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GPS-based Preliminary Map Estimation for Autonomous Vehicle
Mission Preparation

Y. Dupuis1, P. Merriaux2, P. Subirats1, R.Boutteau2, X. Savatier2 and P. Vasseur3

Abstract— In this paper, we tackle the problem of map
estimation from small set of vehicular GPS traces collected from
low cost devices. Contrary to the existing works, we rely only
on GPS information. First, we propose a fast implementation of
Kalman filtering of spline-based road modeling. Our approach
demonstrates a significant boost of the computation speed while
maintained a good estimation error. Secondly, we perform an
evaluation of our algorithm on real world data. Our estimation
is compared to a high grade Inertial Navigation System and
vectorial data gathered from major map providers. Our results
suggest that a good performance can be achieved from the
fusion of multiple GPS traces collected from multiple vehicles
and drivers.

I. INTRODUCTION

Autonomous vehicles have demonstrated to be able to
travel long runs without any driver intervention. On the one
hand, these vehicles mainly rely on the fact that the map
used for navigation is known and accurate. This preparation
often requires important human efforts and costly devices
to achieve the required accuracy [1], [2]. On the other
hand, GPS-equipped mobile devices are popular. They are
cheap but less accurate than an Inertial Navigation System
(INS)/GPS solutions used in autonomous vehicle mission
preparation. This information can be crowd-sourced and used
to obtained preliminary road location inference at a really
low price.

In the literature, there exists three main approaches to infer
road location from a large amount of GPS car data [3].

First of all, K-means based approaches were investigated.
They consist in randomly choosing seeds in the GPS point
cloud. Then K-means like techniques are used to refined the
seeds position. The segment joining two seeds is considered
as representative of the road [4]. The state space is composed
of the latitude, longitude and bearing. As a result, this type of
approach is able to deal with bidirectional roads. However, if
the number of seeds is too low, the resulting road geometry
is not coherent with the underlying road layout.

Secondly, curves from different GPS car traces can be
merged directly [5]. They have the same advantages as the
K-means based techniques. Still, as the traces are not reduced
to seeds, these methods enable to obtain a resulting road
geometry that is closer to reality. However, as every traces
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are considered, the resulting road geometry is impacted by
high error samples.

Thirdly, roads can be inferred within a probabilistic frame-
work, based on Kernel Density Estimators (KDE) [6]. An
occupancy grid is build at a given spatial resolution. Each
cell is represented by the number of traces passing through it.
The sensor uncertainty is applied by convolving a Gaussian
kernel with the grid. The uncertainty is managed with the
kernel bandwidth. A threshold is then applied to the grid to
obtain a binary image on which a skeletonization techniques
are used to obtained the road centerline. This technique has
almost the same advantages as the trace merging approaches.
On the one hand, it is not able to deal with bidirectional road
as two adjacent lines often falls within the uncertainty range
and the bearing is not considered. On the other hand, it is
less sensitive to high error samples.

A hybrid framework, based on trace merging and a
probabilistic framework, has been successfully applied to
GPS data collected on trains. Train motion is constrained
by the track contrary to cars where lane widths can reach
3.5 meters. This task is consequently more challenging for
cars since their motion does not follow exactly the same
single track. Besides, curvatures are more important on
roads than on railway tracks. It mainly explains why this
pipeline has never been extended to cars yet. Still this hybrid
framework proposes a new and interesting insight on how to
tackle the problem. In [7], [8], Hasberg et al. successfully
modeled several segments of real-world railways with a cubic
spline. The spline control points are used in the railway
state vector. Two flavors of Kalman filter are investigated.
The GPS position results from the fusion of raw GPS and
INS data fusion. Given a new corrected GPS measurement,
the railway state vector is updated based on the spline
equation and measurement error. A lateral error of less than
50cm is achieved with 12 runs with respect to high precision
reference map.

Our main contribution is a fast and robust preliminary road
location for autonomous vehicle mission preparation based
on information collected from multiple conventional GPS.
Contrary to the state of the art on road location estimation,
we wish to perform this task from a small set of GPS traces.
No digital map is used for a coarse initial guess of the
road location or the final road estimate evaluation as in [8].
Our performance is evaluated against an all-in-one INS/GPS
solution. Our GPS positions have not been pre-processed
based on inertial fusion framework that usually enables to
reduce GPS error as used in [8]. In fact, this feature does
not exist on GPS-equipped mobile devices.
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Fig. 1: Spline Parametrization
pi: control point; green dashed line: chord length; solid blue

line: arc length

The remainder of the paper is organized as follows.
Section II introduces our approach. Section III presents
our results. Finally, we conclude and discuss our results
in Section IV.

