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Fusion of Omnidirectional and PTZ cameras for facaletection & tracking

Amine Iraqui.H, Yohan Dupuis, Rémi Boutteau, Jeare¥'Ertaud and Xavier Savatier
Institut de Recherche en Systémes Electroniquesitfords (IRSEEM, France)

Abstract and tracking algorithms. The fusion procedure of th
omnidirectional and PTZ cameras is described iticec
5. Section 6 illustrates our experiment results| section

Many applications for mobile robot authentioat ;
Y app 7 concludes this paper.

require to be able to explore a large field of vieuith
high resolution. The proposed vision system is ca®@ .
of a catadioptric sensor for full range monitorimpd a  2- An overview of the system

pan tilt zoom (PTZ) camera leading to an innovative

sensor, able to detect and track any moving objatts The set-up of the dual camera system is shown in
higher zoom level. In our application, the catadiap Fig.1. The proposed vision system, dedicated toil@ob
sensor is calibrated and used to detect and trackans robot applications for biometric authentication,séa

of interest (ROIs) within its 360 degree field déw catadioptric sensor with a dome PTZ camera.

(FOV), especially face regions. Using a joint cadition
strategy, the PTZ camera parameters are automdyical
adjusted by the system in order to detect and tthek
face ROI within a higher resolution.

1. Introduction

With rapidly growing demands in monitoring lile
robot applications for nomad biometric authentmati
substantial developments have been released with
multiple-camera sensor systems. One of the inggilig
examples is the use of an omnidirectional camera in
conjunction with pan tilt zoom (PTZ) camera, reéerito
as a dual camera system. Omnidirectional camemas ar
able to explore a wide field of view (FOV) withits i360
degrees full range monitoring. However, due tova &md

non-uniform resolution, these catadioptric sensare Fig.1. Prototype of the vision system
unable to provide close observations of partictdagets, . ) o
especially in biometric authentication applicationkis is Among all configurations of central catadioptric

where PTZ cameras fit in. With high mobility andozo sensors existing in the literature, the combinatidna
ability, PTZ cameras compensate the deficiencies ofhyperbolic mirror and a camera is preferable fer sake
omnidirectional cameras. of compactness since a parabolic mirror needs kybul
Based on a unified model projection introdudsd telecentric lens. The hyperbolic mirror assuresy anie
Geyer [1], the catadioptric sensor is calibratacyrider to ~ Point of projection in order to create a perspectimage.
generate correct perspective images. By using Véola The chosen reflector is directly placed over thmem
Jones algorithm [6] in the resulting images, thegpam ~ CCD sensor (1.3 Megapixel) and its field of viewesds
detects the face ROI, and then applies the trackingfrom 16degrees over the horizon to 90 degrees bdlgw
algorithm based on a correlation approach. Finallpint ~ using such a sensor, the obtained resolution irsagen-

calibration method is performed to localize theefa&Ol ~ uniform and low. .
in order to generate a zoomed in face image witfh hi T obtain images with a better resolution, we uSimme
resolution. Axis Network PTZ camera placed in parallel to the

This paper is organized as follows. Section 2 azimuth axis of the omnidirectional camera. Thimeea
describes the vision system proposed. Section 3 isoffers wide zoom ability (optical zoom 35x), a pamge
dedicated to the modeling and the calibration ¢emdc ~ Of 360°, a tilt range of 180° a high mobility asgeed
sensor. Section 4 focuses on the proposed facetivete ~Movement until 450°/second.



3. The catadioptric sensor

3.1. Fixed view point constraint

The catadioptric sensor architecture adhéveshe
Single-View-Point theory [2]. The SVP constraintibles
to generate correct perspective images. In faetpfitical
center of the camera has to coincide with the stfocus
F’ of the hyperbola located at distance 2e from theami
focus as illustrated in Fig.2. The eccentricityis a
parameter of the mirror given by the manufacturer.

Image plane !
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Fig.2. Image formation with a hyperbolic mirror.

To realize this task, we first calibrate our cametith a
standard calibration tool to determine the cenpmaint
and the focal length. Knowing the parameters ohlthe
mirror and the camera, the image of the mirror loa t
image plan can be easily predicted if the SVP cairdtis
taken into consideration, as illustrated in Figthe
expected mirror boundaries are superposed on thgem
and the mirror has then to be moved manually tohf
estimation as shown in Fig.3.

