
HAL Id: hal-01710488
https://hal.science/hal-01710488

Submitted on 16 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

A BDD-Based Algorithm for Learning from
Interpretation Transition

Tony Ribeiro, Katsumi Inoue, Chiaki Sakama

To cite this version:
Tony Ribeiro, Katsumi Inoue, Chiaki Sakama. A BDD-Based Algorithm for Learning from Interpre-
tation Transition. The 23rd International Conference on Inductive Logic Programming, Aug 2013,
Rio de Janeiro, Brazil. �hal-01710488�

https://hal.science/hal-01710488
https://hal.archives-ouvertes.fr

A BDD-Based Algorithm for Learning from
Interpretation Transition ?

Tony Ribeiro1, Katsumi Inoue1,2, and Chiaki Sakama3

1 The Graduate University for Advanced Studies (Sokendai),
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

tony ribeiro@nii.ac.jp,
2 National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan,
inoue@nii.ac.jp,

3 Department of Computer and Communication Sciences,
Sakaedani, Wakayama 640-8510, Japan
sakama@sys.wakayama-u.ac.jp

Abstract. In recent years, there has been an extensive interest in learning the
dynamics of systems. For this purpose, a new learning method called learning
from interpretation transition has been proposed recently [1]. However, both the
run time and the memory space of this algorithm are exponential, so a better data
structure and an efficient algorithm have been awaited. In this paper, we propose a
new learning algorithm of this method utilizing an efficient data structure inspired
from Ordered Binary Decision Diagrams. We show empirically that using this
representation we can perform the same learning task faster with less memory
space.

1 Introduction

In recent years, there has been a notable interest in the field of Inductive Logic Program-
ming (ILP) to learn from system state transitions as part of a wider interest in learning
the dynamics of systems [2, 1]. Learning system dynamics has many applications in
multi-agent systems, robotics and bioinformatics alike. Knowledge of system dynam-
ics can be used by agents and robots for planning and scheduling. In bioinformatics,
learning the dynamics of biological systems can correspond to the identification of the
influence of genes and can help to design more efficient drugs. In some previous works,
state transition systems are represented with logic programs [3, 4], in which the state
of the world is represented by an Herbrand interpretation and the dynamics that rule
the environment changes are represented by a logic program P . The rules in P specify
the next state of the world as an Herbrand interpretation through the immediate con-
sequence operator (also called the TP operator) [5, 6]. With such a bakground, Inoue
et al. [1] have recently proposed a framework to learn logic programs from traces of
interpretation transitions (LFIT). The learning setting of this framework is as follows.
? This research was supported in part by the NII research project on “Dynamic Constraint Networks” and by the “Systems

Resilience” project at Research Organization of Information and Systems, Japan. We would like to thank Earl Belinger
for its help to improve the english quality of the paper.

We are given a set of pairs of Herbrand interpretations (I, J) as positive examples such
that J = TP (I), and the goal is to induce a normal logic program (NLP) P that realizes
the given transition relations. In [1], the authors showed one of the possible usages of
LFIT: LF1T, learning from 1-step transitions. In that paper, an algorithm is proposed
to iteratively learn an NLP that realizes the dynamics of the system by considering step
transitions one by one. The iterative character of LF1T has applications in bioinformat-
ics, cellular automata, multi-agent systems and robotics. We can easily imagine an agent
or a robot that learns the dynamics of its environment from its observations, learning
the consequences of its actions according to the state of the world step-by-step. Aggre-
gating more and more observations, the agent becomes able to predict the evolution of
the world more precisely and can use this knowledge for planning and scheduling.

In this paper, we propose a new version of the LF1T algorithm based on Binary
Decision Diagrams (BDDs) [7, 8]. A BDD is a canonical representation of a Boolean
formula which has been successfully used in many research fields such as Boolean sat-
isfiability solvers [9], data mining [10], ILP [11] and abduction [12, 13]. ProbLog [11]
is a probabilistic logic programming language that computes probabilities via BDDs. A
ProbLog program computes the probability of a query atom by applying sum-product
computation to a BDD, but allows definite clauses only. For abduction in propositional
theories, Simon and del Val [12] propose a consequence-finding procedure implemented
on Zero-suppressed BDDs. Inoue et al. [13] run the EM algorithm over BDDs to eval-
uate abductive hypotheses.

The main concern of our LF1T algorithm is the size of NLPs learned. For the sake
of memory usage and reasoning time, a small NLP could be preferred in multi-agent
and robotics applications. In bioinformatics, it can be easier and faster to perform model
checking on Boolean networks represented by a compact NLP than the set of all state
transitions. In previous algorithms, LF1T uses resolution techniques to generalize rules
and reduces the size of the output NLP. The novelty of our approach is the adaptation
of these techniques to the BDD structure. Here, we develop a method to perform LF1T
operations on a BDD that also realizes usual BDD merging operations as well as novel
simplification operations. We represent an NLP by a set of BDD structures where each
BDD encodes rules with the same head literal. Assuming that rules respect a variable
ordering, our data structure is similar to an Ordered BDD (OBDD) [14, 15]. In our ap-
proach, each BDD represents a formula in disjunctive normal form that defines whether
a literal is true at the next time step. Because LF1T does not learn negative rules, our
structure only represents rules that imply the head literal to be true. In that sense it can
also be considered a Zero-suppressed Binary Decision Diagram (ZDD) [16].

