
HAL Id: hal-01710486
https://hal.science/hal-01710486

Submitted on 16 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Learning Prime Implicant Conditions From
Interpretation Transition

Tony Ribeiro, Katsumi Inoue

To cite this version:
Tony Ribeiro, Katsumi Inoue. Learning Prime Implicant Conditions From Interpretation Transition.
The 24th International Conference on Inductive Logic Programming (ILP 2014), Sep 2015, Nancy,
France. �hal-01710486�

https://hal.science/hal-01710486
https://hal.archives-ouvertes.fr

Learning Prime Implicant Conditions From
Interpretation Transition

Tony Ribeiro1 and Katsumi Inoue1,2

1 The Graduate University for Advanced Studies (Sokendai),
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

tony ribeiro@nii.ac.jp,
2 National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan,
inoue@nii.ac.jp

Abstract. In a previous work we proposed a framework for learning
normal logic programs from transitions of interpretations. Given a set of
pairs of interpretations (I, J) such that J = TP (I), where TP is the im-
mediate consequence operator, we infer the program P . Here we propose
a new learning approach that is more efficient in terms of output qual-
ity. This new approach relies on specialization in place of generalization.
It generates hypotheses by specialization from the most general clauses
until no negative transition is covered. Contrary to previous approaches,
the output of this method does not depend on variables/transitions or-
dering. The new method guarantees that the learned rules are minimal,
that is, the body of each rule constitutes a prime implicant to infer the
head.

Keywords: dynamical systems, Boolean networks, attractors, supported
models, learning from interpretation, Inductive Logic Programming

1 Introduction

In recent years, there has been a notable interest in the field of Inductive Logic
Programming (ILP) to learn from system state transitions as part of a wider in-
terest in learning the dynamics of systems [14, 2, 4, 8]. Learning system dynamics
has many applications in multi-agent systems, robotics and bioinformatics alike.
Knowledge of system dynamics can be used by agents and robots for planning
and scheduling. In bioinformatics, learning the dynamics of biological systems
can correspond to the identification of the influence of genes and can help to
design more efficient drugs. In some previous works, state transition systems
are represented with logic programs [6, 9], in which the state of the world is
represented by an Herbrand interpretation and the dynamics that rule the envi-
ronment changes are represented by a logic program P . The rules in P specify
the next state of the world as an Herbrand interpretation through the imme-
diate consequence operator (also called the TP operator) [18, 1]. With such a
background, Inoue et al. [8] have recently proposed a framework to learn logic

programs from traces of interpretation transitions (LFIT). The learning setting
of this framework is as follows. We are given a set of pairs of Herbrand interpre-
tations (I, J) as positive examples such that J = TP (I), and the goal is to induce
a normal logic program (NLP) P that realizes the given transition relations. In
[8], the authors showed one of the possible usages of LFIT: LF1T, learning from
1-step transitions. In that paper, an algorithm is proposed to iteratively learn
an NLP that realizes the dynamics of the system by considering step transitions
one by one. The iterative character of LF1T has applications in bioinformatics,
cellular automata, multi-agent systems and robotics.

In this paper, our main concern is the minimality of the rules and the NLPs
learned by LF1T. Our goal is to learn all minimal conditions that imply a variable
to be true in the next state, e.g. all prime implicant conditions. In bioinformatics,
for a gene regulatory network, it corresponds to all minimal conditions for a gene
to be activated/inhibited. It can be easier and faster to perform model checking
on Boolean networks represented by a compact NLP than the set of all state
transitions. Knowing the minimal conditions required to perform the desired
state transitions, a robot can optimize its actions to achieve its goals with less
energy consumption. From a technical point of view, for the sake of memory
usage and reasoning time, a small NLP could also be preferred in multi-agent
and robotics applications. For this purpose, we propose a new version of the
LF1T algorithm based on specialization. Specialization is usually considered
the dual of generalization in ILP [13, 11, 12]. Where generalization occurs when
a hypothesis does not explain a positive example, specialization is used to refine
a hypothesis that implies a negative example.

In [7], prime implicants are defined for DNF formula as follows: a clause C,
implicant of a formula φ, is prime if and only if none of its proper subset S ⊂ C
is an implicant of φ. In this work, explanatory induction is considered, while
in our approach prime implicants are defined in the LFIT framework. Knowing
the Boolean functions, prime implicants could be computed by Tisons consensus
method [17] and its variants [10]. The novelty of our approach, is that we compute
prime implicants incrementally during the learning of the Boolean function. In [8,
16], LF1T uses resolution techniques to generalize rules and reduces the size of
the output NLP. This technique generates hypotheses by generalization from the
most specific clauses until every positive transitions are covered. Compared to
previous LF1T algorithms, the novelty of our new approach is that it generates
hypotheses by specialization from the most general clauses until no negative
transition is covered. The main weak point of the previous LF1T algorithms is
that the output NLPs depends on variable/transition ordering. Our new method
guarantees that the NLPs learned contain only minimal conditions for a variable
to be true in the next state. Study of the computational complexity of our new
method shows that it remains equivalent to the previous version of LF1T. Using
examples from the biological literature, we show through experimental results
that our specialization method can compete with the previous versions of LF1T
in practice. We provide all proofs of theorems in the appendix.

2 Background

In this section we recall some preliminaries of logic programming. We consider a
first-order language and denote the Herbrand base (the set of all ground atoms)
as B. A (normal) logic program (NLP) is a set of rules of the form

A ← A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An (1)

where A and Ai’s are atoms (n ≥ m ≥ 0). For any rule R of the form (1), the
atom A is called the head of R and is denoted as h(R), and the conjunction to
the right of← is called the body of R. We represent the set of literals in the body
of R of the form (1) as b(R) = {A1, . . . , Am,¬Am+1, . . . ,¬An}, and the atoms
appearing in the body of R positively and negatively as b+(R) = {A1, . . . , Am}
and b−(R) = {Am+1, . . . , An}, respectively. The set of ground instances of all
rules in a logic program P is denoted as ground(P).

