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Visual odometry with unsynchronized multi-cameras setup for
intelligent vehicle application

Rawia Mhiri1, Pascal Vasseur1, Stephane Mousset1, Remi Boutteau2 and Abdelaziz Bensrhair1

Abstract— This paper presents a visual odometry with metric
scale estimation of a multi-camera system in challenging un-
synchronized setup. The intended application is in the field
of intelligent vehicles. We propose a new algorithm named
“triangle-based” method. The proposed algorithm employs the
information from both extrinsic and intrinsic parameters of
calibrated cameras. We assume that the trajectory between two
consecutive frames of a camera is a linear segment (straight
trajectory). The relative camera poses are estimated via classical
Structure-from-Motion. Then, the scale factors are computed
by imposing the known extrinsic parameters and the linearity
assumption. We verify the validity of our method both in
simulated and real conditions. For the real world, the motion
trajectory estimated for image sequence of two cameras from
KITTI dataset is compared against the GPS/INS ground truth.

I. INTRODUCTION
Driving Assistance systems (DAS) and parking assistance

systems require a perfect knowledge of the vehicle vicinity
in order to be efficient and safe. Vision sensors allow to
obtain such information and different configurations can
be used such as mono-camera [2][7], stereovision [4][16]
and multi-camera systems [1][3][13]. These systems allow
then to perform applications such as obstacle and road
detection, localization and mapping. However, a common
very important step in these applications deals with the
motion estimation also known as visual odometry [5].

The cameras poses computation forms the basis of vi-
sual odometry. It requires the computation of the rotation,
translation and relative scale between consecutive frames.
The estimation of the scale is the most sensitive part and
needs to be robustified. If the absolute metric scale is desired,
the visual odometry process must then integrate a particular
3D knowledge. In the case of a monocular system, a prior
knowledge about the 3D scene is necessary as initialization
and then maintained during the motion by a constricted
parametrization of the bundle adjustment step for example
[8]. When at least two cameras are used, the epipolar
geometry constraint can then be used in order to deduce the
metric scale [17]. Nevertheless, it is only possible if whole
set of cameras is synchronized and consequently that the
scene is captured at the same time from the different points
of view.

However, in automotive applications based on low cost
devices and close-to-market sensors such the one developed
in [4], the synchronization is a major inconvenience. It uses
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an additional electronic circuitry and expensive hardware,
therefore making it unsuitable. Additionally, asynchronous
acquisition can be easily implemented without depending
on the slowest camera for example and also simplifies the
problem of bandwidth for the transmission of the images.
Up to now, unsynchronized cameras have been rarely studied
[10][15]. For unsynchronized cameras and moving system,
the motion estimation suffers from many problems among
which accumulated error due to inaccurate scale estimation
is the most sensitive one.

To solve this problem, we introduce a new method relaxing
the synchronization constraint that we called the “triangle-
based” method. Our main contribution is the estimation of
the motion with an accurate metric scale using an asyn-
chronous multi camera ring without any temporal calibration.
This method is based upon the hypothesis that the motion
between two consecutive frames is rectilinear (straight or
smoothly curved). This assumption is a good approximation
of a smooth trajectory between consecutive positions. We
also consider that the complete geometric calibration process
is done off line.

The remainder of this paper is organized as follows. After
a short discussion about the previous work related on motion
and metric scale estimation, we present an overview of
our system. Next, we describe precisely our method for
the metric motion. Before concluding our work in the last
section, experiments and results are presented for real and
synthetic sequences.

II. RELATED WORK

Our work aims at solving the motion estimation problem
for an asynchronous multi-camera system. Estimating the
relative motion of two calibrated cameras is a classical
problem. A basic method for such problem is the classical
5-point algorithmic solution proposed by D. Nister [5]. This
algorithm finds all the possible solutions for relative camera
poses between two calibrated cameras using 5 points cor-
respondences. In [6], Li and Hartley simplify the five point
motion estimation algorithm based on the hidden variable
resultant technique.

