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Abstract We propose a novel framework for learning normal logic programs from transi-
tions of interpretations. Given a set of pairs of interpretations (I, J) such that J = TP (I),
where TP is the immediate consequence operator, we infer the program P . The learning
framework can be repeatedly applied for identifying Boolean networks from basins of at-
traction. Two algorithms have been implemented for this learning task, and are compared
using examples from the biological literature. We also show how to incorporate background
knowledge and inductive biases, then apply the framework to learning transition rules of
cellular automata.

Keywords dynamical systems · Boolean networks · cellular automata · attractors ·
supported models · learning from interpretation · Inductive Logic Programming

1 Introduction

There is a growing interest in learning dynamics of systems in the field of inductive logic
programming (ILP) [32] with applications in planning, scheduling, robotics, bioinformat-
ics, and adaptive and complex systems. In the view that a logic program is a state transition
system [20,23], given an Herbrand interpretation representing a current state of the world,
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a logic program P specifies how to define the next state of the world as an Herbrand inter-
pretation through the immediate consequence operator (also called the TP operator) [46,
6]. Based on this idea, we here propose a framework to learn logic programs from traces of
interpretation transitions.

The learning setting is as follows. We are given a set of pairs of Herbrand interpretations
(I, J) such that J = TP (I) as positive examples, and the goal is to induce a normal logic
program (NLP) P that realizes the given transition relations. As far as the authors know,
this concept of learning from interpretation transition (LFIT) has never been considered in
the ILP literature. In fact, LFIT is different from any method to learn Boolean functions
that has been developed in the field of computational learning theory [25] in the sense that
LFIT learns dynamics of systems, while the conventional learning setting is not involved
in dynamics. A closer setting can be found in learning from interpretations (LFI) [14], in
which positive examples are given as Herbrand models of a target program, but again the
goal of LFI is not to learn dynamics of systems. Learning action theories [31,33,21,45,12,
38] can also be related with LFIT, but its goal is not exactly the same as that of LFIT. In
particular, LFIT can learn dynamics of systems with positive and negative feedbacks, which
have not been much taken into account in the literature. Relational reinforcement learning
[16] can consider feedbacks in the learning process as rewards, but LFIT learns how such
feedbacks can be represented logically by state transition rules. Learning NLPs rather than
definite programs has been considered in ILP, e.g., [39], but most approaches do not take the
LFI setting. Moreover, from the semantical viewpoint, our framework can learn NLPs under
the supported model semantics [6] rather than the stable model semantics [19].

An intended direct application of LFIT is learning transition or update rules in dynamical
systems such as Boolean networks [24] and cellular automata [47], which have been respec-
tively used as mathematical models of genetic networks and complex adaptive systems. It
has been observed that the TP operator for an NLP P precisely captures the synchronous
update of the corresponding Boolean network, where each gene and its regulation function
correspond to a ground atom and the set of ground rules with the atom in their heads, re-
spectively [20]. Then, given an input Herbrand interpretation I , which corresponds to a gene
activity profile (GAP) with gene disruptions for false atoms in I and gene overexpressions
for true atoms in I , the interactions between genes are experimentally analyzed by observing
an output GAP J such that J = TP (I) is assumed to hold after a time step has passed. In
this setting, LFIT of an NLP P corresponds to inferring a set of gene regulation rules that
are complete for those experiments of 1-step GAP transitions. Such a learning task has been
analyzed in the literature [3,4], but no ILP technique has been applied to the problem. Be-
sides, 2-state cellular automata, in which each cell can take either 1 or 0 as a possible value,
are instances of Boolean networks, so that their state transitions are determined by the TP

operator [8]. Hence it should be possible to apply LFIT for their learning tasks. Learning
transition rules (called identification) of cellular automata has been studied in the literature
[1,2], but again no previous work has employed ILP techniques on this problem.

It is known that any trajectory from a GAP in a Boolean network reaches an attractor,
which is either a fixed point or a periodic oscillation. Then, we can consider a realistic
situation to use LFIT, in which the input is a set of trajectories reaching to attractors and
the output is a Boolean network, i.e., an NLP, realizing them. In this paper, we will thus
show two supposed usages of LFIT: LF1T takes 1-step transitions, and LFBA assumes
trajectories to attractors. Moreover, two algorithms for LF1T have been implemented, and
are compared using examples of gene regulatory networks in the biological literature. We
also suggest how to incorporate background knowledge and inductive biases in LFIT, then
apply the whole framework to learning transition rules of cellular automata.
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The rest of this paper is organized as follows. Section 2 reviews the logical background
of this work, and Section 3 shows how the semantics of logic programs is related to state
transitions of dynamical systems. Section 4 introduces LF1T together with two versions of
its algorithms and proves their correctness. Section 5 considers LFBA as variations of LF1T
and incorporates background knowledge and inductive biases. Section 6 shows experimen-
tal results of two versions of LF1T on learning Boolean networks and cellular automata.
Section 7 discusses related work, and Section 8 concludes the paper.

2 Normal Logic Programs

We consider a first-order language and denote the Herbrand base (the set of all ground
atoms) as B. A (normal) logic program (NLP) is a set of rules of the form

A ← A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An (1)

where A and Ai’s are atoms (n ≥ m ≥ 0). For any rule R of the form (1), the atom A is
called the head of R and is denoted as h(R), and the conjunction to the right of← is called
the body of R. We represent the set of literals in the body of R of the form (1) as b(R) =

{A1, . . . , Am,¬Am+1, . . . ,¬An}, and the atoms appearing in the body of R positively and
negatively as b+(R) = {A1, . . . , Am} and b−(R) = {Am+1, . . . , An}, respectively. An
NLP P is called a definite program if b−(R) = ∅ for every rule R in P . The set of ground
instances of all rules in a logic program P is denoted as ground(P ). An NLP P is called
an acyclic program [5] if, for every rule of the form (1) in ground(P ), |A| > |Ai| holds for
every i = 1, . . . , n and for some function | | : B → N (called a level mapping) from the
Herbrand base to natural numbers.

An (Herbrand) interpretation I is a subset of B, and is called an (Herbrand) model of P

if I satisfies all ground rules from P , that is, for any rule R ∈ ground(P ), b+(R) ⊆ I and
b−(R) ∩ I = ∅ imply h(R) ∈ I .

An Herbrand interpretation I ∈ 2B is supported in an NLP P if for any ground atom
A ∈ I , there exists a rule R ∈ ground(P ) such that h(R) = A, b+(R) ⊆ I , and b−(R)∩I =

∅. I is a supported model of P if I is a model of P and is supported in P [6]. It is known
that the supported models of P are precisely the models of Comp(P ), which is the Clark’s
completion of P [11]. Every acyclic program has the unique supported model [5], but there
may be no, one or multiple supported models of an NLP in general.

Given an NLP P and an Herbrand interpretation I , the reduct of P relative to I is defined
as the definite program: P I = {(h(R) ← ∧B∈b+(R) B) | R ∈ ground(P ), b−(R) ∩ I =

∅ }. An Herbrand model I is a stable model [19] of P if I is the least model of P I . Since
P I = P holds for any definite program P and any Herbrand interpretation I , the unique
stable model of a definite program is its least model.

Both the stable model semantics and the supported model semantics have been major
semantics in the field of logic programming. It is known that every stable model is a sup-
ported model [29], but not vice versa. For example, the NLP { p ← p, q ← ¬p } has the
supported models {p} and {q}, but only the latter is its stable model. Every acyclic program
has the unique stable model that is the same as its supported model [5].

For a logic program P and an Herbrand interpretation I , the immediate consequence
operator (or TP operator) [6] is the mapping TP : 2B → 2B:

TP (I) = { h(R) | R ∈ ground(P ), b+(R) ⊆ I, b−(R) ∩ I = ∅}. (2)
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If P is definite, TP is monotone, i.e., I1 ⊆ I2 implies TP (I1) ⊆ TP (I2) [46]. When P is an
NLP, however, TP is generally nonmonotone [6]. Then, I is a model of P iff TP (I) ⊆ I . By
definition, I is supported iff I ⊆ TP (I). Hence, I is a supported model of P iff TP (I) = I .
Thus, the TP operator is more directly connected to the supported model semantics than
to the stable model semantics. Note that TP is deterministic, that is, it determines a unique
interpretation TP (I) for any interpretation I . A sequence of applications of the operator on
Herbrand interpretations is called an orbit [8]. Given a logic program P and an Herbrand
interpretation I , the orbit of I with respect to the TP operator is the sequence 〈TP

k(I)〉k∈ω,
where TP

0(I) = I and TP
k+1(I) = TP (TP

k(I)) for k ∈ ω (ω is a limit ordinal).

3 Representing Dynamics in Logic Programs

Here we consider logic-based representation of dynamical systems, which is a key issue
for inductive learning of them. In ILP, a first-order representation is used for a relational
concept, and we simply follow this line of research, e.g., [32]. In particular, we do not
propose any new learning scheme for generalization and abstraction which are not directly
related to dynamics. For instance, if a particle A and a particle B have the same physical
properties, then a rule to decide the position of A after a perturbation is added must be the
same as a rule for B with the same kind of perturbation. Then, identification of such a rule
involves the dynamics, but the names A and B are not crucial so that we can generalize
them to be a variable in a common rule. We thus assume that any ILP method can be applied
to generalize such individuals, and will focus on learning of dynamics itself in this paper.
We here show two such representations to deal with dynamics: One is based on a first-order
notation with the time argument, and the other does not use the time argument.