Fig.3. Adjustrhent of the mirror position to respt
SVP constraint. The mirror border has to fit theneation
(green circle).

3.2. Sensor calibration

The sensor calibration is a necessary stegstablish
the relationship between the 3D points of the scamd
their projection into the image (pixel coordinates)
Although there many calibration methods, they can b
classified in two main categories: parametric am-n
parametric methods. The first category consisfinnling
an appropriate model for the projection of 3D panto
the image plane. Non-parametric approaches aseociat
one projection ray to each pixel [11] and providiblack
box model” of the sensor. They are well adapted for
general purposes but minimization algorithms (grati
descent, Gauss-Newton, Levenberg-Marquardt, ete) ar
more complex. As a consequence, we used a parametri
method, which requires the choice of a model.

Several models are available for catadioensors:
Ad hoc model, polynomial approximation and generic
model. The Ad hoc model was introduced in [9]. Mirr
parameters, camera parameters and the intrinsigxnoét
rigid transformation between them, are used toehtite
image formation. The large number of parameterbeo
estimated leads to an error function which is diffi to
minimize because of local minima [10]. The polynami
approximation of the projection function was intuced
by Scaramuzza [12], who proposed a calibrationbtmol
for his model. The generic model, also known as the
unified model, was introduced by Geyer [2] and Btor
[4] who proved its validity for all central catagiwic
sensors. This model was, then, modified by Mei [#0jo
generalized the projection matrix and also tooko int
account the distortions. We choose to work with the
unified model that can be applied with a reasonable
number of parameters to be estimated. Figure £septs
the projection process.

As described in [5] and [8], the projection of a gbint
can be done as follow:

(1) The 3D point X[w y Z] is projected onto the unit
sphere centered 0@, :

X
(Xs)c =Ton 1)
X
(2) Points )g=[)g A ng are, then, projected onto
the new frame with the origift, 2’0 0 E]T:
()(s,)CP = (Xs ys Zs +£)T (2)
(3) The obtained point(XS)CP onto a normalized
plane:

o x Y. !
m'[(z+<z) (Z+€) 1] ©




(4) The last step enables us to find the cameraprocess enables to find the parameters combinatian

projection matrix K expressed according }

and J, , which are respectively, the generalized
horizontal and vertical focal length, and
(Uqy,Vy) the coordinates of the principal point
on the image point and the skew:

yu yu'a uO
p=Km=| 0 Vo Vo lM (4)
0 0 1

In our model, we consider that the impact of the
parametedr , often null, is irrelevant. Parameters to be

estimated in that model aré, y,, . ,U, and v, .

J} Normalized plane

Unit Sphere

Fig.4. Unified projection model.

To estimate the previous parameters, Boutteal3],
has already implemented freely available softwave t
estimate the parameters from several pictures. ti¢h
tool developed, calibration is achieved by obseyvian
planar pattern at different positions. The pattean be
freely moved (the motion does not need to be kncamal)
the user needs to select the four points corneiterpa
This calibration process is similar to that of M20]. It
consists of a minimization over all the model pagtars
of an error function between the estimated prajpestiof
the pattern corners and the measured projectiongusi
Levenberg-Marquardt algorithm [13]. This minimizati

reduces the error of pattern retro projection.

4. Face detection & tracking on catadioptric
pictures

Most of image processing techniques are pad
on conventional images, i.e. perspective imagetualy,
deformations caused by the catadioptric system ao n
give us the opportunity to perform the existing efac
detection algorithms on raw images (Fig.5, (a)). &s
consequence, geometrical transformations should be
performed to obtain a panoramic image close to
perspective images, where the face detection #fgori
will be performed.

4.1. Panoramic images unwrapping

The existence of the model of the unit sphere, as
described in paragraph 3.2, simplifies the unwnagpi
problem. In fact, under the fixed view point coagit and
by performing a retro projection, we are able tojgurt
the pixels of the panoramic pictures onto the sphere
used in the unified model. Then, these pixels aogepted
onto the image plane. Thereby, we obtain the mappin
between the pixels on the panoramic image and their
corresponding on the camera retinal plane. Figure 5
(Fig.5, (b)) shows the result of the spherical
transformation of the considered catadioptric image
Face detection algorithm is applied to these unpedp
images.

