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Abstract

Probabilistic planners have improved recently to the point that they can solve difficult tasks
with complex and expressive models. In contrast, learners cannot tackle yet the expressive
models that planners do, which forces complex models to be mostly handcrafted. We
propose a new learning approach that can learn relational probabilistic models with both
action effects and exogenous effects. The proposed learning approach combines a multi-
valued variant of inductive logic programming for the generation of candidate models, with
an optimization method to select the best set of planning operators to model a problem.
We also show how to combine this learner with reinforcement learning algorithms to solve
complete problems. Finally, experimental validation is provided that shows improvements
over previous work in both simulation and a robotic task. The robotic task involves a
dynamic scenario with several agents where a manipulator robot has to clear the tableware
on a table. We show that the exogenous effects learned by our approach allowed the robot
to clear the table in a more efficient way.

Keywords: Learning Models for Planning, Model-Based RL, Probabilistic Planning,
Active Learning, Robot Learning

1. Introduction

Task planning has been a useful tool to solve complex problems where an agent has to reach
a goal by executing actions, including robotic tasks (Kulick et al., 2013; Mart́ınez et al.,
2015a) and scheduling (Zhu et al., 2014). Task planners can find solutions that optimize
a reward function for any state, even if this state was unexpected. The reward function
encodes the priorities when solving the task, and new actions can be added easily to extend
tasks.

Traditionally, applications have mostly used deterministic planners (Hoffmann and Nebel,
2001; Helmert, 2006) as they are easier to set-up and can solve complex problems with many
variables. Recently the planning community has improved successfully the existing planners
to solve more expressive and complex tasks. In the latest International Probabilistic Plan-
ning Competition (IPPC 2014) (Vallati et al., 2015), the best planners were able to solve
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probabilistically interesting tasks (Little and Thiebaux, 2007) that included both action
effects and exogenous effects (Kolobov et al., 2012; Keller and Eyerich, 2012) and many
relational variables. We consider that action effects are those that occur when the agent
executes an action (e.g. a robot moves to a new position, the robot grasps an object), while
exogenous effects are those that do not depend on an action (e.g. people moving in the
street, a traffic light turns red, a plant grows).

However, these planners rely on a model, that has to be either handcrafted or learned. In
contrast to planners, learners cannot tackle yet the expressive models as planners do, which
forces complex models to be mostly handcrafted. Relational action models with uncertain
effects from a log of completely observable state-action-state transitions can be learned using
the approach by Pasula et al. (2007), but in this paper we propose a new method that, in
addition to relational probabilistic action models, it can also learn exogenous effects.

Relational model learners can be integrated in Reinforcement Learning (RL) approaches
such as REX (Lang et al., 2012), allowing an agent to learn a task autonomously. However,
heuristic model learners may have trouble learning certain domains if exploration is scarce
when using REX. Thus we show that our approach can be integrated in V-MIN (Mart́ınez,
Alenyà, and Torras, 2015b), an extension of REX that can successfully learn such domains
by actively requesting a few teacher demonstrations.

Finally, we will present how this learner can be integrated in a robot to improve its
performance in tasks where exogenous effects are important. Specifically, we show a robot
that has to help clearing the tableware on a table. Exogenous effects allow us to model the
frequency at which different types of tableware arrive, and to coordinate with the waiter
robots that take piles of tableware back to the kitchen. When a model with such exogenous
effects can be learned, the performance of the task is increased significantly.

To summarize, we propose a novel method that takes as input a set of state-action-state
transitions, and learns a relational model with probabilistic and exogenous effects to be
used for planning. We also show that the learner can be integrated in a RL framework to
learn and solve new tasks. This RL approach can be integrated in a robot decision-maker
to improve the performance in the task of clearing the tableware of a table.

This work is an extension of Mart́ınez et al. (2016), where the model learner was pre-
sented. The most significant additions are the integration with RL, the experiments with a
robot, and showing the way input transitions must be normalized.

2. Background

In this section we present the formulation that we will use throughout this paper, as well
as the background on reinforcement learning required to understand Section 4.

2.1 Formulation

Two types of representations are combined in this work, a relational one for the planning
operators, and a propositional one that will be used internally by some parts of the learner.
We assume complete observability and uncertain effects.
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2.1.1 Relational Formulation

Literals l are expressions of the form (¬)var(t1, ..., tm) where var is a predicate symbol
that represents a variable, (¬) means that the atom may be optionally negated, and ti
are the terms. Terms can be variables, which have a preceding “?” symbol (e.g. ?X),
and can also be objects, which are represented without an “?” symbol (e.g. box1). We
use a relational representation where expressions take objects as arguments to define their
grounded counterparts. A state s is defined as a conjunction of grounded literals lg that
follow the closed world assumption s = lg1, ..., l

g
N .

A planning operator o ∈ O defines the probability of a literal taking a value based on a
set of preconditions. Operators take the form

o(t1, ..., tn) = lh : po ← l1 ∧ · · · ∧ lm, (a) (1)

where lh is the head of the operator, po is the probability of lh being true in the next state
given that the body and the action are satisfied, l1∧· · ·∧ lm are the literals in the body, (a)
is an optional action, and ti are the terms that may appear in the head, body and action.
The action is optional so that operators can capture both action effects when there is an
action, and exogenous effects when there is no action. Operators are not Horn clauses as
negation can appear in both the body and the head. Also note that this representation
does not model correlated effects, as each operator can only have one effect. There can be
two operators with the same body and different heads, but they would be independent.

Example 1 An example operator for an action is:
o1(?X, ?Y, ?Z) = robot-at(?X, ?Y ) : 0.82← robot-at(?X, ?Z) ∧ adj(?Z, ?Y ) ∧ move(?X, ?Y ).
If the “move” action is applied, the robot would move to (?X, ?Y ) with a probability of 0.82
if it is on an adjacent position.

A grounded operator only has objects as terms. If an operator o has n variables, its
groundings Gr(o) are a set of operators, each taking one of the possible combinations of n
objects.

Example 2 Having the objects {x1, y1, y2} and the operator o1(?X, ?Y ), the possible ground-
ings can be obtained by substituting ?X and ?Y for every permutation of 2 objects. One
possible grounding is:
o1(x1, y2, y1) = robot-at(x1, y2) : 0.82← robot-at(x1, y1) ∧ adj(y1, y2) ∧ move(x1, y2).

The transition dynamics are defined by a set of planning operators O. A grounded
operator og is said to cover a state-action pair (s, a) when the literals of the body are in s,
and the optional action of the operator is either a, or the operator has no action:

cov(og, s, a) = (body(og) ⊂ s) ∧ ((action(og) = a) ∨ (action(og) = ∅)).

Likewise, a non-grounded operator o covers (s, a) if one of its groundings does:

cov(o, s, a) = ∃ og ∈ Gr(o) | cov(og, s, a).

Transitions T are defined as triples t = (s, a, s′) where s′ is the successor state of s after
executing a. A successor state s′ is obtained by applying all groundings of all operators to
(s, a). When a grounded operator og is applied to (s, a), its head is added to the state s′

with a probability pog if cov(og, s, a).
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Example 3 An example transition is:
s: adj(y1, y2) ∧ adj(x1, x2) ∧ robot-at(x1, y1) ∧ moving-obstacle(x1, y2)
a: move(x2, y1)
s′: adj(y1, y2) ∧ adj(x1, x2) ∧ robot-at(x2, y1) ∧ moving-obstacle(x2, y2)
Where the action “move” modifies the literal “robot-at”, and an exogenous effect modifies
“moving-obstacle”.

We require operators to be mutually exclusive, there cannot be two operators with
the same head atom that cover the same (s, a) as their heads may conflict. One example
of such conflict would be [og,1(r1) = at(r1) : 0.8← ...] and [og,2(r1) = ¬at(r1) : 0.6← ...]
where both heads cannot hold at the same time as one contradicts the other. The objective
of this work is to learn models that can be used by planners, and planners require conflict-
free operators. A planner has to know precisely the expected effects of applying a planning
operator. If two different operators were to make conflicting changes, the effects would be
undefined. This constraint is similar to the one in Pasula et al. (2007)’s learner, but in this
case a different operator can be applied to each head.

If s′ is a successor state of s, we define changes(s, s′) as the set of literals {c ∈ s′, c /∈
s}. Given a transition t = (s, a, s′) and a grounded operator og, a transition change c ∈
changes(s, s′) has a likelihood

P (c | og) =

{
pog , cov(og, s, a) ∧ (c = head(og))

0, otherwise.
(2)

And a set of non-grounded operators O gives the following likelihood to a change c:

P (c|O) =

{
P (c|og), ∃! og ∈ Gr(O) | P (c|og) > 0

0, otherwise,
(3)

where ∃! is the operator for uniqueness quantification. If more than one operator covers
the same change given the same state-action pair, there is a conflict and the behavior is
undefined, so a likelihood of 0 is given.

2.1.2 Propositional Formulation

On the propositional level, atoms are multi-valued variables that take the form px, where
p is a predicate symbol, x is the value, and atoms have no parameters. A state is a
conjunction of propositional atoms s = varval11 ∧ · · · ∧ varvalnn such that varval

′
, varval

′′ ∈ s
implies val′ = val′′.

We consider a probabilistic multi-valued logic program as a set of propositional rules r
of the form

r = varval00 : pr ← varval11 ∧ · · · ∧ varvalnn (4)

where varvalii for all i ≥ 0 are atoms and pr is a probability. A propositional rule r is
interpreted as follows: with probability pr the variable var0 takes the value val0 in the next
state if all variables vari have the value vali in the current state. For any rule r, varval00 is
called the head and varval11 ∧ · · · ∧ varvalnn are the literals in the body .

4
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Example 4 Let’s consider the following rules,
r1 = a1 : 0.7← b1,
r2 = b2 : 1.0← a1 ∧ b0,
r3 = a0 : 0.3← b2,
then the logic program P = {r1, r2, r3} is a probabilistic multi-valued logic program.

Finally, propositional transitions E are defined as pairs of states e = (s, s′) where s′ is
the successor state of s.

2.2 Reinforcement Learning

Reinforcement learning (RL) is a framework for sequential decision-making problems where
the dynamics of the environment are not known in advance. At each time step, the agent
takes an observation, decides which action to execute, and is given a reward. The agent’s
goal is to maximize the total sum of discounted rewards over time. In model-based RL
the agent maintains a model that is updated with every transition, and a planner uses this
model to select the action to be executed.

Formally, fully-observable problems with uncertainty are represented with Markov De-
cision Processes (MDP). A finite MDP is a five-tuple 〈S,A,M,R, γ〉 where S is a set of
states, A is the set of actions that an agent can perform, M : S × A × S → [0, 1] is the
transition model, R : S×A→ R is the reward function and γ ∈ [0, 1) is the discount factor.