The Herbrand Base of a program P , denoted by B , is the set of all atoms
in the language of P . An interpretation is a subset of B. If an interpretation is
the empty set, it is denoted by ε. An interpretation I is a model of a program
P if b+(R) ⊆ I and b−(R) ∩ I = ∅ imply h(R) ∈ I for every rule R in P . For a
logic program P and an Herbrand interpretation I, the immediate consequence
operator (or TP operator) [1] is the mapping TP : 2B → 2B:

TP (I) = {h(R) | R ∈ ground(P), b+(R) ⊆ I, b−(R) ∩ I = ∅}. (2)

In the rest of this paper, we only consider rules of the form (1). To simplify
the discussion we will just use the term rule.

Definition 1 (Subsumption). Let R1 and R2 be two rules. If h(R1) = h(R2)
and b(R1) ⊆ b(R2) then R1 subsumes R2. If b(R1) ⊂ b(R2) then R1 is more
general than R2 and R2 is more specific than R1. Let S be a set of rules and
R be a rule. If there exists a rule R′ ∈ S that subsumes R then S subsumes R.
This also holds for normal logic program since a NLP is a set of rules.

In ILP, search mainly relies on generalization and specialization that are
dual notions. Generalization is usually considered an induction operation, and
specialization a deduction operation. In [13], the author define the minimality
and maximality of the generalization and specialization operations as follows.

Definition 2 (Generalization operator [13]). A generalization operator maps
a conjunction of clauses S onto a set of minimal generalizations of S. A min-
imal generalization G of S is a generalization of S such that S is not a
generalization of G, and there is no generalization G′ of S such that G is a
generalization of G′.

Definition 3 (Specialization operator [13]). A specialization operator maps
a conjunction of clauses G onto a set of maximal specializations of G. A maxi-
mal specialization S of G is a specialization of G such that G is not a special-
ization of S, and there is no specialization S′ of G such that S is a specialization
of S′.

The body of a rule of the form (1) can be considered as a clause, so that, the
Definition 2 and 3 can also be used to compare the body of two rules.

3 Learning from 1-Step Transitions

LF1T is an any time algorithm that takes a set of one-step state transitions E
as input. These one-step state transitions can be regarded as positive examples.
From these transitions the algorithm learns a logic program P that represents the
dynamics of E. To perform this learning process we can iteratively consider one-
step transitions. Figure 1 represents a Boolean nework with its corresponding
state transition diagram. Given this state transition diagram as input, LF1T
can learn the Boolean network N1.

In LF1T, the Herbrand base B is assumed to be finite. In the input E, a state
transition is represented by a pair of Herbrand interpretations. The output of
LF1T is an NLP that realizes all state transitions of E.

Learning from 1-Step Transitions (LF1T)

Input: E ⊆ 2B × 2B: (positive) examples/observations
Output: An NLP P such that J = TP (I) holds for any (I, J) ∈ E.

To construct an NLP with LF1T we use a bottom-up method that generates
hypotheses by generalization from the most specific clauses or examples until
every positive example is covered. LF1T first constructs the most specific rule
RI

A for each positive literal A appearing in J = TP (I) for each (I, J) ∈ E:

RI
A := (A←

∧
Bi∈I

Bi ∧
∧

Cj∈B\I

¬Cj)

It is important here that we do not construct any rule to make a literal false.
For instance, from the state transition (qr, pr) LF1T will learn only two rules:
p ← ¬p ∧ q ∧ r and r ← ¬p ∧ q ∧ r. The rule RI

A is then possibly generalized
when another transition from E makes A true, which is computed by several
generalization methods.

The two generalization methods considered in [8] are based on resolution. In
[8], näıve and ground resolutions are defined between two ground rules as follows.
Let R1, R2 be two ground rules and l be a literal such that h(R1) = h(R2),

p

q r

pqr pq p ε r

qr pr q

Fig. 1. A Boolean Network N1(left) and its state transition diagram (right)

l ∈ b(R1) and l ∈ b(R2). If (b(R2)\{l}) ⊆ (b(R1)\{l}) then the ground resolution
of R1 and R2 (upon l) is defined as

res(R1, R2) =

(
h(R1)←

∧
Li∈b(R1)\{l}

Li

)
. (3)

In particular, if (b(R2) \ {l}) = (b(R1) \ {l}) then the ground resolution is called
the näıve resolution of R1 and R2 (upon l). In this particular case, the rules R1

and R2 are said to be complementary to each other with respect to l.
Both näıve resolution and ground resolution can be used as generalization

methods of ground rules. For two ground rules R1 and R2, the näıve resolution
res(R1, R2) subsumes both R1 and R2, but the non-näıve ground resolution
subsumes R1 only.

Definition 4 (Consistency). Let R be a rule and E be a set of state transi-
tions. R is consistent with E if ∀(I, J) ∈ E when b(R) ⊆ I then h(R) ∈ J . Let
P be a NLP. P is consistent with E if ∀(I, J) ∈ E, ∀R′ ∈ P , when b(R′) ⊆ I
then h(R′) ∈ J .

Ground and näıve resolutions can be used to learn a ground NLP. Both
methods keep the consistency of the learned rules. For example, let us consider
the three rules: R1 = (p← q ∧ r), R2 = (p← ¬q ∧ r), R3 = (p← ¬q), and their
resolvent: res(R1, R2) = res(R1, R3) = (p← r). R1 and R2 are complementary
with respect to q. Both R1 and R2 can be generalized by the näıve resolution
of them because res(R1, R2) subsumes both R1 and R2. On the other hand,
the ground resolution res(R1, R3) of R1 and R3 is equivalent to res(R1, R2).
However, res(R1, R3) subsumes R1 but does not subsume R3.

