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Abstract

We consider the Schrodinger equation on a half space in any dimension with a class
of nonhomogeneous boundary conditions including Dirichlet, Neuman and the so-called
transparent boundary conditions. Building upon recent local in time Strichartz estimates
(for Dirichlet boundary conditions), we obtain global Strichartz estimates for initial data
in H%, 0 < s < 2 and boundary data in a natural space H*. For s > 1/2, the issue of
compatibility conditions requires a thorough analysis of the H?® space. As an application we
solve nonlinear Schrodinger equations and construct global asymptotically linear solutions
for small data. A discussion is included on the appropriate notion of scattering in this
framework, and the optimality of the H?® space.

Abstract

On considere I’équation de Schrodinger sur le demi espace en dimension arbitraire pour
une classe de conditions au bord non homogenes, incluant les conditions de Dirichlet, Neu-
mann, et “transparentes”. Le principal résultat consiste en des estimations de Strichartz
globales pour des données initiales H*, 0 < s < 2 et des données au bord dans un espace
naturel H?, il améliore les estimées de Strichartz locales en temps obtenues récemment par
d’autres auteurs dans le cas des conditions de Dirichlet. Pour s > 1/2, la définition des
conditions de compatibilité requiert une étude précise des espaces H®. En application, on
résout des équations de Schrédinger non linéaires, et on construit des solutions dispersives
globales si les données sont petites. On discute également le sens précis donné a “solution
dispersive”, ainsi que la question de I'optimalité de I’espace H°.
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1 Introduction

We consider the initial boundary value problem (IBVP) for the Schrédinger equation on a half
space
10 + Au = f,
uli=o = ug, (z,y,t) e R x RT x R}, (1.1)
B(uly=0, Oyuly=0) = g,
where the notation R; emphasizes the time variable. B is defined as follows: we denote £ the
Fourier-Laplace transform on R% 1 x RZF

o0
g— Lyg(§7) = J f e T g (g, t)dadt, (€,7) e RT x {z € C: Re(z) = 0},
0 Jri-1
and B satisfies

L(B(a,b)) = b1(&,7)L(a) + ba2(&, 7)L(b), with b1, by smooth on Re(r) > 0 and
V> 07 bl()\é.a )‘27—) = bl (577—)7 bQ()‘£7 )‘27_) = >‘_1b2(£77_)‘

This kind of boundary conditions was considered by the author [3] for a large class of dispersive
equations on the half space. They are natural considering the homogeneity of the equation,
they include Dirichlet (b = 1, by = 0) and Neuman boundary conditions (b = 0, by =
(J€]2 — i7)~1/2, see section 3| for the choice of the square root), but also the important case
of transparent boundary conditions (b = 1, by = —(|€|*> —i7)"/2). The label transparent
comes from the fact that the solution of the homogeneous IBVP with transparent boundary
conditions coincides on y = 0 with the solution of the Cauchy problem that has for initial value
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the function up extended by 0 for y < 0 (for motivation and more details see [1]).
Our aim here is to prove the well-posedness of the IBVP under natural assumptions on B
detailed in section [3| and prove that the solutions satisfy Strichartz estimates.

Let us recall that the linear, pure Cauchy problem on R¢ can be solved by elementary semi-
—|=[?/(4it)
e
group arguments, and its fundamental solution is explicitly given by W, an immediate
i

Bugllpe S Juolpr/t¥?. A more delicate, but

consequence being the dispersion estimate |le
essential consequence are Strichartz estimates :

for p > 2, 2+ % = 2. 1"l aqe, e S ol ey (12)
Such estimates are a key tool for the the analysis of nonlinear Schréodinger equations (NLS) (see
the reference book [13]). Any pair (p,q) that satisfies the identity above is called admissible.
In the limit case p* = 2, ¢* = 2d/(d — 2), in view of the critical Sobolev embedding H! — L4*
such estimates correspond (scaling wise) to a gain of one derivative. It is easily seen that
remains true if R; is replaced by [0,7'], and by Hoélder’s inequality, the estimate is true on
[0,T] for ¢ = 2, 2/p + d/q = d/2. For such indices it is usually called a Strichartz estimate
with “loss of derivatives”.
The study of the IBVP is significantly more difficult even for homogeneous Dirichlet boundary
conditions: the existence of dispersion estimates remained essentially open until very recently
(see the announcement [19]), and it is now well understood that Strichartz estimates strongly
depend on the geometry of the domain. One of the first breakthroughs on the analysis of
Strichartz estimates for the homogeneous BVP was due to Burq, Gérard and Tzvetkov [11],
who proved that if the domain is non tmppmglﬂ and Ap is the Dirichlet Laplacian
1 d d

forp>2, —+—=—

PR 1 le" 2P ug || ora < ol L2,

this corresponds to Strichartz estimates with loss of 1/2 derivative. Numerous improvements
have been obtained since [2][7], up to Strichartz estimates without loss of derivatives [18][7],
and their usual consequences for semilinear problems. Very recently, Killip, Visan and Zhang
[21] shrinked even more the gap between the IVP and the IBVP by proving the global well-
posedness of the quintic defocusing Schrodinger equation posed on the exterior of a convex
compact set, while the same result for the Cauchy problem (see [14], 2008) was a major
achievement.

Less results are available for nonhomogeneous boundary value problems, although the theory
in dimension 1 made very significant progresses. Actually, even in the simplest settings of
a half space the two following fundamental questions have not received completely satisfying
answers yet

LA typical example is the exterior of a compact star shaped domain.
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1. Given smooth boundary data, what algebraic condition should satisfy B for the BVP to
be well-posed 7

2. For such B, given s > 0 what is the optimal regularity of the boundary data to ensure
u € CtHS?

In dimension one, with Dirichlet boundary conditions, question 2 is now well understood (see
Holmer [17]) : for a solution u € CyH®*(R™), the natural space for the boundary data is
H/2+1 4(1&;r ). An easy way to understand this regularity assumption is that it is precisely the
regularity of the trace of solutions of the Cauchy problem, as can be seen from the celebrated
sharp Kato smoothing. Let us recall here the classical argument of [20]

. . e 1 . . - . -
eztAuo _ J €_Zt‘£‘2€m£uOdf _ %J e—ztr] (ezz\/ﬁuO + ¢l $\/ﬁuO)d£
R R+

= e uolo—oll fro/z+1/1 ~ fw(lqu(\/ﬁ)l2 + @0 (=) Il 2dn ~ JR o (&)1 €] d¢
< Juol7s-

Sharp Strichartz estimates without loss of derivatives were also derived, so that local well-
posedness can be deduced for various nonlinear problems. The Cauchy theory has been recently
significantly improved by Bona, Sun and Zhang [9], where the authors study the IBVPs with
spatial domain R™ and [0, L]. An interesting feature is that (contrary to the IBVP for the
KdV equation) the natural space for the boundary data must be replaced by H®/2+1/ 2(R))
when the domain is [0, L], and this space is optimal. The dispersive estimates on [0, L] are
obtained by technics of harmonic analysis, in the spirit of the fundamental results of Bourgain
[10] for the Schrodinger equation on the torus.

Moreover the authors obtain the global well-posednes in H' under various assumptions on the
nonlinearity. The global well-posedness is based on intricate energy estimates. Finally let us
mention that A.S. Fokkas developed the so-called unified transform method (in the spirit of
inverse scattering), a method for computing explicitly solutions to boundary value problems
in dimension 1. Since the seminal paper [15], the theory received numerous improvements,
with the most recent contribution [16] dealing also with the nonlinear Schrédinger equation on
the half-line. To our knowledge, Strichartz estimates have not yet been obtained through this
approach.

The BVP in dimension > 2 poses new difficulties, because the geometry can be more complex,
and waves propagating along the boundary are harder to control (this issue appears even with
the trivial geometry of the half space). We expect that the answer to question 2 strongly
depends on the domain. Due to its role for control problems, the Schrédinger equation in
bounded domain has received significant attention, see [12] 27, 29] and references therein. In
unbounded domains with non trivial geometry, the regularity of the boundary data is different
and Strichartz estimates with loss can be derived (see the author’s contribution [4]).

In this article we only consider the case where the domain is the half space. The Schrédinger
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equation shares some (limited) similarities with hyperbolic equations, for which question 1
has been clarified in the seminal work of Kreiss [22]: there is a purely algebraic condition,
the so-called Kreiss-Lopatinskii condition, which leads to Hadamard type instability if it is
violated (see the book [5] section 4 and references therein). This condition was extended
by the author in [3] for a class of linear dispersive equations posed on the half space. A
consequence of the main result was that if this condition is satisfied then is well posed
in C;H*® for boundary data in L?(R;, H**/2(R4~1)) n H¥>**/4(R,, L?), a space that, scaling
wise, is a natural higher dimensional version of H%2*1/4(R;). We point out however that the
Kreiss-Lopatinskii condition derived in [3] was quite restrictive, and in particular forbid the
Neuman boundary condition, a limitation which is lifted here.