Various configurations with multiple cameras have been
studied in order to estimate the motion and to derive the
metric scale. To overcome the problems of monocular setup,
the classical stereo pair is widely used with a large field of
view that enhances the computational accuracy of the relative
poses and improves the robustness. For a setup using close-
to-market multi-cameras, Lee et al. estimate the motion for
self driving cars with a generalized camera model relying



on 4 cameras [1]. The relative motion is obtained using this
generalized camera from a set of synchronized images.

In [9], the authors relax the constraint of overlapping field
of views. A 6 Dof stereo visual odometry and structure
estimation of a synchronous multi-camera system in an in-
door environment is obtained from two cameras. Monocular
motion estimation up-to-scale is done in the two cameras,
and a linear solution is used to recover the metric scale
by imposing the known static transformation between both
sensors.

All previous works are able to estimate the movement
with scale. Nevertheless, every multi-camera stereo setup
uses synchronized cameras. Unsynchronized cameras can be
also used to perform such tasks. In fact, there are very few
envisaged and possible solutions. It is mainly due to the fact
that the unsynchronized setup requires additional informa-
tions to perform the motion estimation task. One possible
solution can be obtained by 3D-3D approach : each camera
perform monocular odometry then a 3D-3D correspondence
can be done. The problem here is that the relative scales
are different. This solution is not very appropriated for real
time applications. Another solution using 3D-2D approach
is possible only if a known 3D structure is available. This
solution can be used in cartography and mapping but not for
a vehicle in an unknown environment.

An unsynchronized multi camera setup was used in struc-
ture from Stereo vision for SLAM in [10]. In an indoor
environment, the robot makes the 3D structure reconstruction
using two unsynchronized cameras. Three images are used
to create the 3D structure : two images from the left camera
at the first and the third time steps and one image from the
right camera in the time lap between the two other images.
Virtual synchronized image is created for the left camera in
the time lap between the two other images by interpolating
feature points from the two left images and the right image in
order to use geometric and probabilistic criteria. The method
assumes that the features change linearly between the left
frames. To obtain the pose difference between the images,
this approach uses wheel odometers. Although this method
allows a 3D structure to Visual SLAM, it does not estimate
the motion of the robot.

Our approach focuses on metric motion estimation with
unsynchronized and calibrated cameras. The approach is
based on two assumptions. The first assumption is that two
consecutive frames of each camera follow a linear trajectory.
The trajectory is therefore approximated to a succession
of straight segments. In addition, it is assumed that two
neighbouring cameras have a common field of view and see
the same scene.

III. SYSTEM OVERVIEW

Our system is inspired from the multi camera setup
designed by Meilland in [3]: the scene can be seen by two
or more cameras. Every two neighbouring cameras share
a common field of view in order to have a full view all
around the vehicle. The proposed model is flexible, the
number of cameras can be changed conveniently. The setup

Fig. 1. Example of a multi camera setup

can be mounted on any mobile platform depending on the
application. Fig. 1 illustrates an example of a multi camera
setup.

Fig. 2. (a) synchronized N cameras (b) unsynchronized N cameras in the
ideal cases

The system is composed by N unsynchronized cameras,
i.e. every camera acquires an image independently from the
other cameras. The Fig. 2 shows a simple distribution of a
synchronized camera system (i.e. all cameras acquire images
in the same time) and an unsynchronized one (i.e. only one
camera acquires a frame in every time step. The trajectory
between two consecutive frames of the same camera is very
close to a linear segment line.

IV. MOTION AND METRIC SCALE ESTIMATION :
“TRIANGLE-BASED” METHOD

We separate the method into two parts : relative motion
estimation and the absolute scale estimation. The relative
camera poses are estimated via Structure-from-Motion. Next,
we calculate the absolute scale factors using the extrinsic
calibration and the linearity assumption.

The cameras acquire the images at different time steps
during the displacement of the system. In a series of time
steps, the system acquires a sequence of images from differ-
ent cameras. To simplify the problem, we consider a system
with only two cameras which acquire images in three time
steps.