II. METHODOLOGY

Splines provide a nice framework to obtain a smooth
piecewise geometric approximation of real world road
curves. Splines can be parametrized in different manners
(c.f. Figure 1). In [7], Hasberg et al. use chordal parametriza-
tion. In a more recent work [8], they argue that arc-length
parametrization should be used as it enables stable integra-
tion of 1D kinematics states. As shown in [9], arc length
parametrization is not rational for real world curves. More-
over, the integration required to achieve this parametrization
really burdens the process in the case of roads as compared
to rail tracks [10]. In fact, the curvature of rail tracks is
negligible compared to curvatures encountered on roads at
roundabouts for instance. Consequently, the bisection method
will take more time to converge. Finally, the authors have
not compared the performance of both parametrizations. All
things considered, we use chordal spline parametrization for
the rest of this paper.

A. Cubic Spline Interpolation

First, spline interpolation is performed between points
pi = (pxi , p

y
i )T , known as supporting points, for i ∈ [0, n].

It results in the curve s(u). In chordal parametrization, the
parameter ui is computed recursively as follows :

ui+1 = ui + ‖pi+1 − pi‖ (1)

with u0 = 0 and i ∈ [0, n− 1]. Each piecewise segment
si(u) is then interpolated using the following formula :

si(u) =

[
sxi (u)
syi (u)

]
=

[
axi + bxi ∆ui + cxi ∆u2i + dxi ∆u3i
ayi + byi ∆ui + cyi ∆u2i + dyi ∆u3i

]
(2)

with ∆ui = u− ui and ui ≤ u < ui+1

{aji , . . . , d
j
i}, with j ∈ {x, y}, are the unknown poly-

nomial coefficients to be estimated. They depend on the
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Fig. 2: Recursive Spline-based road model estimation

supporting points, smoothness and continuity conditions on
the spline itself as well as the spline first and second order
derivatives at these points [8].

The supporting points pi can be grouped into a single
vector qj along each dimension:

qj =
[
pj0, . . . , p

j
n

]T
(3)

As a result, the unknown polynomial coefficient formula-
tion can be rewritten into a linear matrix form:

aj = Aqj bj = Bqj

cj = Cqj dj = Dqj (4)

More details on the computation of A, B, C and D are
given in [8]. This formulation allows a significant speedup
in the polynomial coefficient computation.

For a given u such that ui ≤ u < ui+1, we wish to select
the corresponding segment i and compute si(u). As a result,
ki, a masking vector, is introduced. It enables to select the
segment i as follows:

sji (u) = kT
i · sj(u) =



...
0
1
0
...



T

·



...
sji−1(u)

sji (u)

sji+1(u)
...

 (5)

As shown in Equation (2), sji (u) is expressed as a function
of the polynomial coefficients. Consequently, Equation (5)
can be rewritten as follows:

sji (u) = kT
i · sj(u)

= kT
i ·
[
Aqj + Bqj∆ui + Cqj∆u2i + Dqj∆u3i

]
= kT

i ·
[
A + B∆ui + C∆u2i + D∆u3i

]
qj

= G(u)qj (6)

The curve s(u) can now be rewritten as:

s(u) =

[
sx(u)
sy(u)

]
=

[
G(u) 0

0 G(u)

]
·
[
qx

qy

]
(7)

B. Kalman Filter

As we wish to estimate the road location, we need to
handle GPS measurement noise. We also have to deal with
error in our spline model. Kalman filters offer an elegant
framework to manage measurement and model noises as well
as estimation of state vectors through indirect measurements
contaminated by noise [11]. Let us consider xt a state vector
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Fig. 3: P̂ update

at time t and zt a measurement vector at time t. We define
the following dynamic model :

xt+1 = Ftxt + εt (8)

where εt is the system noise assumed to be Gaussian with
a covariance matrix Rt and Ft is the state transition model.

The measurement model of the true vector state is given
by:

zt = Htxt + δt (9)

where δt is the measurement noise assumed to be Gaussian
with a covariance matrix Qt and Ht is the observation
model.