The goal of RL algorithms is to find a policy π : S → A that chooses the actions to
maximize the value function. The sum of expected rewards is the value function V π(s) =
E[
∑

t γ
tR(st, at)|s0 = s, π] which is to be maximized.

As the model is not known in advance, RL approaches have to balance exploration
(visiting state-action pairs to learn the dynamics related to unknown parts of the model,
thereby allowing better policies to be obtained in the future) and exploitation (executing
actions to maximize rewards based on the current model).

3. Model Learner

In this section we show how to learn a relational probabilistic model with exogenous effects
from a log of input state-action transitions. The learned model will consist of a set of
planning operators that define both action effects and exogenous effects.

There exist previous works that tackle the problem of learning models. Some of them
estimate the parameters of a model (Moldovan et al., 2012; Thon et al., 2011), but the
structure of the model has to be provided and only its parameters are learned. The work by
Jiménez et al. (2008) can capture the preconditions and uncertainty in the models given that
the possible effects are known in advance. A more complete approach by Sykes et al. (2013)
learns probabilistic logic programs, but the restrictions for the initial set of candidate rules
need to be manually coded. In contrast, we learn the complete model and no restrictions
are required.

Most approaches that learn complete models handle deterministic tasks, and although
they can tackle partial observability (Molineaux and Aha, 2014; Mourão et al., 2012; Zhuo
and Kambhampati, 2013) or apply transfer learning (Zhuo and Yang, 2014), they do not
consider uncertain effects. In this work we focus on models with uncertain effects.
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The most similar approaches to ours are those that learn relational action models with
uncertain effects (Pasula et al., 2007; Deshpande et al., 2007; Mourão, 2014). They learn the
effects that each action may have for each set of preconditions, which are then represented
with probabilistic STRIPS-like models. However, they do not learn exogenous effects that
are not related to any action.

These methods cannot be easily extended to learn exogenous effects. Pasula et al. (2007)
and Deshpande et al. (2007)’s approach use a local search algorithm that works well when
transitions are explained by one rule, but faces many local minima when tackling domains
with exogenous effects, as two or more new rules may have to be added to properly explain
a transition. Mourão (2014)’s approach exhibits a similar problem since it learns one rule
per transition. To favor a better understanding of this problem, let’s assume that we have
a transition that is optimally modeled by 2 rules, one of which relates to an exogenous
effect. These 2 rules are likely to have a very low score individually as they only cover part
of the transition. The local search in Pasula’s learner would choose a rule that covered
the complete transition to maximize the score, even if the rule had a lot of noise and low
probability to guess the effect. As a local search is used, the learner can only make one
change at a time, and selecting only one of the 2 optimal rules would decrease the score, so
they would never be chosen.

Note that although those methods cannot learn exogenous effects, they have other ad-
vantages. Pasula et al. (2007)’s approach can learn correlated effects while Mourão (2014)’s
learner can also tackle partial observability. Therefore the best method will depend on the
type of domain being learned.

The problem of learning minimal effects from a log of input data transitions is known to
be NP-Hard (Walsh, 2010). The approaches shown before, as well as our approach, apply
heuristics to find solutions with any number of input experiences. Optimal approaches that
learn complete probabilistic models have also been proposed (Walsh et al., 2009), but they
require too many input experiences or assumptions not made in the current work.

The learned model will consist of a set of planning operators that define the different
effects. The proposed method can be divided into two parts:

• Candidate planning operator generation. Candidates are generated with the LFIT
(Learning From Interpretation Transitions) framework (Inoue et al., 2014). LFIT
induces a set of propositional rules that realize the given input transitions. Specifically,
an algorithm that guarantees to learn the set of minimal rules is used (Ribeiro and
Inoue, 2014).

• Planning operator selection. To select the best subset of candidates, we define a score
function that is maximized by candidates that explain input transitions while being
general enough. Based on this score function, a search optimization method guided by
an heuristic function is proposed. Moreover, suboptimal solutions to make complex
tasks tractable are provided.

Our approach combines (a) LFIT on the propositional level to ensure that candidates are
minimal, (b) an optimization method that works on the relational level to apply relational
generalizations when selecting subsets, and (c) grounded input data. Since, as mentioned,
the approach requires three different types of data (grounded, relational and propositional),
data transformation methods are needed.
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3.1 LFIT

The LFIT framework (Inoue et al., 2014) is used to obtain the set of probabilistic candidate
rules that model the dynamics. Given a batch of propositional transitions (s, s′), LFIT
induces a normal logic program that realizes the given transitions. This framework has
been extended (Ribeiro and Inoue, 2014) with a new algorithm that guarantees that the
learned rules are minimal: the body of each rule constitutes a prime implicant to infer
the head. It is based on a top-down method that generates hypotheses by specialization
from the most general rules. Moreover, the framework has been adapted to capture also
probabilistic dynamics (Mart́ınez et al., 2015c).

In this section we explain briefly how to obtain probabilistic logic programs with minimal
rules. For more details please refer to the work by Ribeiro and Inoue (2014) and Mart́ınez
et al. (2015c).

3.1.1 Rule Specialization

To learn multi-valued logic programs with minimal rules we need to define the ground
resolution and the least specialization for multi-valued propositional variables.

Definition 1 (Subsumption) Let r1 and r2 be two rules. If head(r1) = head(r2) and
body(r1) ⊆ body(r2) then r1 subsumes r2. Let P be a logic program and r be a rule. P
subsumes r if there exists a rule r′ ∈ P that subsumes r.

We say that a rule r1 is more general than another rule r2 if r1 subsumes r2 and
body(r1) ⊂ body(r2). In particular, a rule r is most general if there is no rule r′(6= r) that
subsumes r (body(r) = ∅).

Example 5 Let r1 and r2 be the two following rules: r1 = (a1 ← b1), r2 = (a1 ← a0 ∧ b1),
r1 subsumes r2 because (body(r1) = {b1}) ⊂ (body(r2) = {a0, b1}). When r1 appears in a
logic program P , r2 is useless for P , because whenever r2 can be applied, r1 can be applied.

Definition 2 (Complement) Let r1 and r2 be two rules, r2 is a complement of r1 on
varval if varval ∈ body(r1), varval

′ ∈ body(r2), val 6= val′ and (body(r2) \ {varval′}) ⊆
(body(r1) \ {varval}).

Definition 3 (Ground resolution) Let r be a rule, P be a logic program and B be a set
of atoms, r can be generalized on varval if ∀varval′ ∈ B, val 6= val′, ∃r′ ∈ P such that r′ is
a complement of r on varval:

generalise(r, P ) = head(r)← body(r) \ {varval}

Definition 4 (Least specialization) Let r1 and r2 be two rules such that head(r1) =
head(r2) and r1 subsumes r2. Let B be a set of atoms. The least specialization ls(r1, r2,B)
of r1 over r2 w.r.t B is

ls(r1, r2,B) = {head(r1)← body(r1) ∧ varval′} such that

varval ∈ body(r2) \ body(r1), varval
′ ∈ B, val′ 6= val
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Figure 1: Left: A black-box probabilistic system where one program has multiple possible
next states. Right: The LFIT algorithm uses a set of deterministic programs
that form an equivalent probabilistic system. Each deterministic program outputs
one of the possible next states.

Least specialization can be used on a rule r to avoid the subsumption of another rule
with a minimal reduction of the generality of r. By extension, least specialization can be
used on the rules of a logic program P to avoid the subsumption of a rule with a minimal
reduction of the generality of P . Let P be a logic program, B be a set of atoms, r be a rule
and S be the set of all rules of P that subsume r. The least specialization ls(P, r,B) of P
by r w.r.t B is as follows:

ls(P, r,B) = (P \ S) ∪ (
⋃
rP∈S

ls(rP , r,B))

3.1.2 Probabilistic LFIT

To learn probabilistic systems, LFIT represent them as a set of deterministic programs.
Given a state s, we compute the set of possible next states by querying each program. Figure
1 (left) shows a probabilistic system P where the possible successors of the state 111 can
be 100, 120 or 001. This behavior can be captured by a set of three deterministic programs
{P1, P2, P3} (right), such that P1 obtains a transition e1 = ({a1, b1, c1}, {a1, b1, c1}), P2
obtains e2 = ({a1, b1, c1}, {a1, b2, c0}), and P3 obtains e3 = ({a1, b1, c1}, {a0, b0, c0}). Each
program will also encode the behavior of the system for all possible other states. This
representation allows us to capture any probabilistic system dynamics. It provides a model
than can reproduce the possible behavior but no information about which transition is
more likely to occur. To output such information, probabilities have to be extracted from
observed transitions and reflected in the model. There are many ways of encoding likelihood
and probabilities in logic programs, hence here we choose to simply consider rules likelihood
independently for each rule. For each rule, we simply check how many times it could be
applied in the input transitions and how many times the next state could effectively be the
result of the use of this rule. This provides us with a simple likelihood for each rule, a ratio
matches/realizes that can be used to give the likelihood of the possible next states. Other
methods and normalization of the probabilities could be performed with the same sets of
programs.
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In this work we use an extension of LFIT (Mart́ınez et al., 2015c) to learn a set of
deterministic logic programs that can model probabilistic domains. The main idea is that
when two transitions are not consistent, we need two different programs to realize them.
The first program will realize the first transition and the second one will realize the second
transition. The algorithm will output a set of logic programs such that every transition
given as input is realized by at least one of those programs.

Probabilistic LFIT

• Input: a set of propositional transitions E and a set of atoms B .

• Step 1: Initialize a set of logic programs P with one program P1 with fact rules for
each atom of B.

• Step 2: Pick e = (s, s′) in E, check consistency of e with all programs of P :

• If there is no logic program in P that realizes e then

– Copy one of the logic programs Pi into a P ′i and add rules in P ′i to realize e.

– Use ground resolution to generalize P ′i .

• Step 3: Revise all logic programs that realize e by using least specialization.

• Step 4: If there is a remaining transition in E, go to step 2.

• Step 5: Compute the probability of each rule of all programs Pi according to E.

• Output: P a set of multi-valued logic programs that realize E.

