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Abstract – This paper proposes a scheme for a 3D metric reconstruc-

tion of the environment of a mobile robot. We first introduce the ad-

vantages of a catadioptric stereovision sensor for autonomous navi-

gation and how we have designed it with respect to the Single View-

point constraint. For applications such as path generation, the robot

needs a metric reconstruction of its environment, so calibration of the

sensor is required. After justification of the chosen model, a calibra-

tion method to obtain the model parameters and the relative pose of

the two catadioptric sensors is presented. Knowledge of all the sensor

parameters yields the 3D metric reconstruction of the environment by

triangulation. Tools for calibration and relative pose estimation are

presented and are available on the author’s web page. The entire

process has been evaluated using real data.
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I. INTRODUCTION

Interest in autonomous robots has been growing over the

past few years in many applications: intervention in hostile en-

vironments, preparation of military intervention, mapping, etc.

In many case, the navigation should be done in an unknown

environment and can be helped by 3D reconstruction.

Autonomous navigation requires a large field of view to pro-

vide a complete map of the environment. Therefore, interest

for omnidirectional vision, which provides a 360-degree field

of view, has consequently grown up significantly. To obtain a

panoramic image, several methods are being explored: rotating

cameras [1], multicamera systems and catadioptric sensors [2].

We chose to work on catadioptric sensors (camera/mirror com-

bination) because they are able to provide a panoramic image

instantaneously and without moving parts.

To achieve a 3D reconstruction, it is necessary to have two

images of the environment from two different viewpoints either

by moving a single camera or by using a multicamera system.

The second way is more suitable for dynamic environments

because it provides stereo-pair images instantaneously and the

3D reconstruction can be initialized without any motion.

Our work focuses on the development of a catadioptric

stereovision sensor and of a complete toolchain, from calibra-

tion to 3D reconstruction.

The following section describes our catadioptric stereovi-

sion system and how we designed it to respect the Single View-

Point constraint. Section III is devoted to the choice of the

model. In section IV, we describe the calibration tool devel-

oped to determine the model parameters, while in section V we

present the relative pose estimation of the two sensors. In sec-

tion VI we explain how to obtain the 3D coordinates of points

and our experimental results are shown in section VII. Finally,

in sections VIII and IX, we draw some conclusions and estab-

lish future directions for research.

II. SENSOR DESCRIPTION

A. Sensor configuration

It is a well-known fact that a 360-degree field of view

presents advantages for navigation since there are interesting

optical flow properties [3] and more visual features to track.

Although it is possible to reconstruct the environment with

only one camera, a stereoscopic sensor can produce a 3D re-

construction instantaneously (without displacement) and will

give better results in dynamic scenes.

Fig. 1. View of our catadioptric stereovision sensor mounted on a Pioneer
robot. Baseline is approximately 20cm for indoor environments and can be

extended for outdoor environments. The overall height of the sensor is 40cm.

Among all possible configurations of central catadioptric

sensors describes by [2], we have chosen to combine two hy-



perbolic mirrors with two cameras (see Fig. 1) for the sake

of compactness (a parabolic mirror needs a bulky telecentric

lens).

B. How to respect the Single-Viewpoint (SVP) constraint

The formation of images with catadioptric sensors is based

on the Single-Viewpoint (SVP) theory [2]. When the Single-

Viewpoint constraint is respected, sensed images are geomet-

rically correct (pure perspective) and the epipolar geometry is

applicable. In the case of a hyperbolic mirror (see Fig. 2), the

optical center of the camera has to coincide with the second

focus F ′ of the hyperbola located at a distance of 2e from the

mirror focus. The eccentricity e is a parameter of the mirror

given by the manufacturer.

Fig. 2. Image formation with a hyperbolic mirror. The camera center has to
be located at 2e from the mirror focus to respect the SVP constraint.

A key step in designing a catadioptric sensor is to respect

this constraint as much as possible. To achieve this, we first

calibrate our camera with a standard calibration tool such as

that of J.Y. Bouguet [4] to determine the central point and the

focal length. Knowing the parameters of both the mirror and

the camera, the image of the mirror on the image plane can be

easily predicted if the SVP constraint is respected (see Fig. 2).

The expected mirror boundaries are drawn and the mirror has

then to be moved to fit this estimation (see Fig. 3).

Fig. 3. Adjustment of the mirror position to respect the SVP constraint. The
mirror border has to fit the estimation (green circle).