Symbolic representation of dynamic changes has been studied in knowledge represen-
tation in AI such as situation calculus [30] and event calculus [26], which are mostly suit-
able for virtual action sequences. In real-world applications, however, the state of the world
changes concurrently from time to time, and all elements in the world may change often
synchronously. Then, to represent discrete time directly in the simplest way, we can use
the time argument in a relational representation: For each relation p(x) among the objects,
where p is a predicate and x is a tuple of its arguments, we can consider its state at time t

as p(x, t). In this way, we shall represent any atom A = p(x) at time t by putting the time
argument of the predicate as At = p(x, t). Then, a rule in an NLP of the form (1) can be
made a dynamic rule in the first-order expression of the form:

At+1 ← A1
t ∧ · · · ∧ Am

t ∧ ¬Am+1
t ∧ · · · ∧ ¬An

t. (3)

The rule (3) means that, if A1, . . . , Am are all true at time step t and Am+1, . . . , An are all
false at the same time step t, then A is true at the next time step t + 1. Note that this kind
of dynamic rules is first-order even if the original rule is propositional. Then, any first-order
NLP that is a set of rules of the form (3) becomes an acyclic program, in which the stable
model semantics and the supported model semantics coincide. Moreover, we can simulate
state transition of Boolean networks using this representation and the TP operator [20].

A Boolean network [24] is a pair N = (V, F ), where V = {v1, . . . , vn} is a finite set of
nodes (n is the number of nodes) and F = {f1, . . . , fn} is a corresponding set of Boolean
functions. The value of node vi at time step t is denoted as vi(t). The value of vi at the next
time step t + 1 is then determined by vi(t + 1) = fi(vi1(t), . . . , vik

(t)), where vi1 , . . . , vik

are the input nodes to vi. A state of N at time step t is (v1(t), . . . , vn(t)), and represents
a gene activity profile (GAP) at t when applied to a gene regulatory network. A trajectory
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of N is a sequence of states obtained by a series of state transitions. As |V | is finite, every
trajectory always reaches to some attractor [24,18,20], which is either a fixed point (called
a point attractor) or a periodic oscillation (called a cycle attractor). A state that reaches an
attractor S is said to belong to the basin of attraction of S . Inoue [20] shows a translation
of a Boolean network N into an NLP τ (N) such that τ (N) is a set of rules of the form (3):
For each vi ∈ V , convert its Boolean function fi(vi1 (t), . . . , vik

(t)) into a DNF formula1∨li
j=1 Bi,j

t, where Bi,j is a conjunction of literals, then generate li rules with vi
t+1 as the

head and Bi,j
t as a body for each j = 1, . . . , li. Given a state S(t) = (v1(t), . . . , vn(t))

at time step t, let Jt = {vi
t | vi ∈ V, vi(t) is true in S(t)}. Then the translation τ has

the property that the trajectory of N from an initial state S(0) = (v1(0), . . . , vn(0)) can
be precisely simulated by the sequence of interpretations, J0, J1, . . . , Jk, Jk+1, . . ., where
Jk+1 = Tτ(N)(J

k) ∩ {vi
t+1 | vi ∈ V } for k ≥ 0 [20].

Example 1 Consider the Boolean network N1 = (V1, F1), where V1 = {p, q, r}, and F1

and the corresponding NLP τ (N1) are as follows.

F1 : p(t + 1) = q(t), τ (N1) : p(t + 1) ← q(t),

q(t + 1) = p(t) ∧ r(t), q(t + 1) ← p(t) ∧ r(t),

r(t + 1) = ¬p(t). r(t + 1) ← ¬p(t).

The state transition diagram for N1 is depicted in Fig. 1.2

Starting from the interpretation J0 = {q(0), r(0)}, which means that q and r are true
at time 0, its transitions with respect to the Tτ(N1) operator are given as J1 = {p(1), r(1)},
J2 = {q(2)}, J3 = {p(3), r(3)}, . . ., which corresponds to the trajectory qr → pr → q →
pr → . . . of N1. Here pr → q → pr is a cycle attractor (Fig. 1, below). N1 has another,
point attractor r → r (Fig. 1, above) whose basin of attraction is {pqr, pq, p, ε, r}.

The second way to represent dynamics of Boolean networks is based on a recent work
on the semantics of logic programming. Instead of using the above direct representation (3),
we can consider another representation without the time argument. That is, we consider an
NLP as a set of rules of the form (1). In [20], a Boolean network N is further translated
to a propositional NLP π(N) from τ (N) by deleting the time argument from every literal
At appearing in τ (N). Then, we can simulate the trajectory of N from any state S(0) also
by the orbit of the interpretation I0 = {vi ∈ V | vi(0) is true} with respect to the Tπ(N)

operator, i.e., It+1 = Tπ(N)(I
t) for t ≥ 0. Moreover, we can characterize the attractors of

N based on the supported class semantics [23] for π(N).
A supported class of an NLP P [23] is a non-empty set S of Herbrand interpretations

satisfying:

S = {TP (I) | I ∈ S}. (4)

Note that I is a supported model of P iff {I} is a supported class of P . A supported class S
of P is strict if no proper subset of S is a supported class of P . Alternatively, S is a strict
supported class of P iff there is a directed cycle I1 → I2,→ · · · → Ik → I1 (k ≥ 1)

in the state transition diagram induced by TP such that {I1, I2, . . . , Ik} = S [23]. A strict
supported class of π(N) thus exactly characterizes an attractor of a Boolean network N .

1 If no fi is given to vi, we assume the identity function for fi, i.e., vi(t + 1) = vi(t).
2 Each interpretation is concisely represented as a sequence of atoms instead of a set of atoms in examples,

e.g., pq means {p, q} and the empty string ε means ∅.
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pqr � pq � p � ε � r

qr � pr q

Fig. 1 The state transition diagram of N1

Example 2 Consider the Boolean network N1 in Example 1 again. The NLP

π(N1) : p ← q,

q ← p ∧ r,

r ← ¬p,

is obtained from the first-order NLP τ (N1) in Example 1 by removing the time argument
from each literal. Notice that this logic program is not acyclic, since π(N1) has both positive
and negative feedback loops: The positive loop appears between p and q, while the negative
one exists in the dependency cycle to r through p. In this case, behavior of a corresponding
Boolean network is not obvious.3

The state transition diagram induced by the Tπ(N1) operator is the same as the diagram
in Fig. 1. The orbit of pqr with respect to Tπ(N1) becomes pqr, pq, p, ε, r, r, . . . (Fig. 1,
above), and the orbit of qr is qr, pr, q, pr, . . . (Fig. 1, below). We here verify that there are
two supported classes of π(N1), {{r}} and {{p, r}, {q}}, which respectively correspond to
the point attractor and the cycle attractor of N1.

A further discussion on the selection of representation and the semantics for capturing
dynamical systems in logic programs will be given in Section 7.3. In the following, we can
use an NLP either with the time argument in the form of (3) or without the time argument
in the usual form (1) for learning. To simplify the discussion, however, we will mainly use
NLPs without the time argument in basic algorithms.

4 Learning from 1-Step Transitions

Now we consider learning from interpretation transition (LFIT). LFIT is an anytime algo-
rithm, that is, whenever we process a set E of state transitions, we will guarantee that the
result of learning is a logic program P which completely represents the dynamics of the
transitions E so that a dynamical system is represented by P .

This section focuses on learning from 1-step transitions (LF1T) as LFIT. For learning,
we assume that the Herbrand base B is finite.

Learning from 1-Step Transitions (LF1T)
Input: E ⊆ 2B × 2B: (positive) examples/observations, an initial NLP P0.
Output: An NLP P such that J = TP (I) holds for any (I, J) ∈ E.

3 The reason why behavior becomes complex in the existence of feedbacks is biologically justified as fol-
lows. Each positive loop in a Boolean network is related to reinforcement and existence of multiple attractors,
while each negative loop is the source of periodic oscillations involved in homeostasis [36].
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In LF1T, a positive example is input as a one-step state transition, which is a pair of
Herbrand interpretations.4 We can also give a prior program P0 before learning. The output
of LF1T is an NLP which realizes all state transitions given in the input. Note that only one
NLP is output by LF1T.

Here we show a bottom-up method to construct an NLP for LF1T. A bottom-up method
generates hypotheses by generalization from the most specific clauses or examples until
every positive example is covered. For two rules R1, R2 with the same head, R1 subsumes
R2 if there is a substitution θ such that b+(R1)θ ⊆ b+(R2) and b−(R1)θ ⊆ b−(R2). In this
case, R1 is more (or equally) general than R2, and R2 is less (or equally) general than R1.
A rule R is the least (general) generalization [35] of R1 and R2, written as R = lg(R1, R2),
if R subsumes both R1 and R2 and is subsumed by any rule that subsumes both R1 and R2.
According to Plotkin [35], the lg of two atoms p(s1, . . . , sn) and q(t1, . . . , tn) is undefined
if p �= q; and is p(lg(s1, t1), . . . , lg(sn, tn)) if p = q (lg(si, ti) is defined as in [35]). Then,
lg(R1, R2) is written as in Sakama [39]:

lg(h(R1), h(R2))←
∧

L∈b+(R1),K∈b+(R2)

lg(L, K) ∧
∧

L∈b−(R1),K∈b−(R2)

¬lg(L, K). (5)

The pseudo-code of LF1T is given as follows.

