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Abstract
The number of embeddings of minimally rigid graphs in RD is (by definition) finite,

modulo rigid transformations, for every generic choice of edge lengths. Even though various
approaches have been proposed to compute it, the gap between upper and lower bounds is
still enormous. Specific values and its asymptotic behavior are major and fascinating open
problems in rigidity theory.

Our work considers the maximal number of real embeddings of minimally rigid graphs
in R3. We modify a commonly used parametric semi-algebraic formulation that exploits
the Cayley-Menger determinant to minimize the a priori number of complex embeddings,
where the parameters correspond to edge lengths. To cope with the huge dimension of the
parameter space and find specializations of the parameters that maximize the number of
real embeddings, we introduce a method based on coupler curves that makes the sampling
feasible for spatial minimally rigid graphs.

Our methodology results in the first full classification of the number of real embeddings of
graphs with 7 vertices in R3, which was the smallest open case. Building on this and certain
8-vertex graphs, we improve the previously known general lower bound on the maximum
number of real embeddings in R3.

1 Introduction
Rigid graph theory is a very active area of research with many applications in robotics [13, 31, 32],
structural bioinformatics [10, 21], sensor network localization [33] and architecture [12].

A graph embedding in RD, equipped with the standard euclidean norm, is a function that
maps the vertices of a graph G to RD. Let VG, resp. EG, denote the set of vertices, resp. edges,
of G. We are interested in embeddings that are compatible with edge lengths, namely, if two
vertices are connected by an edge, then the distance between them equals a given length for
this edge. A graph G is generically rigid if all embeddings compatible with generic edge lengths
are not continuously deformable. If any edge removal results in a non-rigid mechanism, then
the graph is minimally rigid. For D = 2 these graphs are called Laman graphs. For D = 3,
following [15], we call these graphs Geiringer graphs to honor Hilda Pollaczek-Geiringer who
worked on rigid graphs in R2 and R3 many years before Laman [25, 24].
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For a graph G, let rD(G,d) be the number of embeddings in RD that are compatible with edge
lengths d = (de)e∈EG

∈ R|EG|
+ modulo rigid motions, and let rD(G) be the maximum of rD(G,d)

over all d such that rD(G,d) is finite. To indicate the maximum number of real embeddings over
all graphs with n vertices, we write rD(n). In this setting, an important question is to find all the
possible real embeddings of graphs with k (some constant) number of vertices. This can be used
to enumerate and classify conformations of proteins, molecules [10, 21] and robotic mechanisms,
e.g., [32, 8]. Furthermore, precise bounds for rD(G) or rD(k) are of great importance, since
gluing many copies of G together yields lower bounds for rD(n), for n ≥ k, e.g., [5, 15].

A natural approach to bound rD(G) is to use an algebraic formulation to express the em-
beddings as solutions of a polynomial system. The number of its complex solutions bounds the
number of complex embeddings, cD(G), which bounds rD(G).

For D = 2, there is a recent algorithm [6] to solve the problem of complex embeddings, c2(G),
of minimally rigid graphs in C2, for any given graph G. Besides this graph-specific approach,
using determinantal varieties [4, 5] we can estimate asymptotic bounds, see also [11, 28]; this
approach also gives results for D = 3. Complex bounds for certain cases of Laman graphs are
also given in [18]. For graphs with a constant number of vertices, we know that r2(6) = 24, where
the proof technique uses the coupler curve of the Desargues graph [5], and r2(7) = 56, proved
by delicate stochastic methods [9]. The second bound yields the best known lower bound for
Laman graphs, which is r2(n) ≥ 2.3003n.

For D = 3, the problem is much more difficult than in the planar case. One of the rea-
sons is that, unlike the planar case, we lack a combinatorial characterization of minimally rigid
(Geiringer) graphs in R3. The existence of such a characterization is a major open problem in
rigid graph theory. The algebraic formulation considers the squared distance between two points,
not as a metric, but as the sum of squares of the coordinates. Then, for every edge vivj , we have
the equation

d2
ij = (xi − xj)2 + (yi − yj)2 + (zi − zj)2 ,

where xi, yi, zi are, in general complex, coordinates of a vertex vi and dij is the length of the
edge vivj . If we use the Bézout bound to bound the number of the complex roots of the polyno-
mial system, then the upper bound for c3(n) is O(23n), which is a very loose bound. Hence, a
more sophisticated approach is needed. Nevertheless, this formulation has been successfully used
to obtain upper bounds of r3(k) via mixed volume computation of sparse polynomial systems
for 1-skeleta of simplicial polyhedra (a subset of spatial rigid graphs) with k ≤ 10 vertices [11].
The best known lower bound is r3(n) ≥ 2.51984n [11]. We improve it to 2.6553n.