The first camera and the second cameras, Ci, C j respec-
tively acquire the images Ii and I j. The time notion is placed
like an index attached to the camera notation. For example,
the camera position at the first time step 0 is denoted by Ci0,
at the time step 1 by Ci1.

The transformations between the camera poses are denoted
by T that expresses the rotation 3x3 matrix (denoted by
R) and the unit translation 3x1 vector (denoted by t). The



euclidean transformation matrix T is the position of one
camera with respect to the coordinate frame of one other
camera. For example, the transformation of the first camera
position at the time step 0, Ci0, to the second camera position
at the time step 1, C j1, is T j1

i0 . Similar to this notation, the
rotation matrix and the unit translation vector of the second
camera position at the time step 1 , C j1, are expressed in the
system coordinate of the first camera at the time step 0, Ci0,
by Ri0

j1 and t i0
j1.

A. Pose estimation

We start with the camera pose estimation. Two relative
poses of a camera can be described by the unit translation
vector t, the rotation matrix R and the scale factor λ .
The transformation between two positions can be written as
below:

T =

[
R λ t
0 1

]
(1)

The rotation R and the translation t can be obtained by de-
composing the essential matrix between two images written
as in eq. (2).

E = R[t]× (2)

Fig. 3. “Triangle-based” method for unsynchronized cameras : red lines
refer to the transformations between the cameras position and the green line
refers to the calibration process transformation

Our “triangle-based” method relies on the features points
matching in order to estimate the essential matrix. Three
essential matrices are computed between three frames : two
consecutive frames from the same camera ( the first camera)
and one frame from the other camera ( the second camera)
as is modeled in Fig. 3. The Fig. 3 shows all possible
transformations between the three frames of the “triangle”.
Three transformations are determined via SFM: T i0

i2 , T i0
j1 , and

T i2
j1 . The lines connecting the real cameras in Fig. 3 refer

to those transformations between the cameras position Ci0,
C j1 and Ci2. The static transformation T j1

i1 of the second
camera to the first camera can be obtained from the extrinsic
calibration process. The line connecting the camera C j1 and
the virtual camera Ci1 in Fig. 3 refers to the calibration
process transformation.

To determine the camera poses, we start our algorithm by
extracting and matching interest points between the frames
of the “triangle”. In our implementation, we use the SURF
detector [11] and the FREAK descriptor [12].

There exists many algorithms which allow to obtain the
transformation between the different poses. For calibrated
cameras, the 5-point algorithm [5],[6] can be used. To find a
linear solution, the 8-point algorithm or its variance can be
used [17]. This algorithm allows to compute the fundamental
matrix and finds inliers between two frames. Then, the
essential matrix can be computed from the fundamental
matrix as in eq. (3).

E = K′>FK (3)

Where K′ and K are the intrinsic calibration matrices of
the two cameras. The essential matrix is decomposed by
the singular value decomposition to determine the rotation
matrix and the translation vector between the two cam-
era’s coordinate system. These steps are applied between
the positions Ci0, Ci2, and C j1 in order to calculate the
transformations T i0

i2 between Ci0 and Ci2, T i0
j1 between C j1

and Ci0, and T i2
j1 between C j1 and Ci2.

While the vehicle moves, there is an intermediate position
of the first camera at Ci1, when the second camera captures
an image. However, first camera does not take an image at
Ci1 because these two cameras are unsynchronized. Because
of the system is rigid, the transformation T j1

i1 between these
two cameras, Ci1 and C j1, can be obtained from the extrinsic
calibration. As camera Ci1 itself does not exist in reality, we
treat it as a virtual camera. So that, we can estimate the Ci1’s
position to strongly make our metric scale inference.

To summarize, we will use four transformations : three
calculated via SFM ( T i0

i2 , T i0
j1 , and T i2

j1 ) and a static one (T j1
i1

) which is assumed to be known from the calibration process.