LF1T(E: pairs of Herbrand interpretations, P : an NLP)
1. If E = ∅ then output P and stop;
2. Pick (I, J) ∈ E, and put E := E \ {(I, J)};
3. For each A ∈ J , let

RI
A :=

(
A←

∧
Bi∈I

Bi ∧
∧

Cj∈(B\I)

¬Cj

)
; (6)

4. If RI
A is not subsumed by any rule in P , then P := P ∪ {RI

A} and simplify P by
generalizing some rules in P and removing all clauses subsumed by them;

5. Return to 1.

The LF1T algorithm can be used with or without an initial NLP P0. Given the examples
E only, LF1T is initially called by LF1T(E, ∅). If an initial NLP P0 is given, LF1T(E, P0)

is called. LF1T firstly constructs the most specific rule RI
A for each positive literal A ap-

pearing in J = TP (I) for each (I, J) ∈ E.5 It is important here that we do not construct any
rule to make a literal false. The rule RI

A is then possibly generalized when another transition
from E makes A true, which is computed by several generalization methods.

The first generalization method we consider is based on resolution. The resolution prin-
ciple by Robinson [37] is well known as a deductive method, but its naı̈ve use can be applied
to a generalization method. In the following, for a literal l, l denotes the complement of l,
i.e., when A is an atom, A = ¬A and ¬A = A. We firstly consider a resolution between two
ground rules as follows.

4 A negative example (I, J) could be given if J �= TP (I) is known and no positive example (I, K) such
that K = TP (I) is known. Note that, once a positive example (I, K) is given, any pair (I, J) such that
J �= K is regarded as a negative example.

5 Based on the discussion in Section 3, we can alternatively consider a first-order expression of the form (3)
as a rule in an output program P here. If we use a rule with the time argument, each RI

A in LF1T becomes
At+1 ← ∧Bi∈I Bi

t∧∧Cj∈(B\I) ¬Cj
t. In this case, generalization methods used in LF1T are essentially

the same as those for the propositional expression; We apply each generalization just by keeping the time
argument appearing in the body of each rule.
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Definition 1 (naı̈ve/ground resolution) Let R1 and R2 be two ground rules of the form (1),
and l be a literal such that h(R1) = h(R2), l ∈ b(R1) and l ∈ b(R2). If (b(R2) \ {l}) ⊆
(b(R1) \ {l}) then the ground resolution of R1 and R2 (upon l) is defined as

res(R1, R2) =

(
h(R1)←

∧
Li∈b(R1)\{l}

Li

)
. (7)

In particular, if (b(R2) \ {l}) = (b(R1) \ {l}) then the ground resolution is called the naı̈ve
resolution of R1 and R2 (upon l). In this particular case, the rules R1 and R2 are said to be
complementary to each other with respect to l.

Both naı̈ve resolution and ground resolution can be used as generalization methods of
ground rules. For two ground rules R1 and R2, the naı̈ve resolution res(R1, R2) subsumes
both R1 and R2, but the non-naı̈ve ground resolution subsumes R1 only.

Example 3 Suppose the three rules: R1 = (p← q∧r), R2 = (p← ¬q∧r), R3 = (p← ¬q),
and their resolvent: res(R1, R2) = res(R1, R3) = (p← r).

R1 and R2 are complementary with respect to q. Both R1 and R2 can be generalized
by the naı̈ve resolution of them because res(R1, R2) subsumes both R1 and R2. On the
other hand, the ground resolution res(R1, R3) of R1 and R3 is equivalent to res(R1, R2).
However, res(R1, R3) subsumes R1 but does not subsume R3.

Ground and naı̈ve resolutions can be used to learn a ground NLP, and we will give the
two corresponding versions of LF1T in Sections 4.1 and 4.2. These two algorithms are
firstly used when there is no initial program, then an initial program is given as an input in
Section 4.3. We also show how to learn non-ground NLPs in Section 4.4.

4.1 Generalization by Naı̈ve Resolution

In our first implementation of LF1T, naı̈ve resolution is used as a least generalization
method. This method is particularly intuitive from the ILP viewpoint, since each gener-
alization is performed based on a least generalization operator.

Proposition 1 For two complementary ground rules R1 and R2, the naı̈ve resolution of R1

and R2 is the least generalization of them, that is, lg(R1, R2) = res(R1, R2).

Proof Let R be res(R1, R2). Since R subsumes both R1 and R2 in the case of naı̈ve reso-
lution, we here show that it is the least among such subsuming rules. Suppose that there is
a rule R′ such that (i) R′ subsumes both R1 and R2, (ii) R′ is subsumed by R, and (iii) R′

does not subsume R. Since R and R′ are ground, (ii) implies b(R) ⊆ b(R′), and then (iii)
implies b(R′) �= b(R). Then, there is a literal l ∈ b(R′) such that l �∈ b(R). By l ∈ b(R′)
and b(R′) ⊆ b(R1), l ∈ R1 holds. But this only happens when l is resolved upon, i.e.,
R = res(R1, R2) = (h(R1) ←

∧
Li∈b(R1)\{l} Li). However, by b(R′) ⊆ b(R2), l ∈ R2

holds too. Then l is not the literal resolved upon, a contradiction. ��
When naı̈ve resolution is used, we need an auxiliary set Pold of rules to globally store

subsumed rules, which increases monotonically. Pold is set ∅ at first. When a generated rule
is newly added at Step 4 in the pseudo-code of LF1T, we try to find a rule R′ ∈ P ∪ Pold

such that (a) h(R′) = h(R) and (b) b(R) and b(R′) differ in the sign of only one literal l. If
there is no such a rule R′, then R is just added to P ; otherwise, add R and R′ to Pold then
add res(R,R′) to P in a recursive call of Step 4.

The resulting algorithms for LF1T and AddRule are shown in Algorithms 1 and 2.
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Algorithm 1 LF1T(E,P )
1: INPUT: a set E of pairs of Herbrand interpretations and an NLP P
2: OUTPUT: an NLP P

3: Pold: NLP
4: Pold ← ∅
5: while E �= ∅ do
6: Pick (I, J) ∈ E; E := E \ {(I, J)}
7: for each A ∈ J do
8: RI

A := A← ∧Bi∈I Bi ∧
∧

Cj∈(B\I) ¬Cj

9: AddRule(RI
A , P , Pold)

10: end for
11: end while
12: return P

Algorithm 2 AddRule(R, P , Pold) (with naı̈ve resolution)
1: INPUT : a rule R and two NLPs P and Pold

2: if R is subsumed by a rule of P then
3: Pold := Pold ∪ {R}
4: return
5: end if
6: for each rule RP of P subsumed by R do
7: P := P \ {RP }
8: Pold := Pold ∪ {RP }
9: end for

10: P := P ∪ {R}
11: // Check for generalizations
12: for each rule R′ of P ∪ Pold with h(R) = h(R′) do
13: for each l ∈ b(R) such that l ∈ b(R′) do
14: if b(R) \ {l} = b(R′) \ {l} then
15: Pold := Pold ∪ {R}
16: Rlg := h(R)← ∧Li∈b(R)\{l} Li

17: AddRule(Rlg , P , Pold)
18: end if
19: end for
20: end for

Example 4 Consider the state transition in Fig. 1. By giving the state transitions step by
step, the NLP π(N1) = {#11, #14, #19} is obtained in Table 1, where #n is the rule ID.

We now examine the correctness of the LF1T algorithm in terms of its completeness
and soundness. A program P is said to be complete for a set E of pairs of interpretations
if J = TP (I) holds for any (I, J) ∈ E. On the other hand, P is sound for E if for any
(I, J) ∈ E and any J ′ ∈ 2B such that J ′ �= J , J ′ �= TP (I) holds. A deterministic learning
algorithm is complete (resp. sound) for E if its output program is complete (resp. sound) for
E. We use the following subsumption relation between programs: Given two logic programs
P1 and P2, P1 theory-subsumes P2 if for any rule R ∈ P2, there is a rule R′ ∈ P1 such that
R′ subsumes R.

Theorem 1 (Completeness of LF1T with naı̈ve resolution) Given a set E of pairs of
interpretations, LF1T with naı̈ve resolution is complete for E.
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Table 1 Execution of LF1T in inferring π(N1) of Example 2

Step I → J Operation Rule ID P Pold

1 qr → pr Rqr
p p← ¬p ∧ q ∧ r 1 1 ∅

Rqr
r r ← ¬p ∧ q ∧ r 2 1,2

2 pr→ q Rpr
q q ← p ∧ ¬q ∧ r 3 1,2,3

3 q → pr Rq
p p← ¬p ∧ q ∧ ¬r 4

res(4, 1) p← ¬p ∧ q 5 2,3,5 + 1,4
Rq

r r ← ¬p ∧ q ∧ ¬r 6
res(6, 2) r ← ¬p ∧ q 7 3,5,7 + 2,6

4 pqr → pq Rpqr
p p← p ∧ q ∧ r 8

res(8, 1) p← q ∧ r 9 3,5,7,9 + 8
Rpqr

q q ← p ∧ q ∧ r 10
res(10, 3) q ← p ∧ r 11 5,7,9,11 + 3,10

5 pq → p Rpq
p p← p ∧ q ∧ ¬r 12

res(12, 4) p← q ∧ ¬r 13 5,7,9,11,13 + 12
res(13, 9) p← q 14 7,11,14 + 5,9,13

6 p→ ε
7 ε→ r Rε

r r ← ¬p ∧ ¬q ∧ ¬r 15
res(15, 6) r ← ¬p ∧ ¬r 16 7,11,14,16 + 15

8 r → r Rr
r r ← ¬p ∧ ¬q ∧ r 17

res(17, 15) r ← ¬p ∧ ¬q 18 7,11,14,16,18 + 17
res(18, 7) r ← ¬p 19 11,14,19 + 7,16,18

Proof For any pair of interpretations (I, J) ∈ E, it is verified that the rule RI
A determines

the value of A in the next state of I correctly for any A ∈ J . On the other hand, for any atom
A �∈ J , the value of A in the next state of I becomes false by RI

A and the TP operator. Hence,
the set of rules P ∗ = {RI

A | (I, J) ∈ E, A ∈ J} is complete for the transitions in E. Since a
rule R derived by the naı̈ve resolution of R1 and R2 subsumes R1 and R2 by Proposition 1,
P ′ = (P ∗ \ {R1, R2}) ∪ {R} theory-subsumes P ∗. Then, P ′ is also complete for E, since
TP ′ and TP agree with their transitions. Since the (theory-)subsumption relation is transitive,
an output program P , which is obtained by repeatedly applying naı̈ve resolutions, theory-
subsumes P ∗. Hence, P is complete for E. ��

The implication of Theorem 1 is very important: For any set of 1-step state transitions,
we can construct an NLP that captures the dynamics in the transitions. In other words, there
is no (deterministic) state transition diagram that cannot be expressed in an NLP. It is also
important to guarantee the soundness of the learning algorithm, that is, it never overgener-
alizes any state transition rule. The soundness can be obtained from the completeness when
the transition from any interpretation is deterministic like the assumption in this paper (that
is why it is stated as a corollary), but we show a more precise proof for it.

