
HAL Id: hal-01710529
https://hal.science/hal-01710529

Submitted on 16 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Capella to SysML Bridge: A Tooled-up Methodology for
MBSE Interoperability
Nesrine Badache, Pascal Roques

To cite this version:
Nesrine Badache, Pascal Roques. Capella to SysML Bridge: A Tooled-up Methodology for MBSE
Interoperability. 9th European Congress on Embedded Real Time Software and Systems (ERTS 2018),
Jan 2018, TOULOUSE, France. �hal-01710529�

https://hal.science/hal-01710529
https://hal.archives-ouvertes.fr

Capella to SysML Bridge: A Tooled-up Methodology for

MBSE Interoperability

Nesrine BADACHE, ARTAL Technologies, nesrine.badache@artal.fr

Pascal ROQUES, PRFC, pascal.roques@prfc.fr

Keywords:
Modeling, Model, MBSE, System Engineering, DSML, Modeling Tool, Bridge, Interoperability, SysML,

Arcadia, Capella, Model to Model mapping, Papyrus

Abstract:
Model to model transformation is a critical task in Model Based System Engineering (MBSE). Indeed,

there is a growing need to migrate existing models, for instance in UML or SysML, to fit new modeling

approaches such as Arcadia/Capella. The reverse is also desirable, as organizations have since long

invested time and money in models and tools on top of these standards. In many situations a smooth

integration of new tools requires compliancy with the in-place standards.

Capella [1] is a model-based engineering solution that has been successfully deployed in a wide variety

of industrial contexts. Based on a graphical modelling workbench, it provides system architects with rich

methodological guidance relying on Arcadia [9], a comprehensive model-based engineering method.

SysML [2] supports complex modeling for system engineering applications at different steps of the

system life cycle. SysML provides architects and system engineers an easy way to collaborate using a

unique common language. It enables the management of systems with growing complexity across

different development teams with many modeling capabilities: requirement, behavioral and structural

definitions. Refer to OMG SysML definition [2] for further details on SysML.

To take advantage of the power of the Capella tool, as well as the conformance to the standardized

SysML language, this paper depicts a first attempt of Capella to SysML mapping and a prototype of

transformation tool as proof-of-concept. This work is part of the Clarity project [3].

Motivation
Model to model transformation is a critical task in Model Based System Engineering (MBSE). Indeed,

there is a growing need to migrate existing models, for instance in UML or SysML, to fit new modeling

approaches such as Arcadia/Capella. The reverse is also desirable, as organizations have since long

invested time and money in models and tools on top of these standards. In many situations a smooth

integration of new tools requires compliancy with the in-place standards. Another typical use case is the

exchange of models in the context of an extended enterprise, even if participants do not use the same

modeling tools or even modeling languages.

To be able to interoperate efficiently between the new Capella tool [10] and existing SysML tools, a

mapping of concepts should be performed first and then transformation tools should be provided to

modelers. As part of the Clarity project [3], we have tried to initiate this mapping of concepts, considering

only a subset of Arcadia/Capella concepts that focus on the most relevant features, and to build a

prototype transformation tool as proof-of-concept. The reverse mapping (SysML to Capella) is out of the

scope of this paper.

We present hereafter this transformation specification and the associated strategies, as well as a

mapping tool with an example based on a simple use case of an alarm clock available in the SysML

literature. The paper focuses on Capella Components, Functions and the related Exchange modeling

concepts in the Logical Architecture level. Similar mapping rules could be generalized over the other

Capella levels (Operational, System and Physical). The transformation prototype tool is briefly presented

as a proof of concept but is not detailed in this paper. It must be noted that the resulting model will

require full review to ensure correctness as the tool cannot itself guarantee any. The resulting SysML

model use case is explored in Papyrus/SysML [4]. Papyrus was chosen to be the SysML target, as it is

technically based on the same Eclipse components as Capella, and is part of the same Polarsys project.

SysML with a tool vs Arcadia / Capella: elements of comparison

Arcadia method and Capella Tool
Arcadia [9] - Architecture Analysis and Design Integrated Approach (Cf. figure 1) is a Model-Based

Engineering method for systems, hardware and software architectural design. It has been developed by

Thales between 2005 and 2010 through an iterative process involving operational architects from all the

Thales business domains (transportation, avionics, space, radar, etc.).

The Arcadia modeling language is inspired by UML/SysML and NAF standards, and shares many

concepts with these languages. It enforces an approach structured on successive engineering phases

which establishes clear separation between needs (Operational need analysis and System need

analysis) and solutions (Logical and Physical architectures), in accordance with the IEEE 1220 standard.

It should be noted that Arcadia provides a great variety of modeling concepts and diagrams and should

be seen as a modeling framework, instead of a straightforward modeling methodology. If a project wants

to use mainly artifacts also provided by SysML (such as sequence or state diagrams), Arcadia can be

customized by methodological guidelines.

