider Hölder
balls of smoothness β and radius L0, denoted H(β, L0), and prove that the posterior concentration
rate associated with both types of histogram priors is bounded by εT = ε0(log T/T )β/(2β+1) for
0 < β ≤ 1, where ε0 is a constant large enough. From Remark 1, we use the version of assumption
(i) based on

B∞(εT , B) =

{
(νk, (h`,k)`)k : max

k
|νk − ν0

k | ≤ εT , max
`,k
‖h`,k − h0

`,k‖∞ ≤ εT
}
,

and need to verify (2.9). Then applying Lemma 4 of the supplementary material of Castillo and
Rousseau (2015), we obtain for all h̄0 ∈ H(β, L0) and if h̄0 is not the null function

Π
(
‖h̄w,J − h̄0‖∞ ≤ 2L0J

−β|J
)
& pe−cJ log T

for some c > 0 and ΠJ(J = J0b(T/ log T )c1/(2β+1)) & e−c1J0(T/ log T )1/(2β+1)L1(T ) if J0 is a con-
stant. If h̄0 = 0 then

Π
(
‖h̄w,J − h̄0‖∞ = 0

)
= 1− p.

This thus implies that Π (B∞(εT , B)) & pe−c
′Tε2T for some c′ > 0. This result holds both for

the regular grid and random grid histograms with a prior on the grid points (t1, · · · , tJ) given by

9



(u1, · · · , uJ) ∼ D(α, · · · , α) with uj = tj − tj−1. Then condition (2.5) is verified if Π(‖ρ‖ >
1 − u) . e−a

′u−a with a > 3/β and a′ > 0, for u small enough. This condition holds for any
β ∈ (0, 1] if there exist a′, τ > 0 such that when u is small enough

Π (‖ρ‖ > 1− u) . e−a
′e−1/uτ

. (2.13)

Moreover, set F1,T = {h̄w,J , J ≤ J1(T/ log T )1/(2β+1)} for J1 a constant, then for all ζ > 0,

N(ζεT ,F1,T , ‖.‖1) . J1(T/ log T )1/(2β+1) log T.

Therefore, (2.9) is checked. We finally obtain the following corollary.

Corollary 2 (regular partition). Under the random histogram prior (2.10) based on a regular partition
and verifying (2.11) and (2.12) and if (2.13) is satisfied, then if for any k, ` = 1, . . . ,K, h0

k,` belongs
toH(β, L) for 0 < β ≤ 1, then for any wT → +∞,

E0

[
Π
(
‖f − f0‖1 > wT (T/ log T )−β/(2β+1)|N

)]
= o(1).

To extend this result to the case of random partition histogram priors we consider the same prior
on (J,w1, · · · , wJ) as in (2.11) and the following condition on the prior on t = (t1, · · · , tK). Writing
u1 = t1, uj = tj − tj−1, we have that u = (u1, · · · , uJ) belongs to the J-dimensional simplex SJ
and we consider a Dirichlet distribution on (u1, · · · , uJ), D(α, · · · , α) with α ≥ 6.

Corollary 3. Consider the random histogram prior (2.10) based on random partition with a prior on
w satisfying (2.11) and (2.12) and with a Dirichlet prior on u = (tj − tj−1, j ≤ J), with parameter
α ≥ 6. If (2.13) is satisfied, then if for any k, ` = 1, . . . ,K, h0

k,` belongs to H(β, L) for 0 < β ≤ 1,
then for any wT → +∞,

E0

[
Π
(
‖f − f0‖1 > wT (T/ log T )−β/(2β+1)|N

)]
= o(1).

The proof of this corollary is given in Section 4.8. In the following section, we consider another
family of priors suited for smooth functions hk,` and based on mixtures of Beta distributions.

2.3.2 Mixtures of Betas

The following family of prior distributions is inspired by Rousseau (2010). Consider functions

hk,` = ρk,`

(∫ 1

0
gαk,`,εdMk,`(ε)

)
+

, gα,ε(x) =
Γ(α/(ε(1− ε)))

Γ(α/ε)Γ(α/(1− ε))
x

α
1−ε−1(1− x)

α
ε
−1

where Mk,` are bounded signed measures on [0, 1] such that |Mk,`| = 1. In other words the above
functions are the positive parts of mixtures of Betas distributions with parameterization (α/ε, α/(1−
ε)) so that ε is the mean parameter. The mixing random measures Mk,` are allowed to be negative.
The reason for allowing Mk,` to be negative is that hk,` is then allowed to be null on sets with positive
Lebesgue measure. The prior is then constructed in the following way. Writing hk,` = ρk,`h̃k,` we

define a prior on h̃k,` via a prior on Mk,` and on αk,`. In particular we assume that Mk,`
iid∼ ΠM and

αk,`
iid∼ πα. As in Rousseau (2010) we consider a prior on α absolutely continuous with respect to

10



Lebesgue measure and with density satisfying: there exists b1, c1, c2, c3, A,C > 0 such that for all u
large enough,

πα(c1u < α < c2u) ≥ Ce−b1u1/2

πα(α < e−Au) + πα(α > c3u) ≤ Ce−b1u1/2
.

(2.14)

There are many ways to construct discrete signed measures on [0, 1], for instance, writing

M =

J∑
j=1

rjpjδεj , (2.15)

the prior on M is then defined by J ∼ ΠJ and conditionally on J ,

rj
iid∼ Ra(1/2), εj

iid∼ Gε, (p1, · · · , pJ) ∼ D(a1, · · · , aJ),

where Ra denotes the Rademacher distribution taking values {−1, 1} each with probability 1/2.
Assume that Gε has positive continuous density on [0, 1] and that there exists A0 > 0 such that∑J

j=1 aj ≤ A0. We have the following corollary.

Corollary 4. Consider a prior as described above. Assume that for all k, ` ≤ K h0
k,` = (g0

k,`)+ for
some functions g0

k,` ∈ H(β, L0) with β > 0. If condition (2.13) holds and if Gε has density with
respect to Lebesgue measure verifying

xA1(1− x)A1 . gε(x) . x3(1− x)3, for some A1 ≥ 3,

then, for any wT → +∞,

E0

[
Π(‖f − f0‖1 > wTT

−β/(2β+1)(log T )5β/(4β+2)
√

log log T |N)
]

= o(1).

Note that in the context of density estimation, T−β/(2β+1) is the minimax rate and we expect that
it is the same for Hawkes processes.

3 Numerical illustration in the neuroscience context

It’s now well-known that neurons receive and transmit signals as electrical impulses called action
potentials. Although action potentials can vary somewhat in duration, amplitude and shape, they
are typically treated as identical stereotyped events in neural coding studies. Therefore, an action
potential sequence, or spike train, can be characterized simply by a series of all-or-none point events in
time. Multivariate Hawkes processes have been used in neuroscience to model spike trains of several
neurons and in particular to model functional connectivity between them through mutual excitation or
inhibition (Lambert et al., 2018). In this section, we conduct a simulation study mimicking the neural
context, through appropriate choices of parameters. The protocol is similar to the setting proposed in
Section 6 of (Hansen et al., 2015).

11



Figure 1: Scenario 2. True interaction graph between the K = 8 neurons. A directed edge is plotted
from vertex ` to vertex k if the interaction functions hk,` is non-null.

3.1 Simulation scenarios

We consider three simulation scenarios involving respectively K = 2 and K = 8 neurons. The sce-
narios are roughly similar to the one tested in Hansen et al. (2015). Following the notations introduced
in the previous sections, for any (k, `) ∈ {1, . . .K}2, hk,` denotes the interaction function of neuron k
over neuron `. We now describe the three scenarios. The upper bound of each hk,`’s support, denoted
[0, A] is set equal to A = 0.04 seconds.

• Scenario 1: We first consider K = 2 neurons and piecewise constant interactions:

h1,1 = 30 · 1(0,0.02], h2,1 = 30 · 1(0,0.01], h1,2 = 30 · 1(0.01,0.02], h2,2 = 0.

• Scenario 2: In this scenario, we mimic K = 8 neurons belonging to three independent groups.
The non-null interactions are the piecewise constant functions defined as:

h2,1 = h3,1 = h2,2 = h1,3 = h2,3 = h8,5 = h5,6 = h6,7 = h7,8 = 30 · 1(0,0.02].

In Figure 1, we plot the subsequent interactions directed graph between the 8 neurons: the
vertices represent the K neurons and an oriented edge is plotted from vertex k to vertex ` if the
interaction function hk,` is non-null.

• Scenario 3: Setting K = 2, we consider non piecewise constant interactions functions defined
as:

h1,1(t) = 100 · e−100t1(0,0.04](t), h2,1(t) = 30 · 1(0,0.02](t)

h1,2(t) = 1
2×0.004

√
2π
e
− (t−0.02)2

2×0.0042 · 1(0,0.04](t), h2,2(t) = 0.

In all the scenarios, we consider ν` = 20, ` = 1, . . . ,K. For each scenario, we simulate 25 datasets
on the time interval [0, 22] seconds. The Bayesian inference is performed considering recordings on
three possible periods of length T = 5 seconds, T = 10 seconds and T = 20 seconds. For any dataset,
we remove the initial period of 2 seconds –corresponding to 50 times the length of the support of the
hk,`-functions, assuming that, after this period, the Hawkes processes have reached their stationary
distribution.

12



3.2 Prior distribution on f = (ν`, hk,`)l,k∈{1,...,K}

We use the prior distribution described in Section 2.3 setting a log-prior distribution on the ν`’s of
parameter µν , s2

ν . About the interaction functions (hk,`)k,`∈{1,...,K}, the prior distribution is defined
on the set of piecewise constant functions, hk,` being written as follows:

hk,`(t) = δ(k,`)
J(k,`)∑
j=1

β
(k,`)
j 1

[t
(k,`)
j−1 ,t

(k,`)
j ]

(t) (3.1)

with t(k,`)0 = 0 and t(k,`)
J(k,`) = A. Using the notations in Section 2.3, we have β(k,`)

j = ρ(k,`)ω
(k,`)
j .

Here, δ(k,`) is a global parameter of nullity for hk,` : for all (k, `) ∈ {1, . . . ,K}2,

δ(k,`) ∼i.i.d Bern(p). (3.2)

For all (k, `) ∈ {1, . . . ,K}2, the number of steps (J (k,`)) follows a translated Poisson prior distribu-
tion:

J (k,`)|{δ(k,`) = 1} ∼i.i.d. 1 + P(η). (3.3)

To minimize the influence of η on the posterior distribution, we consider an hyperprior distribution on
the hyperparameter η:

η ∼ Γ(aη, bη). (3.4)

Given J (k,`), we consider a spike and slab prior distribution on (β
(k,`)
j )j=1,...,J(k,`) . Let Z(k,`)

j ∈ {0, 1}
denote a sign indicator for each step, we set: ∀j ∈ {1, . . . , J (k,`)}:

P
(
Z

(k,`)
j = z|δ(k,`) = 1

)
= πz, ∀z ∈ {0, 1}

β
(k,`)
j |{δ(k,`) = 1} ∼ Z

(k,`)
j × logN (µβ, s

2
β).

(3.5)

We consider two prior distributions on (t
(k,`)
j )j=1...J(k,`) . The first one (refered as the Regular his-

togram prior) is a regular partition of [0, A]:

t
(k,`)
j =

j

J (k,`)
A ∀j = 0, . . . , J (k,`). (3.6)

The second prior distribution is refered as random histogram prior and specifies:

(u1, . . . , uJ(k,`)) ∼ D(α′1, . . . α
′
J(k,`))

t
(k,`)
0 = 0

t
(k,`)
j = A

∑j
r=1 ur, ∀j = 1, . . . , J (k,`)

(3.7)

In the simulations studies, we set the following hyperparameters:

µβ = 3.5, sβ = 1
µν = 3.5, sν = 1

P(Z
(k,`)
j = 1) = 1/2, P(δ(k,`) = 1) = p = 1/2

α′j = 2, ∀j
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3.3 Posterior sampling

The posterior distribution is sampled using a standard Reversible-jump Markov chain Monte Carlo.
Considering the current parameter (ν,h), ν(c) is proposed using a Metropolis-adjusted Langevin
proposal. For a fixed J (k,`), the heights β(k,`)

j are proposed using a random walk proposing null or
non-null candidates. Changes in the number of steps J (k,`) are proposed by standard birth and death
moves (Green, 1995). In this simulation study, we generate chains of length 30000 removing the first
10000 burn-in iterations. The algorithm is implemented in R on an Intel(R) Xeon(R) CPU E5-1650
v3 @ 3.50GHz.

The computation times (mean over the 25 datasets) are given in Table 1. First note that the computation
time increases roughly as a linear function of T . This is due to the fact that the heavier task in the
algorithm is the integration of the conditional likelihood and the computation time of this operation is
roughly a linear function of the length of the integration (observation) time interval. Besides, because
we implemented a Reversible Jumps algorithm, the computation time is a stochastic quantity: the
algorithm can explore parts of the domain where the number of bins J`k is large, thus increasing the
computation time. This point can explain the unexpected computation times forK = 2. Moreover, we
remark that the computation time explodes as K increases (due to the fact that K2 intensity functions
have to be estimated), reaching computation times greater than a day.

K=2 K=8 K=2 with smooth hk,`
Prior on t Regular Random Regular Random
T=5 1508.44 1002.45 823.84
T=10 1383.72 1459.55 37225.19 1284.93
T=20 2529.19 2602.48 49580.18 1897.17

Table 1: Mean computation time (in seconds) of the MCMC algorithms as a function of the scenario,
the observation time interval and the prior distribution on s. The mean is computed over the 25
simulated datasets

3.4 Results

We describe here the results for each scenario. We first present the L1-distances on λk and hk,` for
all 3 the scenarios, all three length observation times T and the two prior distributions. In Table 2, we
show the estimated L1-distances on λk and hk,`. More precisely, we evaluate the L1-distances on the
interactions functions

D(1) =
1

25

25∑
sim=1

Ê

 1

K2

K∑
k,`=1

∥∥hk,` − h0
k,`

∥∥
1

∣∣∣∣(N sim
t )t∈[0,T ]


and the following stochastic distance :

D(2) =
1

25

25∑
sim=1

Ê
[
d1,T (f, f0))

∣∣∣∣(N sim
t )t∈[0,T ]

]
,

where f0 is the true set of parameters, d1,T (f, f0) has been defined in Section 1.4 and the posterior
expectations are approximated by Monte Carlo method using the outputs of the Reversible Jumps
algorithm.
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As expected, the error decreases as T increases. As we will detail later, the random histogram
prior gives better results than the regular prior. Finally, we perform better when the true interaction
function (hk,`) are step functions (due to the form of the prior distribution).