Corollary 1 (Soundness of LF1T with naı̈ve resolution) Given a set E of pairs of inter-
pretations, LF1T with naı̈ve resolution is sound for E.

Proof It is easy to see that the program P ∗ in the proof of Theorem 1 satisfies the soundness.
Any naı̈ve resolution R = res(R1, R2) for any R1, R2 ∈ P ∗ deletes only one literal l such
that l ∈ b(R1) and l ∈ R2. Assume that R1 = RI1

A and R2 = RI2
A for some (I1, J1) ∈ E and

(I2, J2) ∈ E. Then, b(R) is satisfied by any partial interpretation I ′ such that I ′ = I1∩I2 =

I1 \ {l} = I2 \ {l}. Considering total interpretations that are extensions of I ′, there are
only two possibilities, i.e., I1 and I2. Since A = h(R) belongs to both J1 = TP∗(I1) and
J2 = TP∗(I2), it also belongs to TP ′(I1) and TP ′(I2), where P ′ = (P ∗ \ {R1, R2})∪{R}.
Applying the same argument to all atoms in any J = TP∗(I) for any interpretation I , we
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have J = TP ′(I). This arguments can be further applied to all naı̈ve resolutions, so that
TP (I) is the same as TP∗(I) for the final NLP P . ��

4.2 Generalization by Ground Resolution

Using naı̈ve resolution, P ∪ Pold possibly contains all patterns of rules constructed from
the Herbrand base B in their bodies. In our second implementation of LF1T, ground res-
olution is used as an alternative generalization method in AddRule. This replacement of
resolution leads to a lot of computational gains, since we do not need Pold any more: Every
generalization which can be found in Pold can be found in P by ground resolution.

Proposition 2 All generalized rules obtained from P ∪ Pold by naı̈ve resolution can be
obtained using ground resolution on P .

Proof Let R1 ∈ P and R2 ∈ Pold be ground complementary rules with respect to a literal
l ∈ b(R1). Then, h(R1) = h(R2), l ∈ b(R2) and (b(R1) \ {l}) = (b(R2) \ {l}) hold.
Suppose that by naı̈ve resolution, R3 = res(R1, R2) is put into P and that R1 is put into
Pold in AddRule. By R2 ∈ Pold, there has been a rule R4 in P such that R4 subsumes R2,
that is, b(R4) ⊆ b(R2). We can also assume that l ∈ b(R4) because otherwise l has been
resolved upon by the naı̈ve resolution between R2 and some rule in P and thus R1 must
have been put into Pold. Then, the rule R5 = res(R1, R4) is obtained by ground resolution,
and b(R5) = (b(R1) \ {l}) = (b(R2) \ {l}). Hence R5 is equivalent to R3. ��

Ground resolution can be used in place of naı̈ve resolution to learn an NLP from traces
of states transition. In this case, we can simplify Algorithm 1 by deleting Lines 3 and 4 and
by replacing Line 9 with AddRule(RI

A, P ). Algorithm 3 describes the new AddRule which
adds and simplify rules using ground resolution.

As in the case of naı̈ve resolution, we can prove the correctness, i.e., the completeness
and soundness of LF1T with ground resolution.

Theorem 2 (Completeness of LF1T with ground resolution) Given a set E of pairs of
interpretations, LF1T with ground resolution is complete for E.

Proof As in the proof of Theorem 1, if a program P is complete for E, a program P ′ that
theory-subsumes P is also complete for E. By Proposition 2, any rule produced by naı̈ve res-
olution can be generated by ground resolution. Then, if P and P ′ are respectively obtained
by naı̈ve resolution and ground resolution, P ′ theory-subsumes P . Since P is complete for
E by Theorem 1, P ′ is complete for E. ��

Corollary 2 (Soundness of LF1T with ground resolution) Given a set E of pairs of in-
terpretations, LF1T with ground resolution is sound for E.

Proof By Theorem 2, a program P output by LF1T with ground resolution is complete for
E. Then, as in the proof of Corollary 1, P is shown to be sound for E. ��

Example 5 Consider again the state transition in Fig. 1. Using ground resolution, the NLP
π(N1) = {#11, #14, #19} is obtained in Table 2.

Comparing Examples 2 and 5, all rules generated by naı̈ve resolution are obtained by
ground resolution too. By avoiding the use of Pold, however, we can reduce time and space
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Algorithm 3 AddRule(R,P ) (with ground resolution)
1: INPUT : a rule R and a NLP P

2: for each rule RP of P do
3: if R is subsumed by RP then
4: return
5: end if
6: if R subsumes RP then
7: P := P \ {RP }
8: else
9: // Check for generalizations

10: if h(R) = h(RP ) then
11: if ∃l ∈ b(R) such that l ∈ b(RP ) then
12: if b(R) \ {l} is subsumed by b(RP ) \ {l} then
13: Rr := h(R)← ∧Li∈b(R)\{l} Li

14: AddRule(Rr , P )
15: return
16: end if
17: if b(R) \ {l} subsumes b(RP ) \ {l} then
18: Rr

P := h(RP )← ∧Li∈b(RP )\{l} Li

19: AddRule(Rr
P , P )

20: AddRule(R, P )
21: return
22: end if
23: end if
24: end if
25: end if
26: end for
27: P := P ∪ {R}

for learning. As the next theorem shows, ground resolution has much complexity gain com-
pared with naı̈ve resolution, when learning is done with the input of complete 1-step state
transitions from all 2n interpretations, where n is the size of the Herbrand base B. In the
propositional case, n is the number of propositional atoms, which correspond to the number
of nodes in a Boolean network. We here assume that each operation of subsumption and
resolution can be performed in time O(1) by assuming a bit-vector data structure.

Theorem 3 Using naı̈ve version, the memory use of the LF1T algorithm is bounded by
O(n · 3n), and the time complexity of learning is bounded by O(n2 · 9n), where n = |B|. On
the other hand, with ground resolution, the memory use is bounded by O(2n), which is the
maximum size of P , and the time complexity is bounded by O(4n).

Proof In both P and Pold, the maximum size of the body of a rule is n. There are n possible
heads and 3n possible bodies for each rule: Each element of B can be either positive, negative
or absent in the body of a rule. This means that both |P | and |Pold| are bounded by the size
in O(n · 3n). The memory use in the algorithm is thus O(n · 3n). In practice, however, |P | is
less than or equal to O(2n) for the following reason. In the worst case, P contains only rules
of size n; if P contains a rule with m literals (m < n), this rule subsumes 2n−m rules which
cannot appear in P . That is why we can consider only two possibilities for each literal,
i.e., positive and negative occurrences of the literal (and no blank) to estimate the size |P |.
Furthermore, P does not contain any pair of complementary rules, so that the complexity is
further divided by n, that is, |P | is bounded by O(n · 2n/n) = O(2n). But |Pold| remains in
the same complexity and the memory use of the algorithm in practice is still O(n · 3n).
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Table 2 Execution of LF1T with ground resolution in inferring π(N1) of Example 2

Step I → J Operation Rule ID P
1 qr → pr Rqr

p p← ¬p ∧ q ∧ r 1 1
Rqr

r r ← ¬p ∧ q ∧ r 2 1,2
2 pr→ q Rpr

q q ← p ∧ ¬q ∧ r 3 1,2,3
3 q → pr Rq

p p← ¬p ∧ q ∧ ¬r 4
res(4, 1) p← ¬p ∧ q 5 2,3,5

Rq
r r ← ¬p ∧ q ∧ ¬r 6

res(6, 2) r ← ¬p ∧ q 7 3,5,7
4 pqr → pq Rpqr

p p← p ∧ q ∧ r 8
res(8, 5) p← q ∧ r 9 3,5,7,9

Rpqr
q q ← p ∧ q ∧ r 10

res(10, 3) q ← p ∧ r 11 5,7,9,11
5 pq → p Rpq

p p← p ∧ q ∧ ¬r 12
res(12, 5) p← q ∧ ¬r 13
res(13, 9) p← q 14 7,11,14

6 p→ ε
7 ε→ r Rε

r r ← ¬p ∧ ¬q ∧ ¬r 15
res(15, 7) r ← ¬p ∧ ¬r 16 7,11,14,16

8 r → r Rr
r r ← ¬p ∧ ¬q ∧ r 17

res(17, 7) r ← ¬p ∧ r 18
res(18, 16) r ← ¬p 19 11,14,19

In adding a rule to P in AddRule using naı̈ve resolution, we have to compare it with
all rules in P ∪ Pold, then this operation has a complexity of O(n · 3n). Hence, using naı̈ve
resolution, the complexity of LF1T is O(

∑n·3n

k=1 k), where k represent the number of rules in
P ∪Pold, which increases during the process until it finally belongs to O(n · 3n). Therefore,
the complexity of learning with naı̈ve version is O(

∑n·3n

k=1 k), which is then equal to O(n2 ·
32n−1) = O(n2 · 9n). On the other hand, using ground resolution, the memory use of the
LF1T algorithm is O(2n), which is the maximum size of P . The complexity of learning is
then O(

∑2n

k=1 k), which is equal to O((2n(2n + 1))/2) = O(22n−1) = O(4n). ��

By Theorem 3, given the set E of complete state transitions, which has the size O(2n),
the complexity of LF1T(E, ∅) with ground resolution is bounded by O(|E|2). On the other
hand, the worst-case complexity of learning with naı̈ve resolution is O(n2 · |E|4.5). We will
see the difference in experiments on learning biological networks in Section 6.1.