B. Scale estimation

In the unsynchronized case, the scale factor is unknown
between the camera poses. The first assumption expresses the
static coupling of the two cameras in the same time step. The
second assumption links two positions of the same camera in
two time steps. This assumptions allow us to modulate our
system by four main transformations as it has been shown
in Fig. 3. The three frames (Ii0, Ii2, and I j1) make a “big
triangle” shape between the positions of Ci0, Ci2, and C j1.

The virtual pose of the camera Ci at the time step 1 (Ci1)
can be intercalated in the “big triangle”. This pose gives two
triangular shapes. There are two “sub-triangles” : the first is
between Ci0, Ci1, and C j1 and the second one is between Ci1,
Ci2, and C j1.

In the first “sub-triangle”, Fig. 4, we can write the trans-
formations as in the eq. (4). the transformation of Ci1 to the
coordinate system of Ci0, T i0

i1 is equal to the transformation
of the camera position C j1 to the coordinate system of Ci0,
T i0

j1 , transformed via the transformation of camera position
Ci1 to the coordinate system of C j1, T j1

i1 .

T i0
i1 = T i0

j1 T j1
i1 (4)

The euclidean transformations are expressed at the homo-
geneous coordinate system as shown in eq. (1). The static
transformation T j1

i1 obtained from the extrinsic calibration is



Fig. 4. The first “sub-triangle” : Ci0, Ci1, and C j1 and the second “sub-
triangle” : Ci1, Ci2, and C j1

known with the scale. Expanding the eq. (4), we introduce
the unknown scales factors ( λ1, α) of each transformation in
eq. (5) : λ1 is the associated scale factor to the transformation
T i0

i1 and α is the associated scale factor to the transformation
T j1

i0 . [
Ri0

i1 λ1t i0
i1

0 1

]
=

[
Ri0

j1 αt i0
j1

0 1

] [
R j1

i1 t j1
i1

0 1

]
(5)

In eq. (5), we decouple the rotation and the translation
terms after expanding. The obtained equations are as follows:

Ri0
i1 = Ri0

j1R j1
i1 (6)

λ1t i0
i1 −αt i0

j1 = Ri0
j1t j1

i1 (7)

Furthermore, the equation eq. (7) can be rewritten as :[
t i0
i1 −t i0

j1
] [λ1

α

]
= Ri0

j1t j1
i1 (8)

The Fig. 4 illustrates the second “sub-triangle” : Ci1, Ci2,
and C j1 . Now, we can write the transformations as in the
eq. (9). The transformation of the camera’s position Ci1 to
coordinate system of Ci2, T i2

i1 , is equal to the transformation
of the camera’s position C j1 to coordinate system of Ci2,
T i2

j1 , transformed via the static transformation between the
two cameras, T j1

i1 .
T i2

i1 = T i2
j1 T j1

i1 (9)

In the same manner as in the first “sub-triangle”, eq. (9)
after expanding, we obtain :[

Ri2
i1 λ2t i2

i1
0 1

]
=

[
Ri2

j1 β t i2
j1

0 1

] [
R j1

i1 t j1
i1

0 1

]
(10)

λ2 is the scale factor associated to the transformation T i2
i1

and β is the scale factor associated to the transformation T j1
i2 .

The equation (9) is decoupled into rotation and translation
terms and leads to :

Ri2
i1 = Ri2

j1R j1
i1 (11)

λ2t i2
i1 −β t i2

j1 = Ri2
j1t j1

i1 (12)

In the “big-triangle” between the camera’s positions Ci0,
Ci2, and C j1, Fig. 3, we can write the transformations as
in the eq. (13). The transformation of the camera position

Ci2 to the camera coordinate system of Ci0, T i0
i2 , is equal

to the transformation of the camera’s position C j1 to the
camera coordinate system of Ci2, T i0

j1 , transformed via the
transformation of the camera’s position of Ci2 to the camera
coordinate system of C j1, T j1

i2 .

T i0
i2 = T i0

j1 T j1
i2 (13)

In the same manner as in the “sub-triangles”, eq. (13) after
expanding, we obtain :[

Ri0
i2 (λ1 +λ2)t i0

i2
0 1

]
=

[
Ri0

j1 αt i0
j1

0 1

] [
R j1

i2 β t j1
i2

0 1

]
(14)

After decoupling the rotation and translation terms, the
translational part leads to the eq. (15).