The detailed pseudo-code of the Probabilistic LFIT is given in Algorithm 1. The al-
gorithm starts with one logic program that contains all fact rules (lines 1-7). Each input
transition e is analyzed one by one. If no program can realize the observed transition (lines
10-20), one is copied and rules are added into this copy so that it realizes the transition
(lines 21-28). The programs that realize e are then revised using least specialization like
in LFIT (Ribeiro and Inoue, 2014) (lines 29-36). The programs that do not realize the
transition realize another one previously observed that is not consistent with the new one
because of the non-determinism of the system. Those programs cannot be specialized by
this transition because we would lose the information of the previous transition they realize.
Finally, the likelihood of each rule is computed by just counting the number of observations
covered/realized (lines 39-53). The algorithm outputs a set of logic programs, each one of
them realizes some transitions of E, and all transitions of E are realized by at least one
program. The complexity belongs to O(d · |E| ·nvn) for run time and O(d · 2n) for memory,
with d the maximal out-degree of an observed state (degree of non-determinism), E the set
of input transitions, n the number of variables and v the maximal domain of a variable (the
maximal number of values a variable may have).

Finally, all the learned programs P are combined in one set that will become the set of
planning operator candidates.

9
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Algorithm 1 Probabilistic LFIT(E,B)

Input: a set of pair of states E and a set of atoms B
Output: P a set of logic programs

1: E′ := ∅
2: P := ∅

// Initialize P : one program with the most general rules
3: P1 := ∅
4: for each varval ∈ B do
5: Pi := Pi ∪ {varval ←}
6: end for
7: P := P ∪ P1

// 2) Revise P to realize every transition
8: while E 6= ∅ do
9: Pick e = (s, s′) ∈ E; E := E \ {e}

// 2.1) Check if e = (s, s′) is realizable
10: for each logic program Pi of P do
11: realize e := true
12: for each varval ∈ s′ do
13: if @r ∈ Pi | body(r) ⊆ s, head(r) ∈ s′ then
14: realize e := false
15: end if
16: end for
17: if realize e = true then
18: break
19: end if
20: end for

// 2.2) Construct a logic program that realizes e
21: if realize e = false then
22: for each varval ∈ s′ do
23: r := varval : 1.0←

∧
Bi∈s Bi

24: choose a Pi ∈ P
25: P ′

i := Pi

26: P := AddRule(P ′
i , r,B)

27: end for
28: end if

// 3) revise logic programs that realize e
29: for each logic program Pi of P do
30: for each varval ∈ s′ do

31: for each varval′ ∈ B, val′ 6= val do
32: rs

varval′ := varval : 1.0←
∧

mi∈s mi

33: P := specialize(P ,rs
varval′ )

34: end for
35: end for
36: end for

// 4) Remember e and continue
37: E′ := E′ ∪ e
38: end while

// 5) Compute the likelihood of each rule
39: for each logic program Pi of P do
40: for each rule r ∈ Pi do
41: // r = varval : pr ← body(r)
42: i := 0, j := 0
43: for each e = (s, s′) ∈ E′ do
44: if body(r) ⊆ s then
45: j := j + 1
46: if head(r) ∈ s′ then
47: i := i + 1
48: end if
49: end if
50: end for

// Update the probability pr of the rule r
51: pr = i/j
52: end for
53: end for
54: return P

3.2 Candidate Planning Operator Generation

The input of the method is a set T of training transitions which are triples t = (s, a, s′)
where s′ is a successor state of s when the action a was executed. The state s′ would have
the effects of the action and all the applicable exogenous effects. The output is a set of
planning operators O that define the model. Figure 2 shows the data transformations and
processing done in the algorithm, which are described below:

• Transform grounded transitions to relational (non-grounded) ones. The objective is to
learn relational operators that can take objects as arguments to generalize. Note that
grounded literals are different from propositional ones because the objects and the
variables in their terms can be identified. The transformation to relational transitions
requires to substitute objects with variables.

• Obtain candidate operators. LFIT is used to obtain all possible candidate operators
for a given set of transitions. The main advantage of using LFIT is that it obtains
the set of minimal rules that model both action effects and exogenous effects. To use
LFIT, first the relational transitions have to be transformed to propositional ones,
and later, the output propositional rules to planning operators.

• Select the subset of candidate planning operators that best models the training tran-
sitions. This is detailed in Section 3.3.
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Input observations
Relational

interpretation
Propositional

transitions

LFIT
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Operator

optimization
Best RDDL operators

Grounded
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Relational

transitions

Propositional

transitions

Probabilistic

propositional rules

Relational planning

operators

Figure 2: Data representation used for each module. The input and output data are shown
in ellipses, and the processing modules are shown in boxes. The data representa-
tion used is indicated at each step.

The aim of these transformations is to generalize better, a relational representation is more
compact and general as an infinite number of objects can be represented by each variable.
By replacing objects with variables, LFIT learns rules that model relational data. The
trade-off of learning relational generalizations is that the number of generated relational
transitions is larger than the number of input grounded transitions, which increases the
learning time.

3.2.1 Input Normalization

The first step is to normalize the input so that all state-action pairs (s, a) in the training
data get the same number of transitions. Given a transition t = (st, at, s

′
t), the coverage of

a pair (s, a) by t is defined as cov(t, s, a) = (st = s) ∧ (at = a).
This step is specially important if the learner is integrated in a RL method, as state-

action pairs with high expected values will be visited much often than those with low
expected values. Without normalizing the input, when using heuristic learners, the selection
of the best operators (Section 3.3) would be biased to perfectly model repeated state-action
pairs and ignore rare ones.

The normalization is done by repeating transitions so that every (s, a) gets a similar
number of covering transitions:

• Input: grounded transitions T .

• Get maximum coverage nmax = max
(s,a)
|{t | cov(t, s, a), t ∈ T}|.

• For each (s, a) covered by T ′ ⊂ T (with |T ′| > 1):

– Number of times each transitions should be repeated: nrep = nmax/|T ′|.
– Add nrep times each t′ ∈ T ′ to Tout.

• Output: normalized transitions Tout.

11
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Note that this input normalization is used exclusively to calculate the likelihood of the
sets of operators (Sec. 3.3), and it is not used for the RL exploration nor the confidence
in the operators. Moreover, it does not have an impact on performance if implemented
correctly. Every transition should have a counter representing the number of times it is
repeated to avoid extra computation.

3.2.2 Grounded to Relational Transitions

The goal is to obtain a relational representation that can generalize to different objects. If
the dynamics of an object are learned, the same dynamics can be applied to other objects,
not requiring examples of every possible grounding.

Since generating all possible relational combinations of every transition would be highly
inefficient, we limit the number of relational variables to a fixed number ω, which imposes
a limit on the maximum number of variables that learned operators will have. This type of
constraint has been frequent in previous works to tackle complex domains (Mourão et al.,
2012; Walsh et al., 2009; Amir and Chang, 2008).

Selecting the right value of ω is important. To learn effects that involve n objects, a
value ω ≥ n is required. However, the number of relational transitions scales exponentially
with ω, thus a large value of ω is intractable.

This module generates all possible relational transitions with at most ω variables. For
every transition t ∈ T , the following method is applied:

• Input: grounded transition t = (s, a, s′), max variables ω. We define the objects in s
as bs,i and the objects in a as ba,i. The action a has m objects.

• Initialize an empty set Vobj of object combinations.

• Obtain combinations of ω objects. For each combination of ω−m objects (bs,1, . . . bs,ω−m)
that are not in the action (bs,i 6= ba,j , ∀ i, j) do:

– Create vobj = (ba,1, . . . ba,m, bs,1, . . . bs,ω−m) where (ba,1, . . . ba,m) are the objects
in the action a.

– Add vobj to Vobj .

• For each vobj ∈ Vobj :

– A new transition t′ = t is created.

– Replace in t′ all objects in vobj for variables.

– Remove from t′ any remaining literal with objects.

– Add the new transition t′ to T ′.

• Output: a set of relational transitions T ′.

Example 6 Given a grounded transition (s, a→ s′) :

at(r1) ∧ road(r2, r3) ∧ road(r1, r3),move(r3)→
road(r1, r3) ∧ road(r2, r3) ∧ at(r3),

12
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the following relational transitions are generated (ω=2):

vobj = (r3, r1) : at(?Y ) ∧ road(?Y, ?X),move(?X)→
road(?Y, ?X) ∧ at(?X);

vobj = (r3, r2) : road(?Y, ?X),move(?X)→
road(?Y, ?X) ∧ at(?X).

3.2.3 Relational to Propositional Transitions

To create the input that LFIT requires, which are pairs (s, s′) of propositional states, a
library Lconv that converts between relational and propositional atoms is created. For each
relational atom dr, a new propositional atom dp is created and the pair (dr, dp) is added to
Lconv. Using Lconv, everything is substituted by its propositional counterpart:

• Relational literals are represented with propositional atoms that take the values 1
(true) or 0 (false).

• Relational transitions are triples (s, a, s′), while propositional transitions are pairs
(s, s′). Therefore, an additional multi-valued atom is added to propositional transi-
tions to represent the action (if the agent executed an action during that transition).
This atom takes as value the corresponding action name in Lconv, or “noaction” if
there is no action. In the input, the “noaction” value will only be used in those
transitions where the robot did not execute any action. In the output, it identifies
exogenous effects. Note that literals are binary, so the multi-valued representation is
only required to model the action, as there may be more than 2 different actions, and
only one action can be executed per transition.

Example 7 Using the relational transitions in example 6, the following library is created
Lconv = {(at(?Y ), b1), (at(?X), b2), (road(?Y, ?X), b3), (move(?X), b4)}. The propositional
transitions obtained by using Lconv are:

(b1=1) ∧ (b3=1) ∧ (action=b4)→ (b3=1) ∧ (b2=1);

(b3=1) ∧ (action=b4)→ (b3=1) ∧ (b2=1).

3.2.4 Generation of Rules

The LFIT framework is used to obtain the set of probabilistic candidate rules from a set
of proposition transitions (s, s′). LFIT induces a set of normal logic programs that realize
the given transitions. Our approach uses the specialization and probabilistic algorithm of
LFIT, so it learns the sets of minimal probabilistic rules that model all effects appearing
in the input transitions. The learned sets are combined into a single set before converting
them to planning operators. LFIT learns both action effects and exogenous effects because
the action is just another atom that may or may not appear in the body of a rule.
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Example 8 Using a larger set of propositional transitions such as the ones obtained pre-
viously, LFIT could obtain a set of rules such as:

(b2=1) : 0.8← (b1=1) ∧ (b3=1) ∧ (action=b4);

(b2=1) : 0.1← (b1=1) ∧ (b3=0) ∧ (action=b4);

(b1=1) : 0.6← (b2=1);

· · ·

3.2.5 Propositional Rules to Planning Operators

Planning operators (eq. 1) can be reconstructed from probabilistic rules (eq. 4) by using
the library Lconv created before. For each propositional rule:

• The atoms in the body and head of the rule are transformed to relational ones (using
Lconv), and added to the body and head of a planning operator.

• The action is extracted from the multi-valued action atom in the rule body. If the
atom is present, the corresponding action in Lconv is added to the operator.