LF1T with Näıve Resolution: In the first implementation of LF1T of
[8], näıve resolution is used as a least generalization method. This method is
particularly intuitive from the ILP viewpoint, since each generalization is per-
formed based on a least generalization operator. In [8], it is shown that for two
complementary ground rules R1 and R2, the näıve resolution of R1 and R2 is
the least generalization [15] of them, that is, lg(R1, R2) = res(R1, R2). When
näıve resolution is used, LF1T needs an auxiliary set Pold of rules to globally
store subsumed rules, which increases monotonically. Pold is set to be ∅ at first.
When a generated rule R is newly added LF1T searches a rule R′ ∈ P ∪ Pold

such that h(R′) = h(R) and b(R) and b(R′) differ in the sign of only one literal
l. If there is no such a rule R′, then R is just added to P ; otherwise, R and R′

are added to Pold and then res(R,R′) is added to P .
LF1T with Ground Resolution: Using näıve resolution, P ∪Pold possibly

contains all patterns of rules constructed from the Herbrand base B in their
bodies. In the second implementation of LF1T of [8], ground resolution is used
as an alternative generalization method. This replacement of resolution leads to
a lot of computational gains since the use of Pold is not necessary any more: all
generalized rules obtained from P ∪ Pold by näıve resolution can be obtained
using ground resolution on P . By Theorem 3 of [8], using the näıve version,

the memory use of the LF1T algorithm is bounded by O(n · 3n), and the time
complexity of learning is bounded by O(n2 · 9n), where n = |B|. On the other
hand, with ground resolution, the memory use is bounded by O(2n), which is the
maximum size of P , and the time complexity is bounded by O(4n). Given the
set E of complete state transitions, which has the size O(2n), the complexity of
LF1T(E, ∅) with ground resolution is bounded by O(|E|2). On the other hand,
the worst-case complexity of learning with näıve resolution is O(n2 · |E|4.5).

4 Learning Prime Implicant Conditions

In this section, we use the notion of prime implicant to define minimality of
NLP. We consider that the NLP learn by LF1T is minimal if the body of each
rule constitutes a prime implicant to infer the head.

Definition 5 (Prime Implicant Condition). Let R be a rule and E a set of
state transitions such that R is consistent with E. b(R) is a prime implicant
condition of h(R) for E if there does not exist another rule R′ consistent with E
such that R′ subsumes R. Let P be a NLP such that P ∪{R} ≡ P : all models of
P ∪{R} are models of P and vice versa. b(R) is a prime implicant condition
of h(R) for P if there does not exist another rule R′ such that P ∪ {R′} ≡ P
and R′ subsumes R.

Definition 6 (Prime Rule). Let R be a rule and E a set of state transitions
such that R is consistent with E. Let P be a NLP such that P ∪ {R} ≡ P . R is
a prime rule of E (resp. P) if b(R) is a prime implicant condition of h(R) for
E (resp. P). For any atom p the most general prime rule for p is the rule
with an empty body (p←) that states that p is always true in the next state.

Example 1. Let R1, R2 and R3 be three rules and E be the set of state transitions
of Figure 1 as follows: R1 = p← p∧ q∧ r, R2 = p← p∧ q, R3 = p← q The only
rule more general than R3 is R′ = p., but R′ is not consistent with (p, ε) ∈ E so
that R3 is a prime rule for E. Since R3 subsumes both R1 and R2, they are not
prime rules of E. Let P be the NLP {p ← p, q ← p ∧ r, r ← ¬p}, R3 is a prime
rule of P because P realizes E and R3 is minimal for E.

Definition 7 (Prime NLP). Let P be an NLP and E be the state transitions
of P , P is a prime NLP for E if P realizes E and all rules of P are prime rule
for E. We call the set of all prime rules of E the complete prime NLP of E.

Example 2. Let R1, R2 and R3 be three rules, E be the set of state transitions of
Figure 1 and P an NLP as follows: R1 = p← p∧q, R2 = q ← p∧r, R3 = r ← ¬p
and P = {R1} ∪ {R2} ∪ {R3}. Since R1, R2 and R3 are prime rule for E, P the
NLP formed of these three rules is a prime NLP of E. There does not exist any
other prime rules for E, therefore P is also the complete prime NLP of E.

The complete prime NLP of a given set of state transitions E can näıvely
be obtained by brute force search. Starting from the most general rules, that is,

fact rules, it suffices to generate all maximal specific specialization step by step
and keep the first ones that are consistent with E. This method implies to check
all state transitions for all possible rules that correspond to O(n × 3n × 2n) =
O(6n) checking operations in the worst case for a Herbrand base of n variables.
But it is also possible to do it by extending previous LF1T algorithm for the
sake of complexity. Here we propose a simple extension of näıve (resp. ground)
resolution. In previous algorithms, for each rule learned, only the first least
generalization found is kept. Now we consider all possible least generalizations
and define full näıve (resp. ground) resolution. LF1T with full näıve (resp.
ground) resolution learn the complete prime NLP that realize the input state
transitions.

Definition 8 (full naive resolution and full ground resolution). Let R be
a rule and P be a NLP. Let PR be a set of rule of P such that, for all R′ ∈ PR,
h(R) = h(R′) and for each R′ there exists l ∈ b(R), (b(R′) \ {l}) = (b(R) \ {l})
(resp. (b(R′) \ {l}) ⊆ (b(R) \ {l})). The full näıve (resp. ground) resolution
of R by P is the set of all possible näıve (resp. ground) resolutions of R with the
rules of P : resf (R,P) = {res(R,R′)|R′ ∈ PR}.

Theorem 1 (Completeness and Soundness of full resolution). Given a
set E of pairs of interpretations, LF1T with full näıve (resp. ground) resolution
is complete and sound for E.

Theorem 2 (LF1T with full resolution learns complete prime NLP).
Given a set E of pairs of interpretations, LF1T with full näıve (resp. ground)
resolution will learn the complete prime NLP that realizes E.

4.1 Least Specialization for LF1T

Until now, to construct an NLP, LF1T relied on a bottom-up method that gen-
erates hypotheses by generalization from the most specific clauses or examples
until every positive example is covered. This time we propose a new learning
method that generate hypotheses by specialization from the most general rules
until no negative example is covered. Learning by specialization ensures to out-
put the most general valid hypothesis. that is similar to the notion of specializa-
tion we use here amoung body of rules with the same head. In ILP, refinement
operators usually apply a substitution θ and add a set of literals to a clause
[13]. Similarly, in our new algorithm, we refine rules by adding the negation of
negative transitions into their body.