On the issue of Strichartz estimates, Y.Ran, S.M.Sun and B.Y.Zhang considered in [28] the
IBVP (1.1)) on a half space with nonhomogeneous Dirichlet boundary conditions. They derived
explicit solution formulas in the spirit of their work on the Korteweg de Vries equation with
J.Bona [§], and managed to use them to obtain local in time Strichartz estimates without
loss of derivatives. A very interesting feature was that the existence of solutions in CrH?® only
required boundary data in some space H® which has the same scaling as L? H s+1/2 nH; /2+1/4 2
but is slightly weaker. We refer to paragraph [2.3]for a precise definition of H*. The space H? is
in some way optimal, as it is exactly the space where traces of solutions of the Cauchy problem
belong, see proposition [3.6, Note however that in the appendix we provide a construction
showing that it is less accurate for evanescent waves (solutions that exist only for BVPs and
remain localized near the boundary).

Although not stated explicitly in [28], we might roughly summarize their linear results as
follows:

Theorem 1.1 ([28]). For s > 0, s # 1/2[27Z], (uo, f,9) € H*(R™! x R*) x LY([0,T], H®) x
HE([0,T]). If (uo, f,g) satisfy appropriate compatiblity conditions, the IBVP (1.1)) with Dirich-
let boundary conditions has a unique solution uw € C(|0,T], H®), moreover for any (p,q) such

that p > 2, % + ‘é = % and T > 0 it satisfies the a priori estimate

lull oo, wsay S lwollas + 1fLrqo.r,ms) + 19llas (o)

In theorems[I.2)[T.3] we provide two improvements to this result: we allow more general bound-
ary conditions, and our Strichartz estimates are global in time with a larger range of integra-
bility indices for f (any dual admissible pair). Some consequences for nonlinear problems are
then drawn in section [l

For the full IBVP the smoothness of solutions does not only depend on the smoothness of
the data, but also on some compatibility conditions, the simplest one being ugly—o = gli—o in
the case of Dirichlet boundary conditions. This compatibility condition is trivially satisfied
if ugly—o0 = gli=o = 0 (that is, ug € H&), but the non trivial case is mathematically relevant
and important for nonlinear problems. It is delicate to describe compatibility conditions for a
general boundary operator B, therefore we shall split the analysis in the following two simpler
problems :



1 INTRODUCTION 6

e General boundary conditions, “trivial” compatibility conditions in theorem

e Dirichlet boundary conditions, general compatibility conditions in theorem

As H?® is not embedded into continuous functions, g|;—o does not have an immediate mean-
ing. Therefore we thoroughly study the functional spaces H® in paragraph including trace
properties which allow us to rigorously define the compatibility conditions, including the in-
tricate case s = 1/2 where g|;—¢ has no sense, but a new global compatiblity condition is
required. The main new consequence for nonlinear problems is a scattering result in H' for
(ug, g) small in H' x H!. To our knowledge, all previous global well-posedness results required
more smoothness on g.

Statement of the main results Let us begin with a word on the first order compatiblity
condition: if ug € H*(R4=1 x R¥), s > 1/2, ug|y=o is well defined and belongs to H*~1/2(R¢1).
We will prove in proposition the embedding H#* < C,H* Y/2(R%1), therefore if u € CyH?
solves , necessarily

for s > 1/2, gli—0 = uoly—o0- (1.3)

(1.3]) is the first order compatibility condition. If s = 1/2, (|1.3) does not makes sense, but a
subtler condition is required: let A’ the laplacian on R4~!, then

o | ,—it2 A’ 2y 2
if s =1/2, f f e 9@ ) = uol@ OF by < o, (1.4)
Ri—1 Jo t

This is reminiscent of the famous Lions-Magenes global compatibility condition for traces
on domains with corners, with a twist due to the Schrédinger evolution, see definition
and paragraph for more details. When we say ”the compatibility condition is satisfied”,
we implicitly mean the strongest compatiblity condition that makes sense, so that for s < 1/2
nothing is required. It is not difficult to define recursively higher order compatibility conditions
(see e.g. [4] section 2). Note however that higher order compatibility conditions involve also
the trace f|y—t=0, which makes sense only if f has some time regularity. We do not treat this
issue in the paper.

For nonlinear applications we are only interested by the H' regularity, so we choose to consider
indices of regularity s € [0,2]. Our main result requires a few notions : see section [2| for the
definition of the functional spaces H*, H{ and 7—[(1)62 and section |3| for the definition of the
Kreiss-Lopatinskii condition.

We use the following definition of solution:

Definition 1.1. A function u € C(R}, L?) is a solution of (L.1)) if there exists a sequence
(ug, [ g") € H* (R x RY) x LP(RS, W9) x (L*(RS, H?) n H'(R;, L?)), with

n n n
H(u07f7g) - (UO)f , g )HL2><Lf,1Lq/1><'HO —n 07

such that there exists a solution u™ € CyH> NC}L? to the corresponding IBVP and u,, converges
to u in CyL?. A CyH?® solution is a solution in the C;L? sense with additional reqularity.
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In our statements we shall use the following convention for any (p, ¢) € [1, 0]?
BYo(RTT < RY) := L9, BZ,(RT T x RY) := W29, BY,(R)) = LP, B),(R}) := WP, (1.5)

These equalities are not true for the usual definition of Besov spaces, but they allow us to give
shorter statements for a regularity parameter s € [0, 2].

Theorem 1.2. If B satisfies the Kreiss-Lopatinskii condition (3.4)), for s € [0,2], (p1,q1) an
admissible pair,

(w0, f.g) € H§(R x RY) x (LPA(RY, BY, 5) 0 BYy (R, L)) x H3(R™),

(if s =1/2, (ug,g) € Hé(/)Q X ’H(l)éz), then the IBVP (1.1)) has a unique solution u € C(R™, H®),

and for any (p,q) such that p > 2, % + g = %, it satisfies the a priori estimate

‘|UHLP(R2'73;2)QB;’/22(R2"Lq) S HUOHI{9 + HfHLpll(Rj7B;, Z)GB;/ Q(R:,qul) + HgH’Hé(R:)

1’ 1
Moreover, solutions are causal, in the sense that if (u;)i=12 are solutions corresponding to
initial data (uoi, fi,gi), such that uoy = woz2, filpr) = felp) il = 9201y, then
U1|[0,T] = U2|[0,T]~

For the Dirichlet BVP, well-posedness with non trivial compatibility conditions holds:

Theorem 1.3. In the case of Dirichlet boundary conditions, for s € [0,2], (p1,q1) an admissible
pair,
(w0, f,9) € H*(RI™ x B¥) x (DA (R}, B, 5) 0 B o(B7, L)) x HA(R}),

that satisfy the compatiblity condition, then (L.1]) has a unique solution u € C(R,", H®), more-
over for any (p,q) such that p > 2, % + g = < it satisfies the a priori estimate
HUHLP(R:—,B;Q)QB;,/;(R:,Lq) S HUOHHS + HfHLPIl (R;L,B;, Q)QB;/ Z(R:,qul) + HgH’Hé(R:)
1 1’

Note that we have the usual range of indices for the integrability of f but some time
regularity is required. Such requirements are common for hyperbolic BVP (e.g. [26] proposition
4.3.1), and the regularity required here is sharp in term of scaling, so that we are able to deduce
the usual nonlinear well-posedness results from our linear estimates in section [4

Plan of the article In section [2| we recall a number of standard results on Sobolev spaces,
and describe the H?® spaces (completeness, duality, density properties...). Section [3|starts with
the definition of the Kreiss-Lopatinskii condition, and is then devoted to the proof of theorems
and In section {4} under classical restrictions on the nonlinearity we prove the local
well-posedness in H! of the Dirichlet IBVP, and global well-posedness for small data. Finally
section [o|is devoted to the description of the long time behaviour of the global small solutions:
we prove that in some sense they behave as the restriction to y = 0 of solutions of the linear
Cauchy problem. The appendix [A]is a small discussion on the optimality of the space H*.
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2 Notations and functional background

2.1 Notations

The Fourier transform of a function u is denoted %. As we will use Fourier transform in the
(z,y) variable, z variable or (z,t) variable, we use when necessary the less ambiguous notation
Foytt, Fyu, Fyiu, for example

U= Fypu:= J J u(z, t)e T TP gdt,
R JRA-1

The notation R; emphasizes the time variable.

Lebesgue spaces on a set Q are denoted LP(Q2). For X a Banach space LV X := LP(Ry, X) or
depending on the context LP(R;", X), similarly L%.X := LP([0,T], X). Similarly, L% refers to
functions defined on R%~!. When dealing with nonlinear problems, we shall use the convenient
but unusual notation L = L/P.

We write a < b if a < Cb with C a positive constant. Similarly, a ~ b if there exists C1,Cy > 0
such that Cia < b < Cyb.

2.2 Functional spaces

S’(R%) is the set of tempered distributions, dual of S(RY). LP(Q) is the Lebesgue space, we
follow the usual notation p’ := p/(p — 1). For s € R,

H*(RY) = {u e S'(RY) : JRd(l + |€)7)%|alde < oo}.

H* is the homogeneous Sobolev space. For Q open, H*(2) is defined as the set of restrictions
to Q of distributions in H*(R"™), with the restriction norm

s = i f s .