Figure 1 - Summary of ARCADIA levels

The Capella workbench is an Eclipse application implementing the Arcadia method providing both a

Domain Specific Modeling Language (DSML) and an associated toolset.

SysML (System Modeling Language)
SysML™ is a general-purpose graphical modeling language for specifying, analyzing, designing, and

verifying complex systems that may include hardware, software, information, personnel, procedures,

and facilities. It is a specialized UML profile targeted to system engineering. It defines nine different

types of diagrams among four different pillars: Behavior, Structure, Requirements and Parametrics (Cf.

figure 2). We focus hereafter on three important types of diagrams: block definition diagram (bdd),

internal block diagram (ibd) and activity diagram (act).

Figure 2 - The “Four Pillars” of SysML (OMG website)

Elements of comparison
As we explained earlier, the Arcadia DSML is inspired by UML/SysML and NAF standards, and shares

many concepts with these languages. But a Domain-Specific Modeling Language was preferred in order

to ease appropriation by all stakeholders, usually not familiar with general-purpose, generic languages

such as UML or SysML. Previous experiments inside Thales proved that System Engineers not coming

from software were not at ease with the object-oriented concepts proposed by UML (and subsequently

by SysML). Therefore, Arcadia is mostly based on Functional Analysis, and then allocation of Functions

to Components. The vocabulary of the DSML has proven to be easily understood by System Engineers.

Arcadia was defined first in Thales, from the engineering problems encountered in real projects. Then

came the need for a software tool enabling to create and manage Arcadia models. The first experiments

were done using existing UML tools such as Rational Software Modeler, Objecteering and Rhapsody,

and defining UML profiles on top of them. At the time of these first tries, the commercial tools were not

easy at all to customize, and it was difficult to remove unused commands or menus. That is why Thales

people decided to create their own tool, dedicated to Arcadia, encouraged by the emergence of enabling

technologies based on the Eclipse platform, such as EMF, etc. Arcadia definition can thus really be seen

as the specification of the Capella modeling tool.

If we try to compare with other possible solutions, namely use a standard modeling language, such as

SysML, and an existing commercial tool, such as Rhapsody, we can spot several important differences.

SysML and Rhapsody (as the other commercial SysML tools) are based on UML, which is a

disadvantage for System Engineers who have not been exposed to object-oriented concepts: notions

of operation, generalization / specialization, type / instance in block definition diagrams, and even of

“Object” flow and “Object” node in the activity diagram. These object-oriented origins are clearly an

obstacle to adoption by System Engineers who are not familiar with software development [5].

Another big issue is that SysML is only a language, and each company needs to elaborate an adapted

modeling strategy. But then, how to teach the method to the modeling tool? Each commercial tool claims

to offer an API to build specific add-ons, but this represents clearly a big investment, with software skills

needed. A prototype was for instance provided by IBM with the “Harmony for SE” toolkit, but experiments

in Thales proved that this toolkit was no more than a proof of concept when the decision to create

Capella was taken. For instance, the automated transitions between modeling phases were not iterative

and incremental, as is the case with Capella, but merely one-shot.

Figure 3 - MBSE 3 pillars implementation: a comparison

Capella to SysML transformation specification and strategies
The transformation strategy focuses on the transformation of Capella elements to SysML 1.4 elements

with no Capella stereotype. This choice was motivated by the fact that a specific Capella profile would

constrain the existing SysML modeling tools, and hinder interoperability.

Capella and SysML share many similar modeling concepts as Arcadia is highly inspired by SysML. One

main difference is that Capella explicitly separates between different modeling abstraction levels:

Operational Analysis - OA, System Analysis - SA, Logical Architecture - LA, Physical Architecture - PA,

EPBS. These levels refine one another and express the same System on different levels of interest for

different specialties, but keep the same structural and behavioral diagram types.

Logical Architecture to SysML 1.4 Transformation
SysML does not define modeling levels/layers. It is the engineer’s task to add a semantic if needed (with

stereotypes). For instance, SysML packages are effective modeling elements to separate modeling

concerns as the Capella layers propose natively. SysML provides Connectors and Block Ports, for

Components Exchanges mapping. Ports can be typed using Blocks, Value Types, and Flow Parameters

to translate Capella Exchange Items.

Components and their exchanges transformation
Capella Components and Actors are similar to SysML Blocks (Cf. Figure 4). Components imbrication is

materialized in SysML using composition relationships. Communication and exchanges between

Capella components and functions are fundamental to components cooperation for system execution.

Exchange items, which flow through exchanges (as well as through components or ports), describe the

system data type and structure.

Table 1 – Logical Architecture component and exchanges transformation to SysML 1.4

Figure 4 shows the transformation result of Capella Logical components and component exchanges (left

Clock Radio (LA)) to SysML Blocks and Connectors (Right <<Block>> Clock Radio (LA)).