Using a BDD representation we can also merge the common part of rules and learn
the same NLP with less memory usage than in previous versions of LF1T. One weak
point of the previous LF1T algorithm is that learning becomes slower and slower as
the NLP learned becomes bigger because it has to check more and more rules. In prac-
tice, the compact representation of the BDD structure reduces the sensitivity of the
LF1T learning time to the NLP size. Study of the computational complexity of our new
method shows that it remains equivalent to the previous version of LF1T in the worst
case. Using examples from the biological literature we show through experimental re-

sults that our new algorithm still outperforms the two previous versions of LF1T in
practice.

The rest of this paper is organized as follows. Section 2 reviews LF1T together with
two previous versions of its algorithms. Section 3 describes the new LF1T algorithm
based on BDDs and discusses its computational complexity. Section 4 shows experi-
mental results of the new algorithm compared to the two previous versions of LF1T on
learning Boolean networks.

2 Learning from 1-Step Transitions

We consider a first-order language and denote the Herbrand base (the set of all ground
atoms) as B. A (normal) logic program (NLP) is a set of rules of the form

A ← A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An (1)

where A and Ai’s are atoms (n ≥ m ≥ 0). For any rule R of the form (1), the atom A
is called the head of R and is denoted as h(R), and the conjunction to the right of← is
called the body of R. We represent the set of literals in the body of R of the form (1) as
b(R) = {A1, . . . , Am,¬Am+1, . . . ,¬An}, and the atoms appearing in the body of R
positively and negatively as b+(R) = {A1, . . . , Am} and b−(R) = {Am+1, . . . , An},
respectively. The set of ground instances of all rules in a logic program P is denoted as
ground(P).

An (Herbrand) interpretation I is a subset of B. For a logic program P and an
Herbrand interpretation I , the immediate consequence operator (or TP operator) [6] is
the mapping TP : 2B → 2B:

TP (I) = {h(R) | R ∈ ground(P), b+(R) ⊆ I, b−(R) ∩ I = ∅}. (2)

Definition 1 (Subsumption).
For two rules R1, R2 of the form 1 with the same head, R1 subsumes R2 if there

is a substitution θ such that b+(R1)θ ⊆ b+(R2) and b−(R1)θ ⊆ b−(R2). When R1

subsumes R2 and |b(R1)| < |b(R2)|, R1 is more general than R2 and R2 is more
specific than R1.

We now review the LF1T algorithm developed in [1]. LF1T is an anytime algorithm
that takes a set of state transitions E ⊆ 2B × 2B as input. The states transitions of
E can be seen as (positive) examples/observations of transition of the system. From
these transitions the algorithm learns a logic program P that represents the dynamics
for E. To perform this learning process we can iteratively consider one-step transitions.
In LF1T, the Herbrand base B is assumed to be finite. To construct an NLP for LF1T
we can use a bottom-up method, which generates hypotheses by generalization from
the most specific clauses to explain positive examples that have not been covered yet.
The pseudo-code of LF1T is given in Algorithm 1. The LF1T algorithm can be used
with or without an initial NLP P0. Given only the examples E, LF1T is initially called
by LF1T(E, ∅). If an initial NLP P0 is given, LF1T(E,P0) is called. LF1T first con-
structs the most specific rule RI

A for each positive literal A appearing in J = TP (I) for

Algorithm 1 LF1T(E,P)
1: INPUT: E ⊆ 2B × 2B: (positive) examples/observations and an NLP P
2: OUTPUT: An NLP P such that J = TP (I) holds for any (I, J) ∈ E.

3: while E 6= ∅ do
4: Pick (I, J) ∈ E; E := E \ {(I, J)}
5: for each A ∈ J do
6: RI

A := A←
∧

Bi∈I Bi ∧
∧

Cj∈(B\I) ¬Cj

7: AddRule(RI
A, P)

8: end while
9: return P

each (I, J) ∈ E. We do not construct any rule to make a literal false. The rule RI
A is

then possibly generalized when another transition from E makes A true, which is com-
puted by several generalization methods. The two generalization methods considered
in [1] are based on resolution. In [1], naı̈ve and ground resolutions are defined between
two ground rules as follows. Let R1, R2 be two ground rules and l be a literal such that
h(R1) = h(R2), l ∈ b(R1) and l ∈ b(R2). If (b(R2) \ {l}) ⊆ (b(R1) \ {l}) then the
ground resolution of R1 and R2 (upon l) is defined as

res(R1, R2) =

(
h(R1)←

∧
Li∈b(R1)\{l}

Li

)
. (3)