As our goal is to estimate the number of real embeddings, we are interested in the number
of real solutions of the corresponding polynomial systems. If we consider the edge lengths as
parameters, then we are searching for specializations of the parameters that maximize the number
of real solutions of the system and, if possible, to match the number of complex solutions.
However, the number of parameters is very big even for graphs with a small number of vertices.
Even more, it is an open question in real algebraic geometry to determine if the number of
real solutions of a given algebraic system is the same as the number of complex ones up to its
parameters. While there are some upper bounds for the number of real positive roots [27], they
are generally worse than mixed volume in the case of rigid embeddings. In addition, sparse
polynomials have also been used to obtain lower bounds of the number of real positive roots of
polynomial systems, see [1, 2] and references therein. Therefore, we need a delicate method to
sample in an efficient way the parameter space and maximize the number of real solutions that
correspond to embeddings.

For graphs with a given number of vertices, we have a complete classification for all graphs
with n ≤ 6 vertices. Moreover, for the case of the cyclohexane we know the tight bound of
r3(6) = 16 embeddings [10]. Let us also mention that for certain applied cases there are ad
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hoc methods. For example, the maximal number of real embeddings of Stewart platforms was
computed [8] using a combination of Newton-Raphson and the steepest descent method.

Our contribution We extend existing results about the number of the spatial embeddings
of minimally rigid graphs. We construct all minimally rigid graphs up to 8 vertices and we
classify them according to the last Henneberg step. Then, we model our problem algebraically
using two different approaches. Using the algebraic formulation, we compute upper bounds for
the number of complex embeddings of all graphs with 7 and 8 vertices. Then, we introduce a
method, inspired by coupler curves, to search efficiently for edge lengths that increase the number
of real embeddings. We provide an open-source implementation of our method in Python [19],
which uses PHCpack [30] for solving polynomial systems. To the best of our knowledge there is
no other similar technique, let alone an open-source implementation. Based on our formulation
and software, we performed extensive experiments that resulted in a complete classification and
tight bounds for the real embeddings for all 7-vertex Geiringer graphs, which was the smallest
open case. Moreover, we extend our computations to certain 8-vertex graphs. Even though the
computations do not provide a full classification of real embeddings, they are enough to improve
the currently known lower bound on the number of embeddings in n, namely r3(n) ≥ 2.6553n.

Organization The rest of the paper is organized as follows. In Section 2 we present the
equations and inequalities of our modeling. In Section 3, we introduce a method for parametric
searching for edge lengths inspired by coupler curves. In Section 4, we present r3(G) for all G
with 7 vertices and we establish a new lower bounds on the maximum number of real embeddings.
Finally, in Section 5 we conclude and present some open questions.

2 Preliminaries & Algebraic Modeling
First, we present some general results about rigidity in R3 and then two algebraic formulations of
the problem of graph embeddings. The first, in Section 2.2, is based on 0-dimensional varieties of
sphere equations. The second, in Section 2.3, exploits determinantal varieties of Cayley-Menger
matrices and inequalities.

2.1 Rigidity in R3

The first step is the construction of all minimally rigid graphs up to isomorphism for a given
number of vertices. The combinatorial characterization of minimally rigid graphs in dimension
3 is a major open problem. It is well known that |EG| = 3|VG| − 6, and |EH | ≤ 3|VH | − 6 for
every subgraph H of G, but this condition is not sufficient for rigidity [26].

It is known that adding a new vertex to a Geiringer graph together with adding and removing
certain edges yields another Geiringer graph. These operations are called Henneberg steps [29].
Henneberg step I (H1) adds a vertex of degree 3, connecting it with 3 vertices in the original
graph. Henneberg step II (H2) deletes an edge from the original graph, a new vertex is connected
to the vertices of the deleted edge and to two other vertices of the graph, see Figure 1. For these
two steps, the opposite implication also works: If the resulting graph is Geiringer, the original
one is Geiringer too. Since the necessary condition for the number of edges guarantees that all
Geiringer graphs with ≤ 12 vertices do not have all vertices of degree greater or equal to 5, H1
and H2 are sufficient to construct all Geiringer graphs with ≤ 12 vertices.

There are two additional steps, the so-called X-replacement and double V-replacement (H3x
and H3v). They extend rigid graphs in R3 with a vertex of degree 5, see Figure 1. Every
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H1 H2 H3x H3v

3 edges 1 deleted 2 deleted 2 deleted
added 4 added 5 added 5 added

Figure 1: Henneberg steps in R3

minimally rigid graph in R3 can be constructed by a sequence of steps H1, H2, H3x or H3v
starting from a tetrahedron. On the other hand, it is not proven whether these moves construct
only rigid graphs [26] (for dimension 4 there is a counterexample such that 4-dimensional variant
of H3x gives a non-rigid graph [22]).