Capella

element/concept

Capella metamodel SysML metamodel

mapping

Note

- Logical Architecture

-Logical Actors

Package

- LogicalArchitecture

- LogicalArchitecturePkg

UML Package SysML does not model

abstraction layers. Packages

are used to group modeled

elements per level. A

stereotype can be used.

Each Capella level is transformed to a separated package.

A stereotype could be used for each different level.

- Logical Context

- Logical Actor

- Logical Component

- LogicalContext

- LogicalActor

- LogicalComponent

UML Class + SysML

Block Stereotype

A stereotype can be used.

Actor blocks are contained in

the package Logical Actors,

while component blocks are

contained in the Logical

Architecture. Contained

Class/elements in a Packag

are UML packaged

elements.

Containment of

Component

ownedLogicalElement UML Association with

aggregation =

Composite, and

member End =

Owner class, owned

class + UML property

at the owned Class

The owner Class has a

property typed with the

contained Class. The item

association refers to the

association relationship

between the owned and the

owner classes.

Component Port ComponentPort UML Port + Block as

port Type

Port is an owned attribute of

the container Block. Each

Port is typed with a generic

Block. The exchanged data

are Flow properties in the

generic Block type.

Component

Exchange

ComponentExchange,

source = source port,

target = targetport

UML Connector, end

ports

Connector ends are the

interconnected source and

target ports, and the

associated block parts.

Figure 4 - Capella logical components and component exchanges to SysML blocks and connectors

Functions transformation
The concept of “Function” is not directly supported in SysML. The closest concept is the mapping to

Activities and Actions in the Activity diagram. In this case, Pins, Parameter Nodes and Object flows are

used for communication (Cf. Figure 5). Another option would be to use Blocks with a “function”

stereotype [11]. We decided for this experiment to use only UML/SysML existing elements with no

stereotypes (so not to create a UML/SysML profile for Arcadia/Capella).

Capella

element/concept

Capella metamodel SysML metamodel

mapping

Note

Logical function LogicalFunction Activity + Call Behavior

Action that refers the

activity

One Capella function is

transformed to an activity and

a call behavior action that is

contained in it.

Actions are atomic elements. It is the reason why a function is transformed to both Activity, which

can express the imbrication and uses Activity parameter node for flow.

Function Input /

output ports

FunctionInputPort /

FunctionOutputPort

Activity parameter

node + Input/Output

pin (argument/result)

An Activity parameter node is

contained in activity. A pin is

contained in action. They are

connected to each other

using an ObjectFlow

Functional

exchange

functionalExchange

target =

FunctionInputPort

,source =

FunctionOutputPort

Object Flow , source =

Activity parameter

node source, target =

Activity parameter

node

The object flow interconnects

activities. Objects flows are

used also to interconnect

activity parameter node and

pin.

Table 2 – Logical function and exchanges transformation to SysML 1.4

Figure 5 shows the Capella Logical functions (top green blocks) and the functional exchanges

transformation to SysML activities and actions (bottom blue blocks), applying Table 2.

Figure 5 - Capella Logical Functions to SysML Activities and Call Behavior actions

Exchanges and Exchange Items transformation and allocation

Capella

element/concept

Capella

metamodel

SysML metamodel

mapping

Note

Data Package Datapkg UML Package Data package is contained in logical

architecture package. Note that each

Capella level has its own Data

package.

Exchange Item exchangeItem UML Block or Value

Type

Block/Value type represents the

exchanged data. The block/value type

types flow property, contained in a port

or pin block type, in the case of

exchange item allocation (cf. figure 5)

We only transform, at first, exchange items of kind = unset or kind = flow

Class class UML Block The resulted block will type the

property (the result of exchange item

element transformation).

Exchange Item

Element

exchangeItemEle

ment

UML Property The created property is added to the

“exchange item” Block/Value Type

(see exchange item row)

Data Type

(Numeric)

Data type Block Or DataType See transformation result figure 6.

Property / Literal

Numeric Value

property Property + type The created property is added to the

Block resulted from the transformation

of “Class” or of” Data Type”

Predefined Types

package

Package Package This Package is present in the Data

package of SA layer

Predefined Type DataType Block Or DataType See transformation result figure 6.

Exchange Item

Allocation In

Functional

Exchange

Functional

Exchange ->

exchangeitems =

…,…

InPin + outpin type =

the allocated

exchange item

block/value type

Pins are typed by the related

exchange items block/ value type from

the transformation.

Exchange item

Allocation on

Component

exchange

Component

exchange ->

exchangeitems =

…, …

Port type = Block ->

flow property = the

allocated exchange

item block/value type

Ports are typed by a Block. The flow

property contained in the block is to be

typed by the corresponding allocated

exchange item block/ value type

(resulted from the transformation)

Table 3 - Exchange items, Type and exchange item allocation transformation to SysML 1.4

Figure 6 shows SysML pin FIP1 and its type “alarm time”. Alarm time is described as a block with an

attribute timestamp, which consists of attributes “Hour” and “Minute”.