4.3 Background Theories and Incremental Learning

So far, we have not explicitly mentioned a background theory or a prior program that is
given before learning. But this is easily handled in LF1T: If we are given a prior NLP P0 as
a background theory, we can just call LF1T(E, P0).

Theorem 3 gives the upper bounds of the complexity of learning under the assumption
that the set of complete state transitions is given as the input and no initial program is
given. However, LF1T is an anytime algorithm and is hence complete for any incomplete
set of state transitions with or without a prior program. Then, the next proposition shows
the relationship between the size of inputs and the generality of programs learned by LF1T
with either naı̈ve or ground resolution.
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Proposition 3 Let E and E′ be sets of state transitions such that E ⊆ E′. Let P be an
NLP learned by LF1T(E, ∅), and P ′ be an NLP learned by LF1T(E′ \ E, P ). Then, P ′

theory-subsumes P .

Proof For any rule R in P , either R remains in P ′ or is subsumed by a new rule R′ obtained
in P ′. In either case, there is a rule in P ′ which subsumes R. Hence, P ′ theory-subsumes
P . ��

Since LF1T is complete for any input, any learned program has the same state transi-
tions for any ordering of state transitions. Then, P ′ = LF1T(E′ \ E, P ) and LF1T(E′, ∅)
agree with their state transitions, which is TP ′ . That is, LF1T can be performed in an incre-
mental manner. Proposition 3 indicates that, the more examples are given, the more general
programs are obtained. Actually, for any ground atom A, we will have a more general rule
with head A than a rule in P or other new rules with head A in P ′. As in the proof of The-
orem 1, learning a rule with m body literals need 2n−m examples for the naı̈ve resolution
method. We thus need more examples to get smaller rules in general.

4.4 Handling Non-Ground Cases

In Sections 4.1 and 4.2, we have assumed that no initial NLP is input to LF1T. In this case,
only examples are given, which are transitions of interpretations that are ground. That is
why we only needed ground resolution for generalization, but the resultant program is also
ground. Here, we consider the case that an initial NLP P0 is given as an input, where P0

can contain variables. The next generalization operation is defined for any two non-ground
rules, including the case that one rule is ground and the other is non-ground. Like ground
resolution, a non-ground resolution res(R1, R2) of two rules in the next definition produce
a generalized rule that subsumes R1.

Definition 2 (non-ground resolution) Let R1 and R2 be rules, and l ∈ b(R1) and l′ ∈
b(R2) be literals such that l = l′θ holds for some substitution θ. If (b(R2) \ {l′})θ ⊆
(b(R1) \ {l}) holds, then res(R1, R2) = (h(R1)←

∧
Li∈b(R1)\{l} Li).

Note that non-ground resolution in Definition 2 is a special case of more general resolu-
tion in [37], which derives a rule with the body ((b(R1)∪b(R2))\{l′, l})θ such that lθ = l′θ
holds. That is, it is a special case that the relation (b(R2) \ {l′})θ ⊆ (b(R1) \ {l}) holds. We
will not consider this kind of general resolution in LF1T, since such a resolvent generalizes
neither R1 nor R2.

As discussed in Section 3, a generalization not involving time can be performed by a
standard ILP technique. For example, we can apply anti-instantiation (AI) as a generaliza-
tion operator, which replaces a sub-term with a variable. We will see examples of learning
non-ground rules in Section 6.2. Note that unrestricted applications of such generalization
operators do not guarantee the soundness in general, so we need to check the consistency of
generalized rules with the examples in applying those operators.

5 Variations

5.1 Learning from Basins of Attraction

Identification of an exact NLP using LF1T may require 2|B| examples, and this bound can-
not be reduced in general [3]. In biological applications, however, this does not necessarily
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mean that we need an exponential number of experimental GAP samples. Instead, we can
observe changes of GAPs from time to time, and get trajectories from much fewer initial
GAPs. Fortunately, any trajectory always reaches an attractor, so we can stop observing
changes as soon as we encounter a previously observed GAP. This scenario derives us to
design another LFIT framework to learn a Boolean network (or an NLP) from basins of
attraction as follows.

Learning from Basins of Attraction (LFBA)
Input: A set E of orbits of interpretations (*).
Output: An NLP P such that, for every I ∈ E , any I ∈ I belongs to the basin of
attraction of an attractor of P that is contained in I.

In LFBA, an example I ∈ E is given as a part of the basin of attraction of some attractor
of the target NLP P . We here assume for the input (*) that each I contains the Herbrand
interpretations belonging to the orbit of an initial interpretation I0 ∈ I with respect to the
TP operator, and that every transition among I is completely known so that I can be written
as a sequence I0 → I1 → · · · → Ik−1 → J0 → · · · → Jl−1 → J0 → · · · , where |I| = k + l

and {J0, · · · , Jl−1} is an attractor. A set E of examples in LFBA has the property that two
orbits I,J ∈ E reach the same attractor if and only if I ∩ J �= ∅ holds.

LFBA(E : orbits of Herbrand interpretations)
1. Put P := ∅;
2. If E = ∅ then output P and stop;
3. Pick I ∈ E , and put E := E \ {I};
4. Put E := {(I, J) | I, J ∈ I, J is the next state of I};
5. P := LF1T(E, P ); Return to 2.

The input size of learning an NLP by LFBA is bounded by the number of attractors in
the given state transition diagrams. This is practically much lower than 2|B|. However, in the
worst case, there is a Boolean network which has an exponential number of attractors. For
example, the NLP {(vi ← vi) | vi ∈ B} has 2|B| point attractors.

Example 6 Consider again the state transition in Fig. 1. But this time, the input is given
as E = {I1, I2}, where I1 is the sequence: qr → pr → q → pr → · · · , and I2 is the
sequence: pqr → pq → p → ε → r → r → · · · . Put E1 = {(qr, pr), (pr, q), (q, pr)}
and E2 = {(pqr, pq), (pq, p), (p, ε), (ε, r), (r, r)}. Then, in LFBA, firstly LF1T(E1, ∅) is
called, and the resulting NLP P1 is obtained as P1 = {#3, #5, #7} . Next, LF1T(E2, P1)

is called and the NLP π(N1) = {#11, #14, #19} is obtained.

5.2 Exogenous Events

Boolean networks are one of the simplest dynamical systems in the sense that all behaviors
are deterministic and solely depend on the initial state and state transition rules. An impor-
tant extension would be to introduce the notion of exogenous events. The importance of such
exogenous events has been discussed in the literature [7], and they generally interfere normal
transitions of states. Then, we need to distinguish those state transitions induced by the dy-
namical system itself and other state transitions caused by exogenous events. Learning such
dynamics can be simply done in our framework by taking only those system’s transitions as
input examples and ignoring transitions perturbed or forced by external events.
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Given the input state transitions, I0 → I1 → I2 → · · · → Ik−1 → Ik ⇒ Ik+1 →
Ik+2 → · · · , suppose that the transition from Ik to Ik+1 (denoted by the double arrow⇒) is
caused by some external event. Then, let I1 be I0 → I1 → I2 → . . .→ Ik−1 → Ik and I2
be Ik+1 → Ik+2 → . . .. In this case, LFBA({I1, I2}) is applied by calling LF1T(E1, ∅)
first, and then calling LF1T(E2, P1), where E1 = {(I0, I1), (I1, I2), . . . , (Ik−1, Ik)}, E2 =

{(Ik+1, Ik+2), . . .}, and P1 is the result of LF1T(E1, ∅).

5.3 Inductive Biases

Inductive biases can be incorporated into LF1T in various ways. For example, a prescribed
set of literals that can affect the value of an atom A can be given for each A ∈ B. In Boolean
networks, we often know such “neighbor” literals, but may not know its exact Boolean
function [4]. In such a case, we can focus on those input nodes vi1 , . . . , vik

∈ V of a node
vi ∈ V in each interpretation I , and pick only those values of vi1 , . . . , vik

in I when the body
of RI

vi
is constructed in LF1T. In cellular automata, those neighborhood cells are already

known for every cell, so this bias can be effectively used.
As another useful inductive bias, we can restrict the length of each learned rule R, i.e.,

|b(R)| ≤ k for some integer k > 0. When |B| = n, the size of each I is also n, i.e.,
|I | = n for any I ∈ 2B. When the length condition is k < n, there are two ways to meet
this condition. The first method is to follow the algorithm of LF1T without restricting the
length of the body of each produced rule, and wait until the length becomes less than k

by resolution generalization. Once we have generated such a rule, the length condition is
always satisfied by resolution generalization in Definitions 1 and 2. However, if a rule has
more than k literals in the body at the end of learning, we need to shorten the body to
meet the condition by selecting n literals from the body. This last selection must be done by
keeping the consistency with the examples. The second method is more brave and constructs
a rule RI

A in LF1T for a literal A and an interpretation I by selecting only k values from I

in constructing the body of RI
A. This selection is nondeterministic, and may not guarantee

the soundness by Corollaries 1 and 2. Then we need to check the consistency whenever a
new example is processed, and need to backtrack to a selection point if a conflicting rule is
produced. We will use both biases of neighbor literals and length conditions in experiments
of Section 6.2.