The Kalman filter performs the state vector estimation in
two main steps. First, the state vector xt is estimated as
follows :

x̂t|t−1 = Ft−1|t−1xt (10)

P̂t|t−1 = FtPt−1|t−1F
T
t + Rt (11)

where P̂t|t−1 and x̂t|t−1 are the estimated a priori covari-
ance matrix and state vector respectively. Secondly, when a
measurement zt is available, the residual ŷt is used to update
the state vector:

ŷt = zt −Htx̂t|t−1 (12)

Kt = P̂t|t−1H
T
t (HtP̂t|t−1H

T
t + Qt)

−1 (13)
x̂t|t = x̂t|t−1 + Ktŷt (14)

P̂t|t = (I−KtHt)P̂t|t−1 (15)

where P̂t|t and x̂t|t are the estimated a posteriori covariance
matrix and state vector respectively.

C. Fast Road Spline Model estimation by Kalman Filtering

In the following framework, we consider that the cars
follow the same itinerary. Contrary to [7], [8], we do not use
any digital map to provide the initial guess. We rely solely on
GPS data. In fact, one of the GPS traces is randomly chosen
as our initial guess. A spline interpolation is performed on
this trace. In order to avoid singular situations, duplicate
position measurements are removed within each GPS trace.

The spline is also re-parametrized to have a constant chordal
length lu. These preliminary operations give us ŝ0(u).

Given a GPS-based position measurement zt and this
preliminary itinerary estimate, we first find û that minimizes
the innovation ŷt. It corresponds to the closest point on
the spline curve. It gives us the corresponding segment and
enables to define ki and the value of ∆ui. From Equation (7)
and Equation (9), we define :

Ht =

[
G(û) 0

0 G(û)

]
(16)

xt =

[
qx

qy

]
(17)

In our implementation, we consider time invariant states
( i.e. Ft = I) and a null system noise ( i.e. Rt = 0).
The variance of estimated error given by GPS from all
the measurements is used to define the measurement noise
covariance matrix Qt. We consider it as diagonal. This same
variance is used to fill the initial estimate covariance matrix
P̂0|0, which is also defined as a diagonal matrix.

We want to be able to perform a road estimation in a fast
manner. We also want our computation time to be invariant
to the length of the itinerary. In Sections II-A and II-B,
the matrices are rectangular matrices of sizes proportional
to n, where n is the number of control points. As the
itinerary grows and lu decreases, the size of the matrices
grows quadratically and so is time required to perform the
computations. The matrix size impact is really significant
in Equations (13) and (15). Even if in theory, it may be
interesting to use all the supporting points for small road
segments, it is totally useless for road networks. As it can
be seen in Figure 4a, GPS measurements in the north part of
the map will not influence the shape of road in its southern
part.

As a consequence, we propose to use only points in
the vicinity of the spline segment iû where û was found.
We define this parameter η. For a given η, the state of a
supporting point pi is updated if and only if iû − η ≤ i ≤
iû+η. Moreover, only the polynomial coefficients affected by
these supporting points can be used. Only 2η + 1 columns
of A, B, C and D should be considered. Ht has now a
dimension of 2 × 2η + 1. Only a subset of the estimate
covariance matrix P̂t|t−1 can be updated (c.f. Figure 3).

III. RESULTS

A. Datasets

A data set summary is presented in Table I. As we
can see, three datasets were collected from an Android
Tablet embedding a Broadcom GPS chip supporting GPS,
GLONASS and EGNOS. The data were collected at 1 Hz on
three different days from three different vehicles driven by
three different drivers. Set one was recorded in summer 2013,
set two and three in January 2014 but six days apart from
each other. They include ten, ten and four traces respectively.
They represent 9451 GPS position measures. The device was
placed somehow at the center of the vehicle windshield. The
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Fig. 5: Ground Truth Collection Setup
DMI: Distance Measurement Indicator; RTK: Real Time Kinematic

Dataset 1 2 3 Reference
Device Android Tablet Android Tablet Android Tablet RTK GPS/IMU/DMI

Position Update Frequency (Hz) 1 1 1 200
Number of Traces 10 10 4 1

Vehicle ID 1 2 3 3
Driver ID 1 2 3 3

Date of Acquisition August 2013 January 2014 January 2014 January 2014

TABLE I: Dataset Summary

drivers were asked to use the right-most lane on multilane
roads.