Figure 6 - Pin FIP1 typed with alarm clock

Figure 7 shows the application of the mapping to SysML 1.4 of table 3.

Figure 7 - Predefined Types transformation in SysML 1.4

Allocation and realization transformation
In Arcadia, the concept of “allocation” is very important as Functions should be allocated to Components

(System/ Logical/ Physical) at each engineering level. Figure 8 depicts the allocation table in Papyrus,

resulted from the transformation of Capella allocations to SysML allocation relationships.

Figure 8 – Transformation of Capella Allocation between elements to the SysML 1.4 allocation relationship

Table 4 describes allocations in Papyrus for SysML, allocation tables are used.

Capella

element/concept

Capella metamodel SysML metamodel

mapping

Note

Allocation Allocation, targetElement

= <allocated_element>,

sourceElement =

<element_to_allocate_on

>

uml:Abstraction, client = <

allocated_element> ,

supplier = <

element_to_allocate_on >

+ allocation stereotype

Allocation relationship is

the transformation for

function to component

allocation, function port to

component port etc, …

Finally, Realization relationship in SysML are used as a mapping for “Realize” Capella relationship, and

express the refinement among modeling level, e.g. Logical Architecture <Realize> System Analysis.

Capella

element/concept

Capella metamodel SysML

mapping

MM SysML

Realization <….Realization>, targetElement =

<realized_element>,

sourceElement =

<realizer_element>

Realization

relationship

-uml:Realization, client =

<realizer_element(LA)>,

supplier=

<realized_Element(SA)>

CapellaTo SysML Bridge: the transformation tool
Capella2SysML is an Eclipse based tool developed to support Capella to SysML mapping.

Capella2SysML is based on the Transposer [6] technology and developed in Capella Studio 1.1.x [7] It

also embeds the CoEvolution technology [8] that allows incremental transformation. The source model

is Capella 1.1 and the target model is SysML 1.4 for Papyrus 2.0. Capella2SysML Bridge is provided as

an update site in Capella. It is active on a Capella Project. Once Capella2SysML is executed, a SysML

Papyrus compliance model is created, in addition to a trace file for incremental transformation. As with

most XMI bridges between SysML tools, the diagrams themselves are not kept by the transformation.

Conclusion
To take advantage of the power of the Capella tool, as well as the conformance to the standardized

SysML language, this paper depicts a first attempt of Capella to SysML mapping and a prototype of

transformation tool. As part of the Clarity project [3], we have tried to initiate this mapping of concepts,

considering only a subset of important Arcadia/Capella concepts, and to build a prototype transformation

tool towards Papyrus SysML as proof-of-concept.

The paper focuses only on Capella Components, Functions and the related Exchange modeling

concepts in the Logical architecture level. We developed a tool that supports this transformation as a

first bridge between Capella and SysML. It enables the transformation of a given Capella source model

to a target SysML model for model interoperability. The mapping strategies will be enhanced with

additional transformations, such as Sequence diagram elements and the Physical architecture level.

Stereotypes could also be defined to create a real Capella “Profile”, as an alternative solution.

References
[1] https://polarsys.org/capella/

[2] http://www.omg.org/spec/SysML/1.4/

[3] http://www.clarity-se.org/project/

[4] https://projects.eclipse.org/projects/modeling.mdt.papyrus/releases/2.0.0

[5] VOIRIN J.L.., BONNET S., EXERTIER D., NORMAND V. Simplifying (and enriching) SysML to perform
functional analysis and model instances », INCOSE IS, Edinburgh, Ecosse, July 2016.

[6] https://wiki.polarsys.org/Kitalpha/CTK/Transposer

[7] https://wiki.polarsys.org/Capella/Studio

[8] https://wiki.eclipse.org/EMF_DiffMerge/Co-Evolution

[9] VOIRIN J.L., Model-based System and Architecture Engineering with the Arcadia Method, ISTE
Editions, London, 2017.

[10] ROQUES P., Systems Architecture Modeling with the Arcadia Method, Practical Guide to Capella,
ISTE Editions, London, 2017.

[11] LE BASTARD J., SysML and System Engineering functional analysis, Alstom, 2012.

https://polarsys.org/capella/
http://www.omg.org/spec/SysML/1.4/
http://www.clarity-se.org/project/
https://projects.eclipse.org/projects/modeling.mdt.papyrus/releases/2.0.0
https://wiki.polarsys.org/Kitalpha/CTK/Transposer
https://wiki.polarsys.org/Capella/Studio
https://wiki.eclipse.org/EMF_DiffMerge/Co-Evolution