2.2 Equations of spheres
Definition 1. If G = (VG, EG) is a graph with edge lengths d = (de)e∈EG

∈ R|EG|
+ and v1, v2, v3 ∈

VG are such that v1v2, v2v3, v1v3 ∈ EG, then S(G,d, v1v2v3) ⊂ (C×C×C)|VG| denotes the zero
set of the following equations

(xv1 , yv1 , zv1) = (0, 0, 0), (xv2 , yv2 , zv2) = (0, dv1v2 , 0),
(xv3 , yv3 , zv3) = (x3, y3, 0), x2

v + y2
v + z2

v = sv ∀v ∈ VG ,

su + sv − 2(xuxv + yuyv + zuzv) = d2
uv ∀uv ∈ EG ,

where x3, y3 are such that x3 ≥ 0, x2
3 + y2

3 = d2
v1v3

and x2
3 + (y3− dv1v2)2 = d2

v2v3
. We denote the

real solutions S(G,d, v1v2v3) ∩ (R× R× R)|VG| by SR(G,d, v1v2v3).

The first 3 equations remove rotations and translations. The distances of vertices from the
origin are expressed by new (nonzero) variables to avoid roots at toric infinity which prohibit
mixed volume from being tight [11, 28]. The other equations are distances between embedded
points.

Notice that r3(G,d) = |SR(G,d, v1v2v3)|. If d is generic, then c3(G,d) = |S(G,d, v1v2v3)| =
c3(G) since the number of complex embeddings is a generic property. The mixed volume of the
system depends on the choice of the fixed triangle. Hence, all possible choices must be tested for
some graphs in order to get the best possible bound.

2.3 Distance geometry
Distance geometry is the study of the properties of points given only the distances between them.
A basic tool is the squared distance matrix, extended by a row and a column of ones (except for
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the diagonal), known as Cayley-Menger matrix [3, Chapter IV, Section 40]:

CM =


0 1 1 · · · 1
1 0 d2

12 · · · d2
1n

1 d2
12 0

. . . . . .

· · · · · ·
. . . . . . . . .

1 d2
1n d2

2n · · · 0

 ,

where dij is the distance between point i and j. The points with such distances are embeddable
in RD if and only if

• rank(CM) = D + 2 and

• (−1)k det(CM ′) ≥ 0, for every submatrix CM ′ with size k + 1 ≤ D + 2 that includes the
extending row and column.

The distances among all n points correspond to edge lengths of the complete graph with n
vertices. Hence, assuming that lengths of non-edges of our graph G correspond to variables,
the first condition gives rise to determinantal equations. This condition suffices for embeddings
in CD. The systems of these equations are overconstrained (for example 21 equations in 6
variables for n = 7 and 56 equations in 10 variables for n = 8). The second embedding condition
can be interpreted by geometrical constraints on the lengths. For k = 2 this means simply that a
length should be positive. For k = 3 the resulting inequality is the triangular one, while for k = 4
we obtain tetrangular inequalities. The latter can be seen as a generalization of the triangular
ones, since they state that the area of no triangle is bigger than the sum of the other three in a
tetrahedron.

Although the systems of equations are overconstrained, a square subsystem can be found.
The question is if these subsystems can give us information for the whole mechanism. In [17], the
authors present an idea relating Cayley-Menger subsystems with globally rigid graphs. They are a
certain class of graphs consisting of mechanisms with unique realizations up to rigid motions and
reflections. If extending G by the edges corresponding to the variables of the square subsystem
yields a globally rigid graph, then the number of solutions of the reduced system gives an upper
bound for the whole system. Since the reflections are factored out by the distance system, the
number of solutions is c3(G)/2. We check global rigidity using stress matrices derived from
rigidity matroids [14].

It is easy to find square subsystems from the determinantal equations. The question is what
is the smallest number of variables needed to establish an upper bound and if this subsystem
captures all solutions of the whole graph. The following lemma provides an estimate of the
number of variables.

Lemma 1. For every minimally rigid graph G in dimension 3, there is at least one extended
graph H = G ∪ {e1, e2, .., ek}, with k = |VG| − 4 and ei /∈ EG, which is globally rigid in C3.

Proof. The only 5-vertex minimally rigid graph is obtained by applying an H1 step to the tetra-
hedron. If we extend this graph with the only non-existing edge, we obtain the complete graph
in 5 vertices, so the lemma holds. Let the lemma hold for all graphs with n or less vertices. For
every graph obtained by an H2 step, the lemma holds since H2 preserves global rigidity [7].

Let a graph Gn+1 be constructed by an H1 move applied to an n-vertex graph Gn, whose
extended globally rigid graph is Hn. Without loss of generality, this move connects a new vertex
vn+1 with the vertices v1, v2, v3. Let u be a neighbour of v1 in Gn+1 such that v2 6= u 6= v3. The
edge uv1 exists also in Gn and Hn. If we set H ′n+1 = (Hn ∪ {v1vn+1, v2vn+1, v3vn+1, uvn+1})−
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{v1u}, then H ′n+1 is globally rigid, because it is constructed from Hn by an H2 step. Hence,
Hn+1 = H ′n+1 ∪ {uvn+1} is also globally rigid, proving the statement in the case of H1 steps.