K=2 K=8 K=2 with smooth hk,`
Prior Regular random Regular random

D(1): stochastic distances
T=5 11.59 9.59 11.75
T=10 7.49 6.32 5.65 9.48
T=20 5.40 4.11 3.17 7.9

D(2): distances on hk,`
T=5 0.1423 0.0996 0.1431
T=10 0.0844 0.0578 0.1199 0.1131
T=20 0.0564 0.0336 0.0616 0.0945

Table 2: L1-distances on hk,` and λk

3.4.1 Results for scenario 1: K = 2 with step functions

When K = 2, we estimate the parameters using both regular and random prior distributions on
(t

(k,`)
j ) (equations (3.6) and (3.7)). One typical posterior distribution of ν` is given in Figure 3 (left),

for a randomly chosen dataset, clearly showing a smaller variance when the length of the observa-
tion interval increases. We also present the global estimation results, over the 25 simulated datasets.
The distribution of the posterior mean estimators for (ν1, ν2) computed for the 25 simulated datasets(
Ê
[
ν`|(N sim

t )t∈[0,T ]

])
sim=1...25

is given in Figure 3 on the right panel, showing an expected decreas-
ing variance for the estimator as T increases. On the top panels the posterior is based on the regular
grid prior while on the bottom the posterior is based on the random (grid) histogram prior: the results
are equivalent.

About the estimation of the interaction functions, for the same given dataset, the estimation of the hk,`
is plotted in Figure 2 (upper panel) for the regular prior, with its credible interval. Its corresponding
estimation with the random prior is given in Figure 2 (bottom panel). For both prior distributions, the
functions are globally well estimated, showing a clear concentration when T increases. The regions
where the interaction functions are null are also well identified. The estimation given with the random
histogram prior is in general better than the one supplied by the regular prior. This may be due to
several factors. First, the random histogram prior leads to a sparser estimation than the regular one.
Secondly, it is easier to design a proposal move in the Reversible Jump algorithm in the former case
than in the latter context.
Moreover, the interaction graph is perfectly inferred since the posterior probability for δ(2,2) to be 0
is almost 1. For the 25 dataset, we estimate the posterior probabilities P̂(δ(k,`) = 1|(N sim

t )t∈[0,T ]) for
k, ` = 1, 2 and sim = 1 . . . 25. In Table 3, we display the mean of these posterior quantities. Even
for the shorter observation time interval (T = 5) these quantities –defining completely the connexion
graph– are well recovered. These results are improved when T increases. Once again, the random
histogram prior (3.7) gives better results.

Finally, we also have a look at the conditional intensities λkt = νk +
∑K

`=1

∫ t−
−∞ h`,k(t−u)dN

(`)
u . On

Figure 4, we plot 50 realizations of the conditional intensity from the posterior distributions. More
precisely, for one given dataset, for 50 parameters θ(i) =

(
(h

(i)
k,`)k,`, (ν

(i)
k )k=1...K

)
sampled from
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Figure 2: Results for scenario 1: Estimation of the (hk,`)k,`=1,2 using the regular prior (upper panel)
and the random histogram prior (bottom panel). The gray region indicates the credible region for
hk,`(t) (delimited by the 5% and 95% percentiles of the posterior distribution). The true hk,` is in
plain line, the posterior expectation and posterior median for hk,`(t) are in dotted and dashed lines
respectively.
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Figure 3: Results for scenario 1: On the left, posterior distribution of (ν1, ν2) with T = 5,
T = 10 and T = 20 for one dataset. On the right, distribution of the posterior mean of (ν1, ν2)(
Ê
[
ν`|(N sim

t )t∈[0,T ]

])
sim=1...25

over the 25 simulated datasets. Top : regular histogram; bottom :
random histogram

the posterior distribution (obtained at the end of the MCMC chain), we compute the corresponding
(λ
k(i)
t ) and plot them. For the sake of clarity, only the conditional intensity of the first process (k = 1)

is plotted and we restrict the graph to a short time interval [3.2, 3.6]. As noticed before, the condi-
tional intensity is well reconstructed, with a clear improvement of the precision as the length of the
observation time T increases.

3.4.2 Results for scenario 2: K = 8

In this scenario, we perform the Bayesian inference using only the regular prior distribution on
(t(k,`))(k,`)∈{1,...,K}2 and two lengths of observation interval (T = 10 and T = 20). Here we set
aη = 3 and bη = 1.

The posterior distribution of the (νk)k=1...K for a randomly chosen dataset is plotted in Figure 5. The
prior distribution is in dotted line and is flat. The posterior distribution concentrates around the true
value (here 20) with a smaller variance when T increases.

In the context of neurosciences, we are especially interested in recovering the interaction graph of the
K = 8 neurons. In Figure 7, we consider the same dataset as the one used in Figure 5 and plot the
posterior estimation of the interaction graph, for respectively T = 10 on the left and T = 20 on the
right. The width and the gray level of the edges are proportional to the estimated posterior probability
P̂(δ(k,`) = 1|(Nt)t∈[0,T ]). The global structure of the graph is recovered (to be compared to the true
graph plotted in Figure 1). We observe that the false positive edges appearing when T = 10 disappear
when T = 20. In Figure 8, we consider the mean of the estimates of the graph over the 25 datasets.
The resulting graph for T = 10 is on the left and for T = 20 on the right.

17



` over k 1 over 1 1 over 2 2 over 1 2 over 2

True value of δ(k,`) 1 1 1 0

Prior

T = 5
Regular 1.0000 0.8970 1.0000 0.0071

Continous 1.0000 0.9812 1.0000 0.0196

T = 10
Regular 1.0000 0.9954 1.0000 0.0047

Continous 1.0000 1.0000 1.0000 0.0102

T = 20
Regular 1.0000 1.0000 1.0000 0.0099
random 1.0000 1.0000 1.0000 0.0102

Table 3: Scenario 1, K=2. Mean of the posterior estimations: 1
25

∑25
sim=1 P̂(δ(k,`) =

1|(N sim
t )t∈[0,T ]), for the three observation time intervals and the two prior distributions.

Note that, in this example, for any (k, `) such that the true δ(k,`) = 1, the estimated posterior proba-
bility P̂(δ(k,`) = 1|(N sim

t )t∈[0,T ]) is equal to 1, for any dataset and any length of observation interval.
In other words, the non-null interactions are perfectly recovered. In a simulation scenario with other
interaction functions, the results could have been different.
In Figure 6, we plot the posterior means (with credible regions) of the non-null interaction functions
for the same simulated dataset as in Figure 7. The time intervals where the interaction functions
are null are again perfectly recovered. The posterior incertainty around the non-null functions hk,`
decreases when T increases.

3.4.3 Results for scenario 3 : K = 2 with smooth functions

In this context, we perform the inference using the random histogram prior distribution (3.7). In this
case, we set aη = 10 and bη = 1. thus encouraging a greater number of step in the interactions
functions. The behavior of the posterior distribution of νk is the same as in the other examples.
In Figure 9, we plot the distribution of

(
E
[
νk|(N sim

t )t∈[0,T ]

])
sim=1...25

for T = 5, 10, 20 seconds
and clearly observe a decrease of the biais and the variance as the length of the observation period
increases. Some estimation of the interaction functions are given in Figure 10. Due to the choice of
the prior distribution of these quantities, we get a sparse posterior inference.

4 Proofs of Theorems

4.1 Proof of Theorem 1

To prove Theorem 1, we apply the general methodology of Ghosal and van der Vaart (2007a), with
modifications due to the fact that exp(LT (f)) is the likelihood of the distribution of (Nk)k=1,...,K

on [0, T ] conditional on G0− and that the metric d1,T depends on the observations. We set MT =
M
√

log log T , for M a positive constant. Let

Aε = {f ∈ F ; d1,T (f0, f) ≤ Kε}

and for j ≥ 1, we set

Sj = {f ∈ FT ; d1,T (f, f0) ∈ (KjεT ,K(j + 1)εT ]} , (4.1)
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Figure 4: Scenario 1. Conditional intensity λ1
t : 50 realizations of λ1

t from the posterior distribution
for one particular dataset and 3 lengths of observation interval (T = 5 on the first row T = 10 on the
second row, and T = 20 on the third row). True conditional intensity in black plain line.

where FT = {f = ((νk)k, (hk,`)k,`) ∈ F ; (hk,`)k,`) ∈ HT }. So that, for any test function φ,

Π
(
AcMT εT

|N
)

=

∫
AcMT εT

eLT (f)−LT (f0)dΠ(f)∫
F e

LT (f)−LT (f0)dΠ(f)
=:

N̄T

DT

≤ 1ΩcT
+ 1{

DT<
Π(B(εT ,T ))

exp(2(κT+1)Tε2
T

)

} + φ1ΩT +
e2(κT+1)Tε2T

Π(B(εT , T ))

∫
FcT
eLT (f)−LT (f0)dΠ(f)

+ 1ΩT

e2(κT+1)Tε2T

Π(B(εT , T ))

∞∑
j=MT

∫
FT

1f∈Sje
LT (f)−LT (f0)(1− φ)dΠ(f)

and

E0

[
Π
(
AcMT εT

|N
)]
≤ P0(Ωc

T ) + P0

(
DT < e−2(κT+1)Tε2TΠ(B(εT , B))

)
+ E0[φ1ΩT ]

+
e2(κT+1)Tε2T

Π(B(εT , B))

Π(FcT ) +
∞∑

j=MT

∫
FT

E0

[
Ef
[
1ΩT1f∈Sj (1− φ)|G0−

]]
dΠ(f)

 ,

since

E0

[∫
FcT
eLT (f)−LT (f0)dΠ(f)

]
= E0

[
E0

[∫
FcT
eLT (f)−LT (f0)dΠ(f)|G0−

]]
= E0

[
Ef

[∫
FcT
dΠ(f)|G0−

]]
= Π(FcT ).
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Figure 5: Scenario 2: Results on (ν`)k=1...K for a particular dataset: Prior distribution (dotted line),
Posterior distributions for T = 10 ( dashed line) and T = 20 (plain line)
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Figure 6: Scenario 2: Estimation of the non null interaction functions (hk,`)k,`=1,...,8 using the regular
prior for T = 10 (upper panel) and T = 20 (bottom). The gray region indicates the credible region
for hk,`(t) (delimited by the 5% and 95% percentiles of the posterior distribution). The true hk,` is
in plain line, the posterior expectation and posterior median for hk,`(t) are in dotted and dashed lines
respectively (often undistinguishable).
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Figure 7: Results for scenario 2 for one given dataset: Posterior estimation of the interaction graph
for T = 10 on the left and T = 20 on the right, for one randomly chosen dataset. Level of grey and
width of the edges proportional to the posterior estimated probability of P̂(δ(k,`) = 1|(N sim

t )t∈[0,T ]).

Figure 8: Results for scenario 2 over the 25 simulated datasets: Posterior estimation of the inter-
action graph for T = 10 on the left and T = 20 on the right. Level of grey and width of the edges are
proportional to the posterior estimated probability of 1

25

∑25
sim=1 P̂(δ(k,`) = 1|(N sim

t )t∈[0,T ]).
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Figure 9: Results for scenario 3 : smooth interaction functions: Distributions of(
E
[
νk|(N sim

t )t∈[0,T ]

])
sim=1...25

for T = 5, 10, 20 seconds (long dashed, short dashed and plain line
respectively).
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Figure 10: Results for scenario 3 : smooth interaction functions: Estimation of the interaction
functions (hk,`)k,`=1,2 using the regular prior for T = 10 (upper panel) and T = 10 (bottom). The
gray region indicates the credible region for hk,`(t) (delimited by the 5% and 95% percentiles of the
posterior distribution). The true hk,` is in plain line, the posterior expectation and posterior median
for hk,`(t) are in dotted and dashed lines respectively (often undistinguishable).
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Since e(κT+1)Tε2T eLT (f)−LT (f0) ≥ 1{LT (f)−LT (f0)≥−(κT+1)Tε2T},

P0

(
DT ≤ e−2(κT+1)Tε2TΠ(B(εT , B))

)
≤ P0

(∫
B(εT ,B)

eLT (f)−LT (f0) dΠ(f)

Π(B(εT , B))
≤ e−2(κT+1)Tε2T

)

≤ P0

(∫
B(εT ,B)

1{LT (f)−LT (f0)≥−(κT+1)Tε2T}
dΠ(f)

Π(B(εT , B))
≤ e−(κT+1)Tε2T

)

≤
E0

[∫
B(εT ,B) 1{LT (f)−LT (f0)<−(κT+1)Tε2T}

dΠ(f)
Π(B(εT ,B))

]
(

1− e−(κT+1)Tε2T

)
≤

∫
B(εT ,B) P0

(
LT (f0)− LT (f) > (κT + 1)Tε2T

)
dΠ(f)

Π(B(εT , B))
(

1− e−(κT+1)Tε2T

)
.

log log(T ) log3(T )

Tε2T
,

by using Lemma 2 of Section 4.4. Remember we have set ρ0
k,` := ‖h0

k,`‖1 and ρk,` := ‖hk,`‖1. Since

hk,` and h0
k,` are non-negative functions,

∫ A
−s h

0
k,`(u)du ≤ ρ0

k,`,
∫ T−s

0 h0
k,`(u)du ≤ ρ0

k,`, and note
that

Td1,T (f, f0) =
K∑
`=1

∫ T

0

∣∣∣∣∣ν` − ν0
` +

K∑
k=1

∫ t−

t−A
(hk,` − h0

k,`)(t− s)dNk
s

∣∣∣∣∣ dt
≥

K∑
`=1

∣∣∣∣∣
∫ T

0

(
ν` − ν0

` +

K∑
k=1

∫ t−

t−A
(hk,` − h0

k,`)(t− s)dNk
s

)
dt

∣∣∣∣∣
≥

K∑
`=1

∣∣∣∣∣T (ν` − ν0
` ) +

∫ T

0

(
K∑
k=1

∫ t−

t−A
(hk,` − h0

k,`)(t− s)dNk
s

)
dt

∣∣∣∣∣ ,
then for any ` = 1, . . . ,K,

d1,T (f, f0) ≥

∣∣∣∣∣ν` − ν0
` +

1

T

K∑
k=1

∫ T

0

∫ t−

t−A
(hk,` − h0

k,`)(t− s)dNk
s dt

∣∣∣∣∣
=

∣∣∣∣∣ν` − ν0
` +

K∑
k=1

(ρk,` − ρ0
k,`)

Nk[0, T −A]

T

+
1

T

∫ 0

−A

∫ A

−s
(hk,` − h0

k,`)(u)dudNk
s +

1

T

∫ T−

T−A

∫ T−s

0
(hk,` − h0

k,`)(u)dudNk
s

∣∣∣∣∣
=

∣∣∣∣∣ν` +
K∑
k=1

ρk,`
Nk[0, T −A]

T
+

1

T

∫ 0

−A

∫ A

−s
hk,`(u)dudNk

s +
1

T

∫ T−

T−A

∫ T−s

0
hk,`(u)dudNk

s

−

(
ν0
` +

K∑
k=1

ρ0
k,`

Nk[0, T −A]

T
+

1

T

∫ 0

−A

∫ A

−s
h0
k,`(u)dudNk

s +
1

T

∫ T−

T−A

∫ T−s

0
h0
k,`(u)dudNk

s

)∣∣∣∣∣ .
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This implies for f ∈ Sj that

ν` +
K∑
k=1

ρk,`
Nk[0, T −A]

T
≤ ν0

` +
K∑
k=1

ρ0
k,`

Nk[−A, T ]

T
+K(j + 1)εT

ν` +
K∑
k=1

ρk,`
Nk[−A, T ]

T
≥ ν0

` +
K∑
k=1

ρ0
k,`

Nk[0, T −A]

T
−K(j + 1)εT .