Example 9 Given that LFIT had learned the following rule

(b2=1) : 0.8← (b1=1) ∧ (b3=1) ∧ (action=b4),

using the library Lconv generated in example 7, the resulting operator o(?X, ?Y ) is

at(?X) : 0.8← at(?Y ) ∧ road(?Y, ?X),move(?X).

Traditionally, PPDDL (Younes and Littman, 2004) has been the standard language to
model probabilistic domains, but it cannot model exogenous effects directly (PPDDL1.0
rules model actions, not exogenous effects). Therefore, our approach uses the RDDL lan-
guage (Sanner, 2010), which has been the standard for the latest probabilistic planning
competitions (IPPC 2011 and 2014). Writing our planning operators with RDDL is straight-
forward, and this language can be used directly by state-of-the art planners. RDDL objects
and variables have types, and a variable can only be substituted by an object of the same
type. However, for clarity and simplicity, we assume through the paper that there are no
types, as adding them is trivial.

3.3 Planning Operator Selection

LFIT provides the set of minimal rules (that have been transformed to planning operators)
that describe all the transitions. Note that LFIT learns the set of minimal rules, and not
the minimal set of rules, so many operators may model the same changes and underfit or
overfit. The subset of operators to model the transition dynamics is selected as follows:

• A score function is defined to evaluate the planning operators.

• A heuristic search algorithm selects the set of operators that maximizes the score.
Note that this set may differ from the actual model, as it depends on the coverage of
the input transitions and the quality of the score function.

• The subsumption tree is used to improve efficiency by partitioning the set of candidates
into smaller subsets.

14
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3.3.1 Score Function

The score function values the quality of a set of operators. The following functions are used
by the score function:

• The likelihood is the probability that a transition t = (s, a, s′) is covered by a set of
planning operators O:

P (t | O) =
∏

c∈changes(t)

P (c | O, s, a). (5)

• The penalty term Pen(o) = |body(o)| is the number of atoms in the operator bodies.

• The confidence Conf(T, ô, ε) is obtained from (Hoeffding, 1963)’s inequality. The
probability that an estimate ôprob is accurate enough, i.e. |ôprob − oprob| ≤ ε, is

bounded by Conf(T, ô, ε) ≤ 1−e−2ε2|Tô|, where |Tô| is the number transitions covered
by ô.

Finally, the proposed score function is defined as

s(O, T ) = E
t∈T

[log(P (t|O))]− α
∑
o∈O

Pen(o)

Conf(T, o, ε)
, (6)

where α > 0 is a scaling parameter for the penalty term. This score function is based
on Pasula et al. (2007)’s one, where the likelihood is maximized to obtain operators that
explain the transitions well, and the penalty term is minimized to prefer general operators
when specific ones have very limited contributions. In contrast to Pasula et al.’s approach,
the confidence term is added so that the penalty is increased when few transitions are
available, as the estimates are less reliable.

3.3.2 Heuristic Search

Given a set of operators O with the same head, a heuristic search method is used to find
the best subset of operators that maximizes the score function. To that end, we define the
heuristic version of the change likelihood (eq. 3) as:

Ph(c|O) =


P (c|og), ∃!og ∈ Gr(O) |P (c|og) > 0

1− δ, @ og ∈ Gr(O) |cov(og, s, a)

0, otherwise (|Gr(O)| > 1),

(7)

where δ is a parameter that can trade quality for efficiency. This heuristic modifies the
change likelihood (eq. 3) when no operator covers the change, giving a likelihood of 1 − δ
instead of 0. The heuristic score function sh(O, T ) is defined as the score function (eq. 6)
but replacing the standard change likelihood (eq. 3) with this heuristic likelihood.

This heuristic gets the expected likelihood that can be obtained by adding new operators
to O. When δ = 0, it works as an admissible heuristic (prop. 1) as it gives the maximum
likelihood = 1 to uncovered changes. When δ > 0 but close to 0, then the heuristic
penalizes very specific operators when more general operators with a high likelihood are also
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available. The practical result is that the algorithm usually runs faster, but the heuristic is
not admissible anymore.

Algorithm 2 selects the best subset of operators to explain the input transitions. In line
1, the candidate list Γ is initialized by creating one separate subset for each operator in the
input set of candidates Oinput. Note that Γ is a set of sets of planning operators, which is
initialized to Γ = {{o1}, . . . , {on}} assuming that Oinput = {o1, . . . , on}. Afterwards, lines
2-3 find the best subset in Γ (which is the best set with only one operator). From that point,
the candidate sets in Γ are iteratively joined together to find the best set with any number
of operators, until none has sh(O, T ) > maxscore (lines 4-17). In lines 5-6, the candidate
O with the largest heuristic score is selected and removed from Γ. Then, in lines 7-9, new
candidates are generated by combining the selected subset O with every subset in Γ. The
IsNew method checks that the new candidate has not been already analyzed. If any of the
new candidates has a new best score, it is saved as the best candidate (lines 10-13). Finally,
the new candidates are added to Γ.

This method works as a search algorithm guided by an heuristic. The nodes to be
analyzed are the subsets of operators stored in Γ, where they are ordered by the heuristic
score value. The search tree is expanded by joining one subset with every other subset.
Finally, the algorithm continues until no subset has a heuristic score larger than the best
score so that the solution has been found.

The search can be used as an anytime algorithm, it can be stopped at any point to
get the best solution found so far. Moreover, there are two options to limit in advance the
processing time of the algorithm in complex problems: set a time limit, or set a limit in the
size of Γ (only maintain the κ sets with the highest score in Γ). Experimental tests showed
that in some domains the heuristic leads quickly to the best set, and subsequent processing
is done only to confirm that no other set is better.

Property 1 If δ = 0, then the heuristic sh is admissible: ∀O, sh(O) ≥ s(O∗) | O∗ =
argmax
O′⊃O

s(O′). Therefore the optimal set will be found.

Proof The two parts of the score function in eq. 6 (likelihood and regularization) can be
analyzed separately. Note that subsets of operators may only increase in size, as they start
with one operator and can only be combined with other subsets.

• When adding operators to a set, the likelihood only increases when transition changes
that were not covered before are covered by the added operators. In the heuristic
score (eq. 7) all non-covered transition changes are already set to the maximum value
of 1, so adding new operators cannot improve the result over the heuristic.

• The regularization part of the score function (Reg(O) = −α
∑

o∈O
Pen(o)

Conf(T,o,ε)) is
monotonically decreasing with respect to adding operators. If new operators are
added, the new penalty Pen(o)

Conf(T,o,ε) will be positive as Conf ∈ (0, 1], Pen ≥ 0 and
α > 0.
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Algorithm 2 OperatorSelection(Oinput, T )

1: Current candidates Γ← {o}, ∀ o ∈ Oinput
2: maxscore = max

O∈Γ
s(O, T )

3: Obest = argmax
O∈Γ

s(O, T )

4: while max
O∈Γ

sh(O, T ) > maxscore do

5: O = argmax
O∈Γ

sh(O, T )

6: Remove O from Γ
7: for O′ ∈ Γ do
8: if IsNew(O ∪O′) then
9: Onew = O ∪O′

10: if s(Onew, T ) > maxscore then
11: maxscore = s(Onew, T )
12: Obest = Onew
13: end if
14: Add Onew to Γ
15: end if
16: end for
17: end while
18: Output Obest

Property 2 When relaxing the admissibility criterion with δ > 0, the solution found by
Algorithm 2 is bounded to be no worse than C · log(1− δ) plus the optimal score, where C is
the average number of literals with the same predicate that change in a transition.

Proof Operators with different head predicates are analyzed separately as their effects
are independent, so C only depends on the average changes to one predicate literals. Also
note that δ ∈ [0, 1), and thus, log(1 − δ) ≤ 0. Let On be the optimal solution with n
operators and s(On) = opt, then ∀i < n, at least one predecessor of i operators Oi and
sh(Oi) ≥ opt+ C · log(1− δ) will exist.

• The regularization term is monotonically decreasing (see explanation of property 1),
so Reg(On) ≤ Reg(Oi).

• The maximum difference between P (On) and Ph(Oi) is P (t|On) = 1 and Ph(t|Oi) =
(1 − δ)x, which is the case where On has perfect coverage, Oi has no coverage (all
the coverage is obtained from On \ Oi) and the transition has x changes. Then, if
we take the worst case for all transitions, and an average of C changes per transition,
P (On) − Ph(Oi) = E[log(P (T |On))] − E[log(Ph(T |Oi))] = log(1) − log(1 − δ)C =
C · log(1− δ).

Therefore, the predecessors of the optimal solution are checked (and thus the optimal solu-
tion found) unless a solution with s(O) ≥ opt+ C · log(1− δ) is found before.
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Algorithm 3 OperatorSelectionSubsumption(TreeO, T )

1: do
2: OL = leaves(TreeO)
3: OL,best = OperatorSelection(OL, T )
4: Remove (OL \ OL,best) from TreeO
5: OP = OL,best ∪ parents(TreeO,OL,best)
6: OP,best = OperatorSelection(OP , T )
7: Remove (OL \ OP,best) from TreeO
8: while TreeO changed
9: Output = leaves(TreeO)

A value of δ > 0 can speed up the algorithm considerably at the expense of optimality.
When two operators have similar likelihoods, δ > 0 penalizes the most specific one. This
results in general operator sets being analyzed first, and thus models with better likelihoods
are obtained earlier.

3.3.3 Subsumption Tree

In this section we present a method to speed up the approach by partitioning the set
of candidates into smaller groups. The idea is to organize the operators in a tree using
the OI-subsumption (Esposito et al., 2004), then start with the specialized operators, and
iteratively check if more general operators yield better scores.

Definition 5 (OI-subsumption relation) First, we define the extended body of an op-
erator as bodyext(o) = body(o)(∧a) where (∧a) only appears if o has an action. Let o1

and o2 be two planning operators with head(o1) = head(o2), o1 is OI-subsumed by o2 if
(bodyext(o1) ⊇ bodyext(o2)), given that different terms ti cannot take the same object.

Definition 6 (OI-subsumption tree) The OI-subsumption tree TreeO of a set of plan-
ning operators O = {o1, ..., on} is a directed graph with arcs (oi, oj) when oi OI-subsumes
oj and |bodyext(oj)| − |bodyext(oi)| = 1. We call the set of leaves L(TreeO). Figure 3 shows
an example of a OI-subsumption tree.