5.4 Learning from Transitions of Partial Interpretations

In LF1T, we have assumed that an example is given as a set of interpretation transitions, in
which each Herbrand interpretation is a subset of the Herbrand base B. Such a (total) inter-
pretation represents a complete assignment of truth values to all elements of B. However, it
is often the case that we can observe truth values for only a subset S of B. Such an assign-
ment I ⊆ S ⊆ B is called a partial interpretation, and those ground atoms not appearing
in I is either assigned false for S \ I or is missing in B \ S due to partial observability. We
need to distinguish two cases to handle such missing values. In the first case, truth values
of ground atoms in B \ S are just unknown. Then we can construct a rule RI

A, but as in the
second method for the length bias in Section 5.3, the soundness is not guaranteed, so that
we need to check the consistency whenever a new example is input. In the second case, truth
values of ground atoms in B \S are “don’t-care”. Then we can safely construct a sound rule
RI

A, which does not need to be revised later for any input.
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Table 3 Learning time of LF1T for Boolean networks up to 15 nodes

Name # nodes # × length of attractor # rules (org./LFIT) Naı̈ve Ground
Arabidopsis thalania 15 10 × 1 28 / 241 T.O. 13.825s

Budding yeast 12 7 × 1 54 / 54 6m01s 0.820s
Fission yeast 10 13 × 1 23 / 24 5.208s 0.068s

Mammalian cell 10 1 × 1, 1 × 7 22 / 22 5.756s 0.076s

An interesting application of the second case is “boosting”, which runs LF1T again with
those previously learned rules as input. In boosting, each rule R learned in the previous run
is converted to a pair of partial interpretations (b(R), h(R)), and those atoms not appearing
in h(R) are just ignored (or are treated as 0) in the next state of each example. The boosting
method can be used to simplify the learned rules by applying more (non-ground) resolutions,
and further boostings can be performed again and again. Since resolution generalization in
LF1T is performed only when the size of the resolvent is reduced, repeated boostings must
terminate. The speed of convergence to the minimal reduced rules is generally much faster
than performing complete resolutions in a learned program. In fact, it takes the number of
resolutions in the factorial of the input size |E| to perform the complete saturation strategy.
With repeated boostings, however, we cannot remove all redundant rules in general. This
method will be applied in constructing the rules for Arabidopsis thalania in Section 6.1.

6 Experiments

In this section, we evaluate our learning methods through experiments. We apply our LFIT
algorithms to learn Boolean networks [24] in Section 6.1, and apply LFIT to identification
of cellular automata [47] in Section 6.2.

6.1 Learning Boolean Networks

We here run our learning programs on some benchmarks of Boolean networks taken from
Dubrova and Teslenko [15], which include those networks for control of flower morphogen-
esis in Arabidopsis thaliana [10], budding yeast cell cycle regulation [27], fission yeast cell
cycle regulation [13] and mammalian cell cycle regulation [17]. However, since our prob-
lem setting for learning is different from that for computing attractors in [15], we needed to
reproduce these inverse problems, which are made as follows. Firstly, we construct an NLP
τ (N) from the Boolean function of a Boolean network N using the translation in Section 3,
where each Boolean function is transformed to a DNF formula. Then, we get all possible
1-step state transitions of N from all 2B possible initial states I0’s by computing all stable
models of τ (N) ∪ I0 using the answer set solver clasp.6 Finally, we use this set of state
transitions to learn an NLP using our LFIT algorithms. Because a run of LF1T returns an
NLP which can contain redundant rules, the original NLP Porg and the output NLP PLFIT

can be different, but remain equivalent with respect to state transition, that is, TPorg
and

TPLFIT
are identical functions.

Table 3 shows the time of a single LF1T run in learning a Boolean network for each
problem in [15] on a processor Intel Core I7 (3610QM, 2.3GHz). The time limit is set to 1

6 http://potassco.sourceforge.net/
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hour for each experiment. We can see the good effect of using ground resolution in place of
naı̈ve resolution. The number of learned rules in each setting is also shown in Table 3, and is
compared with the original literatures that present networks. Except Arabidopsis thalania,
LFIT succeeds to reconstruct the same gene regulation rules as in [15] in the first run of
LF1T. However, in Arabidopsis thalania, only 12 original rules are reproduced and the 16
other original rules are replaced with other learned 229 rules in the output of the first run
of LF1T. Although those output rules are all minimal with respect to subsumption among
them, some are subsumed by original rules. This is because, our resolution strategy is to
perform resolution only when it produces a generalized rule, so other kinds of resolution,
which was mentioned in Section 4.4 as general resolution, are not allowed. For example,
from R1 = (p ← p ∧ q) and R2 = (p ← ¬q ∧ r), R = (p ← p ∧ r) cannot be obtained
in LF1T, since R subsumes neither R1 nor R2. Then, we applied boostings (Section 5.4)
twice for Arabidopsis thalania, and obtained 76 rules in the first boosting, then got exactly
the same 28 original rules in the second boosting. In constructing regulation rules of fission
yeast, only one rule is additionally produced: R15 = (x5 ← ¬x2∧¬x4∧x5∧x6). This rule
does not disappear with a boosting and the number of learned rules does not decrease from
24. Rules like R15 are not necessary to capture the whole transitions, but may give an alter-
native way to implement the dynamics. Hence, the same transition system can be realized
in different ways. If this is considered as a redundancy, it might be useful for robustness of
biological systems, but such analysis is beyond the scope of this paper.

In this experiment, the algorithm needs to analyze 2n steps of transitions to learn an
NLP, where n is the number of nodes in a Boolean network. That is why our implemented
programs cannot handle networks with more than 20 nodes in the benchmark; computing all
1-step transitions takes too much time, since the grounding in the answer set solver cannot
handle it. In other words, the input size with more than 220 is too huge to be handled, so
that we cannot even start learning. Such a limitation is acceptable in the ILP literature; for
example, it has been stated that networks with 10 transitions and 10 nodes are reasonably
large for learning [43]. Moreover, in real biological networks, we do not observe an expo-
nential number of the whole state transitions from all possible initial states. Hence, anytime
algorithms in this paper must be useful for such incomplete set of transitions, since learned
programs are correct for any given partial set of state transitions.

6.2 Learning Cellular Automata

We here test to run LF1T with a background theory and inductive biases to learn transition
rules of cellular automata. A cellular automaton (CA) [47] consists of a regular grid of
cells, each of which has a finite number of possible states. The state of each cell changes
synchronously in discrete time steps according to a local and identical transition rule. The
state of a cell in the next time step is determined by its current state and the states of its
surrounding cells (called neighbors). The collection of all cellular states in the grid at some
time step is called a configuration. An elementary CA consists of a one-dimensional array
of possibly infinite cells, and each cell has one of two possible states 0 (white, dead) or 1
(black, alive). A cell and its two adjacent cells form a neighbor of three cells, so there are
23 = 8 possible patterns for neighbors. A transition rule describes for each pattern of a
neighbor, whether the central cell will be 0 or 1 at the next time step.

In [1], Adamatzky poses the problem to identify a CA from an arbitrary pair of its
configurations. We provide a solution to this problem using LFIT.
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Table 4 Wolfram’s Rule 110

Current pattern 111 110 101 100 011 010 001 000
New state for center cell 0 1 1 0 1 1 1 0

t 0 1 2 3 4 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Fig. 2 State changes by Wolfram’s Rule 110

Example 7 We here pick up one of the most famous elementary CAs, known as Wolfram’s
Rule 110 [47], whose transition rule is given in Table 4. In the table, the eight possible
values of the three neighboring cells are shown in the first row, and the resulting value of the
central cell in the next time step is shown in the second row. Rule 110 is known to be Turing-
complete. The pattern generated by Rule 110 from the initial configuration with only one
true cell (colored black) is depicted in Fig. 2. In the figure, time starts at 0 and patterns are
shown until time 9. The column numbers are used later, and we here assign 3 to the column
with the single black cell at time 0. We see that every cell at column 4 has the state 0 through
transitions, since its neighbors always have the state 100 (assuming that the invisible column
5 has the state 0 at time 0).

We here reproduce the rules for Wolfram’s Rule 110 from traces of configuration changes.
Although this problem is rather simple, it illustrates how the whole system of LFIT with a
background theory and inductive biases works to induce NLPs for CAs.

Originally, an infinite space is assumed for the CA with Rules 110. To deal with the CA
in a finite space, two approximations can be considered:

1. Limited frame: Observes partially some set of cells. The problem in this setting is that,
from the same configuration, different transitions can occur. For example, the configu-
rations of cells (1, 2, 3) at t = 2 and at t = 4 take the same values (1, 1, 1) in Fig. 2, but
the next states are (1, 0, 1) at t = 3 and (0, 0, 1) at t = 5. If the frame width is only 3,
then we have two mutually inconsistent transitions from the same configuration. Hence,
rules are not constructed for the two edge cells but are learned only for the internal cells.