(4.2)

On ΩT ,
K∑
k=1

ρ0
k,`

Nk[−A, T ]

T
≤

K∑
k=1

ρ0
k,`(µ

0
k + δT ),

so that, for T large enough, for all j ≥ 1 Sj ⊂ Fj with

Fj := {f ∈ FT ; ν` ≤ µ0
` + 1 +KjεT ,∀` ≤ K},

since

µ0
` = ν0

` +

K∑
k=1

ρ0
k,`µ

0
k. (4.3)

Let (fi)i=1,...,Nj be the centering points of a minimal L1-covering of Fj by balls of radius ζjεT with
ζ = 1/(6N0) (with N0 defined in Section 2) and define φ(j) = maxi=1,...,Nj φfi,j where φfi,j is the
individual test defined in Lemma 1 associated to fi and j (see Section 4.3). Note also that there exists
a constant C0 such that

Nj ≤ (C0(1 + jεT )/jεT )K N (ζjεT /2,HT , ‖.‖1)

where N (ζjεT /2,HT , ‖.‖1) is the covering number of HT by L1-balls with radius ζjεT /2. There
exists CK such that if jεT ≤ 1 then Nj ≤ CKe

−K log(jεT )N (ζjεT /2,HT , ‖.‖1) and if jεT > 1 then
Nj ≤ CKN(ζjεT /2,HT , ‖.‖1). Moreover j 7→ N (ζjεT /2,HT , ‖.‖1) is monotone non-increasing,
choosing j ≥ 2ζ0/ζ, we obtain that

Nj ≤ CK(ζ/ζ0)KeK log T ex0Tε2T ,

from hypothesis (iii) in Theorem 1. Combining this with Lemma 1, we have for all j ≥ 2ζ0/ζ,

E0[1ΩT φ(j)] . Nje−Tx2(jεT∧j2ε2T ) . eK log T ex0Tε2T e−x2T (jεT∧j2ε2T )

sup
f∈Fj

E0

[
Ef [1ΩT1f∈Sj (1− φ(j))|G0− ]

]
. e−x2T (jεT∧j2ε2T ),

for x2 a constant. Set φ = maxj≥MT
φ(j) with MT > 2ζ0/ζ, then

E0[1ΩT φ] . eK log T ex0Tε2T

 bε−1
T c∑

j=MT

e−x2Tε2T j
2

+
∑
j≥ε−1

T

e−Tx2εT j

 . e−x2Tε2TM
2
T /2

and
∞∑

j=MT

∫
FT

E0

[
Ef
[
1ΩT1f∈Sj (1− φ)|G0−

]]
dΠ(f) . e−x2Tε2TM

2
T /2.
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Therefore,

e2(κT+1)Tε2T

Π(B(εT , B))

∞∑
j=MT

∫
FT

E0

[
Ef
[
1ΩT1f∈Sj (1− φ)|G0−

]]
dΠ(f) = o(1)

if M is a constant large enough, which terminates the proof of Theorem 1.

4.2 Proof of Theorem 2

The proof of Theorem 2 follows the same lines as for Theorem 1, except that the decomposition of
FT is based on the sets Fj andHT,i, i ≥ 1 and j ≥MT for some MT > 0. For each i ≥ 1, j ≥MT ,
consider S′i,j a maximal set of ζjεT -separated points in Fj ∩ HT,i (with a slight abuse of notations)
and φi,j = maxf1∈S′i,j φf1 with φf1 defined in Lemma 1. Then,

|S′i,j | ≤ CK(ζ/ζ0)KeK log(T )N (ζjεT /2,HT,i, ‖.‖1).

Setting N̄T,ij :=
∫
FT∩HT,i 1f∈Sje

LT (f)−LT (f0)dΠ(f), using similar computations as for the proof of
Theorem 1, we have:

E0

[
Π
(
AcMT εT

|N
)]
≤ P0(Ωc

T ) + P0

(
DT < e−2(κT+1)Tε2TΠ(B(εT , B))

)
+

e2(κT+1)Tε2T

Π(B(εT , B))
Π(FcT )

+ E0

1ΩT

+∞∑
i=1

+∞∑
j=MT

φij
N̄T,ij

DT

+
e2(κT+1)Tε2T

Π(B(εT , B))
E0

1ΩT

+∞∑
i=1

+∞∑
j=MT

(1− φij)N̄T,ij

 .
Assumptions of the theorem allow us to deal with the first three terms. So, we just have to bound the
last two ones. Using the same arguments and the same notations as for Theorem 1,

E0

1ΩT

+∞∑
i=1

+∞∑
j=MT

(1− φij)N̄T,ij

 =
+∞∑
i=1

∫
FT∩HT,i

+∞∑
j=MT

E0

[
1ΩT1f∈Sj (1− φij)e

LT (f)−LT (f0)
]
dΠ(f)

=
+∞∑
i=1

∫
FT∩HT,i

+∞∑
j=MT

E0

[
Ef [1ΩT1f∈Sj (1− φij)|G0− ]

]
dΠ(f)

.
+∞∑
i=1

∫
FT∩HT,i

dΠ(f)

+∞∑
j=MT

e−x2T (jεT∧j2ε2T ) . e−x2Tε2TM
2
T /2.

Now, for γ a fixed positive constant smaller than x2, setting πT,i = Π(HT,i), we have

E0

1ΩT

+∞∑
i=1

+∞∑
j=MT

φij
N̄T,ij
DT

 ≤ P0

(
DT < e−2(κT +1)Tε2T Π(B(εT , B))

)
+ P0

(
∃(i, j);√πT,iφi,j > e−γT (jεT∧j2ε2T ) ∩ ΩT

)

+

+∞∑
i=1

+∞∑
j=MT

e−γT (jεT∧j2ε2T )√πT,i
e2(κT +1)Tε2T

Π(B(εT , B))
E0

[
1ΩT

∫
FT

1f∈Sj
eLT (f)−LT (f0)dΠ(f |HT,i)

]
.
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Now,

P0

(
∃(i, j);√πT,iφi,j > e−γT (jεT∧j2ε2T ) ∩ ΩT

)
≤

+∞∑
i=1

√
πT,i

+∞∑
j=MT

eγT (jεT∧j2ε2T )E0[1ΩT φi,j ]

.
+∞∑
i=1

√
πT,i

+∞∑
j=MT

e(γ−x2)T (jεT∧j2ε2T )+K log(T )N (ζjεT /2,HT,i, ‖.‖1)

. e(γ−x2)Tε2TM
2
T /2

+∞∑
i=1

√
πT,iN (ζ0εT ,HT,i, ‖.‖1) = o(1).

But, we have

E0

[
1ΩT

∫
FT

1f∈Sje
LT (f)−LT (f0)dΠ(f |HT,i)

]
≤ 1

and

E0

1ΩT

+∞∑
i=1

+∞∑
j=MT

φij
N̄T,ij

DT

 .
+∞∑
i=1

√
πT,ie

−γTε2TM
2
T
e2(κT+1)Tε2T

Π(B(εT , B))
+ o(1) = o(1),

for M a contant large enough. This terminates the proof of Theorem 2.

4.3 Construction of tests

As usual, the control of the posterior distributions is based on specific tests. We build them in the
following lemma.

Lemma 1. Let j ≥ 1, f1 ∈ Fj and define the test

φf1,j = max
`=1,...,K

(
1{N`(A1,`)−Λ`(A1,`;f0)≥jT εT /8} ∨ 1{N`(Ac1,`)−Λ`(Ac1,`;f0)≥jT εT /8}

)
,

with for all ` ≤ K, A1,` = {t ∈ [0, T ]; λ`t(f1) ≥ λ`t(f0)}, Λ`(A1,`; f0) =
∫ T

0 1A1,`
(t)λ`t(f0)dt and

Λ`(Ac1,`; f0) =
∫ T

0 1Ac1,`(t)λ
`
t(f0)dt. Then

E0 [1ΩT φf1,j ]+ sup
‖f−f1‖1≤jεT /(6N0)

E0

[
Ef
[
1ΩT1f∈Sj (1− φf1,j)|G0−

]]
≤ (2K+1) max

`
e−x1,`TjεT (

√
µ0
`∧jεT ),

with N0 is defined in Section 2 and

x1,` = min

(
36, 1/(4096µ0

` ), 1/

(
1024K

√
µ0
`

))
.

Proof of Lemma 1. Let j ≥ 1 and f1 = ((ν1
k)k=1,...,K , (h

1
`,k)k,`=1,...,K) ∈ Fj . Let ` ∈ {1, . . . ,K}

and let
φj,A1,`

= 1{N`(A1,`)−Λ`(A1,`;f0)≥jT εT /8}.
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By using (4.3), observe that on the event ΩT ,∫ T

0
λ`s(f0)ds = ν0

` T +
K∑
k=1

∫ T

0

∫ s−

s−A
h0
k,`(s− u)dNk

uds

≤ ν0
` T +

K∑
k=1

∫ T−

−A

∫ T

0
1u<s≤A+uh

0
k,`(s− u)dsdNk

u

and for T large enough,∫ T

0
λ`s(f0)ds ≤ ν0

` T +

K∑
k=1

ρ0
k,`N

k[−A, T ] ≤ 2Tµ0
` . (4.4)

Let j ≤
√
µ0
`ε
−1
T and x = x1j

2Tε2T , for x1 a constant. We use inequality (7.7) of Hansen et al.

(2015), with τ = T , Ht = 1A1,`
(t), v = 2Tµ0

` and MT = N `(A1,`)− Λ`(A1,`; f0). So,

P0

({
N `(A1,`)− Λ`(A1,`; f0) ≥

√
2vx+

x

3

}
∩ ΩT

)
≤ e−x1j2Tε2T .

If x1 ≤ 1/(1024µ0
` ) and x1 ≤ 36, we have that

√
2vx+

x

3
= 2
√
µ0
`x1jT εT +

x1j
2Tε2T
3

≤ 2
√
µ0
`x1

(
1 +

√
x1

6

)
jT εT ≤

jT εT
8

. (4.5)

Then

P0

({
N `(A1,`)− Λ`(A1,`; f0) ≥ jT εT

8

}
∩ ΩT

)
≤ e−x1j2Tε2T .

If j ≥
√
µ0
`ε
−1
T , we apply the same inequality but with x = x0jT εT with x0 =

√
µ0
` × x1. Then,

√
2vx+

x

3
= 2

√
µ0
`x1

√
µ0
`jεTT +

x1

√
µ0
`jT εT

3
≤ 2
√
µ0
`x1jT εT +

x1

√
µ0
`jT εT

3
≤ jT εT

8
,

where we have used (4.5). It implies

P0

({
N `(A1,`)− Λ`(A1,`; f0) ≥ jT εT

8

}
∩ ΩT

)
≤ e−x0jT εT .

Finally E0

[
1ΩT φj,A1,`

]
≤ e−x1TjεT (

√
µ0
`∧jεT ). Now, assume that∫

A1,`

(λ`t(f1)− λ`t(f0))dt ≥
∫
Ac1,`

(λ`t(f0)− λ`t(f1))dt.

Then
‖λ`(f1)− λ`(f0)‖1

2
:=

∫ T
0 |λ

`
t(f1)− λ`t(f0)|dt

2
≤
∫
A1,`

(λ`t(f1)− λ`t(f0))dt. (4.6)
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Let f = ((νk)k=1,...,K , (h`,k)k,`=1,...,K) ∈ Sj satisyfing ‖f − f1‖1 ≤ ζjεT for some ζ > 0. Then,

‖λ`(f)− λ`(f1)‖1 ≤ T |ν` − ν1
` |+

∫ T

0

∣∣∣∣∣
∫ t−

t−A

∑
k

(hk,` − h1
k,`)(t− u)dNk

u

∣∣∣∣∣ dt
≤ T |ν` − ν1

` |+
∑
k

∫ T

0

∫ t−

t−A
|(hk,` − h1

k,`)(t− u)|dNk
udt

≤ T |ν` − ν1
` |+ max

k
Nk[−A, T ]

∑
k

‖hk,` − h1
k,`‖1 ≤ TN0‖f − f1‖1

(4.7)

and ‖λ`(f)− λ`(f1)‖1 ≤ TN0ζjεT . Since f ∈ Sj , there exists ` (depending on f ) such that

‖λ`(f)− λ`(f0)‖1 ≥ jT εT .