Definition 9 (Least specialization). We call a maximal specialization of
a rule R, a rule RS if h(RS) = h(R) and b(RS) is a maximal specialization
of b(R). Let R1 and R2 be two rules such that h(R1) = h(R2) and R1 sub-
sumes R2, e.g. b(R1) ⊆ b(R2). Let li be the ith literal of b(R2), then the least
specialization of R1 over R2 is as follows:

ls(R1, R2) = {h(R1)← (b(R1)∧¬b(R2))} = {(h(R1)← (b(R1)∧li)|li ∈ b(R2)\b(R1)}

Let P be an NLP, R be a rule and S be the set of all rules of P that subsumes
R. The least specialization ls(P,R) of P by R is as follow

ls(P,R) = (P \ S) ∪ (
⋃

RP∈S
ls(RP , R))

The least specialization of a rule R can be used to avoid the subsumption of
another rule with a minimal reduction of the generality of R. The least special-
ization of an NLP P can be used to avoid the coverage of a negative transition
with a minimal reduction of the generality of the rules of P .

Theorem 3 (Soundness of least specialization). Let R1, R2 be two rules
such that R1 subsumes R2. Let S1 be the set of rules subsumed by R1 and S2

be the rules of S1 that subsume R2. The least specialization of R1 by R2 only
subsumes the set of rules S1 \ S2. Let P be a NLP and R be a rule such that P
subsumes R. Let SP be the set of rules subsumed by P and SR be the rules of
SP that subsume R. The least specialization of P by R only subsumes the set of
rules SP \ SR.

5 Algorithm

Now we present a new LF1T algorithm based on least specialization. The novelty
of this approach is double: first it relies on specialization in place of generalization
and most importantly, it guarantees that the output is the complete prime NLP
that realize the input transitions, as shown by Theorem 5. Algorithm 1 shows
the pseudo-code of LF1T with least specialization. Like in previous versions,

Algorithm 1 LF1T(E) : Learn the complete prime NLP P of E

1: INPUT: B a set of atoms and E ⊆ 2B × 2B

2: OUTPUT: An NLP P such that J = TP (I) holds for any (I, J) ∈ E.

3: P a NLP
4: P := ∅

// Initialize P with the most general rules
5: for each A ∈ B do
6: P := P ∪ {A.}

// Specify P by interpretation of transitions
7: while E 6= ∅ do
8: Pick (I, J) ∈ E; E := E \ {(I, J)}
9: for each A ∈ B do

10: if A /∈ J then
11: RI

A := A←
∧

Bi∈I Bi ∧
∧

Cj∈(B\I) ¬Cj

12: P := Specialize(P ,RI
A)

13: end while
14: return P

LF1T takes a set of state transitions E as input and outputs an NLP P that
realizes E. To guarantee the minimality of the learned NLP, LF1T starts with
an initial NLP PB0 that is the most general complete prime NLP of the Herbrand
base B of E, i.e. the NLP that contains only facts (lines 3-7): PB0 = {p.|p ∈ B}.
Then LF1T iteratively analyzes each transition (I, J) ∈ E (lines 8-13).

For each variable A that does not appear in J , LF1T infers an anti-rule
RI

A (lines 11-12):

RI
A := A←

∧
Bi∈I

Bi ∧
∧

Cj∈(B\I)

¬Cj

A is in the head as it denotes a negative example. Then, LF1T uses least spe-
cialization to make P consistent with all RI

A (line 12). Algorithm 2 shows in
detail the pseudo code of this operation. LF1T first extracts all rules RP ∈ P

Algorithm 2 specialize(P ,R) : specify the NLP P to not subsume the rule R

1: INPUT: an NLP P and a rule R
2: OUTPUT: the maximal specific specialization of P that does not subsumes R.

3: conflicts : a set of rules
4: conflicts := ∅

// Search rules that need to be specialized
5: for each rule RP ∈ P do
6: if b(RP) ⊆ b(R) then
7: conflicts := conflicts ∪RP

8: P := P \RP

// Revise the rules by least specialization
9: for each rule Rc ∈ conflicts do

10: for each literal l ∈ b(R) do
11: if l /∈ b(Rc) and l̄ /∈ b(Rc) then
12: R′

c := (h(Rc)← (b(Rc) ∪ l̄))
13: if P does not subsumes R′

c then
14: P := P \ all rules subsumed by R′

c

15: P := P ∪R′
c

16: return P

that subsume RI
A (lines 3-8). It generates the least specialization of each RP by

generating a rule for each literal in RI
A (lines 9-12). Each rule contains all literals

of RP plus the opposite of a literal in RI
A so that RI

A is not subsumed by that
rule. Then LF1T adds in P all the generated rules that are not subsumed by P
(line 13-15), so that P becomes consistent with the transition (I, J) and remains
a complete prime NLP. When all transitions have been analyzed, LF1T outputs
P that has become the complete prime NLP of E.

Table 1 shows the execution of LF1T with least specialization on step transi-
tions of figure 1 where pqr → pq represents the state transition ({p, q, r}, {p, q}).
Introduction of literal by least specialization is represented in bold and rules

Table 1. Execution of LF1T with least specialization on state transitions of figure 1

Initialization pqr → pq pq → p p→ ε ε→ r r → r

p. p. p. p← ¬p. p← q. p← q.
q. q. q ← ¬p. p← q. p← r. p← p ∧ r.
r. r ← ¬p. q ← ¬q. p← r. p← ¬p ∧ q. p← q ∧ r.

r ← ¬q. q ← r. q ← ¬p. p← ¬p ∧ r. q ← ¬p ∧ q.
r ← ¬r. r ← ¬p. q ← r. q ← r. q ← p ∧ r.

r ← ¬q. q ← ¬p ∧ ¬q. q ← ¬p ∧ q. q ← q ∧ r.
r ← ¬p ∧ ¬r. q ← ¬q ∧ r. q ← ¬p ∧ r. r ← ¬p.
r ← ¬q ∧ ¬r. r ← ¬p. r ← ¬p. r ← ¬q ∧ r.

r ← ¬p ∧ ¬q. r ← ¬q ∧ r.
r ← ¬q ∧r .

qr → pr pr → q q → pr

p← q. p← q. p← q.
p← p ∧ r. p← p ∧ q ∧ r. q ← p ∧ r.
q ← p ∧ r. q ← p ∧ r. r ← ¬p.