As for H3 steps, both H3x and H3v can be seen as an H2 step followed by an edge deletion.
Extending the graph with the second deleted edge preserves global rigidity.

We can extend this result to minimally rigid graphs in arbitrary dimension constructed by
appropriate generalizations of Henneberg steps H1, H2 or H3. As we mentioned, the lemma gives
only an estimate for the smallest number of variables. It guarantees neither that such subsystem
exists in every Cayley-Menger matrix of a minimally rigid graph (in fact we have found graphs
with 8 or more vertices with no such a subsystem), nor that the solutions of the subsystem totally
define the whole system. On the other hand, if such a subsystem exists, it can definitely give an
upper bound.

An example is the 7-vertex graph G48 with the maximal number of embeddings (r3(G48) =
48 = r3(7), see Section 4). The labeling of the vertices is in Figure 2. There are 5 different
square systems in 3 variables that completely define the mechanism. We can choose one of them
involving only x1, x2, x3:

CMG48 =



0 1 1 1 1 1 1 1
1 0 d2

12 d2
13 d2

14 d2
15 d2

16 x1
1 d2

21 0 d2
23 x2 x3 d2

26 d2
27

1 d2
31 d2

32 0 d2
34 x4 x5 d2

37
1 d2

41 x2 d2
43 0 d2

45 x6 d2
47

1 d2
51 x3 x4 d2

54 0 d2
56 d2

57
1 d2

61 d2
62 x5 x6 d2

65 0 d2
67

1 x1 d2
72 d2

73 d2
74 d2

75 d2
76 0


.

One advantage of this approach is that we have much less equations compared with the sphere
equations approach. In this example, we need a system of only 3 equations for the distance
system, while 16 equations are required otherwise. Additionally, every solution of the distance
system corresponds to two reflected embeddings. Hence, polynomial homotopy solvers are much
faster in this case.

We can also apply algebraic elimination to reformulate this determinantal variety. We noticed
that even the graph extended only with the edge v1v7 corresponding to the variables x1 is globally
rigid. This led us to compute the resultant of the square 3x3 system for x1, which can be obtained
by repeated Sylvester resultants, Macaulay resultant and sparse resultant method with the same
result. In order to specify the realizations, we also need the set of inequalities. There are
35 triangular inequalities and the same number of tetrangular inequalities for the whole set of

v1

v2

v3 v4

v5
v6

v7

v1

v2

v3 v4

v5
v6

v7

x1

Figure 2: The graph G48 (grey edges). There are submatrices of CMG48 that involve only
variables corresponding to the 3 red dashed edges of the left graph. The graph G48 extended by
the edge v1v7 (that corresponds to the variable x1) is globally rigid.
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variables. Since we need to embed only one new edge, we are restricted to find the inequalities
for x1. There are ten inequalities that include only x1 (5 triangular and 5 tetrangular).

On the other hand, we detected graphs for which the subsystems do not fully describe the
determinantal variety, since the number of solutions of the whole (overconstrained) system is
smaller than this of the (square) subsystem for some generic choices of lengths. We conclude
that the drawback of the method is that there is not a 1-1 correspondence between subsystems
and global rigidity. Despite this fact, they seem better candidates for tight upper bound mixed
volume computations.

3 Increasing the number of real embeddings
To improve r3(G) bounds, our first goal was to prove that r3(G48) = c3(G48). Initially we used
methods already applied to increase the number of real solutions of a given polynomial system.
We present a short overview of this approach.

Stochastic methods A first idea was to use stochastic sampling. Generic configurations ofG48
embeddings in R3 were perturbed following the sampling methods presented in [9]. Applying
this approach, it was straightforward to find configurations with r3(G48,d) being equal to 16, 20
or 24. Our best result was r3(G48,d) = 32.

Parametric searching with CADmethod Maple’s subpackage RootFinding [Parametric]
implements Cylindrical Algebraic Decomposition principles for semi-algebraic sets [20]. This im-
plementation could not work for the system of sphere equations, but was efficient using the
semi-algebraic distance system. The algorithm can separate variables and parameters for every
equation and give as output a decomposition of the space of parameters up to the number of so-
lutions. In our case, it was possible to use only one parameter due to computational constraints,
so all the other distances were fixed (our Maple worksheet is available at [19]).

It was again straightforward to find 24 embeddings even from totally random conformations.
To get more we needed to exploit the symmetry of G48, constructing non-generic flexible frame-
works. Perturbing the lengths by a small quantity, r3(G48,d) was again finite. Afterwards,
we considered multiple edge lengths as linear combinations of the same parameter. Eventually,
applying parameter searching, we were able to find lengths d̄ such that r3(G48, d̄) = 28:

d̄12 = 1.99993774567597, d̄27 = 10.5360917228793,

d̄13 = 1.99476987780024, d̄37 = 10.5363171636461,

d̄14 = 2.00343646098439, d̄47 = 10.5357233031495,

d̄15 = 2.00289249524296, d̄57 = 10.5362736599978,

d̄16 = 2.00013424746814, d̄67 = 10.5364788463527,

d̄23 = 0.99961432208948, d̄34 = 1.00368644488060,

d̄45 = 1.00153014850485, d̄56 = 0.99572361653574,

d̄26 = 1.00198771097407

(1)

While this result was lower than the one achieved by stochastic searching, it had some promis-
ing properties (variables are taken from the determinantal variety of CMG48). Namely, all the
solutions for x1, x2, x3 are real, for x1 even positive, and the x1 solutions which are not embed-
dable are very close to the intervals imposed by the triangular and tetrangular inequalities.