This implies in particular that if N0ζ < 1,

‖λ`(f1)− λ`(f0)‖1 ≥ ‖λ`(f)− λ`(f0)‖1 − TN0ζjεT ≥ (1−N0ζ)TjεT .

We then have

Λ`(A1,`; f)− Λ`(A1,`; f0) = Λ`(A1,`; f)− Λ`(A1,`; f1) + Λ`(A1,`; f1)− Λ`(A1,`; f0)

≥ −‖λ`(f)− λ`(f1)‖1 +

∫
A1,`

(λ`t(f1)− λ`t(f0))dt

≥ −‖λ`(f)− λ`(f1)‖1 +
‖λ`(f1)− λ`(f0)‖1

2

≥ −TN0ζjεT +
(1−N0ζ)TjεT

2
= (1/2− 3N0ζ/2)TjεT .

Taking ζ = 1/(6N0) leads to

Ef
[
1f∈Sj (1− φj,A1,`

)1ΩT |G0−
]

= Ef
[
1f∈Sj1{N`(A1,`)−Λ`(A1,`;f0)<jTεT /8}1ΩT |G0−

]
≤ Ef

[
1f∈Sj1{N`(A1,`)−Λ`(A1,`;f)≤−jT εT /8}1ΩT |G0−

]
≤ Ef

[
1{N`(A1,`)−Λ`(A1,`;f)≤−jT εT /8}1ΩT |G0−

]
.

Note that we can adapt inequality (7.7) of Hansen et al. (2015), with Ht = 1A1,`
(t) to the case of

conditional probability given G0− since the process Et defined in the proof of Theorem 3 of Hansen
et al. (2015), being a supermartingale, satisfies Ef [Et|G0− ] ≤ E0 = 1 and, given that from (4.2) and
(4.4), ∫ T

0
λ`s(f)ds ≤ ν`T +

K∑
k=1

ρk,`N
k[−A, T ] ≤ 2Tµ0

` +K(j + 1)TεT =: ṽ

for T large enough, we obtain:

Ef
[
1{N`(A1,`)−Λ`(A1,`;f)≤−

√
2ṽx−x

3}1ΩT |G0−

]
≤ e−x.
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We use the same computations as before, observing that ṽ = v +K(j + 1)TεT .

If j ≤
√
µ0
`ε
−1
T we set x = x1j

2Tε2T , for x1 a constant. Then,

√
2ṽx+

x

3
≤
√

2vx+
x

3
+
√

2K(j + 1)TεTx

≤ 2
√
µ0
`x1jT εT +

x1j
2Tε2T
3

+
√

2K(j + 1)εTx1jT εT

≤ 2
√
µ0
`x1

(
1 +

√
x1

6

)
jT εT + 2

√
KjεTx1jT εT

≤

(
2
√
µ0
`x1

(
1 +

√
x1

6

)
+ 2

√
K
√
µ0
`x1

)
jT εT .

Therefore, if x1 ≤ min
(

36, 1/(4096µ0
` ), 1/

(
1024K

√
µ0
`

))
, then

√
2ṽx+

x

3
≤ jT εT

8
.

If j ≥
√
µ0
`ε
−1
T , we set x = x0jT εT with x0 =

√
µ0
` × x1. Then,

√
2ṽx+

x

3
≤
√

2vx+
x

3
+
√

2K(j + 1)TεTx

≤ 2

√
µ0
`x1

√
µ0
`jεTT +

x1

√
µ0
`jT εT

3
+

√
2K(j + 1)TεT

√
µ0
`x1jT εT

≤ 2
√
µ0
`x1jT εT +

x1

√
µ0
`jT εT

3
+ 2

√
K
√
µ0
`x1jT εT ≤

jT εT
8

.

Therefore,
Ef
[
1{N`(A1,`)−Λ`(A1,`;f)≤−jT εT /8}1ΩT |G0−

]
≤ e−x1TjεT (

√
µ0
`∧jεT ).

Now, if ∫
A1,`

(λ`t(f1)− λ`t(f0))dt <

∫
Ac1,`

(λ`t(f0)− λ`t(f1))dt,

then ∫
Ac1,`

(λ`t(f1)− λ`t(f0))dt ≥ ‖λ
`(f1)− λ`(f0)‖1

2

and the same computations are run withA1,` playing the role ofAc1,`. This ends the proof of Lemma 1.

4.4 Control of the denominator

The following lemma gives a control of DT .

Lemma 2. Let
KL(f0, f) = E0[LT (f0)− LT (f)].

On B(εT , B),
0 ≤ KL(f0, f) ≤ κ log(r−1

T )Tε2T , (4.8)
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for T larger than T0, with T0 some constant depending on f0, with

κ = 4
K∑
k=1

(ν0
k)−1

(
3 + 4K

K∑
`=1

(
AE0[(λ`0(f0))2] + E0[λ`0(f0)]

))
(4.9)

and rT is defined in (4.11).

P0

(
LT (f0)− LT (f) ≥ (κ log(r−1

T ) + 1)Tε2T
)
≤ C log log(T ) log3(T )

Tε2T
, (4.10)

for C a constant only depending on f0 and B.

Proof. We consider the set Ω̃T defined in Lemma 3 and we set NT = Cα log T . We have:

KL(f0, f) =
K∑
k=1

E0

[∫ T

0
log

(
λkt (f0)

λkt (f)

)
dNk

t −
∫ T

0

(
λkt (f0)− λkt (f)

)
dt

]

=

K∑
k=1

E0

[∫ T

0
log

(
λkt (f0)

λkt (f)

)
λkt (f0)dt−

∫ T

0

(
λkt (f0)− λkt (f)

)
dt

]

=
K∑
k=1

E0

[∫ T

0
Ψ

(
λkt (f)

λkt (f0)

)
λkt (f0)dt

]
,

where for u > 0, Ψ(u) := − log(u)− 1 + u ≥ 0. First, observe that on Ω̃T ∩B(εT , B),

λkt (f)

λkt (f0)
≥ νk

ν0
k +

∑K
`=1

∫ t−
t−A h

0
`,k(t− u)dN `(u)

≥
mink ν

0
k − εT

maxk ν
0
k + max`,k ‖h0

`,k‖∞KNT
=: rT .

(4.11)
Furthermore, observe that for u ∈ [rT , 1/2), Ψ(u) ≤ log(r−1

T ), since rT = o(1). And for all u ≥ 1/2,
Ψ(u) ≤ (u− 1)2. Finally, for any u ≥ rT ,

Ψ(u) ≤ 4 log(r−1
T )(u− 1)2.

Therefore, on B(εT , B), we have

0 ≤ KL(f0, f) ≤ 4 log(r−1
T )

K∑
k=1

E0

[∫ T

0

(λkt (f0)− λkt (f))2

λkt (f0)
1Ω̃T

dt

]
+RT

≤ 4 log(r−1
T )

K∑
k=1

(ν0
k)−1E0

[∫ T

0
(λkt (f0)− λkt (f))2dt

]
+RT

where

RT =

K∑
k=1

E0

[
1Ω̃cT

∫ T

0

(
− log

(
λkt (f)

λkt (f0)

)
− 1 +

λkt (f)

λkt (f0)

)
λkt (f0)dt

]
.

We first deal with the first term. Using stationarity of the process and Proposition 2 of Hansen et al.
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(2015)

E0

[∫ T

0
(λkt (f0)− λkt (f))2dt

]
≤ 2T (ν0

k − νk)2 + 2

∫ T

0
E0

( K∑
`=1

∫ t−

t−A
(h`,k − h0

`,k)(t− u)dN `(u)

)2
 dt

≤ 2Tε2T + 4K

∫ T

0
E0

 K∑
`=1

(∫ t−

t−A
(h`,k − h0

`,k)(t− u)λ`u(f0)du

)2
 dt

+ 4K

∫ T

0
E0

 K∑
`=1

(∫ t−

t−A
(h`,k − h0

`,k)(t− u)
(
dN `

u − λ`u(f0)du
))2

 dt
≤ 2Tε2T + 4K

K∑
`=1

‖h`,k − h0
`,k‖22

∫ T

0

∫ t−

t−A
E0[(λ`u(f0))2]dudt

+ 4K

∫ T

0

K∑
`=1

∫ t−

t−A
(h`,k − h0

`,k)
2(t− u)E0

[
λ`u(f0)

]
dudt

≤ 2Tε2T + 4KT
K∑
`=1

‖h`,k − h0
`,k‖22

(
AE0[(λ`0(f0))2] + E0[λ`0(f0)]

)
≤ Tε2T

(
2 + 4K

K∑
`=1

(
AE0[(λ`0(f0))2] + E0[λ`0(f0)]

))
.

We now deal with RT . We have, on B(εT , B),

λkt (f)

λkt (f0)
≤ (ν0

k)−1

(
νk +

K∑
`=1

‖h`,k‖∞ sup
t∈[0,T ]

N `([t−A, t))

)
(4.12)

≤ (ν0
k)−1

(
ν0
k + εT +B

K∑
`=1

sup
t∈[0,T ]

N `([t−A, t))

)
. (4.13)

Conversely,

λkt (f)

λkt (f0)
≥ (ν0

k − εT )

(
ν0
k +

K∑
`=1

‖h0
`,k‖∞ sup

t∈[0,T ]
N `([t−A, t))

)−1

. (4.14)

So, using Lemma 3, if α is an absolute constant large enough, RT = o(1) and

RT = o(Tε2T ).

Choosing κ = 4
∑K

k=1(ν0
k)−1

(
3 + 4K

∑K
`=1

(
AE0[(λ`0(f0))2] + E0[λ`0(f0)]

))
terminates the proof

of (4.8). Note that if B(εT , B) is replaced with B∞(εT , B) (see Remark 1) then

λkt (f)

λkt (f0)
≤ 1 +

|νk − ν0
k |+

∑
` ‖h`,k − h`,k‖∞NT
ν0
k

and
λkt (f)

λkt (f0)
≥ 1−

|νk − ν0
k |+

∑
` ‖h`,k − h`,k‖∞NT
ν0
k
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so that we can take rT = 1/2 and RT = o(Tε2T ).
We now study

LT := LT (f0)− LT (f)− E0[LT (f0)− LT (f)].

We have for any integer QT such that x := T/(2QT ) > A,

LT (f0)− LT (f) =
K∑
k=1

(∫ T

0
log

(
λkt (f0)

λkt (f)

)
dNk

t −
∫ T

0

(
λkt (f0)− λkt (f)

)
dt

)

=

QT−1∑
q=0

∫ 2qx+x

2qx

K∑
k=1

(
log

(
λkt (f0)

λkt (f)

)
dNk

t −
(
λkt (f0)− λkt (f)

)
dt

)

+

QT−1∑
q=0

∫ 2qx+2x

2qx+x

K∑
k=1

(
log

(
λkt (f0)

λkt (f)

)
dNk

t −
(
λkt (f0)− λkt (f)

)
dt

)

=:

QT−1∑
q=0

Fq +

QT−1∑
q=0

F̃q.

Note that Fq is a measurable function of the points of N appearing in [2qx − A; 2qx + x) denoted
by F(N|[2qx−A;2qx+x)). Using Proposition 3.1 of Reynaud-Bouret and Roy (2006), we consider an
i.i.d. sequence (Mx

q )q=0,...,QT−1 of Hawkes processes with the same distribution as N but restricted
to [2qx−A; 2qx+ x) and such that for all q, the variation distance between Mx

q and N|[2qx−A;2qx+x)

is less than 2P0(Te > x−A), where Te is the extinction time of the process. We then set for any q,

Gq = F(Mx
q ).

We have built an i.i.d. sequence (Gq)q=0,...,QT−1 with the same distributions as the Fq’s. Furthermore,
for any q,

P0(Fq 6= Gq) ≤ 2P0(Te > x−A).

We now have, by stationarity

P0(LT ≥ Tε2T ) = P0

(
LT (f0)− LT (f)− E0[LT (f0)− LT (f)] ≥ Tε2T

)
= P0

QT−1∑
q=0

(Fq − E0[Fq]) +

QT−1∑
q=0

(F̃q − E0[F̃q]) ≥ Tε2T


≤ 2P0

QT−1∑
q=0

(Fq − E0[Fq]) ≥ Tε2T /2


≤ 2P0

QT−1∑
q=0

(Gq − E0[Gq]) ≥ Tε2T /2

+ 2P0 (∃q; Fq 6= Gq)

≤ 2P0

QT−1∑
q=0

(Gq − E0[Gq]) ≥ Tε2T /2

+ 4QTP0(Te > x−A).
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We first deal with the first term of the previous expression:

P0

QT−1∑
q=0

(Gq − E0[Gq]) ≥ Tε2T /2

 ≤ 4

T 2ε4T
Var0

QT−1∑
q=0

Gq


≤ 4

T 2ε4T

QT−1∑
q=0

Var0 (Gq)

≤ 4QT
T 2ε4T

Var0 (G0) =
4QT
T 2ε4T

Var0 (F0) .

Now, by setting dM(k)
t = dNk

t − λkt (f0)dt,

Var0 (F0) ≤ E0

[
F 2

0

]
≤ E0

( K∑
k=1

∫ T
2QT

0
log

(
λkt (f0)

λkt (f)

)
dNk

t −
K∑
k=1

∫ T
2QT

0
(λkt (f0)− λkt (f))dt

)2


.
K∑
k=1

E0

(∫ T
2QT

0
Ψ

(
λkt (f)

λkt (f0)

)
λkt (f0)dt+

∫ T
2QT

0
log

(
λkt (f0)

λkt (f)

)
dM(k)

t

)2


.
K∑
k=1

E0

(∫ T
2QT

0
Ψ

(
λkt (f)

λkt (f0)

)
λkt (f0)dt

)2
+ E0

(∫ T
2QT

0
log

(
λkt (f0)

λkt (f)

)
dM(k)

t

)2


.
K∑
k=1

T

QT
E0

[∫ T
2QT

0
Ψ2

(
λkt (f)

λkt (f0)

)
(λkt (f0))2dt

]
+ E0

[∫ T
2QT

0
log2

(
λkt (f0)

λkt (f)

)
λkt (f0)dt

]
.