q ← ¬p ∧ q ∧¬r. q ← ¬p ∧ q ∧ ¬r.
q ← p ∧ q ∧ r. r ← ¬p. q ← ¬p ∧ q ∧ ¬r.
r ← ¬p. r ← ¬p ∧ ¬q ∧ r. is removed because

r ← ¬q ∧ r. it cannot be specialized

that are subsumed after specialization are stroked. LF1T starts with the most
general set of prime rules that can realize E, that is P = {p., q., r.}. From the
transition (pqr, pq) LF1T infers the rule r ← p∧q∧r that is subsumed by r. ∈ P .
LF1T then replaces that rule by its least specialization: ls(r., r ← p ∧ q ∧ r) =
{r ← ¬p, r ← ¬q, r ← ¬r} Furthermore, P becomes consistent with (pqr, pq).
From (pq, p) LF1T infers two rules: q ← p ∧ q ∧ ¬r and r ← p ∧ q ∧ ¬r, that
are respectively subsumed by q. and r ← ¬r. The first rule, q., is replaced by
its least specialization: {q ← ¬p, q ← ¬q, q ← r}. For the second rule, r., its
least specialization by r ← p ∧ q ∧ ¬r generates two rules, r ← ¬p ∧ ¬r and
r ← ¬q ∧ ¬r. But these rules are respectively subsumed by r ← ¬p and r ← ¬q
that are already in P . The subsumed rules are not added to P , so that the
analysis of (pq, p) results in the specialization of q. and the deletion of r ← ¬r.

Learning continues with similar cases until the last transition (q, pr) where
we have a special case. From this transition, LF1T infers the rule q ← ¬p∧q∧¬r
that is subsumed by P on R := q ← ¬p∧ q ∧¬r. Because |b(R)| = |B| it cannot
be specialized so that P becomes consistent with (q, pr), LF1T just removes R
from P .

Theorem 4 (Completeness of LF1T with least specialization). Let PB0
be the most general complete prime NLP of a given Herbrand base B. Initial-
izing LF1T with PB0 , by using least specialization iteratively on a set of state
transitions E, LF1T learns an NLP that realizes E.

Theorem 5 (LF1T with least specialization outputs a complete prime NLP).

Let PB0 be the most general complete prime NLP of a given Herbrand base B.
Initializing LF1T with PB0 , by using least specialization iteratively on a set of
state transitions E, LF1T learns the complete prime NLP of E.

Theorem 6 (Complexity). Let n be the size of the Herbrand base |B|. Us-
ing least specialization, the memory complexity of LF1T remains in the same
order as the previous algorithms based on ground resolution, i.e., O(2n). But
the computational complexity of LF1T with least specialization is higher than
the previous algorithms based on ground resolution, i.e O(n · 4n) and O(4n),
respectively. Same complexity results for full näıve (resp. ground) resolution.

6 Evaluation

In this section, we evaluate our new learning methods through experiments. We
apply our new LF1T algorithms to learn Boolean networks. Here we run our
learning program on the same benchmarks used in [8] and [16]. These bench-
marks are Boolean networks taken from Dubrova and Teslenko [3], which include
those networks about control of flower morphogenesis in Arabidopsis thaliana,
budding yeast cell cycle regulation, fission yeast cell cycle regulation, mammalian
cell cycle regulation and T helper cell cycle regulation. Like in [8, 16], we first
construct an NLP τ(N) from the Boolean function of a Boolean network N
where each Boolean function is transformed into a DNF formula. Then, we get
all possible 1-step state transitions of N from all 2|B| possible initial states I0’s
by computing all stable models of τ(N) ∪ I0 using the answer set solver clasp

[5]. Finally, we use this set of state transitions to learn an NLP using our LF1T
algorithm. Because a run of LF1T returns an NLP which can contain redun-
dant rules, the original NLP Porg and the output NLP PLFIT of LF1T can be
different, but remain equivalent with respect to state transition, that is, TPorg

and TPLFIT
are identical functions. Regarding the new algorithms, it can also be

the case if the original NLP is not a complete prime NLP. For the new versions
of LF1T, if Porg is not a prime complete NLP we will learn a simplification of
Porg . Table 2 shows the memory space and time of a single LF1T run in learning
a Boolean network for each benchmark on a processor Intel Core I7 (3610QM,
2.3GHz) with 4GB of RAM. It compares memory and run time of the three pre-
vious algorithm (näıve, ground and the BDD optimization of the ground version)
with their extension to learn complete prime NLP and the new algorithm based
on least specialization. For each version of LF1T the variable ordering is al-
phabetical and transition ordering is the one that clasp outputs. The time limit
is set to two hours for each experiment. Memory is represented in (maximal)
number of literal in the NLP learned. Except for LF1T-BDD, all implemented
algorithms uses the same data structures. That is why even LF1T with least
specialization cannot compete with the ground-BDD version regarding memory
and run time. It is more relevant to compare it to the original implementation
of LF1T with ground resolution and the new one with full ground resolution.

On Table 2 we can observe that, as the number of variable increases, the
memory efficiency of least specialization regarding ground version becomes more
interesting. Regarding run time, both algorithms have globally equivalent per-
formances. But least specialization ensure that the output is unique in the fact
that it is the complete prime NLP of the given input transitions. LF1T with

Algorithm Mammalian (10) Fission (10) Budding (12) Arabidopsis (16) T helper (23)
Näıve 142 118/4.62s 126 237/3.65s 1 147 124/523s T.O. T.O.

Ground 1036/0.04s 1218/0.05s 21 470/0.26s 271 288/4.25s T.O.
Ground-BDD 180/0.24s 147/0.24s 541/0.19s 779/2.8s 611/3360s

Full Näıve 377 539/29.25s 345587/24.03s T.O. T.O. T.O.
Full Ground 1066/0.24s 1178/0.23s 23 738/4.04s 399 469/111s T.O.

Least Specialization 375/0.06s 377/0.08s 641/0.35s 2270/5.28s 3134/5263s

Table 2. Memory use and learning time of LF1T for Boolean networks benchmarks
up to 23 nodes in the same condition as in [8]

full ground resolution also ensure this property, but is much less efficient than
least specialization regarding both memory use and run time. On the bench-
mark, least specialization is respectively 75%, 65%, 91% and 95% faster. Least
specialization version also succeed to learn the t-helper benchmark (23 variables)
in 1 hour and 21 minutes. The main interest of using least specialization is that
it guarantees to obtain a unique NLP that contains all minimal conditions to
make a variable true. Previous versions of LF1T do not have this property and
experimental results showed that their output is sensitive to variable ordering
and especially transition ordering. For a given set of state transitions E, the out-
put of LF1T with least specialization is always the same whatever the variable
ordering or transition ordering. It is easy to see that variable ordering has no
impact on both learning time and memory use of the new versions of LF1T since
they consider all generalizations/specializations. But transition ordering has a
significant impact on the learning time of the new version of LF1T compared to
previous ones. On all experiments we run, the ordering of the output of clingo
gives the best results. More investigation are required to determine if we can
design a heuristic to make a good ordering of the input transition to speed up
the run time of the new algorithms.

