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Abstract— In future Advanced Driver Assistance Systems
(ADAS), smart monitoring of the vehicle environment is a key
issue. Fisheye cameras have become popular as they provide a
panoramic view with a few low-cost sensors. However, current
ADAS systems have limited use as most of the underlying
image processing has been designed for perspective views only.
In this article we illustrate how the theoretical work done in
omnidirectional vision over the past ten years can help to tackle
this issue. To do so, we have evaluated a simple algorithm
for road line detection based on the unified sphere model in
real conditions. We firstly highlight the interest of using fisheye
cameras in a vehicle, then we outline our method, we present
our experimental results on the detection of lines on a set of
180 images, and finally, we show how the 3D position of the
lines can be recovered by triangulation.

I. INTRODUCTION

In recent years, Advanced Driver Assistance Systems
(ADAS), initially limited to luxury vehicles, have become
available on high-volume models. Medium-sized cars are
now sold with ADAS features such as lane departure warn-
ing, blind spot monitoring and road sign recognition. As
reported in [1] an impressive growth of the ADAS market is
expected, going from $10 billion in 2011 to $130 billion
in 2016. This growth will be possible not only through
the reduction of component costs but also with the inte-
gration of new functions on the original architecture. This
explains why ADAS based on vision are one of the most
common schemes for driving assistance as cameras can be
considered as versatile multifunction sensors. Recently, [25]
has highlighted the performance potential of camera sensor
combined with increasingly competitive costs. In the future,
as ADAS should offer more and more automated assistance,
this will imply a robust and complete perception of the
vehicle environment while maintaining affordable costs with
sensor rationalization and fusion.

Monitoring the surrounding environment of a car can
be achieved using a very small number of cameras. An
omnidirectional observation of a scene is possible with a
single camera by combining it with a convex mirror. Such a
system, called a catadioptric sensor (association of a mirror
(catoptric) and lenses (dioptric)), has been widely studied
in autonomous robotics [8][33][6]. Its use for automotive
applications has also been explored [18][19][27]. However,
this sensor is not optimal for the monitoring of the sur-
rounding environment because objects close to the vehicle
may be occluded by the vehicle itself. Recently, the use

of multiple large field of view cameras has been proposed
[10][21]. [29] has demonstrated the potential of such a sensor
for pedestrian detection in blind spot monitoring. Indeed,
wide angle cameras such as fisheyes are particularly suitable
for lateral views as a single camera placed on the side can
observe all the surrounding objects from the rear to the front
of a car. Thus, only four wide angle cameras are needed to
obtain a complete bird’s-eye view from above the vehicle as
demonstrated with the NISSAN Around viewTM monitor.

Theoretical works in omnidirectional vision have let to the
formalization of a unified model which consists of a projec-
tion onto a virtual unitary sphere. While initially restricted to
central catadioptric sensors [14], this model has recently been
extended to fisheye cameras [7]. In past studies, we showed
how this framework can be helpful for 3D reconstruction [5]
and how it can improve classical machine learning algorithms
for image understanding [9]. In this paper, we want to
highlight the potential of such a model coupled with fisheye
sensors for an ADAS application by applying it to road-
marking detection. Road-marking detection is a basic step in
many ADAS functions such as lane-departure warning, lane-
keeping and blind-spot control. In this paper, we present a
simple and efficient algorithm for detecting lane marking
using lateral fisheye views. As a first step, the algorithm is
restricted to straight line detection and is evaluated in real
conditions on a database of 180 images. Using our method,
a 3D reconstruction of lines is possible, which facilitates
the rejection of outliers and will be helpful in automated
guidance. In section II, we set out the state of the art
with regard to road-line detection algorithms in classical
and omnidirectional images. In section III, we present our
new algorithm for detecting straight lines in omnidirectional
images. Section IV is dedicated to the experimental results
obtained from this detection algorithm as well as to a straight
line triangulation application. Lastly, in section V, we present
a conclusion and identify several directions for future work.

II. STATE OF THE ART IN METHODS FOR DETECTING
STRAIGHT LINES IN OMNIDIRECTIONAL IMAGES

Road-marking detection for ADAS applications has been
widely studied using monocular systems [22], stereovision
[24] or more recently by fusion with navigation sensors
[28] but most of the algorithms proposed are suitable
for perspective front views only. An interesting survey of
common algorithms can be found in [32]. Lane detection



obtained from lateral views is, however, particularly suitable
in applications where lateral parts of the vehicle have to be
monitored. But in such a case, perspective cameras cannot
be used due to the fact that surrounding objects may be very
close to the car. In [20], the authors demonstrated how this
issue can be tackled using fisheye cameras. They proposed a
method to detect road marking based on some assumptions
regarding the movement of cars. In [21] they also used their
line detection method for on-line fisheye calibration. Another
interesting use of fisheyes can be found in [16] where the
authors used this sensor for car recognition.