Note that on Ω̃T , for any t ∈ [0;T/(2QT )],

0 ≤ Ψ

(
λkt (f)

λkt (f0)

)
λkt (f0) ≤ C1(B, f0)N 2

T ,

where C1(B, f0) only depends on B and f0. Then,

E0

[
1Ω̃T

∫ T
2QT

0
Ψ2

(
λkt (f)

λkt (f0)

)
(λkt (f0))2dt

]
≤ C1(B, f0)N 2

T×E0

[
1Ω̃T

∫ T
2QT

0
Ψ

(
λkt (f)

λkt (f0)

)
λkt (f0)dt

]

and using same arguments as for the bound ofKL(f0, f), the previous term is bounded by log(r−1
T )N 2

T×
(T/QT )ε2T up to a constant. Since for any u ≥ 1/2, we have | log(u)| ≤ 2|u − 1|, we have for any
u ≥ rT ,

| log(u)| ≤ 2 log(r−1
T )|u− 1|

and

E0

[
1Ω̃T

∫ T
2QT

0
log2

(
λkt (f0)

λkt (f)

)
λkt (f0)dt

]
≤ 4 log2(r−1

T )(ν0
k)−1E0

[
1Ω̃T

∫ T
2QT

0
(λkt (f0)− λkt (f))2dt

]
. log2(r−1

T )(T/QT )ε2T .
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By taking α ≥ 2 and using Lemma 3, we obtain:

E0

[
1Ω̃cT

∫ T
2QT

0
Ψ2

(
λkt (f)

λkt (f0)

)
(λkt (f0))2dt

]
+E0

[
1Ω̃cT

∫ T
2QT

0
log2

(
λkt (f0)

λkt (f)

)
λkt (f0)dt

]
= o(TQ−1

T ε2T ).

Finally,
Var0 (F0) ≤ C2(B, f0) log(r−1

T )N 2
T × (T/QT )2ε2T .

for C2(B, f0) a constant only depending on B and f0, and

P0(LT ≥ Tε2T ) ≤ 8C2(B, f0) log(r−1
T )N 2

T × (T/QT )× (1/(Tε2T ) + 4QTP0(Te > x−A).

It remains to deal with the last term of the previous expression. The proof of Proposition 3 of Hansen
et al. (2015) shows that there exists a constant D only depending on f0 such that if we take x =
D log T , which is larger than A for T large enough, then

4QTP0(Te > x−A) = o(T−1).

We now have
log(r−1

T )N 2
T × (T/QT ) = O(log log(T ) log3(T )),

which ends the proof of the lemma.

4.5 Proof of Theorem 3

Define
AL1(wT εT ) = {f ∈ F ; ‖f − f0‖1 ≤ wT εT },

then
Π (AL1(wT εT )c|N) ≤ Π(AcεT |N) + Π (AL1(wT εT )c ∩AεT |N) .

Using Assumption (i), we just need to prove that

E0

[
1Ω1,T

Π (AL1(wT εT )c ∩AεT |N)
]

= o(1) (4.15)

for some well chosen set Ω1,T ⊂ ΩT such that

P0(Ωc
1,T ∩ ΩT ) = o(1). (4.16)

Using (4.2), there exists C0 such that for all f ∈ AεT , on ΩT ,∑
`

ν` +
∑
`,k

ρ`,k ≤ C0.

Therefore, on ΩT ,

AL1(wT εT )c ∩AεT ⊂ {f ∈ F ; ‖f − f0‖1 > wT εT ;
∑
`

(ν` +
∑
k

ρ`,k) ≤ C0}.

We set uT := u0(log T )1/6ε
1/3
T with u0 a large constant to be chosen later. Let FT = {f ∈ F ; ‖ρ‖ ≤

1− uT }. From Assumption (ii),
Π(FcT ) ≤ e−2c1Tε2T
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for T large enough. Following the same lines as in the proof of Theorem 1, we then have

E0

[
1Ω1,T

Π (AL1(wT εT )c ∩AεT |N)
]
≤ P0(DT < e−c1Tε

2
T )

+ ec1Tε
2
T

∫
AL1

(wT εT )c∩FT
E0 [Pf (Ω1,T ∩ {d1,T (f, f0) ≤ εT }|G0−)] dΠ(f) + e−c1Tε

2
T ,

(4.17)

where Pf denotes the stationary distribution when the true parameter is f . We will now prove that
Pf (Ω1,T ∩ {d1,T (f, f0) ≤ εT }|G0−) ec1Tε

2
T = oP0(1) for all f ∈ AL1(wT εT )c ∩ FT . Let Zm,` be

defined by

Zm,` =

∫ (2m+1)T/(2JT )

2mT/(2JT )

∣∣∣∣∣ν` − ν0
` +

K∑
k=1

∫ t−

t−A
(hk,` − h0

k,`)(t− s)dNk
s

∣∣∣∣∣ dt
with JT such that JT = bκ0(log T )−1Tu2

T c and κ0 a constant chosen later. Note that JT → +∞ and
T/JT → +∞ when T → +∞. Since Td1,T (f, f0) ≥ max1≤`≤K

∑JT−1
m=1 Zm,` we have that

Pf (Ω1,T ∩ {d1,T (f, f0) ≤ εT }|G0−) ≤ min
1≤`≤K

Pf

(
Ω1,T ∩

{
JT−1∑
m=1

Zm,` ≤ εTT

}
|G0−

)

≤ min
1≤`≤K

Pf

(
Ω1,T ∩

{
JT−1∑
m=1

(Zm,` − Ef [Zm,`]) ≤ εTT − (JT − 1)Ef [Z1,`]

}∣∣∣∣∣G0−

)
.

From Lemma 5 we have that there exists ` (depending on f and f0) such that Ef [Z1,`] ≥ CT‖f −
f0‖1/JT for some C > 0 so that if f ∈ AL1(wT εT )c then, since wT → +∞,

Pf (Ω1,T ∩ {d1,T (f, f0) ≤ TεT }|G0−) ≤ max
`

Pf

(
Ω1,T ∩

{
JT−1∑
m=1

[Zm,` − Ef [Zm,`]] ≤ −
CT‖f − f0‖1

2

}∣∣∣∣∣G0−

)
.

The problem in dealing with the right hand side of the above inequality is that the Zm,`’s are not
independent. We therefore show that we can construct independent random variables Z̃m,` such that,
conditionally on G0− ,

∑JT−1
m=1 (Zm,` − Ef [Zm,`]) is close to

∑JT−1
m=1 (Z̃m,` − Ef [Z̃m,`]) on Ω1,T . For

all 1 ≤ m ≤ JT − 1, define N0,m the sub-counting measure of N generated from the ancestors of
any type born on [(2m − 1)T/(2JT ), (2m + 1)T/(2JT )] and the K-multivariate point process N̄m

defined by
N̄m = N −N0,m.

Denote

Z̃m,` =

∫ (2m+1)T/(2JT )

2mT/(2JT )

∣∣∣∣∣ν` − ν0
` +

K∑
k=1

∫ t−

t−A
(hk,` − h0

k,`)(t− s)dN0,m,k
s

∣∣∣∣∣ dt,
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where N0,m,k if the kth coordinate of N0,m. Observe that if Im = [2mT/(2JT ) − A, (2m +
1)T/(2JT )], then N̄m(Im) is the number of points of N̄m lying in Im. We have:

|Zm,` − Z̃m,`| =

∣∣∣∣∣
∫ (2m+1)T/(2JT )

2mT/(2JT )

(∣∣∣∣∣ν` − ν0
` +

K∑
k=1

∫ t−

t−A
(hk,` − h0

k,`)(t− s)dNk
s

∣∣∣∣∣
−

∣∣∣∣∣ν` − ν0
` +

K∑
k=1

∫ t−

t−A
(hk,` − h0

k,`)(t− s)dN0,m,k
s

∣∣∣∣∣
)
dt

∣∣∣∣∣
≤ 1N̄m(Im) 6=0

K∑
k=1

∫ (2m+1)T/(2JT )

2mT/(2JT )

∫ t−

t−A
|(hk,` − h0

k,`)(t− s)|dN̄m,k
s dt

≤ 1N̄m(Im) 6=0

K∑
k=1

‖hk,` − h0
k,`‖1N̄m,k(Im) ≤ ‖f − f0‖1N̄m(Im).

(4.18)

Let Ω1,T = ΩT ∩ {
∑JT−1

m=1 N̄m(Im) ≤ CT/8}. In Lemma 7, we prove that there exists c̃0 such that

P0

(
Ωc

1,T ∩ ΩT

)
≤ e−Cc̃0T .

and (4.16) is satisfied. Using (4.18), we have on Ω1,T

|Zm,` − Z̃m,`| ≤ ‖f − f0‖1CT/8. (4.19)

Lemma 7 proves that there exists a constant κ0 > 0 (see the definition of JT ) such that

JT−1∑
m=1

Ef [N̄m(Im)] ≤ CT/8,

so that

JT−1∑
m=1

|Ef [Zm,`]−Ef [Z̃m,`]| ≤
JT−1∑
m=1

Ef |Zm,`−Z̃m,`| ≤ ‖f−f0‖1
JT−1∑
m=1

Ef [N̄m(Im)] ≤ C‖f−f0‖1T/8

and

Pf (Ω1,T ∩ {d1,T (f, f0) ≤ TεT }|G0−) ≤ max
`

Pf

(
Ω1,T ∩

{
JT−1∑
m=1

[Zm,` − Ef [Zm,`]] ≤ −
CT‖f − f0‖1

2

}∣∣∣∣∣G0−

)

≤ Pf

(
JT−1∑
m=1

(−Z̃m,` + Ef (Z̃m,`)) ≥ CT‖f − f0‖1/4

∣∣∣∣∣G0−

)
.

Since by construction the Z̃m,` are positive, independent, identically distributed and independent of
G0− , the Bernstein inequality gives

Pf

(
JT−1∑
m=1

(−Z̃m,` + Ef (Z̃m,`)) ≥ CT‖f − f0‖1/4

∣∣∣∣∣G0−

)
≤ e
− C2T2‖f−f0‖

2
1

32(JT−1)Ef (Z̃2
1,`

)
.
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We have to bound Ef (Z̃2
1,`). Observe that

Z̃m,` ≤
∫ (2m+1)T/(2JT )

2mT/(2JT )

∣∣ν` − ν0
`

∣∣ dt+

∫ (2m+1)T/(2JT )

2mT/(2JT )

K∑
k=1

∫ t−

t−A

∣∣(hk,` − h0
k,`)(t− s)

∣∣ dN0,m,k
s dt

≤ T

2JT

∣∣ν` − ν0
`

∣∣+
K∑
k=1

‖hk,` − h0
k,`‖1N0,m,k(Im)

and

Ef
[
Z̃2

1,`

]
≤ T 2

2J2
T

|ν` − ν0
` |2 + 2K

K∑
k=1

‖hk,` − h0
k,`‖21Ef [N0,1,k(I1)2]

≤ T 2

J2
T

‖f − f0‖21
(

1

2
+

2K maxk Ef [N0,1,k(I1)2]J2
T

T 2

)
.

We then have to bound T−2J2
T maxk Ef [N0,1,k(I1)2]. Using notations of Lemma 7, we have:

Ef [N0,1,k(I1)2] ≤ Ef

 K∑
`=1

∑
T/(2JT )≤p≤3T/(2JT )

Bp,`∑
k=1

W `
k,p

2
≤ KT

JT

K∑
`=1

∑
T/(2JT )≤p≤3T/(2JT )

Ef

Bp,`∑
k=1

W `
k,p

2
≤ KT

JT

K∑
`=1

∑
T/(2JT )≤p≤3T/(2JT )

Ef

Ef
Bp,`∑

k=1

W `
k,p

2

|Bp,`


≤ KT 2

J2
T

K∑
`=1

(ν2
` + ν`)Ef [(W `)2].

We now bound Ef [(W `)2] by using Lemma 6. Without loss of generality, we can assume that ‖ρ‖ >
1/2. We take t = 1−‖ρ‖

2
√
K

log
(

1+‖ρ‖
2‖ρ‖

)
and

Ef [(W `)2] ≤ 2t−2Ef [exp(tW `)] . t−2 . (1− ‖ρ‖)−4

and
T−2J2

T max
k

Ef [N0,1,k(I1)2] . (1− ‖ρ‖)−4.

Therefore, since f ∈ FT , there exists a constant C ′K only depending on K such that

Pf

(
JT−1∑
m=1

(−Z̃m,` + Ef (Z̃m,`)) ≥ CT‖f − f0‖1/4

∣∣∣∣∣G0−

)
≤ e−C′KJT (1−‖ρ‖)4 ≤ e−C′KJTu4

T

. e−C
′
Kκ0(log T )−1Tu6

T . e−C
′
Kκ0u6

0Tε
2
T

where the last inequality follows from the definition of uT and JT . We obtain the desired bound as
soon as u0 is large enough.

Pf (Ω1,T ∩ {d1,T ≤ TεT }|G0−) = o(e−c1Tε
2
T ).