HUHH ) v exterllrslion of u HUHH (R)

Similarly, for X a Banach space, H*(), X') denotes the Sobolev space of X valued distributions.
We recall a few facts (see e.g. [24],[25]):

1. For n integer, Q smooth simply connected, H"(2, X) coincides topologically with {u :
$o Xlaj<n |0%u|?dz}, that is [u] gn) ~ (§0 2aj<n |0%v|2dx)"/?, with constants that de-
pend on €,s. If @ = I is an interval the constants only depend on 1/|I| and s, in
particular if I is unbounded they only depend on s. The same is true if €2 is a half space.

2. For any s > 0, there exists a continuous extension operator Ty : H*(Q, X) — H*(RY, X)
for t < s, moreover Ty can be chosen such that it is valued into functions supported in
{z: d(x,Q) < 1}. If s < 1/2, the zero extension is such an operator and in this case the
operator’s norm does not depend on §2.
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3. H{(Q) is the closure in Q of C°. The extension by zero outside 2 is continuous Hj(£2) —
H5(RY) if s # 1/2[Z], but not if s = 1/2[Z]. However it is continuous on the Lions-
12 .
Magenes space H," with norm

u2(x) 1/2
= .1
bl =Vl + ([ 7 0ae) (2.1)

and HééQ = [L?, Hglio (see [32] section 33).

For n € N, W™P(R%) is the Sobolev space with norm (ngn §|0%u|Pdz) Y7 The Besov spaces
on R? are denoted Bj  (R?), they are defined by real interpolation [6]

V0 < s <2, B, (RY) = [LP(RY), W2P(RY)] o

As for Sobolev spaces B, ,(€2) is defined by restriction. Due to the existence of extension
operators, it is equivalent to define B, (2) = [LP(Q),WQ*I’(Q)]S/M, the norm equivalence
depends on . For n € N, the following inclusions stand ([6] Theorem 6.4.4)

Vp =2, Bry(Q)  WP(Q), WP (Q) c Bl ,(Q).

The extension by zero outside some set (which depend on the context) is generically denoted
Py, the restriction operator is denoted R.

2.3 The H’® spaces

Structure and traces

Proposition 2.1. For s > 0, we define the space H*(RY™! x R;) as the set of tempered
distributions g such that g€ LI and

loc
9Bt my = || L+ 1€R + 18R+ Bllgidad < co.
RI-1xR

When d is unambiguous, we write for conciseness H*(R;).
It is a complete Hilbert space, in which Cgo(Rg_l x Ry) is dense, and has equivalent norm

1/2
ol = ( Il (1+|§|2+|5|)S\/||£|2+5||§|2d5d£>

RI-1xR

1/2
- ( H (1 + 1€ + 1lgl* + 61%) ||§|2+5||§|2d6d§) :

RI-1xR
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The space H° is denoted H. The map u — Vau is continuous H® — H3~! for s > 1, and
u — dgu is continuous H® — H* 2 for s = 2.

For s > 1/2, H® — C’(Rt,HS_l/Q(]Rg_l)), in particular for any t € R, the trace operator
g g(-,t) is continuous H* — H* /2,

Proof. Obviously, H® c H* for s > s'. Let g € H, from Cauchy-Schwarz’s inequality

1 1/2
BEDI+ 16l + 1) “deas < Lol e )
RJJ ) Javiaem VIEE+9
1 1/2
< |9|H<JW1 (14_|§|)d+1d§d5> < lgllws

thus the embedding H < S’ is continuous. We define the measure u by du = (1 + [£]? +
16))5A/11€]2 + S|dédE. Tf gy, is a Cauchy sequence in H?, g, is a Cauchy sequence in L?(du). By
completeness of Lebesgue spaces, there exists v € L%(du) such that ||¢, — v| — 0. From the
previous computations, .Fx_tl (v) € 8’ and limg g, = F v e H®.

The density of C° in ‘H® is obtained through the usual procedure. The equivalence of norms
is a consequence of the elementary inequality |a + b* = (1 — 271/%)%(|a|® — 2|b]*).

Let us now consider the trace problem. We start with the existence of a trace at ¢t = 0:

o(2,0) = f e G(¢, 5)dode,
RA—1xR

2
> Lo Ofme = | N0+ e)® | | Gas e
< [ ([ oeviEEeaia +1ep + apeas
1
x(1+ |5|)28—1f dé)dg.
R A/[[€]7 +0](1 + [€]* + |0])*
Now clearly {g \/H€|2+5\(11+|£|2+\5|)5d5 is bounded for |£| < 1, and for [¢] > 1 setting 6 = |£[2u

Q0.

25—1 1 dr < 1 d
Kl JR VIER T II(€)2 + o])° T\JR VIl T

Therefore the trace at t = 0 maps continuously #*(R;) to H*~/2(R%1). It is easily checked
that the map 7. : g — ¢g(-,-+7) is an isometry H® — H*® and for any g € H?®, limg | T,g—g|ns =
0. Combining this observation with the existence of the trace at ¢ = 0 implies the embedding
HS — C H 12, O

Finally, we identify (#*)’ in a natural way:
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Proposition 2.2 (Duality of H* spaces). For s > 0, the topological dual (H*)" is the set of
tempered distributions g' such that g' € Llloc and

(14 + 6
I By = f f gl s <

S(R™) is dense in (H®), and (H®)' acts on H® with the L* duality bracket
9. ey = || 976

Restrictions, extensions

Definition 2.1. For s > 0, I an interval the space H*(I) is the set of restrictions to RT™1 x T
of distributions in H*(R¢), with norm |gllyspy := _ inf  [|g]ss.
g

extension

For s # 1/2|Z], we define H§ = H® if s <1/2, and for s > 1/2
Hi((a.0)) = (g€ H*((@.D)) : V0 < 2% < [s— 1/2), lim [2Fg( )] gomasvs = O}
Obviously, if a (or b) is finite, the definition above simply amounts to dfg(-,a) = 0.

A very convenient observation is that H?® is a kind of Bourgain space: let A’ be the laplacian
on R%! we have using the change of variable § — &2 = p

—it A’

_; 2
He g‘|§_'1t(1+23)/4L2mHt1/4H5 JJ |5|1/2(1 + |5|5 + |€|28)‘fm,te ltAg‘ déde

[ 117241810+ ke late. 5 - € Pdsae
JJ €2 4 [ V2(L+ [l + 1€2) 36 ) Pdpude.

¢

so that |g|ws ~ e 2 g| fp+2s)/4p2 ~ 14+ Lhe following results are elementary consequences
x

of this remark and the classical theory of Sobolev spaces.

Corollary 2.1. Let I an interval, g € H*(I). We define the zero extension Py : g — Pog
L t)iftel,
Pog(-,t) = { at£) f

0 else.
We have the following assertions:

1. With constants only depending on s

—itAf

HQHHS(I) ~ e gHH(23+1)/4(I,L2)mH1/4(I,H5)'
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2. For any s = 0, there exists an extension operator Ty such that for k < s, Ty : HF(I) —
HF(R) is continuous and for any g € H*(I), Tsg(t) =0 fort¢ (infI — 1, sup I + 1).
If s < 1/2, Py is such an operator.

3. For s >0, ge H*(R), then lim ||g|ysre0p = O-
T—o ’

4. For s 20, H§(R) = H?®, moreover if s # 1/2|Z] Py is continuous Hg(I) — H*(R).
5. The restriction operator (H(R)) — (H(I))', g — P§(g) is a continuous surjection.

Proof. 1. is a direct consequence of the definition of Sobolev spaces by restriction.
2. According to paragraph there exists an extension operator 1" such that

g A/ g A/
|7 (e™ 9)HH(1+2s)/4(R,Lg)mH1/4(1R,Hs) S e QHH(1+2s>/4(I,Lg)mHl/zi(I,HS) < lgllaes(ny-

It is then clear that 7 = eitA,T(e*itA,) defines a continuous extension operator.
3. If r is an integer, imy o ||f|gr([7,00p) = O is clear, then we can conclude by a density
argument and the inequality

—itA N
le™" 9l graszsyacr p2yninag sy < le Bl gr 2y m sy, k= (14 2s)/4.
4. Let g € H*(R). By continuity of the trace and point 3
. k .
lin |05 (-, ) pre—2r-v/2 S T |lg s (7,00

the limit at —oo follows from a symmetry argument.

Now fix a € R. If for 0 < 2k < s—1/2, dFg(-,a) = 0, this implies clearly of (e="*?g)(-,a) = 0, so
that we can apply the continuity of the extension by 0 for e it g in the usual Sobolev spaces.
5. Continuity follows from point 4, the surjectivity from the definition of H(I). O

Similarly to the Sobolev space H'/2(R*), the zero extension is not continuous Hl/?(RJ“) —
Hl/Q(R). Nevertheless, we observe that Pyg € Hl/Q(R) if e " Pyg = Pye g e HY2L? A
HYAH'Y2 which is true if e~ g € HY/2(Rt, L2) n HY/4(R*, HY/?) and (according to (2.1))

—itA! 2
t
I(g) := f [T 9@ O iy < oo, (2.2)
R+ xRd-1 t
Or more compactly e~#4'g e Héf(]RJr, L2?) n HY4R*, HY?), endowed with the norm
. A/ . A/
le " g‘|Héé2L2mH1/4Hl/2 = e g gHH1/2L2mH1/4H1/2 +I(9)1/2-

These observations lead to the following definition:
Definition 2.2. We denote HééQ(RJF) = {g e H2(R*) : Pyg e HY?(R)}, it coincides with
{g: e g€ Héf N H1/4H1/2}, and is a Banach space for the norm

i 9“}'[1/2L2QH1/4H1/2 + 1(g) 12, (2.3)

Remark 2.3. Of course we could also define Hé{f (I), but it is not useful for this paper.

ol gz = le
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Interpolation For basic definitions of interpolation, we refer to [6], sections 3.1 and 4.1. We
denote [-, -]y the complex interpolation functor and [-,-]g 2 the real interpolation functor with
parameter 2.