In particular, if (b(R2) \ {l}) = (b(R1) \ {l}) then the ground resolution is called
the naı̈ve resolution of R1 and R2 (upon l). In this particular case, the rules R1 and
R2 are said to be complementary to each other with respect to l. Both naı̈ve resolution
and ground resolution can be used as generalization methods of ground rules. For two
ground rules R1 and R2, the naı̈ve resolution res(R1, R2) subsumes both R1 and R2,
but the non-naı̈ve ground resolution subsumes R1 only. For example, suppose the three
rules: R1 = (p ← q ∧ r), R2 = (p ← ¬q ∧ r), R3 = (p ← ¬q), and their resol-
vent: res(R1, R2) = res(R1, R3) = (p ← r). R1 and R2 are complementary with
respect to q. Both R1 and R2 can be generalized by the naı̈ve resolution of them be-
cause res(R1, R2) subsumes bothR1 andR2. On the other hand, the ground resolution
res(R1, R3) subsumes R1 but does not subsumes R3. In the first implementation of
LF1T in [1], naı̈ve resolution is used as a least generalization [17] method. This method
is particularly intuitive from the ILP viewpoint, since each generalization is performed
based on a least generalization operator. In [1], it is shown that for two complementary
ground rules R1 and R2, the naı̈ve resolution of R1 and R2 is the least generaliza-
tion of them, that is, lg(R1, R2) = res(R1, R2). When naı̈ve resolution is used, LF1T
needs an auxiliary set Pold of rules to globally store subsumed rules, which increases
monotonically. Using naı̈ve resolution, P ∪ Pold possibly contains all patterns of rules
constructed from the Herbrand base B in their bodies. In the second implementation of
LF1T of [1], ground resolution is used as an Pold alternative generalization method in
AddRule. This replacement of resolution leads to a lot of computational gains, since
the use of Pold is not necessary any more: all generalized rules obtained from P ∪ Pold

by naı̈ve resolution can be obtained using ground resolution on P . By Theorem 3 of [1],
using the naı̈ve version, the memory use of the LF1T algorithm is bounded byO(n·3n),

p

q r

Fig. 1. A Boolean network N1(left) and its state transition diagram (right)

and the time complexity of learning is bounded by O(n2 · 9n), where n = |B|. On the
other hand, with ground resolution, the memory use is bounded by O(2n), which is the
maximum size of P , and the time complexity is bounded by O(4n). Given the set E of
complete state transitions, which has the size O(2n), the complexity of LF1T(E, ∅)
with ground resolution is bounded by O(|E|2). On the other hand, the worst-case com-
plexity of learning with naı̈ve resolution is O(n2 · |E|4.5).

Example 1. Consider the state transition in Fig. 1. By giving the state transitions step-
by-step and using ground resolution the NLP {#13,#16,#19} is obtained in Table 1,
where #n is the rule ID.

Table 1. Execution of LF1T with ground resolution on step transitions of figure 1 where pqr →
pq represents the state transition ({p, q, r}, {p, q}) [1].