The ground truth was collected from a calibrated IXSEA
LANDINS, an all-in-one INS/GPS solution, at the same time
as set 3. The GNSS device is a Spectra Precision Proflex
800 Real Time Kinematic (RTK) GPS. A RTK base station
was placed at the location indicated in Figure 4. A Distance
Measurement Indicator (DMI) was placed on the rear left-
hand wheel. Its expected accuracy is 2.4mm/pulse. Inertial
Measurement Unit (IMU) information from the LANDINS
IMU are fused with the RTK GPS and DMI information
within the IXSEA device. The fusion is based on a Kalman
filter and vehicle model. The trace used as reference was
directly outputted by the LANDINS device. As it can be seen
in Figure 4b, three reception modes are available: Differential
GPS (DGPS), Float RTK and RTK. The expected precisions
are respectively 1cm, 5cm and 25cm. The vehicle estimated
position is updated at 200 Hz. The recording was performed
at 20 Hz. The devices were placed as indicated in Figure 5.

B. Performance Measure

All our experiments are conducted in UTM coordinates.
Contrary to the works mentioned in our introduction, our
resulting road estimation is compared to the trace resulting
from the inner fusion of the RTK GPS, IMU and DMI of the
IXSEA device. We use the median of all orthogonal distances
of points on the spline to the reference trace as the position
error. At the maximum speed on our test itinerary (i.e.
25m/s), two consecutive points from the reference trace can
be 1.25m apart. As a result, a piecewise linear interpolation
is performed in order to compute the orthogonal distance
from the resulting line to the spline points. The spline curve
is sampled every 1 meter along the chordal parametrization.

C. Experiments

As shown in Figure 9a, we consider our problem as an
open loop problem. Despite our test configuration, itineraries
are often not closed. As we want to propose a generic
framework, no loop closure techniques are used.

In Figure 6a, we investigate the impact of lu, the sup-
porting point inter distance, on both computation time and
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Fig. 6: Algorithm Parameter Impact Analysis

Set
Set 1 2 3

1 1 0.89 0.84
2 0.89 1 0.93
3 0.84 0.93 1

TABLE II: Set Error Normalized Maximum
Cross-Correlation

estimation error. The computations were performed on Mat-
lab. As it can be seen, a reduced lu tends to decrease the
estimation error but increases significantly the computation
time. Altogether, we chose lu = 15 as it offers a good
trade-off between both performance metrics. Figure 6b pro-
poses a similar analysis but is focused on the influence of
η, which controls the neighbor supporting points updated
after each measurement. A reduced neighborhood decreases
the computation time. The influence on the error is less
significant as it remains stable from 325m to 2500m. As a
consequence we picked η = 325. For algorithm parameters
{lu, η} = {15, 325}, the overall runtime is 167s , i.e. an
average measurement update time of 14ms. The original
implementation of Kalman filtering of spline-based road
modeling [8] involves to use all the supporting points in
the road network. In our case, it would involve to choose
η = 2600. As it can be noticed in Figure 6b, it would
take 334sto process the entire dataset. Our approach enables
to divide by two the processing time while maintaining the
same error.

Figure 7 analyzes the estimation error with respect to the
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Fig. 7: Spatial Spline Model Estimate Error

reference trace. In Figure 7a, we compare the error estimate
for the three datasets. On the one hand, large errors happen
in the same regions among the different sets. It indicates
that local phenomena such as road environment influence
the GPS position measurement. On the other hand, seasonal
effects can be noticed. In fact, Set 2 and 3 curves have
a behavior similar to each other (c.f. Table II). It results
from noise on the GPS and GLONASS signals themselves.
Figure 8 reveals that the error distributions are different for
the three sets. Set 3, which was recorded simultaneously to
the reference trace, achieves the smallest median position
error. However, its error dispersion is also the largest of all.
It can be explained by the fact that less traces were used to
perform the estimation. The fusion of the three sets is really
important as it allows to achieve the same median position
error while reducing the error dispersion as well as the outlier
spread.