III. PROJECTION MODEL

The modelling of the sensor is a necessary step before 3D

reconstruction can take place because it establishes the rela-

tion between the 3D points of the scene and their projections

in the image (pixel coordinates). Although there are many cal-

ibration methods, they can be classified into two main cate-

gories: parametric and non-parametric. The first family con-

sists in finding an appropriate model for the projection of a

3D point onto the image plane. Non-parametric methods as-

sociate one projection ray to each pixel [5], [6], and provide

a “black box model” of the sensor. They are well adapted for

general purposes but they restrict the number of suitable 3D

reconstruction algorithms. We consequently chose a paramet-

ric calibration method. Using a parametric method requires the

choice of the model, which is very important because it has an

effect on the complexity and the precision of the calibration

process. Several models are available for catadioptric sensors:

complete model, polynomial approximation of the projection

function and generic model.

The complete model relies on the mirror equation, the cam-

era parameters and the rigid transformation between them to

calculate the projection function [7]. The large number of pa-

rameters to be estimated leads to an error function which is dif-

ficult to minimize because of numerous local minima [8]. The

polynomial approximation of the projection function was intro-

duced by Scaramuzza [9], who proposed a calibration toolbox

for his model. The generic model, also known as the unified

model, was introduced by Geyer [10] and Barreto [11], who

proved its validity for all central catadioptric systems. This

model was then modified by Mei, who generalized the projec-

tion matrix and also took into account the distortions (see [8]

for more details). We chose to work with the unified model

described by Mei (see Fig. 4) because any catadioptric system

can be used and the number of parameters to be estimated is

quite reasonable.

Fig. 4. Unified projection model.



A. Projection of a 3D point

A detailed description of the model can be found in [8].

The model contains 11 intrinsic parameters: one mirror pa-

rameter (ξ), 5 distortion parameters (k1, k2, k3, k4, k5) and

5 parameters for the generalised camera projection matrix

(α, γu, γv, u0, v0). To summarize, the projection p of a 3D

point X can be computed using the following steps (see Fig.

4):

• The world point X in the mirror frame is projected onto

the unit sphere: X → XS

• This point is then changed to a new reference frame cen-

tered in Cp

• It is then projected onto the normalized plane: XS → m

• Distortions are added: m → md

• A perspective projection is then applied:

p = Kmd =





γu γuα u0

0 γv v0

0 0 1



 md (1)

B. Lifting

The lifting step is the calculation of the point XS on the

unit sphere corresponding to a pixel, which is very useful for

triangulation. Given m = [x y 1]T the coordinates of the pixel

on the normalized plane, we have:

XS =











ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1 x

ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1 y

ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1 − ξ











(2)

IV. CALIBRATION

The calibration step is very easy to achieve because it only

requires the catadioptric sensor to observe a planar pattern at

different positions. The pattern can be freely moved (the mo-

tion does not need to be known) and the user only needs to

select the four corners of the pattern.

The calibration process is similar to that of Christopher Mei

[8]. It consists of a minimization over all the model parame-

ters of an error function between the estimated projection of

the pattern corners and the measured projection thanks to the

Levenberg-Marquardt algorithm.

V. RELATIVE POSE ESTIMATION

Once the sensor calibration is completed, we have to know

the relative pose of the two sensors to achieve a 3D reconstruc-

tion by triangulation. There are two ways to determine the

relative pose of the two sensors : either by finding the essential

matrix using the epipolar geometry then decomposing it to ob-

tain the translation and the rotation between the two sensors,

or by using a pattern to find the relative pose directly. Both

methods have been implemented.

A. Essential matrix estimation using epipolar geometry

Epipolar geometry describes the relationship between two

cameras. Since it depends only on the parameters of the cam-

eras and their relative pose (it is independent of the scene struc-

ture), it can be computed from the correspondence of a few

points. The main aim of determining the epipolar geometry

is to compute the relative pose of the two sensors (or the dis-

placement of one sensor) but it is also useful for simplifying

the search for corresponding points in the two images.

Epipolar geometry is well-known for classical cameras [12]

[13]. Given a point on the first image, a line on which the cor-

responding point lies on the second image can be determined.

This line is known as an epipolar line and corresponds to the in-

tersection of an epipolar plane with the image plane. Epipolar

geometry of catadioptric sensors is more complicated because

of the complex shape of the mirror. It is nevertheless possi-

ble to argue from analogy with a classical camera by working

with points on the unit sphere (lifted points) rather than image

points.