Step I → J Operation Rule ID P

1 pqr → pq Rpqrp p← p ∧ q ∧ r 1 1
Rpqrq q ← p ∧ q ∧ r 2 1,2

2 pq → p Rpqp p← p ∧ q ∧ ¬r 3
res(3, 1) p← p ∧ q 4 2,4

6 p→ ε
7 ε→ r Rεr r ← ¬p ∧ ¬q ∧ ¬r 5 2,4,5
8 r → r Rrr r ← ¬p ∧ ¬q ∧ r 6

res(6, 5) r ← ¬p ∧ ¬q 7 2,4,7
9 qr → pr Rqrp p← ¬p ∧ q ∧ r 8

res(8, 4) p← q ∧ r 9 4,7,9
Rqrr r ← ¬p ∧ q ∧ r 10

res(10, 7) r ← ¬p ∧ r 11 2,4,7,9,11
10 pr → q Rprq q ← p ∧ ¬q ∧ r 12

res(12, 2) q ← p ∧ r 13 4,7,9,11,13
11 q → pr Rqp p← ¬p ∧ q ∧ ¬r 14

res(14, 1) p← q ∧ ¬r 15
res(15, 4) p← q 16 7,11,13,16

Rqr r ← ¬p ∧ q ∧ ¬r 17
res(17, 7) r ← ¬p ∧ ¬r 18
res(18, 11) r ← ¬p 19 13,16,19

3 BDD Algorithms for LF1T

Now we present a new LF1T algorithm based on an efficient data structured inspired
from OBDD and Zero-suppressed BDD. The novelty of our approach is the integration
of LF1T operations into a BDD structure to perform ground resolution. In this approach,
one BDD represents a set of rules that have the same head. Figure 2 show the evolution
of the BDD that represents rules of p in Example 1: In this figure, the last schema of step
9 represents a BDD that contains two rules p← p∧q and p← q∧r which both have p as
their head. The internal nodes of our data structure represent literals, and outgoing edges
represent their polarity. In Figure 2, the first BDD has one root node which represents
the literal p and the edge between its child node q represents the fact that p is positive
in the rule p ← p ∧ q. Like an OBBD, our structure respects a total variable ordering:
if p, c are two nodes, c is a child of p and lp, lc their literals respectively,then lp < lc. If
there is an edge between two nodes p, c that are not neighbors in the ordering, it means
that all literals between them are absent from the rules encoded by paths including p
and c. Like a ZDD, our BDD structure can have multiple root nodes, but only one
leaf; it only represents positive rules. A root node always represents the first literal of
one or multiple rules. The leaf node represents the end of all rules; it is the unique
child of the last literal of every rule represented by the BDD. Usual BDD merging
operations are not sufficient to perform the generalization operations of LF1T. In LF1T,
these operations are equivalent to the use of naı̈ve resolution without Pold. In Figure 2,
the generalization obtained in step 2 can be obtained by usual BDD merging operations:
the node r has a positive and negative link to the same node (the leaf) and should be
removed according to BDD merging operations. But the generalization obtained by
ground resolution on step 9 cannot be obtained by usual BDD merging operations. To
use ground resolution within a BDD structure we need to introduce specific merging
operations. These operations have to ensure that the set of rules represented by a BDD is
always minimal regarding ground resolution. In Figure 2, the last BDD of each learning
step respects this notion of minimality. Algorithm 2 describes our adaptation to BDD
of the addRule operation of LF1T. This algorithm is an application to BDD of the
previous version of LF1T based on ground resolution. Whenever a new rule is learned,
the corresponding BDD is updated as follows: 1) check if the rule is subsumed, 2)
generalize the rule, 3) remove subsumed rules, 4) insert the rule and 5) generalize the
BDD. The details of each step is explained as follows.

Subsumption (step 1)
To check if a rule is subsumed by a BDD, we have to check whether starting from a
root and following the body of the rules allow us to reach the leaf of the BDD. If we
reach the leaf then the rule is subsumed. Because we use ground resolution, if a rule is
subsumed by the BDD it is useless to search for generalizations of that rule. Checking
for such a generalization will only lead to generating a rule that is already in the BDD.
Also, it cannot generalize any rules in the BDD: every generalization which can be
triggered by this rule has already been found using the rules in the BDD that subsumes
it.

Generalization of the new rule (step 2)
To search for generalizations of the rules we use a similar search. However, each time
we reach a node representing the current literal l of the rule, we check if the sub-BDDs

p

q

r

1

1

1

p

q

r

1

1

1 0

p

q

1

1

p

qq

r

1

1

1

1

0

p

qq

r

1

1

1

1

Step 1 Step 2 Step 9

Step 11

p

qq

r

q

r

1

1

1

1

1

0

0

p

qq

r

q

1

1

1

1
1

0

qq

r

1

1

1

q

1

+#14

+#1 +#4+#3 +#8 +#9

+#15 +#16 -#9

Fig. 2. Evolution of the BDD of p in Example 1, edge labelled by 0 represents negation, nodes
without parent are roots and the empty node is the leaf. Last schema of each step represents the
real state of the BDD; intermediate ones illustrate update operations. Step 1: from (pqr, pq) we
learn p← p∧ q ∧ r. Step 2: from (pq, p) we learn p← p∧ q ∧¬r and by resolution p← p∧ q.
Step 9: from (qr, pr) we learn p← ¬p∧q∧r and by resolution p← q∧r. Step 11: from (q, pr)
we learn p← ¬p∧ q∧¬r which triggers two resolutions and a subsumtion to finish with p← q.

Algorithm 2 addRule(R,B)
1: INPUT: a rule R and a BDD B
2: g: a set of rules

// 1) Check if R is subsumed
3: for each root node r of B do
4: if r.subsumes(R, 0) then return

// 2) Generalizes R
5: for each root node r of B do
6: if r.generalizes(R, 0) then restart the for loop

// 3) Remove rules subsumed by R
7: l := the leaf node of B
8: l.clear(R, |R|, true)

// 4) Insert R into the BDD
9: insert(R,B)

// 5.1) Check generalization by R
10: g ← ∅
11: for each root node r of B do
12: r.generalizations(R, 1, g)

// 5.2) Add the generalizations generated by R
13: for each rules Rg of g do
14: addRule(Rg)

Algorithm 3 subsumes(R, n) member function of a LF1T-BDD node N
1: INPUT: a rule R and an integer n
2: OUTPUT: a Boolean value

3: literalN : literal of the node N
4: true children: list of child nodes linked by a true edge
5: false children: list of child nodes linked by a false edge
6: head: the head literal of R

// 1) Terminal node
7: if is terminal() AND variable = head then
8: return true

// 2) End of the rule
9: if n > |R| then
10: return false
11: literalR ← nth literal of R

// 3) LF1T-BDD rules are more generals
12: if literalR > literalN then
13: return subsumes(R,n + 1)

14: literalR ← nth literal of R
// 4) The rule is more general

15: if literalR < literalN then
16: return false

// 5) Same literal
17: if literalR is positive then
18: children← true children
19: else
20: children← false children

21: for each child node c of children do
22: if c.subsumes(R,n + 1) then
23: return true
24: return false

subsume the complementary rule on l. If it is the case, we generalize the rule on this
literal and restart the check for generalizations with the new rule.