2. Torus world: Assumes that there is no end in the shape of circle, doughnut or sphere,
which can be constructed by chaining one edge cell with the other in one-dimensional
cell patterns. Fig. 3 shows a torus world of size 4 and the state transitions by Rule 110
with the initial configuration (1, 2, 3, 4) = (0, 0, 1, 0). The columns numbered (4) and
(1) are thus identical to columns 4 and 1, respectively. Note that the configurations reach
to the attractor, (1, 1, 1, 0)→ (1, 0, 1, 1)→ (1, 1, 1, 0).
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t (4) 1 2 3 4 (1) 
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3 
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Fig. 3 State changes by Wolfram’s Rule 110 in Torus world

Due to these approximations, the number of possible state transitions can be made smaller
in the case of elementary CAs like Fig. 3. Our learning framework can handle both limited
frames and torus worlds by considering adequate state transitions representation as input.
For example, to represent a torus world of size 4, a configuration is represented by a vector
with 6 elements (0, 1, 2, 3, 4, 5): 1, 2, 3, 4 respectively represent their values in the corre-
sponding cells, and 0, 5 respectively represent the values of cells 4 and 1 (colored gray when
the value is 1). This last information can be represented in a background theory as the two
rules with the time argument:

c(0, t)← c(4, t),

c(5, t)← c(1, t),

where c(x) represents a cell x and c(x, t) is its state at time step t. Unfortunately, these two
rules do not have corresponding rules without the time argument, since the head literals refer
the time step t instead of t + 1. Hence, simple removal of the time argument from the both
sides changes the dynamic meaning of the NLP in application of the TP operator that infers
about the next time step. Then, without the time argument, we should copy the rules for c(4)

to those for c(0), and copy the rules for c(1) to those for c(5).

Now we use non-ground resolution and consider the following two biases (Section 5.3):

– Bias I: The body of each rule contains at most n neighbor literals.
– Bias II: The rules are universal for every time step and for any position. This means that

the same states of the neighbor cells always implies the same state in the center cell at
the next time step.

Combining these two biases, we can adapt LF1T to learn dynamics of CAs. Using Bias I,
the rule construction process only considers n literals (here n = 3) in the neighbors of
the cell in the body of a rule. With Bias I, ground resolution is not sufficient to compare
non-ground rules with ground rules, for that we need non-ground resolution. We apply anti-
instantiation (AI) for getting universal rules with Bias II, whenever a newly added rule RI

A

is not subsumed by any rule in the current program. We can guarantee the soundness of
this generalization under Bias II. However, without Bias I, we cannot determine the body
literals for construction of each universal rule, so that we must examine the effects from
non-neighbor cells too.
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Table 5 LF1T algorithm with Bias I on Rule 110 in Torus world

Step I → J Operation Rule ID P
1 000100→ 001100 R001

c(2)
c(2)← ¬c(1) ∧ ¬c(2) ∧ c(3) 1 1

R010
c(3)

c(3)← ¬c(2) ∧ c(3) ∧ ¬c(4) 2 1,2
2 001100→ 011101 R001

c(1)
c(1)← ¬c(0) ∧ ¬c(1) ∧ c(2) 3

lg(3, 1) c(x)← ¬c(x− 1) ∧ ¬c(x) ∧ c(x + 1) 4 2,4
R011

c(2)
c(2)← ¬c(1) ∧ c(2) ∧ c(3) 5

res(5, 4) c(2)← ¬c(1) ∧ c(3) 6 2,4,6
R110

c(3)
c(3)← c(2) ∧ c(3) ∧ ¬c(4) 7

res(7, 2) c(3)← c(3) ∧ ¬c(4) 8 4,6,8
3 011101→ 110111 R011

c(1)
c(1)← ¬c(0) ∧ c(1) ∧ c(2) 9

lg(9, 6) c(x)← ¬c(x− 1) ∧ c(x) ∧ c(x + 1) 10
lg(10, 4) c(x)← ¬c(x− 1) ∧ c(x + 1) 11 8,11
R110

c(3)
c(3)← c(2) ∧ c(3) ∧ ¬c(4) 12

R101
c(4)

c(4)← c(3) ∧ ¬c(4) ∧ c(5) 13
res(13, 11) c(4)← ¬c(4) ∧ c(5) 14 8,11,14

4 110111→ 011101 R110
c(1)

c(1)← c(0) ∧ c(1) ∧ ¬c(2) 15
lg(15, 8) c(x)← c(x− 1) ∧ c(x) ∧ ¬c(x + 1) 16 8,11,14,16
R101

c(2)
c(2)← c(1) ∧ ¬c(2) ∧ c(3) 17

lg(17, 14) c(x)← c(x− 1) ∧ ¬c(x) ∧ c(x + 1) 18
res(18, 11) c(x)← ¬c(x) ∧ c(x + 1) 19 8,11,16,19

R011
c(3)

c(3)← ¬c(2) ∧ c(3) ∧ c(4) 20
res(20, 19) c(3)← c(3) ∧ c(4) 21
res(21, 19) c(3)← c(4) 22 11,16,19,22
res(8, 22) c(3)← c(3) 23 11,16,19,22,23

Using Bias I only, LF1T in a limited frame of width 4 learns the following rules for
Wolfram’s Rule 110:

c(2)← ¬c(2) ∧ c(3),

c(3)← ¬c(2) ∧ c(3),

c(3)← c(3) ∧ ¬c(4),

c(x)← ¬c(x− 1) ∧ c(x + 1),

c(x)← c(x− 1) ∧ c(x) ∧ ¬c(x + 1).

(8)

Instead, when we use a torus world of length 4 for Wolfram’s Rule 110 in LF1T with Bias I
only, Table 5 shows the learning process7 and the following NLP is obtained:

c(3)← c(3),

c(3)← c(4),

c(x)← ¬c(x) ∧ c(x + 1),

c(x)← ¬c(x− 1) ∧ c(x + 1),

c(x)← c(x− 1) ∧ c(x) ∧ ¬c(x + 1).

(9)

Both programs (8) and (9) are quite different from the original rules in Table 4. On the other
hand, if we use Biases I and II in either a limited frame of width 4 or a torus world of length
4, we get the following NLP (the process is in Table 5), which are equivalent to the original

7 In Tables 5 and 6, interpretations I and J are represented as configurations, that is, c(i) ∈ I iff c(i)
is true. Operation lg(R1, R2) takes the least generalization of R1 and R2 with the same pattern, which
generalizes the common terms in R1 and R2 into variables, and ai(R) takes the anti-instantiation of R.
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Table 6 LF1T algorithm with Biases I and II on Rule 110 in Torus world

Step I → J Operation Rule ID P
1 000100→ 001100 R001

c(2)
c(2)← ¬c(1) ∧ ¬c(2) ∧ c(3) 1

ai(1) c(x)← ¬c(x− 1) ∧ ¬c(x) ∧ c(x + 1) 2 2
R010

c(3)
c(3)← ¬c(2) ∧ c(3) ∧ ¬c(4) 3

ai(3) c(x)← ¬c(x− 1) ∧ c(x) ∧ ¬c(x + 1) 4 2,4
2 001100→ 011101 R001

c(1)
c(1)← ¬c(0) ∧ ¬c(1) ∧ c(2) 5

R011
c(2)

c(2)← ¬c(1) ∧ c(2) ∧ c(3) 6
ai(6) c(x)← ¬c(x− 1) ∧ c(x) ∧ c(x + 1) 7

res(7, 2) c(x)← ¬c(x− 1) ∧ c(x + 1) 8 8,4
res(7, 4) c(x)← ¬c(x− 1) ∧ c(x) 9 8,9

R110
c(3)

c(3)← c(2) ∧ c(3) ∧ ¬c(4) 10
ai(10) c(x)← ¬c(x− 1) ∧ c(x) ∧ ¬c(x + 1) 11

res(11, 9) c(x)← c(x) ∧ ¬c(x + 1) 12 8,9,12
3 011101→ 110111 R011

c(1)
c(1)← ¬c(0) ∧ c(1) ∧ c(2) 13

R110
c(3)

c(3)← c(2) ∧ c(3) ∧ ¬c(4) 14
R101

c(4)
c(4)← c(3) ∧ ¬c(4) ∧ c(5) 15

ai(15) c(x)← c(x− 1) ∧ ¬c(x) ∧ c(x + 1) 16
res(16, 8) c(x)← ¬c(x) ∧ c(x + 1) 17 8,9,12,17

4 110111→ 011101 R110
c(1)

c(1)← c(0) ∧ c(1) ∧ ¬c(2) 18
R101

c(2)
c(2)← c(1) ∧ ¬c(2) ∧ c(3) 19

R011
c(3)

c(3)← ¬c(2) ∧ c(3) ∧ c(4) 20 8,9,12,17

transition rule in Table 4:

c(x)← c(x) ∧ ¬c(x + 1),

c(x)← ¬c(x− 1) ∧ c(x),

c(x)← ¬c(x− 1) ∧ c(x + 1),

c(x)← ¬c(x) ∧ c(x + 1).

(10)

In learning an NLP for Rule 110 with Biases I and II, we get interesting generalizations.
The NLP obtained from the trace of Rule 110 with LF1T becomes more compact in 4 rules,
whereas the original transition rule representing the dynamics of this CA in Table 4 consists
of 5 rules. However, there still exists a redundancy here; we can omit either the second or
the third rule from (10). As discussed in Section 6.1, LF1T does not currently provide a
method to remove irredundant rules from the learned rules.

7 Related Work

7.1 Learning from Interpretations

As stated in Section 1, learning from interpretations (LFI) [14] has been an ILP framework
to produce a program from its interpretations. LFI considers examples simply as single
interpretations that are supposed to be models of an output program, hence is different from
LFIT, which takes pairs of interpretations as its input. We actually see that LFI is a special
case of LFIT. That is, LFI can be constructed from LFIT as follows. Since I ∈ 2B is a model
of P iff TP (I) ⊆ I , we can classify each example (I, J) ∈ 2B × 2B for LFIT into a positive
example for LFI if J ⊆ I or a negative example for LFI otherwise. Note that information of
J is only used to check if I is a model or not in this conversion.