Gradient Descent An algorithm that increases step by step the number of real embeddings
is proposed in [8]. This method is based on gradient descent optimization, minimizing the

7



imaginary part of solutions, while forcing existing real roots to remain real via a semidefinite
relation.

We applied it to the G48 sphere equations and a variant of it for distance equations starting
from the optimal configurations found with the two previous approaches. In the first iterations
the results were encouraging, but finally we could not generate more real embeddings.

The previous results motivated us to search other ways to achieve our first goal. Inspired by
coupler curve visualization, we introduce an iterative procedure that modifies edge lengths so
that the number of real embeddings might increase. In particular, it allows to find edge lengths
to prove that r3(G) = c3(G) for G48 and also other 7-vertex graphs G. At each iteration, only
lengths of 4 edges in a specific subgraph are changed. One can be changed freely, whereas the
other 3 are related. For this two-parametric family, we search values with the maximal number
of embeddings globally.

3.1 Coupler curve
For a minimally rigid graph G, removing an edge uc yields a framework H = (VG, EG \ uc) with
one degree of freedom. If we fix a triangle containing u in order to avoid rotations and translations
of H, then the vertex c draws the so called coupler curve under all possible motions of H. This
idea was already used in [5] for obtaining 24 real embeddings of Desargues (3-prism) graph in R2.
A modification into R3 is straightforward – the number of embeddings of G corresponds to the
number of intersection of the coupler curve of c of the graph H with a sphere centered at u with
radius duc. The following definition recalls the concept of coupler curve more precisely.

Definition 2. Let H be a graph with edge lengths d = (de)e∈EH
and v1, v2, v3 ∈ VH be such that

v1v2, v2v3, v1v3 ∈ EH . If the set SR(H,d, v1v2v3) is one dimensional and c ∈ VH , then the set

Cc,d = {(xc, yc, zc) : ((xv, yv, zv))v∈VH
∈ SR(H,d, v1v2v3)}

is called a coupler curve of c w.r.t. the fixed triangle v1v2v3.

Obviously, for given lengths d of the graph H, we may vary the length duc of the removed
edge uc so that the number of intersections of the coupler curve Cc,d with the sphere centered
at u with radius duc, i.e., the number of embeddings of G, is maximal. The following lemma
enables us to move also the center of the sphere within a certain one-parameter family without
changing the coupler curve.

Lemma 2. Let G be a minimally rigid graph and let u, v, w, p, c be vertices of G such that
pv, vw ∈ E and the neighbours of u in G are v, w, p and c. Let Cc,d be the coupler curve of c of the
graph H = (VG, EG\{uc}) with edge lengths d = (de)e∈EH

w.r.t. the fixed triangle vuw. Let zp be
the altitude of p in the triangle uvp with lengths given by d. The set {yp : ((xv′ , yv′ , zv′))v′∈VH

∈
SR(H,d, vuw)} has only one element y′p. If the parametric edge lengths d′(t) are given by

d′uw(t) = ||(xw, yw − t, 0)|| , d′up(t) = ||(0, y′p − t, zp)|| ,
d′uv(t) = t , and d′e(t) = de for all e ∈ EH \ {uv, uw, up} ,

then the coupler curve Cc,d′(t) of c w.r.t. the fixed triangle vuw is the same for all t ∈ R+, namely,
it is Cc,d. Moreover, if cw ∈ EG, then Cc,d′(t) is a spherical curve.

Proof. Within this proof, all coupler curves are w.r.t. the triangle vuw. The situation is illus-
trated by Figure 3. Since G is minimally rigid, removing the edge uc yields a graph H such that
SR(H,d, vuw) is one dimensional for a generic choice of d. The set {yp : ((xv′ , yv′ , zv′))v′∈VH

∈
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SR(H,d, vuw)} has indeed only one element, since the coupler curve Cp,d of p is a circle whose
axis of symmetry is the y-axis. The parametric edge lengths d′(t) are such that the position of v
and w is the same for all t. Moreover, the coupler curve Cp,d′(t) of p is independent on t. Hence,
the coupler curve Cc,d′(t) is independent on t, because the only vertices adjacent to u in H are
p, v and w, i.e., the position of u does not influence positions of the other vertices.

x

y

z

Cp,d

xw

yw

Cc,d

v uu(t)

w

p

y′p

c

zp

Figure 3: Since the lengths of up and uw are changed accordingly to the length of uv (blued
dashed edges), the coupler curves Cp,d′(t) and Cc,d′(t) are independent on t. The red dashed edge
uc is removed from G.