7 Conclusion and Future Work

We proposed a new algorithm for learning from interpretation transitions based
on least specialization. Given any state transition diagram we can learn an NLP
that exactly captures the system dynamics. Learning is performed only from
positive examples, and produces NLPs that consist only of rules to make literals
true. Consistency of state transition rules is achieved by least specialization, in
which minimality of rules is guaranteed. As a result, given any state transition
diagram E, LF1T with least specialization always learns a unique NLP that
contains all prime rules that realize E. It implies that the output of LF1T is
no more sensitive to variable ordering or transition ordering. But, experimental
results showed that the new algorithm is sensitive to input transitions ordering
regarding run time. Design of an heuristic to make a good ordering of the input
is one possible future work. We are now considering to extend our framework to
learn non-deterministic dynamic systems. One of our expectation is to be able
to learn probabilistic logic program from interpretation of transitions. Assuming
that probability of transition are given as input it should be possible to infer
probabilistic rules using adapted LFIT techniques. But how to combine proba-
bilities when generalization/specialization occurs is an interesting problem that
we plan to tackle in our future works.

References

1. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. Foundations of
deductive databases and logic programming p. 89 (1988)

2. Avila Garcez, A., Zaverucha, G.: The connectionist inductive learning and logic programming
system. Applied Intelligence 11(1), 59–77 (1999)

3. Dubrova, E., Teslenko, M.: A sat-based algorithm for finding attractors in synchronous boolean
networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB)
8(5), 1393–1399 (2011)

4. d’Avila Garcez, A., Broda, K., Gabbay, D.: Symbolic knowledge extraction from trained
neural networks: A sound approach. Artificial Intelligence 125(12), 155 – 207 (2001),
http://www.sciencedirect.com/science/article/pii/S0004370200000771

5. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthe-
sis Lectures on Artificial Intelligence and Machine Learning, Morgan and Claypool Publishers
(2012)

6. Inoue, K.: Logic programming for boolean networks. In: Proceedings of the Twenty-Second
international joint conference on Artificial Intelligence-Volume Volume Two. pp. 924–930. AAAI
Press (2011)

7. Inoue, K.: Dnf hypotheses in explanatory induction. In: Inductive Logic Programming, pp.
173–188. Springer (2012)

8. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Machine Learning
pp. 1–29 (2012)

9. Inoue, K., Sakama, C.: Oscillating behavior of logic programs. In: Correct Reasoning, pp. 345–
362. Springer (2012)

10. Kean, A., Tsiknis, G.: An incremental method for generating prime implicants/implicates. Jour-
nal of Symbolic Computation 9(2), 185–206 (1990)

11. Michalski, R.S.: A theory and methodology of inductive learning. Artificial intelligence 20(2),
111–161 (1983)

12. Mitchell, T.M.: Generalization as search. Artificial intelligence 18(2), 203–226 (1982)
13. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. The Journal

of Logic Programming 19, 629–679 (1994)
14. Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K., Srinivasan, A.: Ilp turns

20. Machine learning 86(1), 3–23 (2012)
15. Plotkin, G.D.: A note on inductive generalization. Machine intelligence 5(1), 153–163 (1970)
16. Ribeiro, T., Inoue, K., Sakama, C.: A bdd-based algorithm for learning from interpretation tran-

sition. to appear in LNAI (2013), presented at the 23rd International Conference on Inductive
Logic Programming (ILP 2013)

17. Tison, P.: Generalization of consensus theory and application to the minimization of boolean
functions. Electronic Computers, IEEE Transactions on (4), 446–456 (1967)

18. Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language.
Journal of the ACM (JACM) 23(4), 733–742 (1976)

A Appendix

A.1 Proof of Theorem 1 (completeness)

Given a set E of pairs of interpretations, LF1T with full näıve (resp. ground) resolution is
complete for E.

Proof. According to Theorem 1 (resp. 2) of [8], LF1T with näıve (resp. ground) resolution is
complete for E. It is trivial that any rules produced by näıve (resp. ground) resolution can be
obtained by full näıve (resp. ground) resolution. Then, if P and P ′ are respectively obtained
by näıve (resp. ground) resolution and full näıve (resp. ground) resolution, P ′ theory-subsumes
P . If a program P is complete for E , a program P ′ that theory-subsumes P is also complete
for E. Since P is complete for E by Theorem 1 of [8], P ′ is complete for E. ut

A.2 Proof of Theorem 1: (soundness)

Given a set E of pairs of interpretations, LF1T with full näıve (resp. ground) resolution is
sound for E.

Proof. All rules that can be produced by näıve (resp. ground) resolution can be obtained by
full näıve (resp. ground) resolution. Since all rules produced by näıve (resp. ground) resolution
are sound for E (Corrollary 1 (resp. 2) of [8]), full näıve (resp. ground) resolution is sound for
E. ut

A.3 Proof of Theorem 2

Given a set E of pairs of interpretations, LF1T with full näıve (resp. ground) resolution learn
the complete prime NLP that realize E.

Proof. Let us assume that LF1T with full näıve resolution does not learn a prime NLP of E.
If our assumption is correct it implies that there exists R a prime rule for E that cannot be
learned by LF1T with full näıve resolution. Let B be the herbrand base of E.
Case 1: |b(R)| = |B|, R will be directly infer from a transition (I, J) ∈ E. This is a contradic-
tion with our assumption.
Case 2: |b(R)| < |B|. let l be a literal such that l 6∈ b(R), according to our assumption, their

is a rule R′ that is one of the rule R1 := h(R) ← b(R) ∪ l or R2 := h(R) ← b(R) ∪ l and R′

cannot be learned because res(R1, R2) = R. Recursively, what applies to R applies to R′ until
we reach a rule R′′ such that |b(R′′)| = |B|. Our assumption implies that this rule R′′ cannot
be learned, but R′′ will be directly infer from a transition (I, J) ∈ E, this is a contradiction.
Since ground resolution can learn all rules learn by näıve resolution, the proof also applies to
LF1T with full ground resolution. ut

A.4 Proof of Theorem 3

Let R1, R2 be two rules such that b(R1) ⊆ b(R2). Let S1 be the set of rules subsumed by R1

and S2 be the rules of S1 that subsume R2. The least specialization of R1 by R2 only subsumes
the set of rules S1 \ S2.