Using (4.17) and Assumption (i), we then have that (4.15) is true, which proves the theorem.
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4.6 Proof of Corollary 1

Let wT → +∞. The proof of Corollary 1 follows from the usual convexity argument, so that

‖f̂ − f0‖1 ≤ wT εT + Eπ
[
‖f − f0‖11‖f−f0‖1>wT εT |N

]
,

together with a control of the second term of the right hand side similar to the proof of Theorem 3.
We write

Eπ
[
‖f − f0‖11‖f−f0‖1>wT εT |N

]
≤ Eπ

[
‖f − f0‖11AL1

(wT εT )c1AεT |N
]

+ Eπ
[
‖f − f0‖11AcεT |N

]
and since

∫
‖f − f0‖1dΠ(f) ≤ ‖f0‖1 +

∫
‖f‖1dΠ(f) <∞,

P0

(
Eπ
[
‖f − f0‖11AL1

(wT εT )c1AεT |N
]
> wT εT

)
≤ P0

(
Ωc

1,T

)
+ P0

(
DT < e−c1Tε

2
T

)
+
ec1Tε

2
T

wT εT

∫
AL1

(wT εT )c
‖f − f0‖1E0 [Pf (Ω1,T ∩ {d1,T (f0, f) ≤ εT }) |G0− ] dΠ(f)

≤ o(1) + o(1)

∫
‖f − f0‖1dΠ(f) = o(1),

where the last inequality comes from the proof of Theorem 3. Similarly, using the proof of Theorem
1,

P0

(
Eπ
[
‖f − f0‖11AcεT |N

]
> wT εT

)
≤ P0 (Ωc

T ) + P0

(
DT < e−c1Tε

2
T

)
+ E0[1ΩT φ]

+
ec1Tε

2
T

wT εT

∫
AL1

(wT εT )c
‖f − f0‖1E0

[
Ef
[
(1− φ)1ΩT1{d1,T (f0,f)>εT }

]
|G0−

]
dΠ(f)

≤ o(1) + o(1)

∫
‖f − f0‖1dΠ(f),

and P0(‖f̂ − f0‖1 > 3wT εT ) = o(1). Since this is true for any wT → +∞, this terminates the proof.

4.7 Technical lemmas

4.7.1 Control of the number of occurrences of the process on a fixed interval

Lemma 3. For any M ≥ 1, for any α > 0, there exists a constant Cα only depending on f0 such that
for any T > 0, the set

Ω̃T =

{
max

`∈{1,...,K}
sup
t∈[0,T ]

N `([t−A, t)) ≤ Cα log T

}
satisfies

P0(Ω̃c
T ) ≤ T−α

and for any 1 ≤ m ≤M

E0

[
max

`∈{1,...,K}
sup
t∈[0,T ]

(
N `([t−A, t))

)m
× 1Ω̃cT

]
≤ 2T−α/2,

for T large enough.
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Proof. For the first part, we split the interval [−A;T ] into disjoint intervals of length A and we use
Proposition 2 of Hansen et al. (2015). For the second part, we set

X := max
`∈{1,...,K}

sup
t∈[0,T ]

(
N `([t−A, t))

)
× 1Ω̃cT

≥ 0

and the equality

E0[Xm] =

∫ +∞

0
mxm−1P0(X > x)dx

=

∫ Cα log T

0
mxm−1P0 (X > x) dx+

∫ +∞

Cα log T
mxm−1P0 (X > x) dx

≤ m(Cα log T )m−1

∫ Cα log T

0
P0(Ω̃c

T )dx+

∫ +∞

Cα log T
mxm−1P0 (X > x) dx

≤ m(Cα log T )mT−α +

∫ +∞

Cα log T
mxm−1P0 (X > x) dx.

Furthermore, for T large enough,∫ +∞

Cα log T
mxm−1P0(X > x)dx ≤

∫ +∞

Cα log T
mxm−1P0

(
max

`∈{1,...,K}
sup
t∈[0,T ]

(
N `([t−A, t))

)
> x

)
dx

≤
∫ +∞

Cα log T
mxm−1P0

(
max

`∈{1,...,K}
sup

t∈[0,ex/Cα ]

(
N `([t−A, t))

)
> x

)
dx

≤
∫ +∞

Cα log T
mxm−1 exp(−αx/Cα)dx ≤ T−α/2.

4.7.2 Control of N [0, T ]

Let k ∈ {1, . . . ,K}. We have the following result.

Lemma 4. For any k ∈ {1, . . . ,K}, for all α > 0 there exists δ0 > 0 such that

P0

(∣∣∣∣Nk[0, T ]

T
− µ0

k

∣∣∣∣ ≥ δ0

√
(log T )3

T

)
= O(T−α).

Proof of Lemma 4. We use Proposition 3 of Hansen et al. (2015) and notations introduced for this
result. We denote N [−A, 0) the total number of points of N in [−A, 0), all marks included. Let
δT := δ0

√
(log T )3/T , with δ0 a constant. We have:

P0

(∣∣∣∣Nk[0, T ]

T
− µ0

k

∣∣∣∣ > δT

)
≤ P0

(∣∣∣∣∣Nk[0, T ]−
∫ T

0

λkt (f0)dt

∣∣∣∣∣ > TδT
2

)
+P0

(∣∣∣∣∣
∫ T

0

[λkt (f0)− µ0
k]dt

∣∣∣∣∣ > TδT
2

)
(4.20)

and we observe that

λkt (f0) = ν0
k +

∫ t−

t−A

K∑
`=1

h0
`,k(t− s)dN `

s = Z ◦St(N),

41



with Z(N) = λk0(f0), where S is the shift operator introduced in Proposition 3 of Hansen et al.
(2015). We then have

Z(N) ≤ b(1 +N [−A, 0))

with
b = max

k
max{ν0

k ,max
`
‖h0

`,k‖∞}.

So, for any α > 0, the second term of (4.20) is O(T−α) for δ0 large enough depending on α and f0.
The first term is controlled by using Inequality (7.7) of Hansen et al. (2015) with τ = T , x = x0Tδ

2
T ,

Ht = 1, v = µ0
kT + TδT /2 and

MT = Nk[0, T ]−
∫ T

0
λkt (f0)dt.

We take x0 a positive constant such that
√

8µ0
kx0 < 1, so that, for T large enough

TδT
2
≥
√

2vx+ x/3.

Therefore, we have

P0

(
|MT | >

TδT
2

)
≤ P0

(
|MT | ≥

√
2vx+ x/3 and

∫ T

0
λkt (f0)dt ≤ v

)
+ P0

(∫ T

0
λkt (f0)dt > v

)
≤ 2 exp(−x) + P0

(∣∣∣∣∫ T

0
[λkt (f0)− µ0

k]dt

∣∣∣∣ > TδT
2

)
≤ 2 exp(−x0δ

2
0(log T )3) +O(T−α) = O(T−α),

which terminates the proof.

4.7.3 Lemma on Ef [Z1,`]

We have the following result which is useful to prove Theorem 3.

Lemma 5. For for all f ∈ FT such that d1,T (f, f0) ≤ εT , there exists ` (depending on f and f0)
such that on ΩT ,

Ef [Z1,`] ≥ C
T

JT
‖f − f0‖1,

where C is a constant depending on f0.

Proof. By using the first bound of (4.2), we observe that on ΩT , for any `, since inf` ν
0
` > 0, then

inf` µ
0
` > 0 (by using (4.3)) and we obtain that

∑K
k=1 ρk,` and

∑K
k=1 νk are bounded. Therefore ‖f‖1

is bounded. On ΩT , since εT ≥ δT , still using (4.2), for any `,

ν` +
K∑
k=1

ρk,`µ
0
k −MεT ≤ ν0

` +
K∑
k=1

ρ0
k,`µ

0
k ≤ ν` +

K∑
k=1

ρk,`µ
0
k +MεT

for M a constant large enough. By using the formula

ν` +
K∑
k=1

ρk,`µk = µ`, ν0
` +

K∑
k=1

ρ0
k,`µ

0
k = µ0

` ,
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we obtain ∣∣∣∣∣(µ` − µ0
` )−

∑
k

ρk,`(µk − µ0
k)

∣∣∣∣∣ ≤MεT ,

which means that
‖(Id − ρT )(µ− µ0)‖∞ ≤MεT .

Therefore, since ‖ρ‖ = ‖ρT ‖ (ρρT and ρTρ have the same eigenvalues),

‖µ− µ0‖2 = ‖(Id − ρT )−1(Id − ρT )(µ− µ0)‖2
≤ (1− ‖ρ‖)−1

√
K‖(Id − ρT )(µ− µ0)‖∞

≤ (1− ‖ρ‖)−1
√
KMεT .

Since f ∈ FT , 1− ‖ρ‖ ≥ uT & ε
1/3
T (log T )1/6. Therefore, µ is bounded. As in Hansen et al. (2015),

we denote Qf a measure such that under Qf the distribution of the full point process restricted to
(−∞, 0] is identical to the distribution under Pf and such that on (0,∞) the process consists of
independent components each being a homogeneous Poisson process with rate 1. Furthermore, the
Poisson processes should be independent of the process on (−∞, 0]. From Corollary 5.1.2 in Jacobsen
(2006) the likelihood process is given by

Lt(f) = exp

(
Kt−

K∑
k=1

∫ t

0
λku(f)du+

K∑
k=1

∫ t

0
log(λku(f))dNk

u

)
.

Let τ > 0 satisfying

0 <
AτK2

1− τK
<

1

2
and τ ≤

min`′ ν
0
`′

2C ′0
,

with C ′0 an upper bound of ‖f − f0‖1.

• Assume that for any `′,
∣∣ν`′ − ν0

`′

∣∣ < τ‖f − f0‖1. Then, for any `′,

∣∣ν`′ − ν0
`′
∣∣ < τ‖f − f0‖1 = τ

∑
k

∣∣νk − ν0
k

∣∣+
∑
k,`

‖hk,` − h0
k,`‖1


and ∣∣ν`′ − ν0

`′
∣∣ ≤∑

`

∣∣ν` − ν0
`

∣∣ < τK

1− τK
∑
k,`

‖hk,` − h0
k,`‖1.

Let ` such that ∑
k

‖hk,` − h0
k,`‖1 = max

`′

{∑
k

‖hk,`′ − h0
k,`′‖1

}
.

Then, for any `′, ∣∣ν`′ − ν0
`′
∣∣ < τK2

1− τK
∑
k

‖hk,` − h0
k,`‖1, (4.21)

and

‖f − f0‖1 =
∑
`′

∣∣ν`′ − ν0
`′
∣∣+
∑
`′

∑
k

‖hk,`′ − h0
k,`′‖1

≤
(

τK2

1− τK
+K

)∑
k

‖hk,` − h0
k,`‖1. (4.22)
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We denote

Ωk =

{
max
k′ 6=k

Nk′ [0, A] = 0, Nk[0, A] = 1, Nk′ [−A, 0] ≤ aAµk′ ∀k′
}
,

where a is a fixed constant chosen later. We then have

Ef [Zm,`] =
T

2JT
Ef

[∣∣∣∣∣ν` − ν0
` +

K∑
k=1

∫ A−

0
(hk,` − h0

k,`)(A− s)dNk
s

∣∣∣∣∣
]

≥ T

2JT

∑
k

Ef

[
1maxk′ 6=k N

k′ [0,A]=01Nk[0,A]=1

∣∣∣∣∣ν` − ν0
` +

∫ A−

0
(hk,` − h0

k,`)(A− s)dNk
s

∣∣∣∣∣
]

≥ T

2JT

∑
k

EQf

[
LA(f)1maxk′ 6=k N

k′ [0,A]=01Nk[0,A]=1

∣∣∣∣∣ν` − ν0
` +

∫ A−

0
(hk,` − h0

k,`)(A− s)dNk
s

∣∣∣∣∣
]

≥ T

2JT

∑
k

EQf

[
LA(f)1Ωk

∣∣∣∣∣ν` − ν0
` +

∫ A−

0
(hk,` − h0

k,`)(A− s)dNk
s

∣∣∣∣∣
]
.

Note that on Ωk,

LA(f) := exp

(
KA−

∑
k′

∫ A

0
λk
′
t (f)dt+

∑
k′

∫ A

0
log(λk

′
t (f))dNk′

t

)

≥ νk exp(KA) exp

(
−
∑
k′

∫ A

0
λk
′
t (f)dt

)

≥ νk exp(KA) exp

(
−
∑
k′

∫ A

0

(
νk′ +

∫ t−

t−A

∑
k′′

hk′′k′(t− u)dNk′′
u

)
dt

)

≥ νk exp

(
KA−A

∑
k′

νk′

)
exp

−∫ A−

−A

∑
k′,k′′

ρk′′k′dN
k′′
u


≥ νk exp

(
KA−A

∑
k′

νk′

)
exp

(
−aA

∑
k′′

µk′′
∑
k′

ρk′′k′ −
∑
k′

ρkk′

)
.

Since on FT ,

νk exp

(
KA−A

∑
k′

νk′

)
exp

(
−aA

∑
k′′

µk′′
∑
k′

ρk′′k′ −
∑
k′

ρkk′

)
≥ νke−KaAC1 ≥ ν0

ke
−KaAC1/2 ≥ C(f0),

where C1 and C(f0) are some constants, we have, by definition of Qf ,

Ik := EQf

[
LA(f)1Ωk

∣∣∣∣∣ν` − ν0
` +

∫ A−

0
(hk,` − h0

k,`)(A− s)dNk
s

∣∣∣∣∣
]

≥ C(f0)EQf

[
1Nk[0,A]=1

∣∣∣∣∣ν` − ν0
` +

∫ A−

0
(hk,` − h0

k,`)(A− s)dNk
s

∣∣∣∣∣
]

×Qf (Nk′ [−A, 0] ≤ aAµk′ ∀k′)×Qf (max
k′ 6=k

Nk′ [0, A] = 0).
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Under Qf , Nk[0, A] ∼ Poisson(A). If U ∼ Unif([0, A]),

EQf

[
1Nk[0,A]=1

∣∣∣∣∣
∫ A−

0
(hk,` − h0

k,`)(A− s)dNk
s

∣∣∣∣∣
]

= E
[∣∣(hk,` − h0

k,`)(A− U)
∣∣]Qf (Nk[0, A] = 1)

=
1

A

∫ A

0

∣∣(hk,` − h0
k,`)(A− s)

∣∣ ds×Ae−A
= e−A‖hk,` − h0

k,`‖1.

We also have, using (4.21),

EQf

[
1Nk[0,A]=1

∣∣ν` − ν0
`

∣∣] = Ae−A
∣∣ν` − ν0

`

∣∣ ≤ Ae−A τK2

1− τK
∑
k

‖hk,` − h0
k,`‖1.

Furthermore,
Qf (max

k′ 6=k
Nk′ [0, A] = 0) = exp(−(K − 1)A),

and

Qf (Nk′ [−A, 0] ≤ aAµk′ ∀k′) ≥ 1−
∑
k′

Qf

(
Nk′ [−A, 0] > aAµk′

)
≥ 1−

∑
k′

µk′A

aAµk′
= 1− K

a
=

1

2
,

with a = 2K. Finally,

Ik ≥ 1

2
C(f0) exp(−KA)

(
1− AτK2

1− τK

)
‖hk,` − h0

k,`‖1

and using (4.22),

Ef [Zm,`] ≥
T

2JT

∑
k

Ik

≥ T

2JT

1

2
C(f0) exp(−KA)

(
1− AτK2

1− τK

)∑
k

‖hk,` − h0
k,`‖1

≥ C
T

JT
‖f − f0‖1,

where C depends on f0.