The OI-subsumption tree orders the operators in levels that represent the generality of
the operators: the less literals the more general the operator. Based on this tree, Algorithm 3
selects the operators. The idea is to start by identifying the best specific operators, and
then check if their generalizations improve the results. In lines 2-4, the best subset of leaves
OL,best is identified, and all leaves not in OL,best are removed from the tree. Then, in lines
5-7, a new set of operators OP is created that includes OL,best and the operators that OI-
subsume them (their parents in the tree). The best subset OP,best in OP is selected, and
OL \ OP,best are removed. This is repeated until nothing is changed in the tree.

The performance is improved by using the OI-subsumption tree: it divides the candi-
dates into subsets, and the planning operator selection is much faster with smaller sets of
candidates. Although it sacrifices optimality, experimental tests showed that the results
obtained were in many cases optimal or near optimal. This happens due to the fact that
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a(?X) � ¬b(?X) � c(?X)

∅

¬b(?X) c(?X)b(?X)a(?X)

a(?X) ∧ ¬b(?X)a(?X) ∧ c(?X)

Figure 3: Example of a OI-subsumption tree. Each letter (a, b, c) represents a literal in
the extended body of a planning operator. The leaves are the nodes painted in
blue.

in most cases P (O) >> Reg(O). The operators in the leaves maximize P (O) as they are
more specialized, while the operators near the root maximize Reg(O) as they are more
general. Thus, the subset of leaves selected in the first iteration usually is near optimal,
and afterwards the method only has to find the right level of generalization.

Note that if the OI-subsumption tree is used, the best operators may be close to the root
of the tree (and thus they will be analyzed at the end), so the learner shouldn’t be used as
an anytime algorithm. However, the processing time can still be bounded with satisfactory
results by limiting the size of Γ to κ sets in Algorithm 2.

4. Integration with RL

In this section we present how to integrate the model learner with a RL approach. The
objective is to allow an agent to learn and solve a task from scratch by using a task planner
and the learner presented before.

Model-based RL has proven to be an excellent tool to learn and solve a task that
is unknown initially (Littman, 2015). There are several RL approaches that can learn
complete relational models for planning (Džeroski et al., 2001; Diuk et al., 2008; Walsh
et al., 2009), but they require a large amount of samples to make sure that they can
solve the problem (Walsh, 2010). Other approaches use heuristics to reduce the number of
samples needed to make the problem tractable, such as TEXPLORE (Hester and Stone,
2013) and REX (Lang et al., 2012). Specifically, REX uses Pasula et al. (2007)’s model
learner internally, and proposes an exploration method based on R-MAX (Brafman and
Tennenholtz, 2003) and E3 (Kearns and Singh, 2002) that takes advantage of the relational
representation to generalize and reduce the exploration required to learn relational tasks.
However, REX can obtain models that are a local minimum as they cut exploration.

Our objective is to learn models without requiring too many input transitions. Therefore
we choose to use the V-MIN algorithm (Mart́ınez, Alenyà, and Torras, 2015b) as the RL
framework. V-MIN extends the REX (Lang et al., 2012) with active learning: it explores
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to learn the basic dynamics of the actions, but when it cannot find a plan with value larger
than a certain threshold Vmin, it requests help from a teacher. In contrast to REX, V-MIN
can ensure that it will solve the task with a value larger than Vmin (given that the internal
learner can obtain the model for the task). Moreover, it also performs well with scarce
exploration, because even if it misses the exploration of an important state-action pair,
V-MIN will visit it later (if it is needed to get Vmin) by requesting demonstrations.

Many RL approaches focus on learning specific tasks, but have trouble when parts of
the problem change. Model-based approaches have been proposed to learn models that
generalize between different states and number of objects (Diuk et al., 2008), while oth-
ers have applied transfer learning in combination with RL to reuse knowledge in similar
tasks (Konidaris et al., 2012). The REX and V-MIN algorithms learn relational operators
that can be used by standard planners, which provides a great flexibility in the changes
that can be made to the task without having to relearn or adapt the model. Using Taylor
and Stone (2009)’s transfer learning categorization, the following changes can be done:

• The initial state, the goal state, and the number of objects can be changed without
requiring further learning.

• The reward function can change without having to modify the rest of the model.

V-MIN in addition can incorporate new actions easily to the model through demonstrations
if they are needed to get a value > Vmin. This results in an approach with good adaptation
capabilities when compared to other works (Taylor and Stone, 2009), and it also has the
advantage of learning models with less exploratory actions. The drawback is that a teacher
is required.

The inclusion of a teacher in the learning loop has been also tackled by other approaches.
In some methods the teacher issues corrective demonstrations when the robot doesn’t per-
form as desired (Meriçli et al., 2012; Walsh et al., 2010), which implies that the teacher
has to actively monitor the agent. The teacher has also been used to provide approval or
disapproval of the agent performance (Knox and Stone, 2012). When using V-MIN, the
agent is the one that actively requests help whenever it is needed, and thus the teacher
is free from monitoring the agent. Other approaches also require help directly from the
agent (Grollman and Jenkins, 2007; Chernova and Veloso, 2009), but they only learn from
demonstrations, so they have to request a larger number of demonstrations to learn. Agos-
tini et al. (2017)’s approach requests demonstrations from the teacher when the planner
cannot find a solution with its current set of planning operators. However, this approach
only works in goal-driven deterministic problems, and the interaction with the teacher lacks
flexibility as it does not consider rewards. Finally, Walsh et al. (2011) proposed a similar
approach to V-MIN where the agent communicates the expected value to the teacher, and
if it is lower than the optimal value then the teacher demonstrates an action. This approach
can learn STRIPS rules efficiently, but it would require many input experiences to learn
exogenous effects in the same way because the number of possible rules would be much
larger.
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4.1 The V-MIN Algorithm

The REX algorithm (Lang et al., 2012) is devised to apply relational generalizations to
R-MAX, reducing the exploration needed. State-action pairs are grouped in contexts that
have the same dynamics (i.e. that are covered by the same relational planning operator).
Based on these contexts, exploration is reduced by defining a context-based density function
that considers all possible state-action pairs in a context to be equivalent when deciding if
a state is known. Although exploration generalizations improve the learning performance,
they also have drawbacks. Using a context-based count function implies that not all states
are explored before considering them as known, as we assume that all states within a context
behave likewise. Thus, state-action pairs needed to attain the best policy may not be visited
and their contexts (i.e. planning operators) not learned.

The V-MIN algorithm requests teacher demonstrations to learn new actions and con-
texts, and improve performance. It uses the concept of Vmin, which is the minimum expected
value. If the planner cannot obtain a value V π(s) ≥ Vmin, it actively requests help from a
teacher, who will demonstrate the best action a = π∗(si) for the current state si. Therefore,
when exploration and exploitation can no longer yield the desired results, demonstrations
are requested to learn yet unknown actions, or to obtain demonstrations of actions whose
effects were unexpected (i.e. new unknown contexts). The result is that good models can be
learned even if exploration is scarce. The Vmin parameter provides flexibility to the system:

• A high Vmin forces the system to learn good policies at the cost of a higher number
of demonstrations, whereas a lower Vmin leads to a faster and easier learning process,
but worse policies are learned.

• The teacher can change Vmin online until the system performs as desired, forcing it
to find either better or easier policies.

• Demonstrations can be used to learn new actions that weren’t required before.

4.1.1 Algorithm Details

The V-MIN algorithm uses a model M that consists of a set of planning operators O,
which define the contexts. The algorithm creates an extension Mvmin of the model M to
implicitly plan exploration and demonstration requests. As in the R-MAX version of the
REX algorithm, every unknown context (those that have been explored less than a threshold
ζ) gets the maximum reward Rmax, implicitly following the principle of “optimism under
uncertainty”. Moreover, a special action “TeacherRequest()” is added which leads to an
absorbing state with a Vmin value. “TeacherRequest()” is also limited to be the only action
in a plan when selected, as otherwise a value of V (s′)+Vmin could be obtained by combining
it in a plan.

Algorithm 4 shows a pseudocode for V-MIN. This algorithm maintains a model M
that represents the robot actions with a set of relational planning operators. The model is
updated in every iteration (line 3) to adapt to newer experiences using the learner presented
in Section 3. The Mvmin model is then created to plan the action to execute, implicitly
selecting exploratory actions until all the relevant contexts become known, and requesting
teacher demonstrations whenever a value V π(s) > Vmin cannot be obtained. Finally a new
state is observed, and a transition is added to the log of experiences.
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Algorithm 4 V-MIN

Input: Reward function R, confidence threshold ζ
Updates: Set of input transitions T

1: Observe state s0

2: loop
3: Update transition model M according to T
4: Create Mvmin(M,R, ζ)
5: Plan an action at using Mvmin

6: if at ==“TeacherRequest()” then
7: Request demonstration
8: at = demonstrated action
9: else

10: Execute at
11: end if
12: Observe new state st+1

13: Add {(st, at, st+1)} to E
14: end loop

The V-MIN algorithm provides the framework that selects which actions to explore and
when a demonstration should be requested, but the most important piece is the learner used
to obtain the model. Using the learner presented in Section 3 implies that a probabilistic
relational model with exogenous effects will be learned.

Another important piece is the planner used, as it has to support planning with the
learned model. PROST (Keller and Eyerich, 2012) is the planner used as it can obtain
good results with probabilistic models containing exogenous effects.

Note that in this work we consider the reward function to be known. A KWIK algorithm
can learn a reward function with a polynomial number of samples (Li et al., 2011), but it
remains as future work to show how to effectively combine that reward learner with the
V-MIN algorithm.

5. Experiments

This section describes the experimental evaluation of our approach. Three domains of the
2014 International Probabilistic Planning Competition (IPPC) (Vallati et al., 2015) were
used in the experiments. The standalone learner introduced in Section 3 was used to learn
from a batch of given input transitions, while the RL approach presented in Section 4 was
used to solve tasks.

5.1 Domains

Three IPPC 2014 domains were used in the experiments. Note that they were slightly
modified to remove redundancy (e.g. a north(?X,?Y) literal is equivalent to south(?Y,?X),
so one can be replaced by the other).
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• Triangle Tireworld. This domain is the easiest one, it has uncertain effects, but no
exogenous effects. It is modeled with 5 different predicates, 3 actions, 7 operators,
and operators require at most 2 terms (ω = 2). This domain serves as a good baseline
to compare with the state of the art as there are not exogenous effects.

• Crossing Traffic. This domain has an intermediate difficulty. It has uncertain effects
and exogenous effects, which makes it more challenging, but the complexity of the
model is still moderate: 8 predicates, 4 actions, 6 operators, and operators take at
most 3 terms.

• Elevators. This is the most challenging domain. It has uncertain effects and exogenous
effects. It is modeled with 10 predicates, 4 actions, 17 operators, and operators take
at most 3 terms.