23

Then, there is still a difference between the above LFI and the conventional LFI by
De Raedt [14]. The setting for De Raedt’s LFI learns a clausal theory, i.e., a set of clauses,
instead of an NLP that is a set of rules of the form (1). A clause is simply a disjunction of
literals, while a positive literal and a negative literal in the body are clearly distinguished in
a rule of an NLP. Other than this syntactical difference, the algorithm of conventional LFI
can be used to construct a clausal theory from our input.

More generally, learning Boolean functions in the field of computational learning the-
ory [25] is different from LFIT, since LFIT learns dynamics of systems as a set of Boolean
functions appearing in Boolean networks, while the conventional learning setting is not in-
volved in dynamics and often learns single Boolean functions. Similar to LFI, computational
learning theories usually do not learn dynamics of systems in general.

7.2 Learning Action Theories

Learning action theories [31,33,21,45,12,38] can be considered to share the common goals
with LFIT on learning dynamics. Moyle [31] uses an ILP technique to learn a causal theory
based on event calculus [26], given examples of input-output relations. Otero [33] uses logic
programs based on situation calculus [30], and considers causal theories represented in logic
programs. Inoue et al. [21] induce causal theories represented in an action language given
an incomplete action description and observations. Tran and Baral [45] define an action
language which formalizes causal, trigger and inhibition rules to model signaling networks,
and learn an action description in this language, given a candidate set of possible abducible
rules. Active learning of action models is proposed by Rodrigues et al. [38] in a STRIPS-
like language. Probabilistic logic programs to maximize the probabilities of observations
are learned by Corapi et al. [12] by employing parameter estimation to find the probabilities
associated with each atom and rule.

Works on learning action theories suppose applications to robotics and bioinformatics.
In many action theories, one action is assumed to be performed at a time, so its learning task
becomes sequential for each example sequence. In LFIT, on the other hand, every rule is
fired as long as its body is satisfied and update is synchronously performed at every ground
atom. Moreover, the goal of learning action theories is not exactly the same as that of LFIT.
In particular, LFIT can learn dynamics of systems with positive and negative feedbacks,
which has not been considered much in the literature.

Džeroski et al. [16]’s relational reinforcement learning (RRL) is a learning technique
that combines reinforcement learning with ILP. As in (non-relational) reinforcement learn-
ing, RRL can take into account feedbacks from the learning process as rewards: Each time
an observation is received, an action is chosen so that the state is changed with the reward
associated. The goal of RRL is then to find a suitable sequence of transitions that maximize
rewards. The merit to use ILP in RRL is to have a more expressive representation in states,
actions and Q-functions. As the motivation of RRL is different from that of LFIT, our goal
is not to find an optimal strategy for state transition but to learn the system’s dynamics itself.
As for the treatment of positive and negative feedbacks, LFIT learns how such feedbacks
can be represented by logic programs.
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7.3 Learning Nonmonotonic Programs

Learning NLPs has been considered in ILP, e.g., [39], but most approaches do not take the
LFI setting. The LFI setting in learning NLPs is seen in Sakama [40]. Our learning frame-
work is different from these previous works [39,40]. From the application point of view,
NLPs are often used in planning and robotics domain, and hence the difference between
previous work on learning action theories and LFIT is inherited to the comparison between
previous setting of learning NLPs and LFIT. From the semantical viewpoint, there is an ad-
ditional important difference: Previous work on learning NLPs is usually based on the stable
model semantics [19], but LFIT learns NLPs under the supported model (or supported set)
semantics [23]. Here we discuss practical differences between these two semantics.

The merit of the stable model semantics is that we can use state-of-the-art answer set
solvers for computation of stable models. In [41], transition rules of CAs are represented
in first-order NLPs, which consist of rules of the form (3) with the time argument. In this
case, each NLP with the time argument becomes acyclic so the supported models and stable
models coincide, and thus we can use answer set solvers for simulation of a CA. However,
each answer set becomes infinite unless a time bound is set. On the other hand, the merit of
the supported model semantics is that we can omit the time argument from a program and
make it simpler. As discussed in Section 3, Boolean networks can be represented in propo-
sitional NLPs [20], but still we can simulate state transition by watching the orbits of the TP

operator. More importantly, attractors can be directly obtained with the supported model or
the supported set semantics. This is not possible using the stable models of NLPs (without
the time argument), since they ignore all positive feedback loops in the dynamics [20]. The
supported models of an NLP can also be obtained as the models of Clark’s completion of the
program using modern SAT solvers. If we use answer set solvers for an NLP with the time
argument, we can simulate the dynamics of the corresponding Boolean networks, but need
to analyze each answer set to know when the same state is encountered twice by tracing the
orbit from time to time.

7.4 Learning Boolean Networks and Cellular Automata

Learning the dynamics of Boolean networks has been considered in Bioinformatics. Liang
et al. [28] proposed the REVEAL algorithm, which uses mutual information in informa-
tion theory as a measure of interrelationships. In REVEAL, the maximum number of argu-
ments of each Boolean function is assumed to deal with exponential growth of computa-
tional time. Akutsu et al. [3] analyze the problem of identifying a genetic network from the
data obtained by multiple gene disruptions and overexpressions with respect to the number
of experiments. They show algorithms for identifying the underlying genetic network by
such experiments, but their network model is a static Boolean network model in which ex-
pression levels of genes are statically determined, and is hence different from the standard
Boolean network in which expression levels of genes change synchronously. Pal et al. [34]
constructs Boolean networks from a partial description of state transitions. This method is
considered as a method to complete missing transitions in the state transition table. However,
Boolean functions are not constructed for each node in [34]. Compared with these studies,
our learning method is a complete algorithm to learn a set of logical state transition rules
for a Boolean network. As in [34], we can also deal with partial transitions (Section 5.4),
but will not identify or enumerate all possible complete transitions. Akutsu et al. [4] guess
unknown Boolean functions of a Boolean network whose network topology is known. This
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corresponds to learning Boolean networks with the bias of neighbor nodes (Section 5.3). In
[4], only acyclic networks are considered, and the main focus is a computational analysis of
such problems. Notably, all these previous works do not use ILP techniques.

In ILP, Srinivasan and Bain [43] present a framework to learn Petri nets from state
transitions. Petri nets can handle quantities of entities but their update schemes are different
from those of Boolean networks. In [43], a hierarchical Petri net can be obtained by iterative
applications of their algorithm, but it is not possible to obtain networks with positive and
negative feedback cycles. In fact, cyclic dependencies have been generally hard to be learned
in ILP methods. Tamaddoni-Nezhad et al. [44] combine abduction and induction to learn
rules of concentration changes of a metabolite caused by changes in other metabolites in a
metabolic pathway. This method gives an empirical way to learn some causal effects, but
its application domain does not deal with dynamical effects of feedbacks, and a learned
program does not describe complete transitions of the dynamical system. Inoue et al. [22]
complete causal networks by meta-level abduction. A biological network can be constructed
with this method for an incomplete structure, but the abductive method does not consider
dynamical behavior of the network and cannot deal with negative feedbacks.

In cellular automata (CAs), constructing transition rules from given configurations is
known as the identification problem. Adamatzky [1] provides algorithms for identifying dif-
ferent classes of CAs, and analyzes computational complexities of those algorithms. Several
algorithms are also proposed in [2]. To the best of our knowledge, however, there is no
algorithm which uses ILP techniques for identifying CA rules.

8 Conclusion and Future Work

Learning complex networks becomes more and more important, but it is hard to infer rules
of systems dynamics due to presence of positive and negative feedbacks. We here firstly
tackled the induction problem of such dynamical systems in terms of NLP learning from
synchronous state transitions. The proposed algorithm LF1T has the following properties:

– Given any state transition diagram, which is either complete or partial, we can learn an
NLP that exactly captures the system dynamics.

– Learning is performed only from positive examples, and produces NLPs that consist
only of rules to make literals true.

– Generalization on state transition rules is done by resolution, in which each rule can
only be replaced by a general rule. As a result, an output NLP is as minimal as possible
with respect to the size of each rule, but may contain redundant rules.

We have also shown how to incorporate background knowledge and inductive biases, and
have applied the framework to learning transition rules of Boolean networks and cellular
automata. The results are promising, and implemented programs can be useful for designing
the state transition rules of dynamical systems from a specification of desired or non-desired
state transition diagrams. For instance, a system can be considered to be robust if it is tolerant
to a perturbation (or an exogenous event, see Section 5.2) which interferes normal state
transition. Such a transition diagram could be designed as a tree shape, in which its root
node corresponds to an attractor, so that any forced state change is eventually recovered to
reach to the attractor [27]. Then we can do reverse engineering to get the corresponding state
transition rules for the Boolean network.

A promising optimization of the implementation will be to use binary decision diagrams
(BDDs) [9] to represent the rules of an NLP P in a compressed way. This data structure will
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be more efficient with regard to memory and search spaces. With such representation, we
can divide the complexity of learning step transitions by n: For one transition the algorithm
learn n rules with the same body, if we use heads as leaves of the BDD, bodies of these rules
will be learned and represented in only one multi-terminal BDD.

More complex schemes such as asynchronous and probabilistic updates [42,18] do not
obey transition by the TP operator. Not only Boolean but multiple-state dynamical systems
have been considered in the literature, so learning such systems is a future work. Cellu-
lar automata with asynchronous or probabilistic updates and their identification methods
have also been proposed [1]. Those nondeterministic transition systems are more tolerant to
noise, so can be expected to be applied to real-world dynamical systems, but have not yet
been sufficiently connected to existing work on symbolic inference systems. Learning such
dynamical networks by extending the algorithms in this paper is thus an important future
work. Probabilistic logic learning would be useful for such learning tasks.
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