• We now assume that there exists ` such that∣∣ν` − ν0
`

∣∣ ≥ τ‖f − f0‖1.
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In this case, using similar arguments, still with a = 2K,

Ef [Zm,`] ≥
T

2JT
Pf [{max

k
Nk[0, A] = 0}]

∣∣ν` − ν0
`

∣∣
≥ τT

2JT
‖f − f0‖1EQf

[
LA(f)1{maxk Nk[0,A]=0}

]
≥ τT

2JT
‖f − f0‖1EQf

[
LA(f)1{maxk Nk[0,A]=0}1{Nk[−A,0]≤aAµk, ∀k}

]
≥ τT

2JT
‖f − f0‖1 exp

(
KA−A

∑
k′

νk′ − aA
∑
k′′

µk′′
∑
k′

ρk′′k′

)
EQf

[
1{N [0,A]=0}1{∀kNk[−A,0]≤aAµk}

]
≥ τT

4JT
‖f − f0‖1 exp

(
−A

∑
k′

νk′ − aA
∑
k′

(µk′ − νk′)

)
≥ C T

JT
‖f − f0‖1

for C depending on f0. Lemma 5 is proved.

4.7.4 Upper bound for the Laplace transform of the number of points in a cluster

In the next lemma, we refine the proof of Lemma 1 of Hansen et al. (2015). Given an ancestor of type
`, we denote W ` the number of points in its cluster. We have the following result.

Lemma 6. Assume ‖ρ‖ < 1 and consider t such that 0 ≤ t ≤ 1−‖ρ‖
2
√
K

log
(

1+‖ρ‖
2‖ρ‖

)
. Then, we have for

any ` ∈ {1, . . . ,K},

Ef [exp(tW `)] ≤ 1 + ‖ρ‖
2‖ρ‖

.

Moreover, if ‖ρ‖ ≤ 1/2, then there exist two absolute constants c0 and C0 such that if
√
Kt ≤ c0,

then Ef [exp(tW `)] ≤ C0. Finally,

Ef [W `] = 1T (I − ρT )−1e`.

Proof of Lemma 6. We introduce K`(n) ∈ RK the vector of the number of descendants of the nth
generation from a single ancestral point of type `, with K`(0) = e`, where (e`)k = 1k=`. More
precisely, (K`(n))k is the number of descendants of the nth generation and of the type k from a
single ancestral point of type `. Then,

W ` = 1T ×
∞∑
n=0

K`(n).

We now set for any θ ∈ RK ,

φ`(θ) = log
(
Ef [exp(θTK`(1))]

)
and

φ(θ) = (φ1(θ), . . . , φK(θ))T .

Note that
K`(1)j ∼ P (ρ`,j) , ∀j ≤ K
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and

φ`(θ) =

K∑
j=1

log
(
Ef [exp(θjK

`(1)j)]
)

=

K∑
j=1

ρ`,j(exp(θj)− 1).

Therefore,

(Dφ(θ))`,j :=
∂φ`(θ)

∂θj
= ρ`,j exp(θj)

and for any x ∈ RK , since ‖ρ‖ := supx,‖x‖2=1 ‖ρx‖2,

‖Dφ(θ)x‖22 =

K∑
`=1

 K∑
j=1

ρ`,j exp(θj)xj

2

=
∑
j

∑
j′

(ρTρ)j,j′ exp(θj)xj exp(θj′)xj′

= vTρTρv

≤ ‖ρ‖2‖v‖22 = ‖ρ‖2
K∑
j=1

x2
j exp(2θj)

with v the vector of RK such that vj = exp(θj)xj . So,

|‖Dφ(θ)‖| ≤ ‖ρ‖max
j

exp(|θj |) ≤ ‖ρ‖e‖θ‖2 .

So, by applying the mean value theorem,

‖φ(θ)‖2 = ‖φ(θ)− φ(0)‖2 ≤ ‖ρ‖e‖θ‖2‖θ‖2.

We use a modification of the arguments in the proof of Lemma 1 of Hansen et al. (2015). Writing
g1(θ) = θ + φ(θ), we have for n ≥ 3:

Ef
[
eθ
T (
∑n
k=0K

`(k))
]

= Ef
[
eθ
T (
∑n−1
k=0 K

`(k))Ef
[
eθ
TK`(n)|K`(n− 1), . . . ,K`(1)

]]
= Ef

[
eθ
T (
∑n−2
k=0 K

`(k))e(θ+φ(θ))TK`(n−1)
]

= Ef
[
eθ
T (
∑n−2
k=0 K

`(k))eg1(θ)TK`(n−1)
]

= Ef
[
eθ
T (
∑n−3
k=0 K

`(k))e(θ+φ(g1(θ)))TK`(n−2)
]

= Ef
[
eθ
T (
∑n−3
k=0 K

`(k))eg2(θ)TK`(n−2)
]

= Ef
[
eθ
TK`(0)egn−1(θ)TK`(1)

]
= e(gn(θ)`),

with the induction formula: gn(θ) = θ + φ(gn−1(θ)) for n ≥ 2. In particular,

‖g1(θ)‖2 ≤ ‖θ‖2(1 + ‖ρ‖e‖θ‖2) and ‖gn(θ)‖2 ≤ ‖θ‖2 + ‖ρ‖e‖gn−1(θ)‖2‖gn−1(θ)‖2.

We now set C := (1 + ‖ρ‖)/(1− ‖ρ‖) > 1. Then, if ‖gn−1(θ)‖2 ≤ ‖θ‖2(1 + C),

‖gn(θ)‖2 ≤ ‖θ‖2(1 + ‖ρ‖(1 + C)e‖θ‖2(1+C)) ≤ ‖θ‖2(1 + C)

as soon as

‖θ‖2 ≤ (1 + C)−1 log(C/(‖ρ‖(1 + C))) =
1− ‖ρ‖

2
log

(
1 + ‖ρ‖

2‖ρ‖

)
. (4.23)
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Since ‖ρ‖ < 1, the previous upper bound is positive. Note that under (4.23), ‖θ‖2 ≤ log(C/‖ρ‖),
and

‖g1(θ)‖2 ≤ ‖θ‖2(1 + ‖ρ‖e‖θ‖2) ≤ ‖θ‖2(1 + ‖ρ‖elog(C/‖ρ‖)) ≤ ‖θ‖2(1 + C).

We finally obtain that under (4.23),

‖gn(θ)‖2 ≤ ‖θ‖2(1 + C), ∀n ≥ 1.

Since for any m, n 7→
∑n

k=0(K`(k))m is increasing and W ` = 1T ×
∑∞

n=0K
`(n), we have by

monotone convergence that for t > 0,

Ef [exp(tW `)] = lim
n→∞

exp(gn(t1)`).

By the previous result, the right hand side is bounded if t is small enough. More precisely, for all
0 < t ≤ (1 + C)−1 log(C/(‖ρ‖(1 + C)))/

√
K,

Ef [exp(tW `)] ≤ exp(t
√
K(1 + C)) ≤ C

‖ρ‖(1 + C)
=

1 + ‖ρ‖
2‖ρ‖

.

The second point is obvious in view of previous computations. Moreover, since Ef [W `] =
∑∞

n=0 Ef [1TK`(n)]
and since for any v ∈ RK

Ef [vTK`(n)|K`(0), . . . ,K`(n− 1)] =
K∑
j=1

K∑
k=1

K`(n− 1)jvkρj,k = vTρTK`(n− 1).

We obtain by induction that Ef [1TK`(n)] = 1T (ρT )ne` and taking the limit, since ‖ρ‖ < 1,

Ef [W `] = 1T (I − ρT )−1e`.

4.7.5 Lemma on N̄m

Lemma 7. There exists c̃0 such that for all c0 > 0 such that for T large enough,

P0

(
JT−1∑
m=1

N̄m(Im) > c0T

)
≤ e−c̃0c0T .

Furthermore, there exists a constant κ0 > 0 (see the definition of JT ) such that

JT−1∑
m=1

Ef [N̄m(Im)] = o(T ).

Proof of Lemma 7. We use computations of the proof of Proposition 2 of Hansen et al. (2015). To
bound N̄m(Im), first observe that we only consider points of N whose ancestors are born before
(2m−1)T/(2JT ), i.e. the distance between the occurrence of an ancestor and Im is at least 2mT/(2JT )−
A− (2m− 1)T/(2JT ) = T/(2JT )−A since

Im =

[
2mT

2JT
−A, (2m+ 1)T

2JT

]
.

48



Using the cluster representations of the process, for any p ∈ Z and for any ` ∈ {1, . . . ,K}, we
consider Bp,` the number of ancestors of type ` born in the interval [p, p + 1]. The Bp,`’s are iid
Poisson random variables with parameter ν`. We have

JT−1∑
m=1

N̄m(Im) ≤
K∑
`=1

∑
p∈J+

T

Bp,`∑
k=1

(
W `
p,k −

1

A

(
T

2JT
−A

))
+

+

K∑
`=1

0∑
p=−∞

Bp,`∑
k=1

(
W `
p,k −

1

A

(
−p− 1 +

T

JT
−A

))
+

,

where W `
p,k is the number of points in the cluster generated by the ancestor k which is of type ` and

J +
T = {p : 1 ≤ p ≤ T − T/(2JT )}

since
JT−1⋃
m=1

Im ⊂
[
T

JT
−A, T − T

2JT

]
.

For the first term of the previous right hand side, we have used same arguments as Hansen et al. (2015)
and the lower bound of the distance determined previously. For the second term of the right hand side,
since p ≤ 0, this lower bound is at least −p − 1 + T

JT
− A. Conditioned on the Bp,`’s, the variables

(W `
p,k)k are iid with same distribution as W ` introduced in Lemma 6. Furthermore, by Lemma 6

applied with f = f0, since ‖ρ0‖ < 1, we know that for t0 > 0 small enough (only depending on ‖ρ0‖
and K),

E0[exp(t0W
`)] ≤ C0,

where C0 is a constant. So, for any c > 0,

PT,1 := P0

 K∑
`=1

∑
p∈J+

T

Bp,`∑
k=1

(
W `
p,k −

1

A

(
T

2JT
−A

))
+

≥ cT


≤ exp(−t0cT )

K∏
`=1

∏
p∈J+

T

E0

Bp,`∏
k=1

E0

[
exp

(
t0

(
W `
p,k −

T

2AJT
+ 1

)
+

)
|Bp,`

]
≤ exp(−t0cT )

K∏
`=1

∏
p∈J+

T

E0

[
(H`(t0))Bp,`

]
= exp

(
− t0cT +

K∑
`=1

∑
p∈J+

T

ν0
` (H`(t0)− 1)

)
,

where

H`(t0) := E0

[
exp

(
t0

(
W ` − T

2AJT
+ 1

)
+

)]
,

satisfying

H`(t0) ≤ P0

(
W ` ≤ T

2AJT
− 1

)
+ exp(t0 − Tt0/(2AJT ))E0

[
exp

(
t0W

`
)]

≤ 1 + C0 exp(t0 − Tt0/(2AJT )).

Therefore,

K∑
`=1

∑
p∈J+

T

ν0
` (H`(t0)− 1) . (T − T/(2JT ) exp(−Tt0/(2AJT )) . e−C

′κ0 log T = o(t0cT )
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by choosing κ0 large enough and then

PT,1 . exp(−t0cT/2).

Similarly,

PT,2 := P0

 K∑
`=1

0∑
p=−∞

Bp,`∑
k=1

(
W `
p,k −

1

A

(
−p− 1 +

T

JT
−A

))
+

≥ cT


≤ exp

(
− t0cT +

K∑
`=1

0∑
p=−∞

ν0
` (H̃`,p(t0)− 1)

)
,

where

H̃`,p(t0) := E0

[
exp

(
t0

(
W ` − T

AJT
+ 1 +

1

A
+
p

A

)
+

)]
,

satisfying
H̃`,p(t0) ≤ 1 + C0 exp(t0 + t0/A− Tt0/(AJT ) + t0p/A).

Therefore,
K∑
`=1

0∑
p=−∞

ν0
` (H̃`,p(t0)− 1) . exp(−Tt0/(AJT )) = o(t0cT )

and then
PT,2 . exp(−t0cT/2).

Finally, there exists c̃0 (only depending on t0, so only depending on ‖ρ0‖ and K) such that for all
c0 > 0 such that for T large enough

Pf

(
JT−1∑
m=0

N̄m(Im) > c0T

)
≤ e−c̃0c0T

and the first part of the lemma is proved.

For the second part, we only consider the case 1/2 ≤ ‖ρ‖ < 1. The case ‖ρ‖ < 1/2 can be
derived easily using following computations. We have:

JT−1∑
m=1

Ef [N̄m(Im)] = ET,1 + ET,2,

with

ET,1 := Ef

 K∑
`=1

∑
p∈J+

T

Bp,`∑
k=1

(
W `
p,k −

1

A

(
T

2JT
−A

))
+
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and, with t = 1−‖ρ‖
2
√
K

log
(

1+‖ρ‖
2‖ρ‖

)
& (1 − ‖ρ‖)2 & u2

T on FT , since for x > 0, x ≤ ex, by using
Lemma 6,

ET,2 := Ef

 K∑
`=1

0∑
p=−∞

Bp,`∑
k=1

(
W `
p,k −

1

A

(
−p− 1 +

T

JT
−A

))
+


=

K∑
`=1

ν`

0∑
p=−∞

Ef
[(
W `
p,k −

1

A

(
−p− 1 +

T

JT
−A

))
+

]

= t−1
K∑
`=1

ν`

0∑
p=−∞

Ef
[
e
t
(
W `
p,k−

1
A

(
−p−1+ T

JT
−A
))]

. t−1e
− tT
AJT (1− e−

t
A )−1Ef

[
etW

`
] K∑
`=1

ν`

. (1− ‖ρ‖)−4e
− (1−‖ρ‖)2T

AJT

K∑
`=1

ν` . e−κ
−1
0 C′′ log T (log T )−2/3ε

−4/3
T ,

for C ′′ depending on A and K. Similarly,

ET,1 . T (1− ‖ρ‖)−2e
− (1−‖ρ‖)2T

2AJT

K∑
`=1

ν`.