Proposition 2.4. For sg,s1 =0, 0 < 8 < 1 we have

[H50, 1 ]y = HID%0H050 (complex interpolation) |
[H*, H g = HI=004051 (req interpolation) .

Proof. By Fourier transform we are reduced to the interpolation of weighted L? spaces. For real
interpolation, this is theorem 5.4.1 of [6], for complex interpolation this is theorem 5.5.3. [

The interpolation of H{ spaces is a bit more delicate.

Proposition 2.5. For 0 <0 <1, 0 # 1/4, I an interval we have

[Ho(I), Ha(D)]o = HZ(I) (complex interpolation)
[Ho(I),H3(I)]o2 H2O(I) (real interpolation) .

)

If so =0, s1 =2,0 =1/4, then

[HO(R+),H3(R+)]1/4 = HééQ(RJF) (complex interpolation) ,
[HRT), Hg(R ) ]1ja2 = HééQ(RJr) (real interpolation) .

Proof. We only detail the case I = R™T, the case of a general interval is similar. According
to corollary for s € [0,2]\{1/2} the zero extension P, resp. the restriction R to R, is a
continuous operators Hg(R1) — H5(R), resp. H*(R) — H*(R™), with R o Py = Id. Therefore
by interpolation

Py([HRY), HF(R)]s2) © H*(R),

and from the existence of traces, if s > 1/4, for g € [H,HZ]s2, 9(0) = limy- Pog(t) = 0, thus
[H,H3]s2 € H3(RT). Conversely, for g € H*(R), we define

Sg: te(0,00) — g(t) —3g(—t) + 2g(—2t).

Clearly, it is continuous H*(R) — H*(R") for 0 < s < 2, and when it makes sense Sg(0) =
0, 0Sg(0) = 0 thus it is H5(RT) valued. By interpolation S is continuous H*(R) —
[H(RT),H3(R")]s2. Now for s # 1/2 we can observe that S o Py = Id on Hi(R"), there-
fore H3*(R*) < [H,H2]s2 and the identification is complete.
If s = 1/2, we observe that the same argument can be applied provided Py acts continuously
Hé{f (R*) — H/2(R), but this is true according to definition

O
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2.4 Interpolation spaces and composition estimates
In order to treat nonlinear problems, estimates in B, , LY require some composition estimates.

Proposition 2.6. Let A be a Banach space. For 0 < 6 < 1, [LP(R, A), WIP(R, A)]po =
BzQ(R,A) the fractional Besov space endowed with the norm

© (Jul+h) = u()] )2 dh
ol o= [ (M ol =l + lulton

For completeness we include a short proof in the spirit of [32] of this well-known result.

Proof. We use the K-method for interpolation. Let K (h) = infy,—y,+u, |volzra + hHulHW1,pA.
If u € [LP(R,A), WP(R, A)Jga, then for any h > 0 there exists (ug,u1) with u = ug +
ur, |uollra + hlur|wipea < 2K (h) and |ul[zeawrea),, = (§g (K (h)/h?) 2dh/h)Y? < 0. The
standard estimate |ui(- + h) —u1(+)|zr < hHU1HW1 » implies

LOO <|u(' + h)h_9 U(-)ILPA>2d: < 4JOOO ( h(‘)h)) d:

Conversely, assume the left hand side of the equation above is finite and v € LPA. For h > 0,
pn = p(-/h)/hwith pe C2, p> 0, §p = 1, supp(p) < [—1, 1], we set g = u—pnsu, u1 = pp *u.
Minkowski’s inequality gives

h h
1
Ju—pn=ulpra < J Pr@ful) —uC = s)rads 5 o | lul+5) —uC)irads,
- 0

h h
lon) « ulooa < [ 1h(5)(ul = 9) = ut)amads < 3 |-+ 5) = uC)mads,

h
therefore K(h) < |u — pp * ulrra + hllpn * w|wiva < hlu|rea + %So Ju(- + s) — u(-)| Lr ads.
Also, it is obvious that for h > 1, K(h) < ||u| zr. By integration

© (K (h)\*dh ) L7t > dh
| ( i ) | ( | |u<-+s>—u<->|LpAds) e

We set f(h) = |u(- + h) — u(-)|rra, F(h) = Sg fds. An integration by parts and Cauchy-
Schwarz’s inequality gives

LOO(F(h))Phjf% - I JOOO FNE(h) o
([ O8Iy i)

O /K 2 'e} . o . 2
from which we deduce Jo ( h(eh)) % < lulea + Jo (|u( i h)he u HLPA) d—: O

N
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Proposition 2.7. Let F: C — C such that |F(u)| < |ul®, [F'(u)| < |u|*"t, a > 1. Then
for 0 <s <1, |F(u)lp;,i10) S lul T g, pony el By, e m02),

with
1 a—1 1 1 a—1 1
plaq17p27q2>17 - = + —, == + —.
q q1 qQ p b1 b2

Proof. The Ly L9 part of the norm is simply estimated with Hélder’s inequality on Ju|*=L x Jul.
For the B, , part, let 1/p = 1/p3 + 1/p2, 1/q = 1/q3 + 1/qo:

Jooo ( |F(u)(-—i—h)};F(u)('ﬂLfLQ)QCZL

© ((Jul- + 2%+ w1 Dl + h) = ul)|pra\ 2 dh
s fo ( = >h

3 foo (M g g (- + B) = w22 00 \ 2

~ ) hs h
a1y (@ (luC+h)=ul)]gr2pe\? dh

= Jul e = -
2(a 1

< Nl ol po-

O]

Finally, as the nonlinear problems require to construct local solutions, we shall use the
following extension lemma.

Lemma 2.8. Letp =2 1, 0 < s < 1 with sp > 1, A a Banach space. For any 0 < T < 1,
there exists an extension operator Pr: Bj, ([O,T], A) — Bj o(Ry, A) such that Pru(-,t) =0 if
t ¢ [—T,2T] and (with constants unbounded as sp — 1)

{ | Pruf o, a) < [l Leory,4), (2.4)

|Prulp: .4 S TP~ |lul s 01,4
Proof. We fix x € CX([0,1]), x(0) = 1, and define the operator

u(t), 0 <t <1,
u2—1t)x(t-1), 0<t <2,
u(—t)x(—t), -1 <t <0,
0, else.

P1 : ;72([07 1]7 A) - B;,Z(Ru A)u =

It is not difficult to check that P is bounded LP([0, 1], 4) — LP A, W'»([0,1], LY) — WP L4,
with bounds independent of p, thus it is also bounded B, 5([0,1], 4) — B, 5(R, A). Let Dy be
the dilation operator Dy : u — u(-, A-), we set

PT = Dl/T OP1 ODT.
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From a direct computation, |Prul|zry < 3HXHOOHUHL1%A, thus we are left to prove the second

inequality in (2.4).

) : 2
As sp > 1, by Sobolev’s embedding HDTUHL““([O,I],A) < HUHB;,Q([O,T],A) thus
|PrDrulprre S [PrDrulpea S 1D1ul e po,01,4) S lulss 4 (0,77,29)-
On the other hand for v € Bj 5 an extension of u, basic computations give

o [(Drv)(t + h) = (Dro)(t)[3 .,
2 _ 25-2/p|, 12
| Drv] 35 L1 Jo Bit2s —dh <T™ /pHUHnga

thus for T' < 1, HPIDTUHB;J(Rt,Lq) < |‘UHB;2([0,1],LQ)7 from which we get with the same scaling

argument HDl/TplDTUHB;Q(Rt,Lq) < Tl/s_l/pHuHB;Z([O,l])° ]

3 Linear estimates

The plan to solve (1.1]) is based on a superposition principle: let us denote abusively ug an
extension of uy to R?. If we can solve the Cauchy problem

{ 10w + Av = f|

z,y,t) € R? x R.
V|t=0 = uo, (@y,1)
and the boundary value problem

10w + Aw = 0,
wli=o = 0, (z,y,t) e R x RT x R, (3.1)
B(wly—o, dywly—0) = g — B(v|y—0, 0yv|y—0),

then v|y=o + w is the solution to For this strategy to be fruitful we need a number of

results: Strichartz estimates for v, trace estimates for v|y—o, 0,v|y—0, existence and Strichartz
estimates for w. This is the program that we follow through section 3.

3.1 The pure boundary value problem

Consider the linear boundary value problem

10w + Au = 0,
B(uly—0, Oyuly—0) = g, (3:2)
u(-,0) = 0.