5.2 Evaluation of the Model Learner

To evaluate the learner presented in Section 3 the scheme used by Pasula et al. (2007) was
followed. The learners had to obtain models from sets of input transitions (s, a, s′) ∈ T
that were generated randomly. To create a transition, first the state s is constructed by
randomly assigning a value (positive or negative) to every literal, but ensuring that the
resulting state is valid (e.g. in the elevators domain, an elevator cannot be in two different
floors at the same time). Then, the action a arguments are picked randomly, and the state
s′ is obtained by applying all operators to (s, a). The distribution used to construct s is
biased to guarantee that, in at least half of the examples, the operators that contain a have
a chance of changing the state.

The evaluation of the learned models is carried out by calculating the average variational
distance between the true model O and the estimate Ô. This evaluation uses a new set of
similarly generated random transitions T ′:

D(O, Ô) =
1

|T ′|
∑
t∈T ′

∣∣∣P (t|O)− P (t|Ô)
∣∣∣ . (8)

As the average variational distance may be difficult to interpret, here we give an intuition
about the utility of the learned models. A planner usually (p > 0.9) yields a plan that can
solve the task (optimally or suboptimally) when the average variational distance is below:

• 0.09 in the Triangle Tireworld domain.

• 0.15 in the Crossing Traffic domain.

• 0.1 in the Elevators domain.

As the average variational distance becomes lower, the planner will obtain better solutions.

We analyze experimentally the proposed algorithm, its parameters, and how it compares
with the state of the art. The learner uses the following parameters: α, ε, and δ, which are
the score function parameters; κ, which is the size limit of Γ (Algorithm 2); and “tree“ to
denote that the subsumption tree is being used.

The difficulty to learn a domain is mostly given by:
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Figure 4: Evaluation of different configurations in the Triangle Tireworld domain, MDP-2.
Unless stated otherwise, the following parameters were used: (α= 0.02, ε= 0.2,
ω= 2, δ= 0, κ= 500, no-tree). The results shown are the means obtained from
50 runs. The evaluation was done with 3000 transitions. Left: Influence of
the confidence term. Center: Comparing different values of α and κ. Right:
Execution time of the search (optimization) and the LFIT modules. The total
learning time would be the sum of LFIT plus one of the search configurations.

• The maximum number of terms ω that operators may have. The number of terms
increases exponentially the number of relational transitions generated from the input
grounded transitions (Section 3.2.2), and therefore the number of candidate rules. If
the value of ω is larger than the number of terms that operators actually require, the
learning time increases while the quality of the models remains the same.

• The number of predicates, both constant and variable, used to represent the states.
The candidates that LFIT generates consider all combinations of predicates that are
consistent with the transitions.

• The number of uncertain and exogenous effects. LFIT generates all candidates that
may explain an effect, including operators that overfit and underfit, and all combina-
tions of action effects and exogenous effects.

5.2.1 Configuration Parameters

Here we discuss the impact of the different configuration parameters on the quality of the
models learned.

Triangle Tireworld domain:

• As seen in Fig. 4-left, the confidence term in the score function improves the qual-
ity of the models learned when few input transitions are available. This confidence
term penalizes very specialized operators in cases where there is a large uncertainty
in the predictions. Once many transitions are available, the impact of this term dis-
appears. Note that only probabilistic operators are improved as deterministic ones
are completely specialized anyway. The impact of this term is relatively small in the
experiments because it only affects 1 probabilistic operator.
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Figure 5: Evaluation of different configurations in the Crossing Traffic domain, MDP-1.
Unless stated otherwise, the following parameters were used: (α= 0.02, ε= 0.2,
ω= 3, δ= 0.1, κ= 500, tree). The results shown are the means obtained from 50
runs. The evaluation was done with 4000 transitions. Left: Influence of the κ
and the δ terms. Center: Influence of κ and the subsumption tree. Right:
Execution time of the search (optimization) and the LFIT modules. The total
learning time would be the sum of LFIT plus one of the search configurations.

• Figure 4-middle compares different values of α. Small changes of the α term produce
almost the same results, and any value ∼ 0.02 yielded good results in all the domains
analyzed in this paper. Moreover, as the Triangle Tireworld domain is simple, a value
of κ = 500 already produces good models, and increasing it does not improve the
results.

• The execution time is shown in Fig. 4-right. Even with 150 input transitions only
a few seconds are required to learn a model. Most of the execution time is spent in
obtaining the likelihood of the operators as there are a lot of possible candidates in
this domain.

Crossing Traffic domain:

• As can be seen in all the experiments, the number of operator candidates that the
algorithm analyzes (κ) has a great influence on both the quality of the learned domain
and the learning time. The best value of κ will depend on the quality required for the
domains and the time available for learning.

• Figure 5-left shows the advantages of a non-admissible heuristic (δ > 0). A small
value of δ prioritizes operators that explain many transitions with a high likelihood,
and very specific operators that may not be interesting are given a smaller heuristic
score. Although the same results could be obtained with a larger value of κ, the
non-admissible heuristic speeds up the search (Fig. 5-right).

• Figure 5-center shows the advantages of the subsumption tree. This tree divides the
search problem in smaller ones, and thus a much lower κ is enough to learn good
models, specially when the number of input transitions is large. Since to get the same
model quality a much larger κ would be required, the learning time is reduced.
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Figure 6: Comparison with Pasula et al. The results shown are the means obtained from
50 runs. The evaluation was done with 5000 random transitions. The parameters
used were α= 0.02, ε= 0.2, δ= 0.1, tree. Left: Triangle Tireworld (κ= 500).
Center: Crossing Traffic (κ= 2000). Right: Elevators (κ= 2000).

5.2.2 Comparison with Pasula et al.

Comparison is performed only with Pasula et al. (2007)’s learner, as Deshpande et al.
(2007)’s learner is an extension to include transfer learning, and Mourão (2014)’s learner
yields similar results to Pasula et al.’s approach in completely observable problems. The
experiments were carried out with the implementation by Lang and Toussaint (2010) and
the fix by Mourão (2014).

Figure 6-left shows the results of learning the Triangle Tireworld domain. It can be easily
learned by both, ours, and Pasula et al.’s approach, as there are no exogenous effects. With
this experiment we want to show that our method can learn domains without exogenous
effects as well as state-of-the-art learners. Pasula et al.’s learner gets slightly better results
with few transitions as one of the actions is easier to learn with correlated effects.

Figures 6-center and 6-right refer to two domains with exogenous effects. As Pasula
et al.’s learner cannot learn exogenous effects, it tries to build overcomplicated operators.
These operators try to explain every possible combination of action effects and exogenous
effects at the same time instead of learning each effect separately, and thus it is not able to
yield a good general model. In contrast, our approach is able to distinguish action effects
from exogenous effects once enough transitions are given as input.

5.2.3 Limitations of the Learner

The main limitation of the algorithm is the scalability. If the number of generated propo-
sitional predicates is large (either because the domain is represented with a large number
of predicates, or because ω takes a high value), the problem may become intractable. The
Elevators domain has the highest complexity that our approach can learn within a reason-
able time. With 100 input transitions, the planning operator selection took an average of 2
minutes, and LFIT took up to 2 hours.

Moreover, in comparison with previous approaches, our learner cannot model correlated
effects so it is not able to learn domains such as slippery gripper (Pasula et al., 2007). Our
learner considers all effects as candidates, and thus, it would have to consider all possible
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combinations of effects to learn correlated effects, which would be intractable. In contrast,
approaches that do not learn exogenous effects can afford to find correlated effects because
they search for a single effect per transition.

Finally, many IPPC 2014 domains cannot be directly learned. The following features
would be needed to support all domains:

• The universal quantifier (forall) and the negative existential quantifier (∼ exists) are
not supported. When doing the translation from propositional rules to relational
planning operators, new candidates could be generated that considered a positive
atom in the preconditions as a (forall), or a negative atom as a (∼ exists). It remains
as future work to analyze the effectiveness of such candidates, and to check if the
operator selection process would still be efficient with the addition of new candidates.

• Some IPPC domains have operators whose probabilities are encoded as a function.
Unfortunately, our approach can only consider real numbers as probabilities.

5.3 Evaluation of the RL Integration

Here we evaluate how the learner can be integrated in a RL approach to learn models from
scratch as explained in Section 4. The learner proposed by (Pasula et al., 2007) was also
integrated in the V-MIN approach to compare against our approach.

5.3.1 Triangle Tireworld

In this domain, a car has to move to its destination, but it has a probability of getting a
flat tire while it moves. The car starts with no spare tires but it can pick them up in some
locations. The actions available in this domain are: a “Move” action to go to an adjacent
position, a “Change Tire” action to replace a flat tire with a spare tire, and a “Load Tire”
action to load a spare tire into the car if there are any in the current location. The main
difficulty in the Triangle Tireworld domain is the dead end when the agent gets a flat tire
and no spare tires are available. Safe and long paths exist with spare tires, but the shortest
paths do not have any spare tires.

It should be noted that in the IPPC 2014 representation of the Triangle Tireworld
domain there is one exogenous effect: when the goal reward is received, the “goal-reward-
received” literal becomes true. As this is modeled as an exogenous effect and Pasula et
al.’s approach cannot learn it, that planning operator is given to it at the beginning. Our
approach can learn this effect easily because it appears isolated after the goal is reached, so
it doesn’t have a significant impact on the performance.

Figure 7 shows the results of learning the Triangle Tireworld domain. Initially the robot
chooses the shortest path and thus 50% of the times gets an irrecoverable flat tire. The
learners have to learn that the robot cannot move with a flat tire, and that a spare tire is
required to recover from a flat tire before the planner opts to go through the safe but longer
path. MDP-4 is learned in less episodes because more actions are executed per episode. As
expected, the performance of our learner is similar to Pasula et al.’s one, both learners can
obtain the model of the task with few transitions so they also work well when integrated in
V-MIN. Pasula et al.’s learner performs slightly better in the MDP-2 and our learner got
slightly better results in the MDP-4, but the differences are not significant.
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Figure 7: Learning the Triangle Tireworld domain with V-MIN. Comparison of using
V-MIN with our learner and Pasula et al.’s learner. The difference between
MDP-2 and MDP-4 is that in the latter the state space is larger, and more ac-
tions are required to reach the goal. The results shown are the means obtained
from 100 runs. The exploration threshold is ζ = 3 and Vmin is 85 in MDP-2, and
65 in MDP-4.

5.3.2 Crossing Traffic

The Crossing Traffic domain is a grid where a robot must get to a goal and avoid cars
arriving randomly and moving left. The goal is located on the top right of the grid, and
the robot starts on the bottom right position. If a car overlaps with the robot, the robot
disappears and can no longer move around. The robot can ”duck” underneath a car by
deliberately moving right when a car is to the right of it. The robot receives −1 for every
time step it has not reached the goal. The best strategy is to move first to the left to be
able to see if a car is coming, and crossing whenever there are no cars in the way.