[
t i0
i2 t i0

i2 −t i0
j1 −Ri0

j1t j1
i2

] 
λ1
λ2
α

β

 = 0 (15)

To summarize, the translation terms of the three “triangles”
are expressed as :

λ1t i0
i1 −αt i0

j1 = Ri0
j1t j1

i1

λ2t i2
i1 −β t i2

j1 = Ri2
j1t j1

i1

λ1t i0
i2 +λ2t i0

i2 −βRi0
j1t j1

i2 −αt i0
j1 = 0

(16)

To solve the above expression for the scale factors, the
system of the previous equations is written as :t i0

i1 0 −t i0
j1 0

0 t i2
i1 0 −t i2

j1

t i0
i2 t i0

i2 −t i0
j1 −Ri0

j1t j1
i2




λ1
λ2
α

β

 =

Ri0
j1t j1

i1

Ri2
j1t j1

i1
0

 (17)

The absolute scales factors can be derived by means of a lin-
ear least square (LS) model using the computed rotations and
translations between the three frames and the known rotation
and translation between the cameras (extrinsic calibration).
The linear system can be written as this scheme:

A.X = B (18)

Where X is the vector of the scale factors λ1, λ2, α and
β .

The translation of the camera position Ci0 to the coordinate
system of Ci1 and the translation of Ci2 to Ci1 are obtained
thanks to the linearity assumption. The translation vectors of
the same camera between three time steps Ci0, Ci1, and Ci2
can be expressed in terms of unit vectors : t i0

i1 , t i1
i2 , and t i0

i2 .
The following equation shows the relation between this unit
translation vectors.

(λ1 +λ2)t i0
i2 = λ1t i0

i1 +λ2t i1
i2 ⇔ t i0

i2 = t i0
i1 = t i1

i2 (19)

In the matrix A of the eq. (18), all the rotation matrices and
the translation vectors are known parameters and the scale
factors can be easily computed by solving the eq. (18).

After computing the relative poses and the absolute scale
factors, the motion can be robustly estimated.



V. EXPERIMENTS

A. Simulation

The algorithm described in the previous sections is firstly
applied to a simulation data. A 3D points cloud (randomly
generated) of the scene is projected into two cameras (2D im-
ages) using the perspective camera model. For each camera,
the poses are defined as a matrices in the world coordinate
system. There are three pairs of such cameras resulting six
different poses of ground truth. This pair of cameras is
moving linearly between these positions and has a static
transformation among each other to satisfy our assumptions.
The intrinsic matrices of the cameras are defined and 3D
points cloud of 100 points has been generated randomly. We
obtain three frames by projecting 3D points into the camera
coordinate systems : we obtain 100 2D points in each frame
(without additive noise then with noise σ = 0.2). All points
are in front of the cameras. Fig. 9 Shows the 3D modelisation
of the scene.

Fig. 5. simulated scene : 3D points cloud and two cameras in a linear
segment motion.

From 2D-2D matching of the feature points, the euclidean
transformations of the “triangles” are estimated. Using the
extrinsic calibration pose between the cameras, the scale
factors are estimated and compared to the ground truth
value which are already calculated from the ground truth
poses. The real scale factors are basically computed from the
three generated poses (R and t of each camera in the world
coordinate system) and the calibration poses between the
cameras. In the simulation, we find a high motion estimation
accuracy. The absolute scale results are presented in table I.

TABLE I
SIMULATION RESULTS : SCALE FACTORS COMPARISON FOR

“TRIANGLE-BASED” METHOD (TM)AGAINST THE GROUND TRUTH (GT)

λ1 λ2 α β

GT 0.7291 1.4810 0.4379 2.3887
TM without noise 0.7291 1.4810 0.4379 2.3887

TM with noise (σ = 0.2) 0.8313 1.8344 0.3986 2.7781

In the case without noise, the scale factors calculated by
our “triangle-based” method (TM) ( λ1, λ2, α , and β ) are

equal to the scale factors of the ground truth (GT). In the case
with additive noise, the results are very close. The inspection
of the table reveals that the accuracy of our “triangle-based”
method since the scales factors (GT and TM) is the same in
the case without noise.