We use the following notion of solution (slightly stronger than definition :

Definition 3.1. Let g € H{(R'). We say that u is a solution of the BVP (3.2) if u €
C(R*, H?®), there exists a sequence gn € M=o HE (R x R) with |g— gn|2s —n 0 and smooth
solutions u, € C°(RY, np=oH") of (3.2) with boundary data g, such that |u—up|p»ps —n 0.
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The Kreiss-Lopatinskii condition We recall the notation of the introduction
‘C(B(a7 b))(§7 7_) = blﬁa(f, T) + b2£b(£7 T)a

with b1,by anisotropically homogeneous: by(AE, A27) = b1(€,7), ba(AE,N2T) = A 1ho(E, 7).
Of course, the operator B must satisfy some conditions. First of all, it should be defined
independently of Re(r) := v > 0, so according to Paley-Wiener’s theorem we assume that
b1, by are holomorphic in 7 on {(7,&) € C x R%"!, Re(r) > 0}. Moreover we assume that b
extends continuously on {(id, &) € (R x R"1)\{0}}, and a.e. in (§,£), ilino ba(&,y + 1) exists.

The Kreiss-Lopatinskii condition is an algebraic condition that we introduce with the following
heuristic: assume that ([3.2)) has a solution u € Cy(R}, S(R¥"! x R™)), and consider its Fourier-
Laplace transform Lu(¢,y,7) = §§ e 7 +%%yu(z, y,t)dz dt. Then Lu satisfies

2p _ (1¢]2 _
OyLu = ([§]” —iT)Lu.
The condition lim,, Lu(y) = 0 requires
Lu = e VIEP= Ly = 0). (3.3)

Here, /- is the square root defined on C\iR™ such that +/—1 = —i. From (3.3]), the condition
B(uly=o, dyuly=0) = g rewrites (b1 — 4/[§|?> — iTb2)Lu(0) = Lg, so that Lu(0) is uniquely
determined from Lg with uniform bounds if

b 1
Ja,>0: V(7,6,8 e R xRx R o< <1>< ) < B. 3.4
p (7,9,6) by _\/|§|2—_Z7_ B (3.4)
Definition 3.2. B satisfies the (generalized) Kreiss-Lopatinskii condition if (3.4) is true.

By homogeneity b is uniformly bounded, thus (3.4) implies that be+/|¢]? — 7 is uniformly
bounded for Re(r) > 0, although by may be infinite at some points (§,id). The vector

V_ = (_ @) is the so-called stable eigenvector, and algebraically (3.4) means that

the symbol of B, as a linear operator C2 — C, defines an isomorphism span(V_) — C.
Obviously, the Dirichlet boundary condition bp := (1,0) satisfies the uniform Kreiss Lopatin-
skii condition. It is also possible to include the Neuman boundary condition as well as the
transparent boundary condition into this framework by setting

Lb(E, 7)
LBy(a,b) = ———=-—= (Neuman), :
Bufat) = 5T (Neuman) 5)
LBr(a,b) = La(&,T)— _EMET) (Transparent). (3.6)
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With this convention, by -V_ = —1 and by -V_ = 2, so that both satisfy the Kreiss-Lopatinskii
condition. Let us point out that in the case of Neuman boundary conditions, By (u, dyu) € H
is equivalent to dyuly—o € H', indeed

L(0yu
| Pog 3y = JRd| ||§|2|j §|| V€2 + 6]dedS = | Podyuly=o| 2, (3.7)

The Kreiss-Lopatinskii condition and the backward BVP For general boundary con-
ditions, the boundary value problem is not always reversible. Indeed if we solve fort <0,
g supported in R;", the parameter v in the Laplace transform is negative therefore the appro-
priate square root in formula is defined on C\iR ", and maps —1 to i. Let us denote it
sq. Even if we dismiss analyticity issues, there is no reason that “backward ” stands

. - _ by 1
Jo,>0: V(7,6,)eR™ xR x R4, a§‘<b2> . (—sq(|§|2—¢7))‘<ﬂ' (3.8)

For example, take the forward transparent boundary condition (b1, b2) = (1 then
p p y (b1,b2) = (1, \/W)

1

) 1
8) such that [¢]* + 6 - : =
V (&, 6) such that [¢]°+d < 0, ||£|2Z+6| (—z’ e+ 5|> 0,

and therefore the backward Kreiss-Lopatinskii condition fails in the region {|¢|2+6 < 0}. Note
however that the Kreiss-Lopatinskii condition is true for the backward Dirichlet boundary
value problem. It is also true for the Neuman boundary value problem provided we choose
(b1,b2) = (0,1/5q(|€]* — i7)) instead of (b1,b2) = (0,1/4/|¢|> —iT). The fact that the BVP
with transparent boundary condition is not reversible is rather natural: the dissipation due to
waves going out of the domain prevents to go back in time.

Well-posedness The main result of this section states that theorem is true in the case
of the pure BVP.

Proposition 3.1. If B satisfies the Kreiss-Lopatinskii condition (3.4), and g € H§(RT), 0 <
2 (M, 1/2 if s =1/2), the problem (3.2) has a unique solution. Moreover it satisfies I

d d

2
f07‘0<8<2,5+6=*ap>27 ] (3.9)

2 Lo B B 2R 10y S 19050
Proof. Existence We first justify the existence of g, as in definition For any M > 0,
according to corollary there exists gy € H®(R) that coincides with g for ¢t € [0, M],

and vanishes if t+ < 0 or t > M + 1. Next we shift ¢,(z,t) = gu(x,t — 5), and recall

- 1 1
2We recall our unusual notation By o :=W"P, B;g = W29
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limo g3, — garlns = 0. Let p e CP (R x Ry) with supp(p) = {|t| < 1}, { pdadt = 1. Then
setting p. = p(-/e)/e?,

Ipe * g — gl = JJ 11— plet, e0)Plgh, (1 + €] + 181)*/]€]% + 6ldbde —. 0,
RA-1xR
supp(pe * g3) € {(z,8): —e <t < M+1+06+¢}

Now we remark g3, € H® = e #3g e HY4(R, L?) c LA(R,L?), thus p. = 9% € Mr=oH".
Moreover im0 [|9] 25 ([ar,00) = O thus if Pyg is the extension by zero for ¢t < 0

]\/lligloo HgM — POQHHS(]Rd*lXRt) = 0.

We also remark that for ¢ < §, supp(p. = g?\/[) c {t = 0}, so that an appropriate choice of
en < Op, My, provides a smooth sequence (g,,) as in definition

For such g, we postpone the existence of a smooth solution u,, and a priori estimate (3.9) to
the next paragraphs. Now if is true for smooth solutions, the case (p,q) = (o0, 2) implies
that (u,) converges to a solution u in L* H*, and the estimate on w,, for general (p, q) provides
the estimate on wu.

Uniqueness It is again a consequence of the a priori estimate applied to the smooth solutions.

The main issue is thus to prove estimate (3.9) : it was obtained very recently in [28] with
|u| Lpw=.a in the left hand side for bounded time intervals. While the core of the LY LY estimate
does not require significant modifications we include a full proof for comfort of the reader.

O]

Proof of estimate (3.9), s = 0 We assume that the Kreiss-Lopatinskii condition (3.4) is
satisfied, and that g € Np=oHF(R? ! x Rf). Let us look back at the formal computation
leading to (3.3, which makes sense for smooth functions and reads

Lu = e_myiﬁg .
b-V_(&T)
According to the Kreiss-Lopatinskii condition (3.4), [£g/(b- V_)| ~ |Lg|, uniformly in (7,&),
so that using Paley-Wiener’s theorem Lg/(b- V_) is the Fourier-Laplace transform of some ¢;
supported in ¢t = 0.
Now we let y — 0: since g € Ng=oHE (R xR}, its zero extension belongs to Mg H* (R~ x
R;), and we can (abusively) identify Lg(§,id) = ]5@(5, J), with

Yk >0, J (1 + €2 + |0]2)* | Bog|2dode < .

Re—1xR

Since |g1| ~ |f/’@|, g1 € MpsoHF (R x R;) and for any s > 0, |lg1]lns ~ |g[#s, moreover
it is supported in ¢t > 0 thus its restriction belongs to Ng=oH5(R;"). Since by construction
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uly—0 = g1, we are reduced to solve the IBVP ({3.2]) with smooth Dirichlet boundary condition
g1- We abusively denote 4(€,0) for Lu(&,id), drop the index 1 of g; and simply assume

(¢, 0) = e VEFYG(E,6), g€ mioHG.
If § + €2 = 0, A/6 + |£]? € RTis the usual square root, else /6 + [£]2 = —i4/|0 + |¢[2|. The

solution u(x, y, t) is then obtained by inverse Fourier transform. We split the integral depending
on the sign of & + |£|2, the change of variables § + |¢|> = £ gives

WV IOHEP it 50 §Ydsde

ulz,y,t) =
(z,y,1) T I R

f f e —ya/d+|€|2 1(5t+x£ (f (5)d(5df
Rd—1 5> |€]2

Ten

_ 1 ez’(yn+x-£)e—it(|§\2+n2)2n§(§’ —n? — |€|?)dn d¢
Rd—1
e}
—yntiz € G—IEP 1) 9506 1612 4 p)dn d
+ G fRdl L et (&, ~I€P + P)di de
= w g, (3.10)

From the smoothness of g the integrals are absolutely convergent, infinitely differentiable in
x,y,t, and give a solution to , so that the formal computation is justified for smooth
solutions. Moreover, the formula is well defined for ¢ € R (and actually cancels for ¢ < 0 by
Paley-Wiener’s theorem), therefore we will focus on proving the seemingly stronger, but more
natural estimate

lullzr(r,Lay < lglwm+)- (3.11)

Control of u; Let ngﬁ(f,n) = 2ng(&, —n? — |€]*) 1,0, we observe u;(x,y,t) = ¢*®¢, so that
the classical Strichartz estimate (1.2]) gives

N

| 22
~ |l (3.12)

f f PG €2 — n?)Pdnde  (3.13)

lut] port Lora—1 xm+y < U]l Lo(r, Laqray)

¢

—lel?