Removal (step 3)
To delete the rules subsumed by the new rule in the BDD, this time we start from the
leaf. We follow the parents according to the rule until we check all corresponding parts
of the BDD. If we reach the end of the rule, it means that a rule is subsumed. If we
do not encounter a node with multiple children, we just have to delete the current node
and purge the linked nodes: we recursively delete all parent nodes that have no more
children and all children who have no more parents (those poor orphans). Otherwise,
we come back to the first node with multiple children we encountered, cut the child
edge we followed, and purge the child node in the same way as before.

Insertion (step 4)
All operations we use on our BDDs are based on the manner in which we insert a rule
into the structure. First of all, when adding a ruleR to a BDDB we assume thatR does
not subsumes and is not subsumed by any rules ofB and cannot be generalized by a rule
of B using ground resolution (insured by step 1-3). To add a rule in the BDD we start
by searching the common part of the beginning and the end of the body. From the leaf
of the BDD, we climb to its parents following the rule from the end. If a parent node
has multiple children we do not follow it. Adding a parent to this node will generate
more rules than only the one we want to represent. We stop when there is no parent that
corresponds to the literal of the rule or when we reach the beginning of the rule. Let’s
call the last parent reached last and its literal llast; last will be connected later to the

Algorithm 4 generalizes(R, n) member function of a LF1T-BDD node N
1: INPUT: a rule R and an integer n
2: OUTPUT: a Boolean value
3: literalN : literal of the node N
4: true children: list of child nodes linked by a true edge
5: false children: list of child nodes linked by a false edge

// 1) The rule is more general than all rules of the node
6: if n > |R| then return false

// 2) Terminal node
7: if is terminal() then return false

// 3) Check generalization on the current node
8: literalR ← nth literal of R

// 3.1) The node is more general than the rule
9: while literalN > literalR do
10: if subsumes(R,n) then
11: R← R \ literalR // 3.1.1) The node subsumes the complementary rule
12: return true
13: n← n + 1

// 3.1.2) No more literal to generalize
14: if n > |R| then return false
15: end while

// 3.2) The rule is more general
16: if literalN < literalR then return false

// 3.3) The sub-bdd possibly contains the complementary
17: same← true children
18: oposite← false children
19: if literalR is positive then
20: same← false children
21: oposite← true children

// 3.3.1) Search for complementary rules
22: for each child node c of oposite do
23: if c.subsumes(R,n + 1) then // Complementary rules is subsumed
24: R← R \ literalR
25: return true

// 4) Search for generalizations on next literal
26: for each child node c of same do
27: if c.generalizes(R,n + 1) then
28: return true
29: return false

new nodes created to represent the rule. Then, we search for a root node corresponding
to the first literal. If such a root node does not exist, we create a new one, and then we
create and link new nodes for all literals l < llast of the rules. Then, last becomes the
child of the node most recently created. If a root node corresponds to the first literal of
the rule to insert, we follow its children according to the rule body. We stop the descent
when no nodes correspond to the rule body, and connect the most recent one we found
to last. This insertion policy allows us to compile common parts of the rule body to save
memory space. It ensures that a node with multiple children have only one parent and
cannot have an ancestor with multiple ancestors. In our implementation, this property
is exploited to enhance the efficiency of the subsumption and generalization checks of
LF1T.

Generalization of BDDs (step 5)
To search the generalizations made by the new rule, we start from the root node. Let l
be the current literal we are checking in the rule. When we reach a node whose literal
corresponds to l or before it in the ordering, we just have to retrieve all rules subsumed
by the rest of the new rules. These rules can all be generalized on the current node. We

Algorithm 5 clear(R, n, can cut) member function of a LF1T-BDD node N
1: INPUT: R a rule, n an integer and can cut a Boolean
2: OUTPUT: a Boolean value

3: literalR: the nth literal of R
4: unlink ← false

// 1) Choice node
5: if #child > 1 then
6: can cut← false

// 2) Check parents
7: for each parent node p do
8: literalp ← the literal of p

// 2.1) Parent is more general
9: if literalp < literalR then
10: if n = 1 AND is terminal() then
11: CONTINUE // 2.1.1) Not subsumed
12: if !p.clear(R,n, can cut) then
13: CONTINUE

// 2.1.2) Subsumed
14: if can cut then
15: remove the link with p and delete p if it do not has child
16: unlink ← true
17: CONTINUE
18: return true

// 2.2) Rule is more general
19: if literalp > literalR then
20: if !p.clear(R,n, can cut) then
21: delete p if it do not has any parent
22: CONTINUE // 2.2.1) Not subsumed

// 2.2.2) Subsumed
23: if can cut then
24: remove the link with p and delete p if it do not has any child
25: unlink ← true
26: CONTINUE
27: return true

// 2.3) Same literal
28: if n > 0 AND !p.clear(R,n− 1, can cut) then
29: delete p if it do not has any parent
30: CONTINUE

// 2.3.2) Subsumed
31: if can cut then
32: remove the link with p and delete p if it do not has any child
33: unlink ← true
34: CONTINUE
35: return true
36: return false

continue the search for generalizations on the children until we cannot follow the rule
anymore. It is necessary to clear the BDD from subsumed rules before this operation
in order to avoid a cascade of useless generalizations which lead to the rule we are
inserting. In fact, let R1, R2 be two rules such that R1 subsumes R2 on l. Then R1 can
generalize R2 on l because R1 subsumes the complementary of R2 on l.