The detection of straight lines in omnidirectional images is
much less easy than in perspective images as the projection
of lines onto an image plane no longer gives straight lines
but conic sections. The classical problem of detecting lines
in perspective images therefore becomes a complex problem
of detecting conics in omnidirectional images. There are
several special cases which simplify the detection of lines
in omnidirectional images. [34] and [8] were interested
in the detection of lines projected radially onto a conical
mirror. This configuration requires that the sensor be in a
vertical position and that there be sufficient vertical lines
in the environment. [12] proposed a method for extracting
horizontal and vertical segments but not for every type of
straight line. This limitation is due to the use of non-central
sensors which makes the detection of certain types of lines
extremely complex. The same problem is covered in [26].
For central sensors, the methods for estimating lines can
be classified into two main categories. The first category
tries to detect conic sections in the image and to estimate
the five parameters so that the conic section is adjusted to
the extracted data [36]. The computation time is generally
long and these algorithms are not efficient when only small
proportions of the conic sections are visible. Furthermore,
these methods are often only applicable in the special case of
the paracatadioptric sensor, a combination of a paraboloidal
mirror and an orthographic camera, as the projections of
the lines then become arcs of circles [2] [3] [30]. The
second category involves the detection of great circles on the
equivalence sphere. It has been demonstrated in [15] that the
projection of a 3D line on the sphere is a great circle C as
illustrated in Figure 1. These methods are only applicable to
calibrated sensors as it is necessary to be able to calculate the
projection of pixels on the equivalence sphere. [4] describes
such a method.

The main advantage of the detection of great circles
on the equivalence sphere is that the algorithm can be
used for all central sensors because it is a unified model.
The detection of great circles is in general carried out by
a Hough transformation [17], the difference between the
various algorithms is the space in which the processing is
carried out. In [31], the great circles on the sphere are defined
by their normal, characterized by the angles of elevation
and azimuth. A Hough space based on these angles is then
created and the detection of maxima in the Hough space
enables the parameters for the lines to be obtained. There
are other Hough spaces for characterizing the lines. It is for

Fig. 1. Projection of a line onto the equivalence sphere.

example possible to use either the normal directly [23] or its
cubic coordinates [35]. However, the Hough transformation
introduces several problems such as the selection of the best
sampling step for the Hough space which should in addition
take account of the non-uniform resolution of the sensors. In
addition, the detection of maxima in the Hough space is a
complicated step.

III. OUR METHOD

As we have seen in the previous section, most of the
existing algorithms are either specific to a type of mirror or
specific to a given type of line (horizontal or vertical). We
therefore propose a new method for detecting and estimating
any type of line in omnidirectional images, valid for all
central sensors and based on the robust RANSAC (RANdom
SAmple Consensus [13]) estimation algorithm. The first
phase in our method consists in extracting the edges present
in the omnidirectional image (figure 2a) by applying Canny’s
algorithm. A very large number of edges are detected some of
which are not actually physical edges, as is shown in Figure
2b. Chains of connected pixels are then created with the
edges previously extracted. To avoid detecting a multitude
of small lines, chains which are too short are disregarded.
The result of this step is shown in Figure 2c. In this figure,
the chains of connected pixels are represented by different
colors and chains fewer than 50 pixels have been discarded.

Fig. 2. (a) Omnidirectional image - (b) Detected edges- (c) Chains of
connected pixels.

Each chain thus created is a potential omnidirectional line.



It is therefore necessary to make a decision on whether it
really is a line and, if so, estimate its parameters. Omni-
directional lines will be characterized by the normal to the
plane which contains the line and which passes through the
center of the equivalence sphere (see Figure 3).

Fig. 3. Characterisation of an omnidirectional line by a normal.

We propose to work directly on the unitary sphere S2 ∈
R3. We characterize a line by the normal n ∈ S2

+ to the
plane formed by the line and the center of projection. All
the pixels in the chains are projected onto the equivalence
sphere. This step, called lifting, requires knowledge of the
intrinsic parameters of the sensor and therefore assumes the
sensor to be calibrated. All the following calculations are
carried out using the points on the sphere. To estimate the
parameters of the line which best correspond to the points
in the chain, a robust estimation method called RANSAC
is used. Its pseudo-code is given in Algorithm 1. For each
chain, two points X1

S and X2
S are taken randomly and the

normal to the plane passing through these two points and the
center of the sphere is calculated:

n = λ
X1

S ×X2
S

‖X1
S ×X2

S‖
, where λ ∈ {−1, 1} ensures that n ∈ S2

+

(1)
The other points in the chain are then tested to decide

whether they belong to the great circle C given by:

C = {XS|nTXS = 0, ‖XS‖ = 1} (2)

In practice, because there are small errors due to noise, the
discretization of the image or calibration, an error threshold
is set to decide whether or not point XS belongs to the
great circle C . All the points belonging to the great circle C
defined by n are then stored in the memory. If the number of
points belonging to the circle C is greater than the minimum
length allowed for defining a line, then the pixel chain does
indeed relate to a line whose normal is re-estimated using
all the points belonging to the great circle. It is then possible

to define segments rather than lines by taking the first and
last pixel in the chain belonging to the great circle.