(b)

Fig.6. Image transformation outcome: (a) Original
catadioptric image (b) Unwrapped image obtained by
spherical transformation



4.2. Face detection & tracking algorithms

are ranked and weighted. A positive result from filhst
classifier triggers the evaluation of a second sifes

Face detection techniques have been researched fovhich has also been adjusted to achieve very high

years and much progress has been proposed irtditera
However, in 2001, Paul Viola and Michael Jones [6]
achieved a robust real time method for face detecti
which is fifteen times quicker than the existingthuals.

The technique relies on the use of simple Haar-like
features that are evaluated quickly through the afsa
new image representation called “integral imagedtth
allows fast feature evaluation. Figure 8 represamts of
the 60000 Haar-like features available. The diffieeeof
pixel intensities between the white and black regio
enables us to define a certain threshold, during th
training stage of the detector, characteristiche face
region.

To reduce the number of the computations requiced t
achieve the rectangular filtering, we use the irakg
image at location p(x,y), which is the the sumt@ pixel
values above and to the left of the pixel includitsglf
(Fig.7, (a) ). As shown in figure 7 (Fig.7, (b)¢tla, b, c
and d be the values of the integral image at tmeercof
the region of interest. Then, the sum of the odbimage
values within the ROI is:

Y pixels=a+d-b-c (5)

As a consequence, the sum is reduced to threetmpera
Moreover, the integral image is used for each Hiaar-
feature. It avoids repeated operations as largehas
number of pixels in the ROI.

p(xy)

Fig.7. Integral Image: (a) Computation process
(b) ROI pixels sum.

To select the best filtering feature, Adalipdbe
machine learning introduced in [7], is used. Intfaiven
a set of weak classifiers, not much better thadoan if
we iteratively combine their output, the trainingoe will
quickly converge to zero. The best threshold fochea
filter is determined over the training test. Théme best
filter is selected. Misclassified examples costthen
reweighed and repeat. The learning process stopa aih
the examples are well classified. The filters aten,
ranked and linearly combined to create the finassifier.
Finally, to speed up the face detection, a setastade
classifiers are used. The overall form of the datac
process is that of a degenerate decision tree, whatall
a “cascade”. As explained before, the rectangulears

detection rates, and so on (Fig.9). A negative @ute at
any point leads to the immediate rejection of thib-s
window.

N
Fig.8. Haar like features (Courtsey of [6])

Once the face determined from the unwrapped parnoram
image by Viola & Jones algorithm, we use the ceofer
the corresponding ROI to perform the tracking atbaonm.
Actually, the new location of the face ROI is detared
with correlation coefficients between the ROI ar t
region delimited by the rectangle (Fig.7, (b)). The
maximum corresponds to the new location of the ROI
center. The face regions are updated and the prases
repeated from frame to frame. In the catadioptecef
detection, only visual detection is allowed becaokthe
low resolution of the resulting images. This is the
principal reason of using a PTZ camera capablébtai

a zoomed in face ROI with a high resolution.

[ All Sub—windows

~ T

i “Further
Processing

Reject Sub—-window

Fig.9. Nested Classifiers.

5. Fusion of Omnidirectional and PTZ

cameras

5.1. Joint Calibration Strategy

The joint calibration method is based on mafj a
reference position(x,y,) for the PTZ camera on the

catadioptric 360 degree image is defined. This tjuosi
has to coincide with the default orientation of A€z



camera and is chosen as the starting point forgpayhe
evaluation (Fig.10.). In fact, given a popx, y)and the

image catadioptric image cen€gx,),), we can

compute the pan angﬂ-;) in the omnidirectional

g,= arcta{u] (6)
X=X

referential:

In our case, only the pan angle required for tA& P
camera has to be computed. As we have the pan é?',),gle

determined from the catadioptric image, the assedia
vectoru is given in the following expression:

u,) (cos6,)
u=lu, |=|sin@,)
0

®

z

The corresponding tilt angle is evaluated using the Th€ corresponding VeCtOV(Vx vy Vz) in the PTZ

catadioptric sensor calibration by performing araet
projection of the corresponding catadioptric imauipeel
onto the unit sphere, as explained in paragraph 3.2

X

m

0 Zero PTY camera
C (x5 35) v,
u

Fig.10. Determination of the pan angle

Due to the distance (baseline) between the cataitiop
and PTZ sensors and a non-perfect alignment of faei
axis ( non-accurate zero position reference), wediuce
a transformation matrix between the Omnidirecticarad
PTZ cameras that provides the relationship betwaen
given 3D point (X, Y, z) in the omnidirectional

camera referential and its

camera referential can provide the calculation loé t
required pan anglea’panof the PTZ camera by the

following equation:

<

L)

tan@@ —
VX

pan)

Due to equations (8) and (9), only the parameters
(a,;,a,,,8,,,8,,) have to be identified.