~ L] vier=la.opass 1)

< gl (3.15)

Control of us As mentioned before, it is more convenient to let ¢ vary in R rather than R,
obviously bounds in LP(R, LY(R%~! x RT)) imply bounds in LP(R*, LI(R4 x R*)).
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The idea in [28] is to use a T'T™* argument similar to the classical one for the Schrédinger
equation, namely if we set ¢ = 2ng(¢, —|€]* + n*) 1,0 then (3.10) reads

Uy = (271T)d JRdl JR e—ym\+ix-§eit(_‘§|2+n2)$(£’n)dn 06 = T(),

with [¥||2 < |g|%. Consider T as an operator L2(R?*! x R) — LP(Ry, LY(R?~! x R*)), the
TT* argument consists in proving

|TT* < 0.

H P L4 >IrLa

If such a bound holds true, then |T*f|3, = (IT*f, f) < Hf”ip’m”

LP' 1LY — L2, and by duality T : L? — LPL? is continuous, which gives the expected bound
|ug|zrre < |lgln- Now let us write

thus T* is continuous

1 . . . .
(st = Go f f f f VIR ) i € mion € (1) e dyydigde

R4 Rd
- @Jf(ffeymit(éQnz)ﬂx.éem{iyl"d§dn>¢(x1,y1)dx1dy1.
T
R4 Rd

We denot X = (z,y) e R x RT, X1 = (x1,y1) € RY, observe that T4 can be seen as the
action of a kernel with parameter K;(X, X;) on ¢(X3):

un () = (271T)dOp<Kt> .

According to the TT* argument, it suffices to bound Op(K;) o Op(K;)* : LP (R, LY (R x
R*)) — LP(R, LY(R4~! x R*)). After a few computations one may check

Op(Kt)OOp(Kt)*f = JRleR+XR ( RdKt(X,Xl)I{S(XQ,Xl)Xm)f(XQ,S)dXQdS
= J (J Nt,S(X,XQ)f(Xg,s)d&)ds (3.16)
. Rd—1 xR+
_ J (OP(Nes) - £+ ) (X)ds (3.17)

X

Lemma 3.2. We have for (X, X3) € (R4™! x R*)2

Nio(X, Xo) = (gﬂ)df i€ =) (5—1) gi& - (w—2) o~y +u2) 1l gy g
Rd

3While X corresponds to the space variable (z,y) that we use throughout the paper, the variable X is
purely artificial.
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Proof. According to identity ((3.16])

Niys = th(X, X1)K(Xa, X1)dX1
R

= f e it€12—n?)+iz-E—ylnl—i(C-r1+myr) gis(|€1]* —nF) —iwz-&—ya|m [+i(& 21 +myr)
R3d
dndédn dédX,
(671:1:2 &1—y2|m|+is(|&1]*—n7 )d{dn

d —it(|€|2—n?)+iz-E— _
(2m) J]Rrie v yw}—xlﬁfnf(& m)—X1

(QF)dJ i€l =) riz-E—ylnl —ivat—y2lnl+is(€2—n*) g gy
R4

which is the expected result. O
The estimate of N, requires a (classical) substitute to Plancherel’s formula :
Lemma 3.3. The map L: f — {" e ™ f(y)dy is continuous L>(R") — L*(R").

Proof. We have

eali=eren=[ o s fnana = [ T

Splitting (R*)2 = {y2 <11} U {y1 < y2}, we remark

v Fye) L (" f(n)
ILf1I5 —J [y ylf 71+y2/yldyzdy1 +J Flyo yQJ 71+y1/y2dy1dy2-

One easily concludes using | f(y2)/(1 + y2/y1)| < |f(y2)| and Hardy’s inequality. O

Proposition 3.4. The operator Op(Nys) satisfies for 2 < p <

HvHLP’(RfF1 xR+)

[t — s d02=1/p)

[ Op(Nt,s)UHLP(Rd—lxRﬂ < (3.18)

Proof. The case p = o0: according to proposition
N o(X, Xo) = J €7 =) (s=1) ib-(w—w2) o~ (y+w2) 1] g g
b Rd

_ f eigz(st)eié'(xivz)dgf ei772(1‘/*8)f;(eryz)ln\d77
Rd—1 R

‘|1712|2
e Ai=s) e e
- (dimr(t — 5))(d-1)/2 fRe - (t=s) g~ +y)nl gy
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The Van Der Corput lemma implies

e w4 (e wrmnlyy,

Vil N

Therefore | Ny | < 1/]t — s|d/2 uniformly in X, X5, this implies the case p = 0.
For the case p = 2 we use Plancherel’s formula and lemma

‘J (t—s) o —(y+y2)Inl g ‘<

|Op(Nes)vlrz = f eigz(St)eié'xJ e~ & T2 (=)= (v, ( Xy ) dnd X pd€
Rd-1 RxR+Rd-1 12,
N f o f eI (5—0) vl Xy )dndyndis
Rd-1 RxR+ Lz Li
~ J e_”|yf e~ (=D =2l (X ) dyodiy
R R+ 2112
Y k)
—in?(s—t) —yz2(n|
< e e v(X2)dyo
R+ rzlrz,
S (),
The general case follows from an interpolation argument. O

The estimate on Op(K:) o Op(K:)* now follows from the Hardy-Littlewood-Sobolev lemma

2 d d 11 11
(e.g. theorem 2.6 in [23]): for p>2, —+ — =, wehave 1 + — = — + d( - >, thus
P oq 2 pop 2 q
|0b(K:) 0 Op()" Fligiy, = | | OPNLFC )i
R LY
1G58l
< —Lq
S HfHLfILg(I

Using the TT* argument this ends estimate (3.9) for the case s = 0.

Estimate (3.9), the case s = 2 By differentiation of formula (3.10)), for |a| + 8 + 27y < 2,
and using the case s = 0

1/2
|02a8 0y ulpr o < (f ||§|2+5|<1+6>/2|§|“|5|”|§|2d5d5) < 9l

Remark 3.5. We recall that in the inequality above, g abusively denotes Pog. Since Pyg must
belong to H? we can not simply take g € H2(R").

Obviously, the same argument applies as soon as s is an even integer, but since the non-integer
case is slightly more delicate, we chose to consider only s < 2 for simplicity.
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Estimate (3.9), the case 0 < s < 2 This is an interpolation argument. For p > 2, 2/p +
d/q = d/2, the solution map is continuous

H(RT) — LP(Ry, L), HART) — LP(Ry, W) n WHP(Ry, LY),

thus by interpolation it is continuous [H, Hgls2 — LP(Ry, B2%) n By 5(Ry, LY), this gives the
result by using the interpolation identities of proposition and by restriction on ¢t = 0.

O

The boundary value problems on [—7,©[ and R; A natural question (and actually
useful in the rest of the paper) is the solvability of the BVP on other time intervals than
[0,00[. As we mentioned before, the backward BVP can be ill-posed. However translations
have a better behaviour: first, we extend the operator (a,b) — B(a,b) to distributions in
H(R) x H'(R) with the formula

B(a,b) = F, } (bi(&,10)a(€, 8) + ba(€,i6)b(E, 5)).

Under the Kreiss-Lopatinskii condition, this extension maps H x H' — H(R). For g € H(R)
smooth, supported in ¢ > 0 and u a smooth solution to the pure BVP (3.2), we define up =
u(t + T') for some T € R. Then from the explicit formula (3.3)), up satisfies

]:B(UT|y:07 ayuT|y:0) = e_iTéﬁg(faié) = *F(g( + T)))
so that ur is a solution of the BVP

i0w 4+ Av =0, (z,y,t) € R x RT x [T, 0],
B(U|y:07 ayv|y:0) =g(-+ 1),
v(-,=T) =0.

Therefore up to the appropriate translation of g, to solve a BVP on [T, o[ is equivalent to
solve a BVP on [0,0[. A useful consequence of this remark is the well-posedness of the BVP
posed on R 1 x Rt x R,.

Corollary 3.1. Consider the boundary value problem

10ru + Au = 0,
B(“|y=07 ayu|y=0) = gv ($)y7t) € Rdil X ]R+ X Rt- (319)
limy—, oo u(-,t) = 0.

If B satisfies the Kreiss-Lopatinskii condition (3.4) and g € H*(R), 0 < s < 2, there exists a
unique solution u € C(R, H®), moreover it satisfies estimate (3.9) with R} replaced by R;.
If g vanishes on R¥™1x] — 00, T, then so does u on (R¥™! x R*)x] — o0, T1.
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Proof. Fix g € H*(R). By density there exists g, € C*(R%! x R;) such that

lg = gnlws@®,) —n 0.