B. Real Data

In order to validate the “triangle-based” method, we verify
the validity of our assumptions in the motion trajectory by
comparing our results on a real world image sequence from
KITTI dataset [13],[14] for two cameras against the GPS/INS
ground truth. This dataset is captured from a VW station
wagon for use in mobile robotics and autonomous driving
research. The sensors used in our comparison are the gray
scale stereo cameras and the GPS/IMU inertial navigation
system. The recording platform use two PointGray Flea2
grayscale cameras, 1.4 Megapixels, and a OXTS RT3003
inertial and GPS RTK navigation [13],[14].

TABLE II
GROUND TRUTH (GT) AND “TRIANGLE-BASED” METHOD (TM) RESULTS

λ1 TM λ1 GT λ2 TM λ2 GT
0.805±0.533 0.706±0.177 0.864±0.509 0.705±0.176

Fig. 6. λ1 +λ2 distribution for 223 “triangles” - the estimated scale factors
are close to the scale factors of the ground truth. Some pikes are due to a
low number of good matching (feature points)

The cameras are synchronized and we use only one image
in every time step to apply our method. The relative poses
and the absolute scale factors are computed for each set of
3 images. 2D-2D matching, Fig.7 , allows to estimate the
essential matrix which is decomposed into rotation matrix
and translation vector. Three calculated transformations and
the extrinsic calibration are used to compute the scale factors
as described in our method.

Results are shown in the table II and in the Fig. 6 which are
uppermost mentioned. Fig. 6 shows the λ1 +λ2 distribution
values for a sequence of 223 “triangles”.

Fig. 8 plots the estimated and the real trajectories. The plot
illustrates the trajectory of a curve motion. The trajectory
shows the performance of our method in a curve motion
and validate our assumptions about the linearity between
consecutive frames of one camera. It is clearly shown that
our method is very close to the real trajectory : The real
trajectory represents the ground truth GPS positions and
the estimated one represents the estimated positions by our
“triangle-based” method.

A steady improvement of the estimated trajectory is
observed in the Fig. 8. The trajectory is computed for a



Fig. 7. Good matches using SURF detector and FREAK descriptor - Images from KITTI data base

Fig. 8. Motion estimation : comparison between the “triangle-based”
method estimation (red) and the GPS/INS ground truth poses (blue)- For
this sequence of 549 frames, the estimated trajectory is very close to the
real trajectory

sequence of 549 frames. The comparison among the trajecto-
ries shows some amounts of drift. We explain this difference
by the quality of the feature matching distribution on each
image. We found also two relevant errors in two situations.
These errors are due to a low number of feature points. For
instance, in some scenes there are very small clutters. As we
calculate the current pose always in the system coordinate of
the previous one, the errors are propagated and accumulated.

The estimated positions in a straight motion segment are
very close to the ground truth positions. We consider these
results to be encouraging for an unsynchronized multi camera
setup. Also, we suppose that a some improvement could be
obtained by applying a local bundle adjustment.

VI. CONCLUSIONS

In this paper, we have presented a novel motion estimation
method which we called “triangle-based” method using an
unsynchronized multi camera setup. The “triangle-based”
method motion estimation assumes that the trajectory be-
tween two consecutive frames is approximated to be a linear
segment (straight or smoothly curved). Our method requires
an off line calibration knowledge and can be implemented
on any mobile platform because of it flexibility and its real
time implementation possibility. The unsynchronization will

be useful by many applications such autonomous vehicle and
many robotic tasks. The presented approach results improves
high accuracy at the straight motion segment and still very
close to the curve trajectory. Although we use a robust
method, some errors can be spread due to the inaccuracy
in the pose estimation part. These errors can be corrected by
a local bundle adjustment.
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