Proof. :
According to Definition 9, the least specialization of R1 by R2 is as follows:

ls(R1, R2) = {h(R1)← (b(R1) ∧ ¬b(R2))}

All rule R of S2 subsumes R2, then according to Definition 1 b(R) ⊆ b(R2). If ls(R1, R2)
subsumes an R then there exists R′ ∈ ls(R1, R2) and b(R′) ⊆ b(R). Since R′ ∈ ls(R1, R2),

there is a l ∈ b(R2) such that l ∈ b(R′), so that b(R′) 6⊆ b(R2). Since all R ∈ S2 subsume R2,
R′ cannot subsume any R since R′ does not subsume R2.
Conclusion 1: the least specialization of R1 by R2 cannot subsume any R ∈ S2.

Let us suppose there is a rule R′ ∈ S1 that does not subsumes R2 and is not subsumed by
ls(R1, R2). Let li be the ith literal of b(R2), then:

ls(R1, R2) = {(h(R1)← (b(R1) ∧ li)|li ∈ b(R2) \ b(R1)}(1)

R′ is subsumed by R1, so that R′ = h(R1) ← b(R1) ∪ S, with S a set of literal. R′ does

not subsume R2, so that there exists a l ∈ b(R2) \ b(R1) such that l ∈ S. According to (1),

the rule R′′ = h(R1)← b(R1)∧ l is in ls(R1, R2). Since R′′ subsumes R′ and R′′ ∈ ls(R1, R2),
ls(R1, R2) subsumes R′.
Conclusion 2: the least specialization of R1 by R2 subsumes all rule of S1 that does not
subsume R2.
Final conclusion: the least specialization of R1 by R2 only subsumes S1 \ S2. ut

Now, let P be an NLP and R be a rule such that P subsumes R. Let SP be the set of
rules subsumed by P and SR be the rules of SP that subsume R. The least specialization of
P by R only subsumes the set of rules SP \ SR.

Proof. :
According to Definition 5, the least specialization ls(P,R) of P by R is as follows:

ls(P,R) = (P \ SP) ∪ (
⋃

RP∈SP

ls(RP , R))

For any rule RP let SRP
be the set of rules subsumed by RP and SRP 2 ∈ SR be the rule of

SRP
that subsume R.

According to Theorem 3 the least specialization of RP by R only subsumes SRP
\SRP 2. So

that
⋃

RP∈SP

ls(RP , R) only subsumes (
⋃

RP∈SP

SRP
\ SRP 2) = (

⋃
RP∈SP

SRP
) \ SR. Then ls(P,R)

only subsumes the rules subsumed by (P \ SP) ∪ (
⋃

RP∈SP

SRP
) \ SR, that is SP \ SR.

Conclusion: The least specialization of P by R only subsumes SP \ SR. ut

A.5 Proof of Theorem 4

Let PB0 be the most general complete prime NLP of a given Herbrand base B, i.e. the NLP
that contains only facts

PB0 = {p.|p ∈ B}

Initializing LF1T with PB0 , by using least specialization iteratively on the transitions of a
set of state transitions E, LF1T learns an NLP P that realizes E.

Proof. :
Let P be an NLP consistent with a set of transitions E′, SP be the set of rules subsumed by
P and a state transition (I, J) such that E′ ⊂ E and (I, J) ∈ E but (I, J) 6∈ E′. According
to Theorem 3, for any rule RI

A that can be inferred by LF1T from (I, J) that is subsumed by
P , the least specialization ls(P,RI

A) of P by RI
A exactly subsumes the rules subsumed by P

except the ones subsumed by RI
A. Since |RI

A| is |B|, RI
A only subsumes itself so that ls(P,R)

exactly subsumes SP \ RI
A. Let P ′ be the NLP obtained by least specialization of P with all

RI
A that can be inferred from (I, J), then P ′ is consistent with E′ ∪ {(I, J)}.

Conclusion 1: LF1T keep the consistency of the NLP learned.
LF1T start with PB0 as initial NLP. PB0 is at least consistent with ∅ ⊆ E. According to

conclusion 1, initializing LF1T with PB0 and by using least specialization iteratively on the
element of E when its needed, LF1T learns an NLP that realizes E. ut

A.6 Proof of Theorem 5

Let PB0 be the most general complete prime NLP of a given Herbrand base B, i.e. the NLP
that contains only facts

PB0 = {p.|p ∈ B}

Initializing LF1T with PB0 , by using least specialization iteratively on a set of state transitions
E, LF1T learns the complete prime NLP of E.

Proof. :
Let us assume that LF1T with least specialization does not learn a prime NLP of E. If our
assumption is correct, according to Theorem 4, LF1T learns a NLP P , that is consistent with
E and P is not the complete prime NLP of E. LF1T start with PB0 as initial NLP, PB0 is the
most general complete prime NLP that can cover E.
Consequence 1: LF1T with least specialization can transform a complete prime NLP into
an NLP that is not a complete prime NLP.

Let P be the complete prime NLP of a set of state transition E′ ⊂ E and (I, J) 6∈ E′, such
that P is not consistent with (I, J). Our assumption implies that the least specialization P ′

of P by the rules inferred from (I, J) is not the complete prime NLP of E′ ∪ (I, J). According
to Definition 7, there is two possibilities:

– case 1: ∃R ∈ P ′ such that R is not a prime rule of E′ ∪ (I, J).
– case 2: ∃R′ 6∈ P ′ such that R′ is a prime rule of E′ ∪ (I, J).