We can assume that g, is supported in [—7},, [, and T, is increasing. By translation invariance
in time, there exists a smooth solution u,, to

10¢un + Auy = 0,
B(un|y=0a ayun|y=0) = Gn, (%y,t) € Rdil x R* x [_Tn7 OO[ (320)
Up (-, —T) = 0.

As was pointed out in the proof of estimate (3.9)), setting Un|]—co,—7,,[ = 0 defines a smooth
extension of u,, which solves the boundary value problem with gn|]_oo7_Tn] = 0.
Let n > p, then supp(u,, — u,) < [=T,, o and a priori estimate (3.9) implies

tn = wp L (r, 1 ®)) S 190 = Gplls((-T0,000) S 190 = gpllresw)-
This implies that (u,) converges to some u € C;H®. Moreover

Ve N, lim fun(6)] 2+ = 0= lim [u(t) - = 0.

The other estimates can be obtained as for proposition [3.1

In the case where g is supported in R x [T, oo, it suffices to observe that we can assume
that g, is supported in R%1 x [T + 1/n, o[, and use the previous observation on the support
of smooth solutions. O

3.2 Estimates for the Cauchy problem

Pure Cauchy problem We recall (see (3.4)) that the Kreiss-Lopatinskii condition reads

a < by —/|€]? + dba| < B, therefore we define A the Fourier multiplier of symbol 4/|[¢]? + 0]
that acts on functions defined on R xR;. In order to control | B(u|y—o, 0yuly—o)|#s it suffices

to control |uly—o[zs and |A™10,uly—o] s

Proposition 3.6. The solution e*®uq of the Cauchy problem

{ i0yu + Au = 0, (z,y,1) € Rd+1,

ult=0 = uo,
satisfies the following estimates for 0 < s < 2:

d

5 1Wline g2 n S ol 32)

2 d
Vp>2, —+—-=
p q

luly=oll3s(eey + AT (Byttly=0) I es(ze) < ol (3.22)



3 LINEAR ESTIMATES 26

Proof. The LPB; , estimate in (3.21)) is the classical Strichartz estimate, see e.g. [L3] Corollary

2.3.9. Since du = iAu, |ulwirre S |uol g2, and the B;/QZLQ bound follows by interpolation.
For the trace estimate, we observe that the solution of the Cauchy problem satisfies

Y (z,y,t) € RI (ePug)(z,y) = e WEP+n*)t giz&rivngis e pydedn,

— (eitAuo)(:L’, 0) _ €*Z(|§\2+n tem-ﬁ%(g’ n)dﬁdn

We consider the integral over > 0, and use the change of variables § = —(n? + [£|?)

) _ € uo (€, 4/11€]% + 6]
il +n?)t iz 7 Ydnd 0t gizg 20 dsd
fRd Jﬂw o8 m)dnde JRd J JIIER +7] )dode

= @2m)IF ).

Then for s = 0, reversing the change of variable
Pt D)3y = fd VI8 + €211 + 18] + [€1%)* v (€, ) [Pdadg

e i (€ /6P + )
2 2\s
I IR R e R e R

f f (L4 JE12 + 1) @3 (&, m) Pdnde ~ ol

Rd—1 xR+

N

Symmetric computations can be carried for n € R™, we conclude
e uoly=ollps(rs) S luolu-

The estimate for |A~1(dyuly—o)|ws= is done similarly by writing

(ay“|y:0) - (2 e_z(‘£|2+772)te’b$'§”7u0(§’n)dgd,r}’

and using the fact that after the change of variable, the 7 factor becomes 4/||¢|? + 4|, so that
it balances precisely the symbol of A~1. O

Remark 3.7. Inequality (3.22)) is a multi-dimensional variant (not new) of the sharp Kato-
smoothing property that we already mentioned in the introduction. It is clear that the argu-
ment also works for s > 2.
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t

Pure forcing problem We consider v = f ei(t*s)Af(s)ds solution of
0

{ z&tu + Au = Zf, ({E t) c RCH_I.

u(-,0) = 0.

Our aim is to obtain an estimate of the kind |[uly—o|ysm®,) < [ f[r1gs- If the integral SS was
replaced by Sgo , we might simply apply proposition

U|y:0 _ eitA(Loo eiSAf(S)dS>

0 °Y
= e ([Temapes)| e <] [Te S sl < 1l
y=0

Combined with proposition this implies | SSO =9 f(s)ds|y=o|1s S |1 gs- Unfortu-
nately, due to the intricate nature of H?, which measures both time and space regularity, we can
not apply the celebrated Christ-Kiselev lemma to deduce bounds for S(t) ! t=3)A f(s)ds|y=o (see
also remark for a discussion on this issue). Nevertheless, we have the following proposition.

)

y=0

Proposition 3.8. For 0 < s <2, (p,q), and (p1,q1) admissible pairs, we have

t .
‘ J eZ(t—s)Af(s)ds < HfHLP’(Rt,BS, )AB2 Ry, L)’ (3.23)
0 LPL(Re, B} 5)N By, 5(Re, L) o272
t
i(t—7)A <
fo O ey S Wy pospimay 329
t
-1 i(t—7)A <
HA (ayJ;) e f(T)dT) y:0 HS(Rt) ~ Hf”Lp,(Rt,B;,72)ﬂB;{722(Rt,Lq,). (325)

Proof. We start with (3.23) and (3.24). As a first reduction, we point out that according to
the usual Strichartz estimates (see [13], theorem 2.3.3 to corollary 2.3.9) and proposition

eztA J 6718Af(8)d8|y=0
—o0

< /
. Iy g,

0
< H f e f(s)ds
Hs(Re) —©

. 0 .
6ztA J e—zsAf(S)dS
—00

S ||fHLi),B;I’2’

LYBS , Hs

O .

< ‘ J e "R f(s)ds
—a0

0

LrLa

0
and 6tj 92 £(5)ds J AN f(s)ds
—Q0 —0

< ”fHLf’Wz,q"

LYLa
So, by interpolation
0
eztA J efwAf(S)dS
—Q0

< .
ppane ~ VN
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Therefore, it suffices to estimate Sioo ei(t_S)Af(s)ds, which is the solution of idyu + Au = if,
lim_o, u = 0. In this case, the analog of (3.23]) is also a consequence of the classical results in
[13], and the analog of (3.24) relies on the following duality argument.

The case s = 0 We fix ¢ € H'(R) and denote v the solution of the backward Neuman
boundary value problem

100 + Av =0,
lim,po(t) =0 (z,y,t) € R x RT x Ry.
Oyvly=0 =g

According to the discussion p[I§ and corollary this problem is well-posed and the solution
is i N () admissible Ly L. We extend v on R? x R, by reflection

| v(x,y,t), y =0,
vl@y, 1) = { v(z, —y,t), y <O0.

In particular, v|y=07 = v|y=0+ and 6yv|y=07 = —8yv|y=0+ = —g. Using a density argument,
the following integration by part is justified:

J f ifvdrdydt = = J J uidpv + Avdzxdydt

R, JRd R, JR4

—i—J f —Uy=00yV|y=o- + Uly=00yv|y—o+dxdt
R: Ra-1

—l—J J Oyttly=0v|y—o— — Oytly=0v|y—o+dwdt
R Ra-1

= QJ f uly—ogdzdt.
Rt Rd—l

Taking the supremum over ||g|+ = 1, by duality we deduce

1
luly=ollmeey < 51flLw g, pey sUP 1 lolzpe < 11 L por- (3.26)
gl =

Higher order estimates We recall that A’ is the Laplacian in the x variable. If f €
LY W24 then A'u is the solution of

i0:A'u + AN = A'f, lim A'u(t) = 0,
—00
therefore the estimate for s = 0 implies |A’u|y—o|x < [|A'f]

Par < HfHLf/WM,. By interpola-

tion we get for 0 < s < 2

| VI 810+ 6l 2odsde < U112, (3.27)
q,2
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Similarly, if f € WY LY | then dyu satisfies
i@tatu + A&tu = 6tf, liglg 6tu(t) = 0,

the estimate for s = 0 gives ||Guly—o|nu < |0:f] , and by interpolation again

LY La
fRd VIER + 0l[(1 + 16°) luly—ol*dode < |1 £]%. N (3.28)

Combining (3.27) and (3.28]) implies for 0 < s < 2

Hu|y:0H”H$ g HfHB;{’QQLq’mLi’,BSI’Q‘

Estimate (3.25) For s = 0, we only sketch the similar duality argument : consider v solution
of the backward BVP with Dirichlet boundary condition g, and extend it on R? x R; as an
odd function in the y variable. The same computations as for (3.24]) lead to

sup [ dyulyogdadt 5 1] ootz
) RtXRd71

QEH(Rt
= ayu|y=0 < HfHLp’(Lq’)7
H'(Re)
according to (3.7)), this estimate is precisely (13.25)) for s = 0. The case 0 < s < 2 follows from
the same differentiation/interpolation argument. O

Remark 3.9. The space L¥ B?, 5 N Bs,/ 22qu seems natural at least scaling wise. In the case of
dimension 1, Holmer [17] managed to prove with only | f| ;s in the right hand side
under the condition s < 1/2. For s > 1/2, it is convenient to add some time regularity.