5.2. Face detection with PTZ camera

As explained in the previous sections, thediaptric
sensor is able to detect and track face ROIls. Byguke
ROI data localization from the catadioptric imagts
PTZ camera can detect and also make a zoom iratiee f
ROI. A brief description of the different steps the face
ROI localization are as follow:

1. Performing Viola & Jones face detection algaritbn
the unwrapped catadioptric image to identify anchlize
the face ROI.

2. Using the pan angle of the ROI center, we cateuthe
pan angle to be directed to the PTZ camera. Weause
constant tilt angle and a minimum zoom value. This
enables us to point the PTZ camera on a largevenese
the face is probably located.

corresponding  point 3 performing, again, Viola & Jones face detection

(X', v, z) in the PTZ camera referential (equation aigorithm to detect the face ROI in the obtainedZPT

(7).

X' a:I.l a:l.2 a13 X tX
Y'([=|la, a, ay| Y [+t | @
Z' a31 a32 a33 Z tZ
In the equation above, the rotation parameters

(a; ) represent the default alignment between both

cameras and the translation vecttﬁrx, ty, tz)T
corresponds to the baseline

image.

4. Commanding the PTZ camera in order to center the
face ROI detected in the PTZ image ( pan and tilt
calculation) and then applying a zoom factor coregu

as expressed below:

Im age_ width
ROI _ width

Zoom= Min Im age_ht.elght
ROI _height

This last step enables us to obtain a zoomed mifaage
with high resolution, which can be useful for face
recognition processing.



-
6. Results Omnidirectional
system PTZcamera

In order to test the proposed system, the - l L
omnidirectional camera has been placed at 20 cnerund .
the dome Axis PTZ camera. For the omnidirectinal | 'mageacquisition& | UpdatePTZimage |
camera, we opted for a 1609 per 396 pixels image T calibration
PTZ camera ensures an image resolution of 704 x 576 ) Viola and Jones
‘ Image unwrapping ‘ detector
For the current tests, the architecture sysised for
measurement is a laptop based on Intel Core DusH2z1 Viola and Jones
For the implementation, C language and the Open CV detector Centeringand
library are used to develop the program. As shown i Provide and send zooming faces
Figure 11, the first step consists in initializirne pan angle

catadioptric acquisition process taking and image‘

acquisition. The acquisition frame is 10 fps ane@ th Face tracking

Add new faces and

processing time period is about 50 ms. The regyltin | updtae registered
pictures are unwrapped according to the spherical faces locations
projection. The processing time of this step isual®0 Fig.11. System architecture

ms. Then, the program runs the face detection psote

these unwrapped images on its own thread. Thisatiper  Figure 12 illustrates the different processing step
takes a time of 200 ms. performed in our program, enabling us to have aagin
Once the face ROI localization is determined, the of a zooming face with high resolution.

program sends the corresponding pan angle via http

sockets. Then, a separated process is createddct dee To further optimize the processing time of the
face in the current PTZ image by applying Viola@éds  application, possible improvements in the system
algorithm. By centering and zooming the PTZ canm®ra  architecture are objectives of the upcoming stydies

the face localization, we obtain an image of a high notably in face detection and recognition algorighm
resolution face picture. The resulting face imagas be human gait and iris analysis.

registered and updated when running the face tgcki
algorithm.

(c) (d)

Fig.12. lllustration of face detection & zoomingpedure using dual camera
(&) The unwrapped picture (b) Face detection in therapped image (c) PTZ image corresponding to the
provided pan angle (d) Face detection in the PTagien(e) PTZ image with a centered and zoomed



7. Conclusion

In this paper, a dual camera vision system, cagable

automatically detect and track regions of interasta
higher zoom level, has been described.
Experiment results using robust calibration methadd
real-time detection and tracking algorithms demes
a significantly improved accuracy in providing aser
look of the target for recognition purposes. Outufa
work focus on the improvement of the current pryet
system architecture in order to reduce the procgdsne
of our application.
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