Let the projection of a 3D point X onto the unit spheres be

denoted XS1 and XS2 (see Fig. 5), and R and t be the rotation

and the translation between the two sensors. The coplanarity

constraint of the points X, XS1, XS2, C1 and C2 can be ex-

pressed as follows:

XS2R(t ∧ XS1) = 0 (3)

Fig. 5. Epipolar geometry of spherical sensors.

The coplanarity constraint (3) can be expressed in matrix

form:

XT
S2EXS1 = 0 (4)

where

E = RS (5)

is the essential matrix first introduced by Longuet-Higgins [14]

and S is an antisymmetric matrix characterizing the transla-

tion: S =





0 −tz ty
tz 0 −tx
−ty tx 0



.



Given two lifted points XS1 =
[

x1 y1 z1

]T
and

XS2 =
[

x2 y2 z2

]T
corresponding to the same 3D point X,

(4) becomes for each pair of matched points:

x2x1e11 + x2y1e12 + x2z1e13 + · · · + z2z1e33 = 0 (6)

where E =





e11 e12 e13

e21 e22 e23

e31 e32 e33



.

With n matched points (n ≥ 8), we can build a system of

equations of the form [13]:

Ae = 0 (7)

where e =
[

e11 e12 e13 · · · e31 e32 e33

]T
.

The essential matrix is computed through the following

steps:

• detection of Harris corners

• matching of the corners with backward correlation in or-

der to reject the false matches as described in [15]

• resolution of (7) by Singular Value Decomposition of A

B. Calibration with pattern

To plan its path, a robot must have a metric model of its

environment, which implies knowledge of the baseline. Nev-

ertheless, the essential matrix is estimated up to a scale factor

with the eight-point algorithm [13], which leads only to a pro-

jective reconstruction. To solve this problem, we developed

another method for the relative pose estimation problem.

This method uses patterns shown at different positions

as with calibration. Let X be a point with coordinates

X1 =
[

x1 y1 z1

]T
in the first frame associated with the first

sensor (see Fig. 6). Its coordinates in the second sensor refer-

ence frame can be expressed by:





x2

y2

z2



 =





r11 r12 r13

r21 r22 r23

r31 r32 r33









x1

y1

z1



 +





tx
ty
tz



 (8)

Fig. 6. Relative pose estimation principle.

With n control points, we can build the following system

using (8):
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The 3D coordinates of the pattern corners are estimated us-

ing the Levenberg-Marquardt algorithm. The resolution of (9)

gives the relative pose (R, t) of the two sensors including the

scale factor.

Once the relative pose is computed, the essential matrix can

be easily computed thanks to (5).

VI. 3D RECONSTRUCTION

Reconstruction consists in determining the 3D coordinates

of a point X, given its projections x1 and x2 onto the two im-

ages. Consequently, the first step is to match pixels.

A. Epipolar geometry helps pixel matching

In addition to the essential matrix estimation, epipolar ge-

ometry possesses some helpful properties for pixel matching.

For each point XS1 on the first unit sphere, the epipolar

curve is characterized by the normal of the plane n2 = EXS1.

The epipolar curve on the second image is obtained by deter-

mining the intersection of the plane and the second equivalence

sphere, which is a great circle. In the same way, n1 = E
T

XS2

characterizes the epipolar curve corresponding to XS2 on the

second sphere.

The epipoles are the points of intersection of the line joining

the center with the unit sphere. All the epipolar curves inter-

sect at the two epipoles. They can be directly computed from

the essential matrix by singular value decomposition as in the

classical case [13].

B. Mid-point method

In theory, the rays corresponding to two matched pixels

must intersect at X. In practice, however, various types of noise

(distortions, small errors in the model parameters, etc) lead to

lines generated by corresponding image points which do not

always intersect. The problem is to find a 3D point which op-

timally fits the measured image points [13].

This step is achieved by using the mid-point method (see

Fig. 7). Lifted points XS1 and XS2 corresponding to the pixels

are first computed using (2). These points are then used to

define the direction vectors v1 and v2 of the two rays. The 3D

point X is chosen as the mid-point of the shortest transversal

between the two rays.



Fig. 7. Mid-point method. The 3D point X is chosen as the mid-point of the
shortest transversal between the two rays.

VII. EXPERIMENTAL RESULTS

Each step of the 3D reconstruction was evaluated and a

global result is shown at the end of this section. Experiments

were implemented on real images and without prior knowledge

to evaluate our system in real conditions.

A. Calibration

The calibration was evaluated by computing the Root of

Mean Squares (RMS) distances (in pixels) between the ex-

tracted corners (77 per image) of the pattern and the repro-

jected ones. Figure 8 shows the RMS error with respect to the

number of images of the pattern used for the calibration. We

can notice that the error decreases when more images are used

but tends to stabilize from 6 images. The minimum RMS value

obtained is then about 0.02 pixels.