Algorithm 1 Pseudo-code for estimating omnidirectional
lines using the RANSAC method.
k ← 0
while k < MAX ITERATIONS do

maybe inliers = 2 points selected randomly
maybe line = n estimated using these 2 points
consensus set = maybe inliers
for each point not in maybe inliers do

if the point complies with the model with an error
smaller than MAX ERROR then

add the point to consensus set
end if

end for
end while
if the number of points in consensus set > THRESHOLD
then

This is definitely a line.
Re-estimation of n with all the points in consensus set

end if

IV. EXPERIMENTAL RESULTS AND APPLICATION TO LINE
TRIANGULATION

A. Line detection

We applied this algorithm to the field of autonomous
computer-aided driving, so we chose to place our cameras
close to the left and right rear-view mirrors of a car. The
camera we used is a Prosilica GC1380C with a fisheye lens
(Fujinon fisheye 1:1.4/1.8mm) reducing its region of interest
to a resolution of 1024x1024 pixels so that the circular field
of view is centered in the images. We pointed this sensor
toward the road with an angle of about 45 ˚ in order to see
both the immediate environment (road and blind spots of the
car) and the global environment (buildings for instance). The
sensor was calibrated using our omnidirectional calibration
tool1. During testing we drove both in urban zones and on
highways, with several quality levels of the road (texture,
uniformity, etc) and its markings (good, damaged or miss-
ing). We took 180 images, which were later processed with
our algorithm. To evaluate the sensitivity of the processing,
we calculated the True Positive Rate (TPR) according to the
following formula:

TPR =
TP

TP + FN
(3)

• True Positives (TP) are cases where there is a road
marking or a border of the road in the image and the
algorithm detects it (see Figure 4a and 4b).

• False Negatives (FN) are cases where there is a line or a
border of the road in the image and the algorithm does
not detect it (see Figure 4d).

1This software is available at http://omni3d.esigelec.fr/doku.php/omni/calib



• False Positives (FP) are cases where the algorithm
detects a line where there is none (see Figure 4c).

• During our tests, we did not encounter any True Nega-
tives (TN), due to the fact that there was always a road
marking or a border of the road in the field of view.

Fig. 4. Samples of line detection. (a) and (b) True Positives, (c) False
Positive, (d) False Negative

The TP, FN and FP rates are given in Table I.As shown,
we obtained a True Positive Rate of 86.9%.

TABLE I
DETECTION RATES OBTAINED ON THE 180 IMAGES OF THE DATABASE

TP 81.11%
FN 12.22%
FP 6.67%

TPR 86.9%

B. 3D reconstruction

The detection of omnidirectional lines outlined above
enables us to parameterize the line in the local reference
frame of the sensor, the line being represented by the normal
to the plane containing the line and the center of the sensor.
It is possible to triangulate the line, in order to obtain its
3D position. This can be achieved if the pose (R, t) of the
sensor relative to the road is known. In practice, we used
a calibration pattern lying on the road to estimate the pose
by solving an omnidirectional Perspective-N-Point problem
[11].

Let (C1, x1, y1, z1) be the reference frame attached to
the vehicle (see Figure 5). The center C1 = [0 0 0]T is
located vertically below the omnidirectional sensor and on
the road level. n1 = [0 0 1]T is the normal of the road.

Let C2 = [c2x c2y c2z ]
T be the center of the sensor, and

(C2, x2, y2, z2) the reference frame of this sensor. n2 =
[n2x n2y n2z ]

T is the normal characterizing the line within
the reference frame (C1, x1, y1, z1) . The objective is to
determine the parametric equation of the corresponding 3D
line L: L = A+ λu, where A is a point on the line and u
its direction vector.

Fig. 5. Triangulation of an omnidirectional line.

The line verifies the equation of the two planes, therefore:

{
z = 0

n2x .x + n2y .y + n2z .z − n2z .c2z = 0
(4)

In z = 0 and x = 0, line L therefore passes through point

A with coordinates A =
[
0 n2z .c2z

n2y
0
]T

.
The direction vector u of the line is obtained directly by

calculating the cross product of the normals of the two planes
defining this line:

u =
n1 × n2

‖n1 × n2‖
(5)

The 3D estimation of the line was evaluated in a corridor
as shown in Figure 6. The sensor was mounted on a robot
and calibrated as described above.

The line corresponding to the bottom of the wall was
detected and its 3D position was compared with the ground
truth obtained using a 3D laser scanner (Leica ScanStation
C10). Figure 7 shows that the estimated position of the line
(in green) corresponds to the ground truth obtained by laser
telemetry (in gray).

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel method for line
detection in omnidirectional images which is able to extract
any straight lines (not only vertical ones) with any central
sensor (fisheye, or catadioptric sensors of any shape). We



Fig. 6. The omnidirectional image used for the 3D reconstruction of the
line.

Fig. 7. 3D reconstruction of a corridor. The triangulated line is represented
in green and the ground truth in gray.

applied our algorithm to road line detection with fisheye
cameras embedded in a vehicle. The True Positive Rate
of 86.9% that we obtained demonstrates that the proposed
technique works very well. It is also possible to obtain the 3D
position of the detected lines, using triangulation, which can
be useful for ADAS features such as lane departure warning
or for the visual servoing of vehicles on the road. Our future
works will focus on the problem of tracking the lines over
time to improve the results in terms of robustness.
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