Thus, for every subgraph of G given by vertices u, v, w, p, c such that pv, vw ∈ E and the
neighbours of u in G are v, w, p and c, we have a two-parametric family of lengths d(t, r) such
that the coupler curve Cc,d(t,r) w.r.t. the fixed triangle vuw is the same for all t and r, where the
parameter t determines lengths of uv, uw and up, and the parameter r represents the length of
uc. Within this family, we look for values of t and r that maximize the number of embeddings.

We illustrate the method on the example of G48. Let d̄ be edge lengths given by (1). We
developed a program [19] that plots (using Matplotlib [16]) the coupler curve of the vertex v6
of G with the edge v2v6 removed w.r.t. the fixed triangle v1v2v3. Figure 4 is created by this
program. There are 28 embeddings for d̄, but we can find position and radius of the sphere
corresponding to the removed edge v2v6 such that there are 32 embeddings by using Lemma 2
for the subgraph (u, v, w, p, c) = (v2, v3, v1, v7, v6). This is obtained by setting

d12 = 4.0534, d27 = 11.1069, d26 = 3.8545, d23 = 4.0519 . (2)

3.2 Sampling
Although edge lengths of G48 with 48 real embeddings can be obtained by manual application
of Lemma 2 based on plots of coupler curves, we also implemented a program [19] that searches
for a good position and radius of the sphere by sampling the parameters. The method and its
implementation work also for minimally rigid graphs other than G48.

We assume that the edge cw is present for a suitable subgraph (actually, this is the case for
all suitable subgraphs of G48). Thus, the coupler curve is spherical and the intersections of the
coupler curve with the sphere representing the removed edge uc lies on the intersection of these
two spheres, which is a circle. Hence, instead of sampling t and r, we sample circles on the sphere
containing the coupler curve.

Since the sphere of the coupler curve is centered at w and the intersecting sphere has center
at u, the center of the intersection circle is on the line uw and the plane of the circle is perpen-
dicular to this line. Hence, the circle is determined by the angle ϕ ∈ (−π/2, π/2) between the
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Figure 4: Coupler curve Cv6,d̄ of G48 with the edge v2v6 removed. The 28 red points are
intersections of Cv6,d̄ with the sphere centered at v2 with edge lengths d̄, whereas the 32 green
ones are for edge lengths given by equation (2) (illustrated by blue dashed lines).

altitude of w in the triangle uvw and the line uw, and by the angle θ ∈ (0, π) between uw and
cw, see Figure 5. Thus, we sample ϕ and θ in their intervals, compute t and r from their values
and select edge lengths with the highest number of real embeddings. The algebraic systems are
solved by polynomial homotopy continuation using the Python package phcpy [30]. In phcpy,
one can specify a starting system with the set of its solutions instead of letting the program to
construct it. Since the parameters change only slightly during the sampling, tracking the solu-
tions of a new system from the solutions of the previous one is significantly faster than solving
from scratch.

x

y

z

v u

w
c

·
·ϕ

θ

Figure 5: For fixed position of v and w, the angle ϕ determines the position of u, since u lies on
the y-axis. If also the length of cw is given, then θ determines the length of uc. The intersection
circle is blue.

3.3 More subgraphs suitable for sampling
Usually, one iteration of the sampling produces many edge lengths with the same number of real
embeddings. If this number is not the desired one, then we need to pick starting edge lengths for
the next iteration with a different subgraph suitable for sampling. Our heuristic choice is based
on clustering of pairs (ϕ, θ) using the function DBSCAN from the sklearn Python package [23].
From each cluster, we pick the center of gravity as (ϕ, θ) for the output lengths, or the pair (ϕ, θ)
closest to this center if the edge lengths corresponding to the center have less real embeddings.

We tested two approaches in sampling for subgraphs:

1. Tree search – we apply the procedure using all suitable subgraphs for given starting lengths

10



and then we do the same recursively for all outputs whose number of embeddings increased
until the required number is reached (or there are no increments). We trace the state tree
depth-first.

2. Linear search – we order all suitable subgraphs and an output from the procedure applied
to starting lengths with the first subgraph is used as input for the procedure with the
second subgraph, etc. There is also branching because of multiple clusters – we test all of
them in depth-first way.

4 Classification and Lower Bounds
Henneberg steps may result in isomorphic graphs either constructed by the same H-step or by
another one. We recall that no H3x or H3v step is needed for 7 and 8-vertex graphs. We classify
each graph up to isomorphism by the sequence of Henneberg steps needed for its construction.
We use a certain hierarchy for this classification: on the one hand there are graphs that can be
constructed by an H1 move in the last step, while for the others H2 is needed. This process
is important, since H1 steps trivially double the number of real embeddings as the new vertex
lies in the intersection of 3 spheres. This means that the number of embeddings for H1 graphs
is already known, assuming that we know the number for the parent graph. Our MATLAB and
SageMath implementations, which verify each other, were used to apply Henneberg steps and
remove isomorphisms (see [19]). This is not a computationally difficult task for n = 7 or 8. We
remark that this is also done in [15] up to 10 vertices.