In Figure 7b, we compare the performance of our esti-
mation based on 24 GPS traces to Google Maps and Open-
StreetMap vectorial data. We measured the position error
of the nodes with respect to the reference trace. Vectorial
data are obtained from the fusion of governmental data and
GPS traces collected by the map provider. Governmental data
are obtained by land surveying. As a result, it may takes a
considerable amount of time to collect the data over a given
itinerary. As mentioned in the previous paragraph, less large
errors can be seen on the red curve compared to the graphs
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Fig. 9: Local Results

in Figure 7. We can notice similar local errors. On the one
hand, our algorithm outperforms the vectorial data in regions
where the road is straight (c.f. Figure 9b). On the other hand,
the error is lower for the vectorial data in region where the di-
rection changes. This error originates from the sampling rate
of our GPS chip. Moreover, filters used in the GPS chips tend
to smooth GPS traces in order to remove the noise induced
by the error on the GPS signals. While we achieve a median
error of 2.86m, Google Maps and OpenStreetMap data reach
1.90m and 1.62m error respectively. Our performance is fair
as we solely rely on GPS data. As a result, our framework
provides an interesting alternative to obtain preliminary map
information where vectorial information are outdated or not
available.

IV. CONCLUSION

In this paper, we investigated an approach to use crowd-
sourced vehicular GPS data to build preliminary maps for
autonomous vehicle mission. In the first part, we propose
a fast implementation of Kalman filtering for road spline
model estimation. Our results show a significant speedup of
the computation and an improvement of error by choosing
the appropriate supporting point density. The second part
highlights that the fusion of GPS traces captured from
low cost devices improves the estimation error. The fusion
of sets taken at different time of year also contributes to
improve the estimation quality. Despite different drivers and
vehicles were used, we achieve a 2.8m median error on
5.2km long test itinerary. Our approach achieves a fair
performance as compared to vectorial information obtained
from the aggregation of a large amount of data. Future
works will be focused on extended our results to more tracks
and multiple scenarios. Geo-referenced images will also be
added to improve the spline-based road model estimation.
Moreover, vehicular dynamics will be used in the Kalman
filter to constraint the resulting estimated road curve.

REFERENCES

[1] A. Geiger, M. Lauer, F. Moosmann, B. Ranft, H. Rapp, C. Stiller,
and J. Ziegler, “Team AnnieWAY’s Entry to the 2011 Grand Coop-
erative Driving Challenge,” Intelligent Transportation Systems, IEEE
Transactions on, vol. 13, no. 3, pp. 1008–1017, Sept 2012.

[2] J. Funke, P. Theodosis, R. Hindiyeh, G. Stanek, K. Kritataki-
rana, C. Gerdes, D. Langer, M. Hernandez, B. Muller-Bessler, and
B. Huhnke, “Up to the limits: Autonomous Audi TTS,” in Intelligent
Vehicles Symposium (IV), 2012 IEEE, 2012, pp. 541–547.

[3] J. Biagioni and J. Eriksson, “Inferring Road Maps from Global
Positioning System Traces,” Transportation Research Record: Journal
of the Transportation Research Board, vol. 2291, no. 1, pp. 61–71,
2012.

[4] G. Agamennoni, J. Nieto, and E. Nebot, “Robust and accurate road
map inference,” in Robotics and Automation (ICRA), 2010 IEEE
International Conference on, 2010, pp. 3946–3953.

[5] L. Cao and J. Krumm, “From GPS traces to a routable road map,” in
Proceedings of the 17th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems. ACM, 2009, pp.
3–12.

[6] J. Biagioni and J. Eriksson, “Map inference in the face of noise and
disparity,” in Proceedings of the 20th International Conference on
Advances in Geographic Information Systems. ACM, 2012, pp. 79–
88.

[7] C. Hasberg and S. Hensel, “Online-estimation of road map elements
using spline curves,” in Information Fusion, 2008 11th International
Conference on, June 2008, pp. 1–7.

[8] C. Hasberg, S. Hensel, and C. Stiller, “Simultaneous Localization
and Mapping for Path-Constrained Motion,” Intelligent Transportation
Systems, IEEE Transactions on, vol. 13, no. 2, pp. 541–552, June 2012.

[9] R. T. Farouki and T. Sakkalis, “Real rational curves
are not unit speed,” Computer Aided Geometric Design,
vol. 8, no. 2, pp. 151 – 157, 1991. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/016783969190040I

[10] H. Wang, J. Kearney, and K. Atkinson, “Arc-Length Parameterized
Spline Curves for Real-Time Simulation,” in Curve and Surface
Design, 2002.

[11] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2006.