Theorem 1. Let n be the size of the Herbrand base |B|. Using our dedicated BDD
structure the memory complexity as well as the computational complexity of LF1T re-
main in the same order as the previous algorithm based on ground resolution: , i.e.,
O(2n) and O(4n), respectively. The proof is given as appendix.

Algorithm 6 insert(R, BDD)
1: INPUT: a rule R and a BDD

2: starting: the set of starting nodes of BDD
3: literal: first literal of R
4: begin, end: BDD nodes
5: n← 0
6: push← false

// 1) Bottom-up search for common part
7: end← the last ancestor node reached following R from the corresponding terminal node

// 2) Fact rule
8: if |R| = 0 then
9: starting ← {terminalnode}
10: begin← NULL

// 2.1) Search common literal within the starting nodes
11: if a node r ∈ starting correspond to literal then
12: begin← r

// 2.2) New starting
13: if begin = NULL then
14: begin← a new node corresponding to literal
15: starting ← starting ∪ {begin}
16: push← true

17: current: bdd node pointer
18: make current points on begin

// 3) Insertion of the rest of the body
19: while n ≤ |R| do
20: n← n + 1

// 3.1) Link node reached
21: if n > |R| OR the nth literal of R is the one of end then
22: connect current to end according to the polarity of literal
23: return
24: literal← nth literal of R

// 3.2) construct new nodes for the rest of the rule
25: if push then
26: create a new node for literal
27: connect the node to current according to the polarity of literal
28: make current points on the new node
29: CONTINUE

// 3.3) Continue to follow the rule
30: next← NULL
31: for each child nodes c of current according to previous literal polarity do
32: if c has only one parent node AND correspond to literal then
33: next← c
34: BREAK

// 3.4) No more common literal
35: if next = NULL then
36: push = true
37: n← n− 1
38: CONTINUE

// 3.4) // Continue to follow the LF1T-BDD
39: Make current point on next
40: end while
41: Connect end to begin according to the polarity of literal

Algorithm 7 generalizations(R, n,G)
1: INPUT: R a rule, n an integer, G a list of rules
2: OUTPUT: a Boolean value

3: literalN : node literal
4: G′, rules: set of rules

// 1) End of the rule
5: if n > |R| then return
6: literalR ← nth literal of R

// 2) Node is more general
7: if literalN > literalR then return

// 3) Generalizations are possible on all children
8: if literalN < literalR then
9: for each child node c do
10: rules← all rules subsumed by R in c
11: G← G ∪ {rules}

// 2.2) Retrieve deeper generalizations
12: for each child node c do
13: G′ ← ∅
14: c.generalizations(R,n + 1, G′)
15: literal← literalN
16: if the link with c is a negation then
17: literal← ¬literalN
18: for each rule r of G′ do
19: G← G ∪ {(h(r)← literal ∧

∧
l∈b(r) l)}

20: return
// 3) Same literal

21: for each child node c do
22: // 3.1) Search complementary rules
23: if the link with c has the same polarity as literalR then
24: rules← all rules subsumed by R in c
25: G← G ∪ {rules}
26: else
27: // 3.2) Check deeper generalizations
28: literal← literalN
29: if the link with c is a negation then
30: literal← ¬literalN
31: G′ ← ∅
32: c.generalizations(R,n + 1, G′)
33: for each rule r of G′ do
34: G← G ∪ {(h(r)← literal ∧

∧
l∈b(r) l)}

4 Experiments

In this section, we evaluate our learning methods through experiments. We apply our
new LF1T algorithms to learn Boolean networks. Here we run our learning program on
the same benchmarks used in [1]. These benchmarks are Boolean networks taken from
Dubrova and Teslenko [18], which include those networks for control of flower mor-
phogenesis in Arabidopsis thaliana, budding yeast cell cycle regulation, fission yeast
cell cycle regulation and mammalian cell cycle regulation. Like in [1], we first con-
struct an NLP τ(N) from the Boolean function of a Boolean network N where each
Boolean function is transformed to a DNF formula. Then, we get all possible 1-step
state transitions of N from all 2|B| possible initial states I0’s by computing all stable
models of τ(N) ∪ I0 using the answer set solver clasp [19]. Finally, we use this set
of state transitions to learn an NLP using our LF1T algorithm. Because a run of LF1T
returns an NLP which can contain redundant rules, the original NLP Porg and the out-
put NLP PLFIT can be different, but remain equivalent with respect to state transition,
that is, TPorg

and TPLFIT
are identical functions.