Fig. 8. RMS error versus the number of images of the pattern.

The model parameters obtained by the calibration allows the

lifting, i.e. the projection of the pixels onto the unit sphere as

shown in Figure 9.

B. Relative pose estimation

The relative pose estimation was evaluated on real images.

The sensor was mounted on a graduated rail and was moved

10cm by 10cm. At each position, an omnidirectional image

was acquired with the aim of computing the displacement of

the sensor according to the first position using five calibration

patterns placed in the room (see Fig. 10).

Table I summarizes the results. The average error is less

than 0.9%.

Fig. 9. An omnidirectional image and two views of its projection onto the
unit sphere.

Displacement (mm) 100 200 300 400 500 600

Estimation (mm) 100.13 200.77 296.48 393.66 494.70 594.60

TABLE I

ESTIMATION OF THE DISPLACEMENTS

Once the relative pose is estimated, we can compute the es-

sential matrix and use it to check epipolar geometry proper-

ties. In figure 10, for each selected pixel on the left image

(red crosses), the corresponding epipolar curve (green curves)

is drawn on the right image and vice versa.

Fig. 10. Epipolar curves (green) corresponding to selected pixels (red
crosses).

C. 3D reconstruction

The entire process was evaluated by a piecewise planar 3D

reconstruction of our laboratory (see Fig. 11). The four corners

of the ceiling were manually selected to check the size of the

room. After triangulation, we estimated the ceiling dimension

at 6.39 x 6.34 meters and the actual size is 6.4 x 6.4 m.

Fig. 11. Piecewise planar 3D reconstruction of our laboratory.



VIII. DISCUSSION

In this paper, we have used a stereovision system based on

two catadioptric sensors (see Fig. 1) mounted co-axially one

above the other. Indeed, such a configuration greatly simpli-

fies the epipolar geometry since epipolar curves become ra-

dial lines. By this way, matching horizontal lines is simplified

while a motion allows vertical lines to be matched. A stereo-

scopic system also presents advantages compared to a structure

from motion method because the baseline is well-known and

not estimated by odometry which introduces many errors.

We have chosen to work with a unified model which is valid

for all central sensors hence we have to respect the Single-

Viewpoint constraint. Our method, presented in section 2, al-

lows us to be as near as possible to the single viewpoint. The

choice of the Mei’s unified model leads to a very flexible cali-

bration step because the number of parameters to be estimated

is quite reasonable and easy to be initialized. A calibration

tool was developed in C++ using the computer vision library

OpenCV and can be freely downloaded from our website [16].

The calibration tool does not require any commercial software

and optimizes the computing time. A calibration with 10 im-

ages does not exceed 2 minutes.

Two methods have been developed for the relative pose es-

timation and have different fields of use. The first one relies on

the eight-point algorithm and can be used in line because the

process is entirely automatic but gives only the relative pose

up to a scale factor. The other one uses calibration patterns and

is more adapted for measurement thanks to the entire knowl-

edge of the relative pose. Table II summarizes the main char-

acteristics of the two methods used for the relative pose esti-

mation and their field of use. The evaluation of our method

TABLE II

COMPARISON OF THE TWO RELATIVE POSE ESTIMATION METHODS.

using calibration patterns was done by estimating the motion

of the sensor. The average error between estimation and real

displacements is small (less than 2%) and probably induced by

image noise which disturbs the corner extraction process. The

precision is sufficient for applications such as navigation.

The piecewise planar 3D reconstruction is introduced for

the validation of the calibration and triangulation steps. The

good results obtained imply the reliable estimation of the pa-

rameters. The 3D reconstruction was done on manually se-

lected points to avoid possible errors due to an automatic

matching.

IX. CONCLUSION

In this paper, we have presented a scheme for 3D recon-

struction of the environment of a mobile robot based on a cata-

dioptric stereovision sensor. This scheme can be decomposed

into three stages : calibration, estimation of the relative pose of

the two sensors and triangulation.

Thanks to an accurate calibration and relative pose estima-

tion, the metric of the scene is well respected and evaluated

using real images.

Our future work will focus on automatic reconstruction,

thanks to pixel matching or more elaborated primitives (lines,

planes, etc). Once 3D reconstruction is achieved, the motion

estimation of the robot will be addressed to be able to merge

several local reconstructions.
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et Systèmes) and IRSEEM (Institut de Recherche en Systèmes
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