Choosing κ0 small enough,
JT−1∑
m=1

Ef [N̄m(Im)] = o(T ).

4.8 Proofs of results of Section 2.3

This section is devoted to the proofs of results of Section 2.3.

4.8.1 Proof of Corollary 3

The main difference with the case of the regular partition is the control of the L1-entropy. This is
more complicated than the regular grid histogram prior and we apply instead Theorem 2. Because of
the equivalence between the parameterization in t or in u, we sometimes h̄w,t,J as h̄w,u,J . Let J and
(w, u) and (w′, u′) belonging to S2

J . Then, for all ζ > 0, if δ = δ′ = 1, |t′j − tj | ≤ ζεT min(|tj −
tj−1|, |tj − tj+1|) for all j and

∑
j |wj − w′j | ≤ εT then

‖h̄w,t,J − h̄w′,t′,J‖1 ≤ ‖h̄w,t,J − h̄w′,t,J‖1 + ‖h̄w′,t,J − h̄w′,t′J‖1

≤
J∑
j=1

|wj − w′j |+ 4
J∑
j=1

ζεTw
′
j .

Consider eT > 0 and UJ,T = {u ∈ SJ ,minj uj ≥ eT }, under the Dirichlet prior on u

Πu(UcJ,T |J) ≤
∑
j≤J

Π(uj ≤ eT ) =

J∑
j=1

Prob ( Beta(α, (J − 1)α) ≤ eT ) . JeαT ≤ e−cT ε
2
T

51



if log eT ≤ −(c/α + 1)Tε2T if J ≤ J1(T/ log T )1/(2β+1) =: J1,T . We define F1,T = {h̄w,u,J , J ≤
J1,T ;u ∈ UJ,T }. To apply Theorem 2, we need to construct the slices HT,i of F1,T . Let eT,` = e

1/`
T

for 1 ≤ ` ≤ L = log(eT )/ log τ and 0 < τ < 1 is fixed and eT,L+1 = 1. Without loss of
generality we can assume that log(eT )/ log τ ∈ N. For (u1, · · · , uJ) let ki be defined by ui ∈
(eT,ki , eT,ki+1) and (N1, · · · , NL) be given by card{j, uj ∈ (eT,`, eT,`+1)} = N` so that

∑
`N` = J

and consider a configuration σ = (k1, · · · , kJ); denote by UJ,T (σ) the set of u ∈ SJ satisfying the
configuration σ, we defineHT,σ,J = {(w, u) ∈ SJ×UJ,T (σ)} andHT,σ the collection ofHT,σ,J with
J ≤ J1,T . We have, by symmetry for all σ = (k1, · · · , kJ) compatible with (N1, · · · , NL) writing
N̄` = N1 + · · ·+N`

ΠJ (UJ,T (σ)) = ΠJ

(
∩L`=1{(uN̄`−1+1, · · · , uN̄`) ∈ (eT,`−1, eT,`)

N`}
)

≤ Γ(αJ)

Γ(α)J

L∏
`=1

e
(α−1)/(`+1)
T Vol

(
∩L`=1{(uN̄`−1+1, · · · , uN̄`) ∈ (eT,`−1, eT,`)

N`}
)

≤ Γ(αJ)

Γ(α)J

L−1∏
`=1

e
(α−1)N`/(`+1)
T e

N`/(`+1)
T

We now construct a net (u(j), j ≤ Nσ,J) such that for all u ∈ UJ,T (σ) there exists u(j) satisfying
|ti−t(j)i | ≤ εTu

(j)
i ∧u

(j)
i+1 for all i, with ti =

∑i
`=1 u`. If |ti−t(j)i | ≤ εT eT,ki∧eT,ki+1

then |ti−t(j)i | ≤
εTu

(j)
i ∧ u

(j)
i+1. Therefore, given a configuration (k1, · · · , kJ) compatible with (N1, · · · , NL), we can

cover UJ,T (σ) using

NJ(σ) ≤
J∏
i=1

e
1/(ki+1)−1/(ki∧ki+1)
T ≤

L∏
`=1

eN`T,`+1e
−2N`
T,` .

The covering number of SJ by balls of radius ζεT is bounded by
(

1
ζεT

)J
and

IT :=
∑
J

√
Π(J)N(εT ,HT,σ,J)

≤
∑
J

√
Π(J)

(
1

ζεT

)J∑
σ

NJ(σ)
√

Πj(UJ,T (σ))

.
∑
J

√
Π(J)

(
1

ζεT

)J ∑
(N1,··· ,NL)

J !Γ(αJ)

Γ(α)JN1! · · ·NL!
exp

[
log eT

L−1∑
`=1

N`

(
α+ 2

2(`+ 1)
− 2

`

)]
e
−2NL/L
T

.

(
1

ζεT

)J1,T

e2αJ1,T log J1,T

J1,T∑
J=1

∑
(N1,··· ,NL)

J !

N1! · · ·NL!

L∏
`=1

pN``

L−1∏
`=1

e
N`

(
α+2

2(`+1)
− 2
`

)
T

p`

e
−2NL/L
T

pLpL−1

for any p1, · · · , pL ≥ 0 with
∑L+1

`=1 p` = 1. Taking pL = 1/(L+ 1) and since α ≥ 6, α+2
2(`+1) −

2
` ≥ 0

for all ` ≥ 1, leading to

IT . τ−2J1,T

(
1

ζεT

)J1,T

e2αJ1,T log J1,T+(L+1) log(L+1)

J1,T∑
J=1

∑
(N1,··· ,NL)

J !

N1! · · ·NL!

L∏
`=1

pN`` . eKJ1,T log T

for some K > 0 and condition (2.4) is verified.
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4.8.2 Proof of Corollary 4

The proof is based on Rousseau (2010), where mixtures of Beta densities are studied for density
estimation, and using Theorem 2. Note that for all h1, h2

|(h1(x))+ − (h2(x))+| ≤ |h1(x)− h2(x)|

so that Proposition 4 is proved by studying

B̃(εT , B) =

{
(νk, (g`,k)`)k : max

k
|νk − ν0

k | ≤ εT , max
`,k
‖g`,k − g0

`,k‖2 ≤ εT , max
`,k
‖g`,k‖∞ ≤ B

}
in the place of B(εT , B) and by controlling the L1-entropy associated to

G1,T =

gα,P ; P =
J∑
j=1

pjδεj , εj ∈ [e1, 1− e1]; α ∈ [α0T , α1T ];
∑
j

|pj | = 1, J ≤ J1,T


where

e1 = e−a0Tε2T , α0T = exp
(
−Tc0ε

2
T

)
; α1T = α1T

2ε4T , J1,T = J1T
1/(2β+1)(log T )(β−2)/(4β+2),

with c0, α1, a0, J1 > 0 and gα,P =
∫ 1

0 gα,εdP (ε). From the proof of Theorem 2.1 in Rousseau

(2010), we have that for all c2 > 0 we can choose a0, c0, α1 > 0 such that Π
(
Gc1,T

)
≤ e−c2Tε

2
T

and G1,T can be cut into the following slices: we group the components into the intervals [e`, e`+1] or
[1− e`+1, 1− e`] with e` = e

1/`
0 and eLT = T−t, for some t > 0, and the interval [eLT , 1− eLT ]. For

each of these intervals we denote N(`) the number of components which fall into the said interval,
N(`) =

∑J
i=1 1εi∈(e`,e`+1)∪(1−e`+1,1−e`) if ` ≤ JT , and N(LT + 1) =

∑k
i=1 1εi∈(eLT ,1−eLT ) . Let

J ≤ J1,T G1,σ(J) = {gα,P ∈ G1,T ; N(`) = k`,
∑LT+1

`=1 k` = J} with σ denoting the configuration
(k1, · · · , kLT+1). From Rousseau (2010) Section 4.1, for all ζ > 0, we have

N(ζεT ,G1,σ(J), ‖·‖1) ≤ (ζεT )−kLT
LT−1∏
`=1

(
(log e`+1 − log e`)

ζεT e`

)k`
≤ (ζεT )−kLT

LT−1∏
`=1

(
log(1/e1)

`(`+ 1)ζεT e
1/`
1

)k`
and√

Π(G1,σ)(J) ≤
√

ΠJ(J)
Γ(J + 1)1/2∏LT+1
`=1 Γ(k`)1/2

LT∏
`=1

p
k`/2
T,` , pT,` ≤ c(ea+1

`+1 − e
a+1
` ), ` ≤ LT − 1

and pT,LT ≤ 1. Since ea+1
`+1 − e

a+1
` ≤ ea+1

`+1 ≤ e
(a+1)/(`+1)
1 and since J ! ≥

∏JT+1
`=1 k`!, we obtain

∑
J≤J1,T

∑
σ

N(ζεT ,G1,σ(J), ‖ · ‖1)
√

Π(G1,σ(J)) . J1,T e
CJ1,T log T

∑
σ

J !∏LT+1
`=1 k`!

LT+1∏
`=1

(
c̄

`(`+ 1)

)k`
= J1,T e

CJ1,T log T

as soon as a ≥ 3, where c̄−1 =
∑LT+1

`=1 1/(`(` + 1)). Therefore condition (2.4) is verified. We
now study the Kullback-Leibler condition (i). Again, we use Theorem 3.1 in Rousseau (2010), so

53



that for all f0 ∈ H(β, L) and all β > 0 there exists f1 such that ‖f0 − gα,f1‖∞ . α−β/2, when
α is large enough and gα,f1 =

∫ 1
0 gα,εf1(ε)dε, and where f1 is either equal to f0 if β ≤ 2 or f1 =

f0
∑dβe−1

j=1 wj/α
j/2, with wj a polynomial function with coefficients depending on f (l)

0 l ≤ j. From
that, we construct a finite mixture approximation of gα,f1 . Note that even if f0 is positive, f1 is not
necessarily so. Hence to use the convexity argument of Lemma A1 of Ghosal and van der Vaart
(2001) we write f1 as m+f1,+ −m−f1,− with f1,+, f1,− ≥ 0 and probability densities. In the case
where m− = 0 then f1,− = 0. We approximate gα,f1,+ and gα,f1,− separately. Contrarywise to what
happens in Rousseau (2010), here we want to allow f0 to be null in some sub-intervals of [0, 1]. Hence
we adapt the proof of Theorem 3.2 of Rousseau (2010) to this set up. Let f be a probability density
on [0, 1] we construct a discrete approximation of gα,f . Let ε0 = α−H0 for some H0 > 0 and define
εj = ε0(1+B

√
logα/α)j for j = 1, · · · , Jα with Jα = O(

√
α logα) andB > 0 a constant. We then

have, from Lemma 8 below that there exists a signed measure P0 with at mostN = O(
√
α(logα)3/2)

supporting points on [ε1, 1− ε1], such that:

‖gα,P0−f0‖2 ≤ ‖gα,P0−gα,f1‖2+‖gα,f1−f0‖∞ . α−β/2; ‖gα,P0‖∞ ≤ ‖f0‖∞+o(1), P0 =
N∑
i=1

piδεi .

As in Rousseau (2010) Theorem 3.2, we can assume that |pi| ≥ α−A for some fixed A large enough.
Following from Section 4.1 of Rousseau (2010), There existsA′ > 0 such that ifP satisfies maxi |P (Ui)−
pi| ≤ α−A

′ |pi|, with Ui = [εi(1− εi)(1− α−A
′
), εi(1− εi)(1 + α−A

′
)] then

‖gα,P0 − gα,P ‖2 ≤ α−β/2, ‖gα,P ‖∞ ≤ ‖f0‖∞ + o(1).

As in Rousseau (2010), if εT = ε0T
−β/(2β+1)(log T )5β/(4β+2), then

Π
(
B̃(εT , ‖f0‖∞ + 1)

)
≥ e−c1Tε2T

for some c1 > 0, which terminates the proof of Corollary 4.

Lemma 8. Assume that f is a bounded probability density on [0, 1], then for all B0 > 0 there exists
Ñ0 > 0 and a signed measure P0 with at most N ≤ Ñ0

√
α(logα)3/2 on [ε1, 1− ε1] such that

‖gα,f − gα,P ‖2 . α−B0 , ‖gα,P0‖∞ . ‖f0‖∞ + o(1)

Proof of Lemma 8. On each of the intervals (εj−1, εj) we construct a probability Pj having support
on (εj−1, εj) with cardinality smaller than Nj ≤ N0 logα and such that

‖gα,fj − gα,Pj‖
2
2 . α−B0 , fj =

f1(εj−1,εj)∫ εj
εj−1

f(ε)dε
(4.24)

where B0 can be chosen arbitrarily large by choosing N0 large enough. To prove (4.24) we use the
same ideas as in the proof of Theorem 3.2 of Rousseau (2010). For all j = 2, · · · , J−2 on (εj−1, εj),
there exists Pj with at most N1 logα terms such that if x ∈ [0, 1],∣∣gα,fj − gα,Pj ∣∣ (x) ≤ α−H

x(1− x)

where H can be chosen as large as need be, by choosing N1 large enough. Moreover, let x ≤ ε0 or
x > 1− ε0, then for all ε ∈ (ε1, 1− ε1), if x < ε0 then x/ε ≤ δα = (1 +B

√
logα/α)−1 and

gα,ε(x) .
√
α exp

(
α

[
log(x/ε)

1− ε
− (log x)/α+

log((1− x)/(1− ε))
ε

])
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If ε1 ≤ ε < 1/4 then the function ε→ log(ε/x)
1−ε − log(ε/x)/α+ log((1−ε)/(1−x))

ε is increasing and

gα,ε(x) .

√
α

ε
exp

(
α
[
log(δα)

(
1 + xδα + δ2

αx
2) +O(x3)

)
− 1 + δ−1

α

])
. α−B

2/3+H0 . α−B
2/4,

by choosing B2 ≥ 12H0. The same reasoning can be applied to x > 1 − ε0, which terminates the
proof.
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