The difficulty in this domain is learning that if the robot ends in the same position as
a car, it will disappear independently of the action executed. Our model learner has to see
one transition of the disappear effect for every action until it can learn the disappear effect
completely. Figure 8 shows the results of V-MIN and REX with our model learner. Pasula
et al.’s learner was not compared here because, as mentioned previously, it cannot learn the
exogenous effects in this task.

The main problem for REX in this domain is that some action effects can only be
learned if the robot has moved previously and has not collided with a car. For example,
the “move-right” action can only be learned if the robot moved first to the left (because
it starts in the bottom-right corner) and if it did not collide before with any car. Thus, if
the exploration threshold is low, REX may start to exploit with an incomplete model that
provides suboptimal results.
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Figure 8: Learning the Crossing Traffic domain with V-MIN and REX. The results shown
are the means obtained from 300 runs. MDP-1 is the easiest set up: its state space
is small and the probability that a car arrives to each middle lane is 0.3. MDP-2
has also a small state space but cars arrive with a probability of 0.6. MDP-3 has a
larger state space and a 0.3 probability of car arrivals. The exploration threshold
is ζ = 3 and Vmin is −8 in MDP-1, −12 in MDP-2, and −15 in MDP-3.

In contrast, V-MIN requests demonstrations when the models do not provide good
enough policies, and the demonstrations quickly teach the missing action effects. Below we
analyze each MDP separately:

• In MDP-1, the naive strategy of going directly to the goal has a high success ratio
(70%), and thus it may take some episodes until the robot collides with a car. The
robot always takes the shortest route until it learns that it disappears after a collision
with a car independently of the action taken. This in an easy problem so V-MIN only
requires a few teacher demonstrations during the first episodes to get good results.
REX takes longer to get a high reward because it has to explore more to obtain a
good model.

• In MDP-2, the success ratio of reaching the goal with the shortest route is only 40%.
In this problem V-MIN requires a few extra demonstrations in episodes 2-6 if it could
not learn the “move-right” action before. In contrast, REX failed to obtain good
models in a few iterations because it had already collided or was in an edge every
time it tried to explore an important action.

• MDP-3 works similarly to MDP-1, but as it has a larger state space, the probability
of reaching the goal without dodging cars is around 50%. The larger state space also
implies that new problematic situations may appear. For example, the robot may
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Figure 9: Table clearing task. On the bottom area, people leave the used tableware. On the
top area, the robot has to prepare piles for the mobile robots that take tableware
to the kitchen. The middle space is free for the robot to store objects while piling
them up and waiting for mobile robots.

start to go up, and if too many cars appear so that the robot cannot dodge them, it
has to go back down by executing a “move-south” action. The “move-south” action
is not needed in MDPs 1 and 2, but it is needed in some cases in MDP-3. After the
10th episode, most of the teacher demonstrations requested by V-MIN are to learn
how to solve these unexpected problems that didn’t appear in the simpler problems.
As REX cannot request teacher demonstrations, it has a harder time dealing with
these unexpected situations, and this is reflected in a lower accumulated reward mean
when compared to MDP-1.

6. Robot Table Clearing

This section describes a task where a robot has to clear the tableware laying on a table. To
that end, V-MIN with the learner presented previously was used as the decision-maker of
the robot to solve the task.

This task represents a robotized restaurant. The manipulator robot that we control has
to clear the tableware on a table. It has to cooperate with mobile robots that can take a
pile of tableware from the table to the kitchen to be cleaned. The number of mobile robots
is limited, so our robot should pile tableware together to minimize the number of piles to
be taken. The difficulty of the task comes from the fact that people will continuously bring
new used tableware to the table. The robot has to organize continuously the tableware on
the table so that there is always enough space for people to leave new tableware, and also
to ensure that the mobile robots always have a prepared pile of tableware when they come
to the table.

This task is illustrated in Fig. 9. People leave used tableware on the bottom area, the
robot has the central area to organize tableware and create piles, and the top area is where
the mobile robots pick a pile up when they come to the table. The tableware being used
includes plates, cups and cutlery.
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The robot system has three modules, the decision-maker module that includes the plan-
ner and the learner, the perception module that obtains a representation of the scene that
can be used by the decision-maker, and the manipulation module that executes actions.

The perception module uses a camera that is located on top of the table (hanging from
the ceiling) to update continuously a symbolic state that represents the table. This state
consists of a set of literals that describe the different locations on the table. These literals
are:

• “ArrivingLocation(?loc)” indicates that ?loc is a location where people will leave new
tableware. This literal is constant as people always leave objects on the bottom side
of the table.

• “PickUpLocation(?loc)” indicates that ?loc is a location where mobile robots will pick
up piles to take them to the kitchen. This literal is constant as mobile robots always
pick up piles from the top side of the table.

• “mobileRobotPickingUp(?loc)” indicates that a mobile robot will pick up a pile during
the next iteration.

• “plate(?loc)” indicates that there is at least one plate at ?loc.

• “cup(?loc)” indicates that there is at least one cup at ?loc.

• “cutlery(?loc)” indicates that there is at least one fork, knife or spoon at ?loc.

• “stable(?loc)” indicates that the pile at ?loc is stable. An unstable pile cannot be
picked up by a mobile robot.

The objects in this domain are the locations. The perception module generates the
location objects dynamically by assigning one location to each pile of tableware, and then
generates extra locations for (large enough) empty areas.

The manipulator module executes the actions planned. It takes the 3D perceptions
obtained by the camera and generates the arm trajectories and gripper movements required
to move the objects as desired. The symbolic actions that can be planned are:

• The “put(?loc1, ?loc2)” action to put the top object from a pile in location ?loc1 into
location ?loc2.

• The “movePile(?loc1, ?loc2)” action that drags a whole pile from ?loc1 to ?loc2 if
?loc2 is empty. This action has high failure rates with unstable piles.

Piles may become unstable if objects are not piled properly. For example, if a plate is placed
on top of a pile containing a cup and a fork, there is a high probability that it will become
unstable. To obtain stable piles, in general, plates should be placed at the bottom, cups on
top of them, and cutlery at the top. Unstable piles are harder to move, and mobile robots
cannot pick them successfully.

Finally the decision-maker module uses the V-MIN algorithm (Section 4) in combination
with the learner presented in Section 3 to learn, and the PROST planner (Keller and Eyerich,
2012) to plan.

Figures 10 and 11 show examples of the Table Clearing task. The robot plans the
optimal action to execute based on the state of the table.
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Figure 10: Table clearing with a learned model. As the robot does not know if new table-
ware will arrive shortly, it decides first to place the two cups together (images
1−3), and then moves the plate to the pick up area (images 4−5). Afterwards,
a new pile arrives that contains no plates (image 6), so the robot decides to
move the cups to the picking up area (image 7), and finally, as a mobile robot is
arriving, the robot places the last pieces of tableware on the pick up area (image
8). Image 9 shows the final state after a mobile robot picked up the pile.

6.1 Learning a Model with RL

Using the setup described above, we executed the learner to obtain a model of the task from
scratch while solving it. To make the experimentation easier, instead of having mobile robots
picking up piles from the pick up area, a person did it. The robot had to solve experiments
of increasing difficulty, and it transferred the learned knowledge from one experiment to the
next. All experiments lasted 30 iterations during which piles were picked up 5 times from
the pick up area.

1. The easiest experiment was executed once. People left 10 objects on the table during
the experiment, including only plates and cups.
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Figure 11: Table clearing with a learned model. Initially, the robot has already one pile
prepared for the mobile robots. The planner opts to prepare a new pile with the
tableware on the table as it expects that at some point a mobile robot will pick
up the pile on top. In the second image, the new pile is halfway done, and
a new cup arrives. The planner knows that in the next iteration a mobile robot
is coming, so it decides to finish the new pile. In the third image, a mobile
robot picks the top pile, and the manipulator robot plans that the best action is
to move the new cup to the center free area to make more space in the arriving
area. Once the mobile robot takes the top pile, the manipulator robot will plan
the action of taking the center pile to the pick up area.

2. The medium experiment was executed twice. People left 13 objects on the table that
included plates, cups and cutlery.

3. The difficult experiment was executed twice. People left 18 objects on the table that
included plates, cups and cutlery.

The goals of the robot were to minimize the number of objects on the table, and to have
empty space in the arriving area so that people always had space to place new tableware.
Therefore big enough piles had to be given to the mobile robot at the same time that the
arriving area had to be cleared quickly.

The learner parameters used were α= 0.01, ε= 0.1, ω= 2, δ= 0.05, κ= 1000, and the
subsumption was enabled. The V-MIN exploration threshold was ζ = 3 and Vmin was
selected and updated by the teacher depending on the robot performance.

6.1.1 Learning Results

Table 1 summarizes the performance of the manipulator robot. During the easy experiment,
7 teacher demonstration requests were required to complete the task. The robot had to learn
the “put” action to pick and place objects, and also the operators defining how mobile robots
took piles from the pick up area.

In the second experiment, as cutlery appeared for the first time, and piles that have
cutlery in the middle are usually unstable, the robot needed 6 extra demonstrations to learn
how to manipulate cutlery and how unstable piles could be unpiled to make them stable
again. The third experiment needed only 3 more demonstrations as the robot already knew
most of the dynamics.
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Easy 1 Medium 1 Medium 2 Difficult 1 Difficult 2

Number of objects 10* 13 13 18 18

Sum of reward −48 −90 −82 −148 −130

Optimal rewards −41 −64 −65 −97 −101

Teacher requests 7 6 3 4 1

*In the easy setup no cutlery was used (only plates and cups).

Table 1: Learning results in the robot table clearing task. The columns show the different
learning experiments, which were executed in order of increasing difficulty. The
rows show the number of objects that arrived in each experiment, the sum of
rewards, and the number of teacher demonstration requests.

Finally, in the last difficult experiments, 5 teacher demonstrations were needed once
many objects accumulated on the table. The robot had to learn that it could assemble
a pile in the middle area, and then move it directly to the pick up area by using the
action “movePile(?loc1, ?loc2)”. In previous experiments this action was not needed as less
tableware arrived and the robot could just make piles directly on the pick up area with the
“put” action.

Appendix A explains in more detail the execution of the learning process as well as
the behavior of the manipulator robot during the easy experiment and the first medium
experiment.

It should be noted that during the learning experiments we observed that the effective-
ness of the robot actions was very important. If actions failed often, many more action
executions were needed to obtain a proper model. Therefore, before running the experi-
ments presented here, the robot actions were improved so that they succeeded in most cases
to make the task simpler.