Table 2. Memory use and learning time of LF1T for Boolean networks up to 15 nodes with the
alphabetical variable ordering

Name # nodes # rules Naı̈ve Ground BDD
Arabidopsis thalania 15 28 T.O. 40.8MB/13.8s 31.6MB/2.8s

Budding yeast 12 54 11MB/361s 4.6MB/0.82s 3.6MB/0.188s
Fission yeast 10 23 3.3MB/5.2s 0.8MB/0.68s 0.5MB/0.24s

Mammalian cell 10 22 4.7MB/5.7s 1MB/0.76s 0.5MB/0.24s

Table 2 shows the memory space and time of a single LF1T run in learning a
Boolean network for each problem in [18] on a processor Intel Core I7 (3610QM,
2.3GHz) with 4GB of RAM. In the naı̈ve, ground and BDD versions of LF1T the vari-
able ordering is alphabetical. The time limit is set to one hour for each experiment. The
gain of memory for the BDD version is up to 50% for the two smaller benchmarks and
around 20% for the bigger ones. The main interest of our algorithm is shown by the
gain in CPU time. For the Arabidopsis thaliana benchmark the input size is quite big:
215 state transitions. Here, naı̈ve version of LF1T reaches the time out (T.O.) of one
hour. On this big benchmark, using BDD, we need 80% less CPU time than the previ-
ous ground resolution method. These results show that even if the BDD structure does
not have a big impact on the whole memory space use, its particular structure allows it
to perform LF1T operations faster than in the previous algorithms.

Table 3 show more precise experimental results on the BDD version of LF1T. This
table shows the minimimum, maximum and average number of rules in the output NLP
of 1000 runs of LF1T with random variable ordering. The fifth column shows the av-
erage learning time and last one is the standard deviation over the number of rules and
the one of learning time.

The standard deviation shows that the impact of variable ordering does not affect
learning time very much, but it has a significant influence on the rules learned by LF1T.

Table 3. Experimental results of 1000 runs of LF1T with random variable orderings

Name min/max # rules Average # rules time std deviation rules/time
Arabidopsis thalania 29/962 227 4.31s 183.03/0.538s

Budding yeast 54/310 82 0.3s 41.91/0.019s
Fission yeast 23/45 24 0.04s 3.08/0.003s

Mammalian cell 22/22 22 0.03s 0/0.007s

Although those output rules are all minimal with respect to subsumption among them,
some are subsumed by original rules. If we consider the original NLP as a kind of
optimal NLP in terms of the number of rules, the bigger NLPs learned by our BDD
version are local optima where no ground resolutions can be applied among the rules of
the NLP. This is because the resolution strategy of LF1T is to perform resolution only
when it produces a generalized rule, so other kinds of resolution are not allowed. For
example, from R1 = (p ← p ∧ q) and R2 = (p ← ¬q ∧ r), R = (p ← p ∧ r) cannot
be obtained in LF1T, since R subsumes neither R1 nor R2. Variable ordering has the
same affect on the previous versions of LF1T.

5 Conclusion & Future Work

We proposed a new algorithm for learning from interpretation transitions based on a
BDD-like structure. Using this data structure, we can reduce the memory space to rep-
resent NLPs learned by LF1T. Analysis of the worst-case computational complexity
demonstrated that learning with this method is equivalent to the previous method. How-
ever, experimental comparison with previous LF1T algorithms showed that our method
outperforms them in practice. Just a few remarks on learning non-ground NLPs; LF1T
first learns ground rules then we apply well-known generalization techniques like anti-
instantiation and least generalization. Extension of the BDD structure in this paper to
the first-order case like [20] remains as a future work. Another possible outlook is an
extension of LF1T algorithm to learn the dynamics of asynchronous systems.

References

1. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Machine Learn-
ing (2013) doi: 10.1007/s10994–013–5353–8

2. Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K., Srinivasan, A.: Ilp
turns 20. Machine learning 86(1) (2012) 3–23

3. Inoue, K.: Logic programming for boolean networks. In: Proceedings of the Twenty-Second
international joint conference on Artificial Intelligence-Volume Volume Two, AAAI Press
(2011) 924–930

4. Inoue, K., Sakama, C.: Oscillating behavior of logic programs. In: Correct Reasoning.
Springer (2012) 345–362

5. Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming
language. Journal of the ACM (JACM) 23(4) (1976) 733–742

6. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. Foundations
of deductive databases and logic programming (1988) 89

7. Akers, S.B.: Binary decision diagrams. Computers, IEEE Transactions on 100(6) (1978)
509–516

8. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. Computers, IEEE
Transactions on 100(8) (1986) 677–691

9. Aloul, F.A., Mneimneh, M.N., Sakallah, K.A.: Zbdd-based backtrack search sat solver. In:
Proc. Intl Workshop on Logic Synthesis, Lake Tahoe, California. (2002)

10. Minato, S., Arimura, H.: Frequent closed item set mining based on zero-suppressed bdds.
Information and Media Technologies 2(1) (2007) 309–316

11. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic prolog and its application
in link discovery. In: Proceedings of the 20th international joint conference on Artifical
intelligence. (2007) 2468–2473

12. Simon, L., Del Val, A.: Efficient consequence finding. In: International Joint Conference on
Artificial Intelligence. Volume 17., LAWRENCE ERLBAUM ASSOCIATES LTD (2001)
359–370