The first estimate of c3(G) is the mixed volume of the algebraic systems. Let f be a square
polynomial system in m variables. The convex hull of the exponents vector of each polynomial
is its Newton polytope. The mixed volume of the polytope bounds the number of solutions and
is tight generically in (C∗)m. We computed the mixed volume for both sphere and distance
equations. We solved the systems for random edge lengths and checked whether the mixed
volume bound was tight in all cases. Finally, we used the method in Section 3 to find parameters
maximizing the number of real embeddings.

4.1 7-vertex graphs
For n = 6, there are three H1 graphs and one obtained with an H2 step – the cyclohexane G16.
The number of real embeddings of the H1 graphs is 8, while it is known that r3(G16) = 16 [10].
One can also obtain lengths d such that r3(G16,d) = 16 by our method within a few tries with
random starting lengths.

G48 G32a G32b

1

2 3 4 56

7

1

2
3

4

5

6

7
1

2

3
4

5 6

7

G24 G16a G16b

1

2

3
4

5 6

7
1

23
4

5

6

7 1

2

3
4

5 6

7

Figure 6: All 7-vertex graphs constructed only by an H2 move in the last step.
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Using Henneberg steps, we tackle the case n = 7. There are 18 graphs constructed using a
sequence of only H1 steps, while two are obtained if we apply H1 to G16. Hence, the number
of real embeddings is 16, resp. 32, by the doubling argument. Moreover, there are 6 graphs
obtained by H2 on a 6-vertex graph, see Figure 6. See [19] for the full list.

The results (mixed volume for both systems, numbers of complex and real embeddings) for
these 6 graphs are in Table 1. These results give a full classification of the embeddings of all
7-vertex minimally rigid graphs in R3. We present edge lengths for all these graphs proving that
all embeddings can be real, i.e., r3(G) = c3(G).

Graph G48 G32a G32b G24 G16a G16b

MV sphere eq. 48 32 32 32 32 32
MV dist. subsyst. 48 32 32 24 24 16

c3(G) 48 32 32 24 16 16
r3(G) 48 32 32 24 16 16

Table 1: Mixed volume (MV) and number of solutions for 7-vertex graphs constructed only by
H2 in the last step.

There are 20 subgraphs of G48 given by vertices (u, v, w, p, c) satisfying the assumption in
Lemma 2, that is, they are suitable for the sampling procedure. Using tree search approach,
we obtained d such that r3(G48,d) = 48 in only 3 steps (starting from d̄ and using subgraphs
(v5, v6, v1, v7, v4), (v4, v3, v1, v7, v5) and (v3, v2, v1, v7, v4)):

d12 = 1.9999, d16 = 2.0001, d45 = 7.0744, d47 = 11.8471,

d13 = 1.9342, d26 = 1.0020, d56 = 4.4449, d57 = 11.2396,

d14 = 5.7963, d23 = 0.5500, d27 = 10.5361, d67 = 10.5365 .

d15 = 4.4024, d34 = 5.4247, d37 = 10.5245,

For other graphs constructed only by an H2 move in the last step we used various starting lengths,
we just list the edge lengths that give the appropriate maximal number of real embeddings:

G16a : d13 = 5.75, d56 = 7.90, d16 = 8.48,

d37 = 5.91, d25 = 7.15, d35 = 5.09, d12 = 4.36,

d46 = 8.78, d57 = 10.22, d36 = 7.06, d17 = 3.77,

d47 = 7.19, d23 = 3.81, d34 = 3.23, d24 = 6.05 .

G16b : d47 = 4.46, d26 = 7.47, d45 = 7.72,

d14 = 6.51, d13 = 3.53, d23 = 7.69, d37 = 5.76,

d25 = 9.48, d35 = 6.10, d12 = 4.62, d67 = 3.09,

d27 = 5.90, d46 = 7.07, d15 = 5.69, d36 = 6.43 .
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G24 : d47 = 5.65, d26 = 5.70, d56 = 4.70,

d14 = 8.33, d13 = 4.77, d23 = 10.31, d37 = 7.10,

d25 = 9.32, d12 = 11.05, d46 = 6.49, d57 = 5.77,

d27 = 6.00, d15 = 9.40, d36 = 8.57, d34 = 7.64 .

G32a : d13 = 6.27, d56 = 9.23, d14 = 8.06,

d23 = 8.83, d37 = 5.62, d25 = 9.74, d35 = 5.60,

d12 = 10.95, d67 = 9.28, d57 = 7.88, d36 = 8.26,

d47 = 8.74, d16 = 11.56, d34 = 6.11, d24 = 8.95 .