6.2 Evaluation of the Learned Model

Finally, an experiment was carried out to evaluate the usefulness of learning exogenous
effects. Here we compare the performance when using the model learned in the previous
section, with another model learned with no exogenous effects (Pasula et al., 2007). The
exogenous effects allow the planner to know the probabilities with which each type of
tableware arrives, and the probability with which mobile robots come to pick piles up.
There was a reward of −1 for every object on the table at each step, and a reward of −2 if
new tableware was arriving but the arriving area was full. The results are shown in Table 2.

• An optimal action sequence obtained a reward of −99. Note that this optimal action
sequence was not obtained in a fair way: it was created knowing in advance when
and which type of tableware was arriving at each step, and when a mobile robot
approached. In contrast the manipulator robot did not have this information, it could
only know the probabilities of these effects.

• The model containing exogenous effects obtained a reward of −119. In this experiment
the manipulator robot performed well in general, but it created some inefficient piles
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Optimal Model with exogenous Model with no exogenous

Sum of rewards −99 −119 −136

Operators (actions) - 8 20

Operators (exogenous) - 11 0

Table 2: Execution results with the learned models. The columns show the results with an
optimal sequence of actions, a learned model considering exogenous effects, and a
learned model not considering exogenous effects. The rows show the sum of re-
wards and the number of planning operators that represent actions and exogenous
effects.

as a mobile robot would take shorter or longer than expected to arrive. Moreover, the
manipulator robot took a conservative strategy and it didn’t complete fast enough
some piles, as it did not know if new tableware would be arriving shortly. The model
consisted of 8 planning operators for action effects, and 11 planning operators for
exogenous effects.

• The model without exogenous effects obtained a reward of −136. This model had
more trouble to complete the task. The manipulator robot did not know that new
tableware would arrive because it did not have the exogenous effect for it. Thus,
it tried to make the best piles with the given objects, which resulted in the robot
redoing the piles whenever new tableware arrived (e.g. if a new cup arrived, the robot
would put it on top of the other cups in an existing pile, and below the cutlery). The
model had 20 operators that represented action effects. As exogenous effects were not
learned separately, each operator actually represented combinations of an action effect
with exogenous effects. However, these operators were less effective to represent the
model than separate action and exogenous operators, so the planner selected worse
policies.

Analyzing the results we can see that the proposed learner allows a robot to learn tasks
including exogenous effects. Given that only 5 episodes of 30 action executions were used
for training, the results were good. The experiment also shows that a model considering
exogenous effects improves the performance when external agents interact. Here the planner
was able to find much better plans when it anticipated that new tableware or a mobile robot
were arriving. However, extending this task with a richer representation and more external
agents would be costly. For every literal and exogenous effect that gets added, the number of
input transitions and computational time required to learn a model increases significantly.

7. Conclusions

We have introduced a new method that, given a set of input transitions, learns a general
model explaining them. In contrast to previous approaches, it can learn exogenous effects
(effects not related to any action), while still being similarly good at obtaining a relational
representation of the problem and at learning uncertain effects. Moreover optimal and
suboptimal search methods are provided, so the best approach can be chosen depending on
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the quality requirements, the difficulty of the problem, and the learning time available. The
main limitation of the algorithm is scalability when the number of generated propositional
predicates becomes large.

This learner can be combined with a RL algorithm to learn models from scratch. We
validated experimentally that the integration in the V-MIN algorithm allowed an agent to
learn models with a relatively small number of actions and teacher demonstration requests.

The learner was also integrated in a robot to perform the task of clearing the tableware on
a table. In this task external agents interacted, people brought new tableware continuously
and the manipulator robot had to cooperate with mobile robots to take the tableware to
the kitchen. The learner was able to learn a usable model in just 5 episodes of 30 action
executions. Finally, the model was used to complete the task, and learning models with
such exogenous effects proved to increase the obtained reward significantly.

Many robotic problems cannot be learned yet. As future work, the learner could be
extended to tackle correlated effects and partial observations.

• The challenge with correlated effects is to identify the candidates. A possible path to
explore is to replace LFIT by Ribeiro et al. (2015)’s approach, in which preconditions
can be literals in both the previous state (st) and the resulting state (st+1). In this
case, an effect (a literal in st+1) can be a precondition for another effect, so they would
be correlated effects.

• Partial observations would require to change the heuristic search and the cost function
to consider that the given state transitions may be wrong or incomplete.
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Appendix A. Learning the Table Clearing Task

In Sec. 6.1 we explained how the manipulator robot learned the table clearing task. This
appendix shows the detailed execution of the easy experiment and the first medium exper-
iment to provide a deeper understanding of the learning process.

A.1 Easy Experiment

The states at each iteration of the easy experiment are shown in Fig. 12. The robot starts
with no prior knowledge and has to learn the complete model. Below is an explanation of
the actions taking place at each iteration:

1. Initially the robot does not have prior knowledge and its model is empty, so no action
is taken. A person brings a plate (exogenous effect).
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Figure 12: The state at the beginning of each iteration during the easy experiment.

2. No action is taken.

3. The manipulator robot learns that plates remain in the same location if no action is
taken. A demonstration is requested to learn how to deal with plates, and the teacher
demonstrates the “put” action to move the plate to the pick up area.

4. The manipulator robot executes the “put” action with an empty location as parame-
ter, so it does not move anything. A new plate arrives.

5. The new plate is moved to the middle of the table.

6. The manipulator robot executes “put” with an empty location. Meanwhile, a mobile
robot comes and picks the plate on the pick up area (another type of exogenous effect).

7. After learning that mobile robots pick up plates on the pick up area, the manipulator
robot moves the plate on the middle to the pick up area. A cup arrives to the table.

8. A demonstration is requested, and the teacher moves it to the pick up area with a
“put” action.

9. It is not known yet that mobile robots also pick cups up, so a demonstration is
requested. The teacher does not execute any action because a mobile robot is already
arriving to take the pile. A new cup appears.

10. The learned model is not good enough yet, so a demonstration is requested. The
teacher puts the cup in the center of the table.

11. An exploratory “put” action with an empty location is taken. A new cup arrives.

12. A demonstration is requested. The teacher shows that both cups can be piled together.

13. No action is taken.

14. As a mobile robot is arriving, the cups are moved to the pick up area.

15. The mobile robot takes the cups and a new plate appears.
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16. The robot executes a “put” action that fails.

17. An exploratory “put” action is executed with an empty location (a new planning
operator with the action “put” and the precondition “cup(?X)” was generated and it
is explored).

18. An exploratory “put” action is executed with an empty location.

19. The plate is moved to the pick up area. A cup appears.

20. The new cup is moved to the pick up area. A new plate appears.

21. A demonstration is requested (the robot does not know yet that it can pile plates
together). The teacher decides to put the new plate on an empty location because
piling it on the pick up area could be unstable.

22. As an exploratory action, the cup is moved to an empty location.

23. A demonstration is requested, and the teacher piles the two plates together.

24. No action was taken (exploration is not needed, so it decides to wait until new objects
arrive or a mobile robot approaches). A new cup arrives.

25. The new cup is moved to the pile in the pick up area because a mobile robot is arriving.

26. As an exploration action, the cup is moved to a different location on the center of the
table. A plate arrives.

27. The plate is moved to the center.

28. The plate is moved to the pick up area.

29. The cup is put on top of the plate.

30. A mobile robot comes and takes the last pile.

A.2 First Medium Experiment

Here the robot reuses the knowledge that it obtained during the easy experiment. The
states at each iteration of the first medium experiment are shown in Fig. 13. Below is an
explanation of the actions taking place at each iteration:

1. Initially there is no tableware, so no action is taken. A plate arrives.

2. The plate is “put” on the pick up area. A cup arrives.

3. An exploratory “put” action that does nothing is executed (the first parameter is an
empty location and the second one is the cup, so it does not move anything).

4. The operators learned are not complete enough, so a demonstration is requested. The
teacher places the cup in the middle of the table. A plate arrives
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11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Figure 13: The state at the beginning of each iteration during the first medium experiment.

5. The new plate is moved to the pick up area.

6. As an exploratory action, the plates are moved to the center of the table.

7. The plates are moved back to the pick up area. A cup arrives.

8. As a mobile robot is arriving, it is piled up directly in the pick up area. The pile on
the pick up area is taken.

9. No action is taken (exploration is not needed, so it decides to wait until new objects
arrive or a mobile robot approaches). A new cup arrives

10. The new cup is piled with the other one.

11. No action is taken and a plate arrives.

12. The new plate is moved to the pick up area.

13. Cutlery appears for the first time. A demonstration is requested and the teacher
decides to move the cups to the pick up area. Note that the teacher shows the best
action, and not the action that would make the robot learn the most. In this case it
is better to first put the cup on the plate, and later put the cutlery on the cup.

14. As the actions to manipulate cutlery have not been learned yet, another demonstration
is requested. This time the teacher executes a “put” action to pile up the fork.

15. The manipulator robot has still to learn that mobile robots also take cutlery, so
another demonstration is requested. As a mobile robot is arriving to take the pile,
the teacher does not execute any action. A cup arrives.

16. The new cup is moved to the pick up area.

17. No action is taken. A fork arrives.

18. The new fork is moved to the center of the table.

19. The fork is put on top of the cup at the pick up area. A plate arrives.
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Figure 14: Unstable pile during the first medium experiment. Left: the state before the
manipulator robot placed the plate on the top pile. Center: the pile became
unstable, and thus it was not taken by mobile robots. Right: to make the pile
stable again, the plate was positioned back in the table.

20. The new plate is moved to the pile at the pick up area. However, the pile becomes
unstable as a plate is on top of a cup with a knife (see Fig. 14).

21. A mobile robot comes, but it does not take the pile because it is unstable. A cup
arrives.

22. The manipulator robot has learned that mobile robots do not take unstable piles, so
a demonstration is requested. The teacher shows that putting the plate back to the
table makes the pile stable again.

23. As an exploratory action, the plate is put again on the pile, making it unstable.

24. The manipulator robot makes the pile stable again by removing the plate. A mobile
robot comes and takes the pile on the pick up area as it is stable.

25. The cup on the arriving area is moved to the center of the table. A new cup arrives.

26. The model has updated its probabilities with which new objects and mobile robots
arrive, and the resulting plan has a value V (s) < Vmin even though it is a good plan.
The problem is that Vmin was too high, and the teacher updates it after piling the
two cups together. A plate arrives.

27. The plate is piled on top of the other plate.

28. The plates are moved to the pick up area.

29. The cups are piled on top of the plates.

30. A mobile robot comes and takes the last pile.
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