Case 1.1: If R ∈ P , it implies that R is a prime rule of E′ and that R is consistent with
(I, J), otherwise R should have been specialized. Because R is not a prime rule of E′ ∪ (I, J)
it implies that there exists a rule Rm consistent with E′ ∪ (I, J) that is more general than R,
i.e. b(Rm) ⊂ b(R). Then Rm is also consistent with E′, but since R is a prime rule of E′ there
does not exist any rule consistent with E′ that is more general than R. This is a contradiction.

Case 1.2: Now let us suppose that R 6∈ P ; then R has been obtained by least specialization
of a rule RP ∈ P by a rule inferred from (I, J). It implies that ∃l ∈ b(R) and l ∈ I. If R is not
a prime rule of E′ ∪ (I, J), there exists Rm a prime rule of E′ ∪ (I, J) and Rm is more general
than R. It implies that l ∈ Rm otherwise Rm is not consistents with (I, J) because it will also
subsumes RP that is not consistents with (I, J). Since Rm is consistent with E′ ∪ (I, J) it is
also consistent with E′. This implies that ∃R′m a prime rule of E′ that subsumes Rm (it can
be Rm itself), R′m also subsumes R. Since P is the complete prime NLP of E′, R′m ∈ P .

Case 1.2.1: Let suppose that l 6∈ b(R′m), since l ∈ b(R) and R′m subsumes R then R′m
subsumes RP because R = h(RP)← b(RP)∪l. But since RP is a prime rule of E′ it implies that
R′m = RP . In that case it means that RP subsumes Rm and since l ∈ Rm, h(RP)← b(RP)∪ l
also subsumes Rm. Since h(RP) ← b(RP) ∪ l is R, R subsumes Rm and Rm can neither be
more general than R nor a prime rule of E′ ∪ (I, J). This is a contradiction with case 2.

Case 1.2.2: Finally let us suppose that l ∈ b(R′m), since R′m is consistent with E and
l ∈ I, R′m is consistent with E′ ∪ (I, J). But R′m subsumes Rm and since Rm is a prime rule of
E′ ∪ (I, J) it implies that R′m = Rm. In that case Rm ∈ P and because Rm is consistent with
(I, J) and Rm subsumes R, LF1T will not add R into P ′. This is a contradiction with case 1.

Case 2: Let consider that there exists a R′ 6∈ P ′ such that R′ is a prime rule of E′∪(I, J).
Since R′ 6∈ P ′, R′ 6∈ P and R′ is not a prime rule of E′ since P is the complete prime NLP of
E′. Then, there exists Rm ∈ P a prime rule of E′ such that Rm subsumes R′ and Rm 6∈ P ′

since R′ is a prime rule of E′ ∪ (I, J). Then, b(R′) = b(R′m) ∪ S with S a non-empty set of
literals such that for all l ∈ S, l 6∈ b(Rm). Since Rm 6∈ P ′, there is a rule RI

h(Rm) that can be

inferred from (I, J) and subsumed by Rm. And there is no rule R′m ∈ ls(Rm, RI
h(Rm)) that

subsumes R′ since R′ is a prime rule of E′ ∪ (I, J). Then, for all l′ ∈ b(RI
h(Rm)), l′ 6∈ b(R′)

otherwise there is a R′m that subsumes R′. Since |b(RI
h(Rm))| = B, b(R′) cannot contains a

literal that is not in b(RI
h(Rm)) so that R′ subsumes RI

h(Rm). R′ cannot be a prime rule of

E′ ∪ (I, J) since R′ is not consistent with (I, J), this is a contradiction.
Conclusion: If P is a complete prime NLP of E′ ⊂ E, for any (I, J) ∈ E LF1T with least

specialization will learn the complete prime NLP P ′ of E′ ∪ (I, J). Since LF1T starts with a
complete prime NLP that is PB0 , according to Theorem 4, LF1T will learn a NLP consistent
with E, our last statement implies that this NLP is the complete prime NLP of E since LF1T
cannot specify a complete prime NLP into an NLP that is not a complete prime NLP. ut

A.7 Proof of Theorem 6

Let n be the size of the Herbrand base |B|. Using least specialization, the memory complexity
of LF1T remains in the same order as the previous algorithms based on ground resolution, i.e.,
O(2n). But the computational complexity of LF1T with least specialization is higher than the
previous algorithms based on ground resolution, i.e O(n · 4n) and O(4n), respectively. Same
complexity results for full näıve (resp. ground) resolution.

Proof. Let n be the size of the Herbrand base |B| of a set of state transitions E. This n is
also the number of possible heads of rules. Furthermore, n is also the maximum size of a rule,
i.e. the number of literals in the body; a literal can appear at most one time in the body of a
rule. For each head there are 3n possible bodies: each literal can either be positive, negative
or absent from the body. From these preliminaries we conclude that the size of a NLP |P |
learned by LF1T from E is at most n ·3n. But since a NLP P learned by LF1T only contains
prime rules of E, |P | cannot exceed n · 2n; in the worst case, P contains only rules of size n
where all literals appear and there is only n · 2n such rules. If P contains a rule with m literals
(m < n), this rule subsumes 2n−m rules which cannot appear in P . Finally, least specialization
also ensures that P does not contain any pair of complementary rules, so that the complexity
is further divided by n; that is, |P | is bounded by O(n·2n

n
) = O(2n).

When LF1T infers a rule RI
A from a transition (I, J) ∈ E where A 6∈ J , it has to compare

it with all rules in P to extract the ones that need to be specialized. This operation has a com-
plexity of O(|P |) = O(2n). Since |b(RI

A)| = n, according to Definition 5 the least specialization
of a rule R ∈ P can at most generate n different rules. In the worst case all rules of P with

h(RI
A) as head subsume RI

A. There are possibly 2n/n such rules in P , so that LF1T generates
at most 2n rules for each RI

A. For each (I, J) ∈ E, LF1T can infer at most n rules RI
A. In

the worst case, LF1T can generates n · 2n rules that are compared with the 2n rules of P .
Thus, construction of an NLP which realizes E implies n · 2n.2n = n · 4n operations. The same
proof applies to LF1T näıve (resp. ground) resolution, when LF1T infers a rule RI

A from a
transition (I, J) ∈ E where A ∈ J . The complexity of learning an NLP from a complete set of
state transitions with an Herbrand base of size n is O(n · 4n). ut