G32b : d47 = 85.49, d26 = 7.11, d56 = 22.08,

d14 = 87.33, d13 = 10.81, d23 = 4.47, d37 = 7.10,

d25 = 20.70, d12 = 11.06, d67 = 9.29, d15 = 21.49,

d27 = 7.68, d45 = 78.53, d36 = 7.53, d34 = 84.17 .

4.2 8-vertex graphs
We repeated our methods for n = 8. There are 311 graphs that can be constructed by an H1
step (hence, r3(G) is known by H1 doubling argument), while 63 require an H2 step. So we
computed only the complex bounds of the latter: 58 of them have 96 complex embeddings or
less, one has 112 complex embeddings, 3 have 128 complex embeddings and there is a unique
graph G160 with 160 complex embeddings.

G160 G128

1

2
3 4

5
6

7 8

1

2
3 4

5
67

8

Figure 7: G160 has the maximal number of complex embeddings (160). We proved that
r3(G128) = 128.

We were interested in improving the lower bound established previously. No graph with less
than 128 embeddings could improve the bound obtained by G48. Thus, we applied the technique
to maximize real embeddings on two different 8-vertex graphs: G160 and G128, see Figure 7. Both
can be constructed by H2 step from G48, and the structure of G128 is similar to G48. Therefore,
we use some lengths of G48 with many embeddings for the common edges for the starting lengths.
The following edge lengths of G128 with 128 real embeddings were found by the algorithm:

d12 = 8.7093, d17 = 2.1185, d68 = 10.5532, d56 = 0.7536,

d13 = 10.3433, d28 = 13.5773, d78 = 10.5509, d67 = 1.5449,

d14 = 1.9373, d38 = 14.6173, d23 = 13.5267, d27 = 9.2728 .

d15 = 1.9379, d48 = 10.5237, d34 = 10.1636,

d16 = 2.0691, d58 = 10.5237, d45 = 0.0634,
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For G160 we have obtained lengths for 132 real embeddings:
d12 = 1.999, d23 = 1.426, d37 = 10.447, d58 = 4.279,

d13 = 1.568, d26 = 0.879, d45 = 7.278, d68 = 0.398,

d14 = 6.611, d27 = 10.536, d47 = 11.993, d78 = 10.474 .

d15 = 4.402, d28 = 0.847, , d56 = 4.321,

d16 = 1.994, d34 = 6.494, d57 = 11.239,

More values for edge lengths of the presented graphs with various number of embeddings are
available in [19]. We remark that it takes only few seconds to construct all Geiringer graphs
up to 8 vertices and compute their mixed volumes. Complex embeddings computation takes
approximately 1 second for one 7-vertex graph and 4 seconds for an 8-vertex graph. Although
we take advantage of tracking solutions in our implementation of the sampling method (which
speeds up the computation significantly), the time of sampling for G160 takes about 8 hours
using 8 cores (this time strongly depends on the starting lengths). In order to get the lengths
with 132 embeddings, we tested about 200 different starting conformations.

4.3 Lower bounds
To compute a lower bound on the maximum number of embeddings for rigid graphs in the space
with n vertices, we use as a building block a rigid graph G with low |VG|, but high r3(G). To do
so, we need the following theorem from [15]:
Theorem 1. Let G be a rigid graph, with a rigid subgraph H. We construct a rigid graph using
k copies of G, where all the copies have the subgraph H in common. The new graph is rigid, has
n = |VH |+ k(|VG| − |VH |) vertices, and the number of its real embeddings is at least

2(n−|VH |) mod (|VG|−|VH |) · r3(H) ·
(
r3(G)
r3(H)

)⌊ n−|VH |
|VG|−|VH |

⌋
.

If we use G160 as G and one of its triangle subgraphs as H, then we obtain the following
lower bound.
Corollary 1. The maximum number of real embeddings of rigid graphs in R3 with n vertices is
bounded from below by

2(n−3) mod 5 132b(n−3)/5c .

The bound asymptotically behaves as 2.6553n.
The previous lower bound was 2.51984n [11], whereas using G48 as G gives 2.6321n. It would

be tempting to use as H a tetrahedron, say T , for which it holds r3(T ) = 2. Such a choice of
a subgraph would have further improved the lower bound as the denominator of the exponent
would have been smaller. Unfortunately, G48, G128, and G160 do not contain a tetrahedron as a
subgraph.

5 Conclusion
By exploiting the (semi-)algebraic modeling of the embeddings of minimally rigid spatial graphs
we present new classification results and a novel method to maximize r3(G). The latter led to
improved lower bounds. Finding better asymptotic bounds is always an open question. A first
step should be to find out the exact value of r3(G160). Furthermore, computations using our
method for n ≥ 9 may also give better results in this direction. Another direction is to find
an efficient variant of our sampling method for other dimensions. Finally, subsystems of the
determinantal varieties may improve the upper bounds for c3(G).
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