13. Inoue, K., Sato, T., Ishihata, M., Kameya, Y., Nabeshima, H.: Evaluating abductive hypothe-
ses using an em algorithm on bdds. In: Proceedings of the 21st international jont conference
on Artifical intelligence, Morgan Kaufmann Publishers Inc. (2009) 810–815

14. Bryant, R.E., Meinel, C.: Ordered binary decision diagrams. Springer (2002)
15. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM

Computing Surveys (CSUR) 24(3) (1992) 293–318
16. Minato, S.: Zero-suppressed bdds for set manipulation in combinatorial problems. In: 30th

Conference on Design Automation, IEEE (1993) 272–277
17. Plotkin, G.D.: A note on inductive generalization. Machine intelligence 5(1) (1970) 153–163
18. Dubrova, E., Teslenko, M.: A sat-based algorithm for finding attractors in synchronous

boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB) 8(5) (2011) 1393–1399

19. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Pub-
lishers (2012)

20. Groote, J.F., Tveretina, O.: Binary decision diagrams for first-order predicate logic. The
Journal of Logic and Algebraic Programming 57(1) (2003) 1–22

21. Liaw, H.T., Lin, C.S.: On the obdd-representation of general boolean functions. IEEE Trans.
Computers 41(6) (1992) 661–664

A Appendix

A.1 Proof of Theorem 1

Proof Let n be the size of the Herbrand base |B|. This n is also the number of possible
heads of rules. Furthermore, n is also the maximum size of a rule, i.e. the number of
literals in the body; a literal can appear at most one time in the body of a rule. For each
head there are 3n possible bodies: each literal can either be positive, negative or absent
of the body. From these preliminaries we conclude that the size of an NLP |P | learned
by LF1T is at most n · 3n. But thanks to ground resolution, |P | cannot exceed n · 2n; in
the worst case, P contains only rules of size n where all literals appear and there is only
n ·2n such rules. If P contains a rule withm literals (m < n), this rule subsumes 2n−m

rules which cannot appear in P . Finally, ground resolution also ensures that P does not
contain any pair of complementary rules, so that the complexity is further divided by n;
that is, |P | is bounded by O(n·2

n

n) = O(2n).

In our approach, a BDD represents all rules of P that have the same head, so that we
have n BDD structures. When |P | = 2n, each BDD represents 2n/n rules of size n and
are bound by O(2n/n), which is the upper bound size of a BDD for any Boolean func-
tion [21]. Because BDD merges common parts of rules, it is possible that a BDD that
represents 2n/n rules needs less than 2n/n memory space. In the previous approach,
in the worst case |P | = 2n, whereas in our approach |P | ≤ 2n. Our new algorithm still
remains in the same order of complexity regarding memory size: O(2n).

Regarding learning, each operation has its own complexity. Let k be the place of a
literal in the variable ordering so that for the starting node literal of a BDD k = 0. In
our BDD, a node has at most 2 ·((n−k)−1) children: (n−k)−1 positive and negative
links to all literals which are superior to k in the ordering. Insertion of a rule is done in
polynomial time; in the worst case, we insert a rule where only one literal that differs
from the BDD. Because we follow only the first common literals, we have to check at
most 2 · ((n− k)− 1) links on n− 1 nodes, which belongs to O(n2).

Subsumption as well as generalization checks require exponential time. In the case
of subsumption, in the worst case the BDD contains 2n/n rules and the rule is not
subsumed by any of them.

That means that we have to check every rule, and each check belongs to O(n2) so
that the whole subsumption operation belongs to O(n2 · 2n/n) = O(2n). To clear the
BDD we have to perform the inverse operation. We always have to check the whole
BDD, so if the size of the BDD is 2n then the complexity of the whole clear check also
belongs to O(2n).

To generalize the new rule we have to check if the BDD subsumes one of its com-
plementary rules. Like for subsumption, in the worst case we have to check every rule.
A rule can be generalized at most n times; for each generalization we have to check
at most n complementary rules, so the complexity of a complete generalization be-
longs to O(n2 · 2n/n) = O(2n). For the complexity of generalization of BDD rules
we consider the inverse problem. In the worst case, every rule of the BDD can be gen-
eralized by the new one. Because the new rule does not cover any rules of the BDD,
it can generalize each rule of the BDD at most one time. Then, we have at most 2n/n
possible direct generalizations on the whole BDD. In the worst case, each of them
can be generalized at most n − 1 times, and like before, for each generalization we
have to check at most n complementary rules. If a rule is generalized n times it means
that its body becomes empty, i.e. the rule is a fact, and it will subsume and clear the
whole BDD. Then, the complexity of a complete generalization of the BDD belongs to
O(2n/n · (n− 1) · n) = O(2n).

Each time we learn a rule from a step transition we have to perform these four
checks which have a complexity of O(n2 + 2n + 2n + 2n) = O(2n). From 2n state
transitions, LF1T can directly infer n · 2n rules. Learning the dynamics of the entire
input implies in the worst case 2n · 2n operations which belong to O(4n). Using our
dedicated BDD structure the memory complexity as well as the computational com-
plexity of LF1T remains the same order as the previous algorithm based on ground
resolution: respectively O(2n) and O(4n). ut