A (very formal) argument is as follows: suppose that u is a smooth solution of idyu + Au =
f, uli=o = 0. If uly—o € 2, then fly=0 = 10 (uly—0) + (Au)|y—0, where i0,g € H and w = Au
satisfies 10w+ Aw = Af, w|;—g = 0, so that the a priori estimate for s = 0 gives (Au)|y=0 € H.
Therefore f|;—o should belong to H, which can not be deduced from f € L} H?.

Now if f € th’lL2 n L H?, from the numerology of Sobolev embeddings one expects

f c Wt3/471H1/2 = “glmost” f|y:0 c Wt3/4,1L2 R Ht1/4L27
fe th/Q’lHl = “almost” fly—o € I/th/Q’lHl/2 — Llem,

in particular, f|,—o almost belongs to HYAL? A L2HY? — H.

3.3 Proof of theorems [1.2] and 1.3

Up to using regularized data ug € Hg, fn € I/VO1 P rd A Lp'I/VO2 ’q,, gn € ’H% all quantities are
well-defined, so we mainly focus on the issue of a priori estimates in this paragraph.
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Proof of theorem First we point out a confusion to avoid for the operator B: if Br
is the Fourier multiplier with same symbol as B, Py the zero extension to ¢t < 0, and R the

restriction to ¢ = 0, we have
B=Ro B]R e} Po.

We recall that Py (resp. R) is continuous H§(R1) — H*(R), s # 1/2 (resp. H*(R) — H§(RT)),
and by duality Py : H'(Rt) - H'(R), R: H'(R) —» H'(RT) are continuous.

The case s =0 We follow the method and notations from the beginning of section [3} let
v the solution of the Cauchy problem, w the solution of (3.1)), that is

{ iow+ Av = f, 10w + Aw = 0,

V|t=0 = Uo
0= Bl dywlim0) = 9 = Bloly=0.0y0-0).
Since |v|zrre < |Juol 2 + HfHLp/1 L (Propositions [3.6| and , it suffices to check that w exists
+ 1
and |w]ppre < fuoll2 +1f1 s 4 + 19l Let us write Br(a,b) = Bigr(a) + Boz(b). According
t

to the Kreiss-Lopatinskii condition the symbols by and 4/]d + |£|?|b2 are bounded uniformly in
(6,€). From the estimates of section |vly=ol(r,) + [Fyv]y=0l2r,) < lluoll2, this implies

7

| B1g © Po o R(uly=0) 2w, | Po o Ruly=oler,) < |uolr2-

| Bog © Py o R(0yuly=0) l5ym,) = ﬂ [02(&, ) *A/I€]% + 8] | Fo e (Po © R(9yuly=0))|*dedd

< f f IE + 81)2 | ot (Po o R(3yuly—o))2deds
= Py o Ryuly—0) oy < ol

We can now apply proposition which gives the existence of w with the expected Strichartz
estimate, then v + w solves (L.1)).
The causality follows by taking the difference of two solutions and using the property on

support of solutions in Corollary

The case s = 2 Here we assume f € LY W27 ~n WM LT uy € H2(R¥L x RY), g €
7-[% (R*). According to proposition we can use again a superposition principle provided

B(v]y=0, 0,v|y=0) € HA(RT) or equivalently Bg o Py o R(v|y=0,dyv|y=0) € H*(R),

since for any g, Br o Pyg is supported in t > 0. Now wug € HZ, thus V)y=t=0 = Ugly=0 = 0,
therefore estimate (3.22) and corollary imply

| Bir © Po o R(vly=0)l22m®) S [volmz + 1flrwad awie o
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Moreover, estimate (3.22)) also implies

51} 0
12,0l 0By sy + 1020l By~ ﬂ o g+

VISP +

HUOH 126 + L o A o

7

But since ug € Hg(Rd*1 x RT), dyv|y—t—0 = Gyuo|y—o = 0 thus
8tP0 O R(ayv|y:()) = Po 9] R(&tayv|y:0), A/P() 9] R(é’yv|y:0) = P[) 9] R(A'(?yv|y:0).

By continuity of Pyo R: H' — H', (Py o R(0:0yv|y=0), Poo R(A'dyv]y=0)) € (H')?. Finally,
using the boundedness of ba4/||€[? + §| we get

”BZ,R oFyo R(ay”|y=0)“7-12 10 Po o R(ayv|y=0)“7-l’ + HAIPO o R(ayv|y=0)”7{’

<
< HuOHH2 + HfHLP'qu’le,p’Lq’

which implies as expected Bag o Py o R(0,v|y—0) € H*(R).

The case 0 < s <2 After fixing an extension operator, since (ug, f) = B(v|y=0, Oyv|y=0)
is continuous L2 x L' LY — H(R*) and HE x (th’pqu’ ALP W2y > HZ(R™), the general
case follows by interpolation.

Proof of theorem [1.3] - Let s € [0,2]. We fix extensions of ug, f to y < 0 and solve

{i@tv—i—Av:f, (z,y,t) e RY x R.

v]i=0 = o,
From the estimates for the Cauchy problem, v|,—g € #*(R). Consider the BVP

10w + Aw = 0,
wli—g = 0, (z,y,t) e R 1 x RT x RY. (3.29)
w|y:0 =9- U|y:0’

If s > 1/2, the trace v|y—t—0 = uo|y—o is well defined and belong to Hs=Y2_ Moreover the
compatibility condition gives (g — v|y=0)|t=0 = glt=0 — uoly=0 = 0 so that for s € [0,2]\{1/2},
g — vly—o € H{(RT). From proposition there exists a unique solution w € C(R,, H) to
. Now u := v|y>0 + w is a solution of , it satisfies the expected estimate because
according to propositions and v and w do.

In the case s = 1/2, we first note that

t t
vVt =0, J =98 f(5)ds = J =92 Py o R(f(s))ds,
0

0



3 LINEAR ESTIMATES 32

and since py < 2, PyoR(f) € B 1/4 o (R, L) A L1 (Ry, Bl/ ,). From Prop0s1t10ng =92 Pyo
Rf(s)ds|y—o € H'2(R), and clearly vanishes for ¢ < O therefore R(St t=s)A (s )ds|y—o0) €

’Hl/ 2(R*) (by definition [2.2| of ’Hl/ ). In order to solve (3.29), we are left to prove that if
the compatibility condition is satisfied, then (eitAu0)| —0—gE€ 7—[1/ 2(R*) From the previous
estimates, we know (eimuo)|y=o — g€ HY2(RY), and we must Check condition (2.2)), that is :

ztayu — et o(e )P
“ ) Ot 9@ jy < o0

R+ xRd—1

Using the change of variable ¢t — \/E, the compatibility condition (1.4)) ensures

it 2
” Juo(, iG]

R+ xRd-1

Therefore we only need to estimate ug(x,v/t)— (e itdy uo)|y=0. We use the following interpolation
argument: if ug € H'(R?), the identity ug(x,/t) — (e ltayu0)|y o = uo(z,vt) — uo(z,0) +
uo(z,0) — (e 0y u0)|y o makes sense, and thanks to Hardy’s inequality

Juo (@, vt) — uo(,0)[” Juo (. y) — uo(z, 0)? >
” t3 v dtdz = 2 7 dydz < [ Oyuo|72-
R+ xRd-1 Rt xRd—1
Similarly, the sharp Kato smoothing ([3.22)) implies |\(eita§uo)|y:0\|Ht3/4L2 < |wol g1 so that the
(fractional) Hardy’s inequality gives
("% 10) =0 — uo(a, 0)

- dtdo < 1 Buo)ly=olyre,, S ol
R+ xRd—1
On the other hand, we have by a similar simpler argument

Juo (@, VB2 + |(€%u0) [y=o 2 22
: 2 = 5 luol72 + (o) ly=olFpryape < luol7e-

R+ xRd—1
We deduce by interpolation

luo(z, VE) — (€"%u0) |y=o|?
t

dt < HUOH?{U?'
R+ xRd—-1

This implies (eitAug)|y 0—gE ’HO/ We can then end the proo as for the case s # 1/2.

4Note that ug was extended to R"™, but the argument clearly independent of the choice of the extension
operator.
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4 Local and global existence

For simplicity, we only consider nonlinearities of the type ¢|u|* u, a > 1, e € {1, 1} Dirichlet
boundary conditions, ug € H'. More general nonlinearities and indices of regularity can be
treated with similar methods, see chapter 4 from [13].

Since so far we have always considered global solution, some clarifications for local solutions
of nonlinear problems are required. For Pr an extension operator as in lemma [2.8] consider
the map ® : ve L®(R/, H') — ®(v) the solution of

i0yu + Au = ¢|Prv|* 1 Pro,
ult—o = uo, (4.1)
u|y:0 =d.

Ifl<a<1+4+4/(d—2),2<a+1<2d/(d—2) thus by Sobolev’s embedding v € L¥ L. If

p,a + 1) is admissible, we deduce |Prv|®* ' Prov € ¥ n L(“H)/, and according to theorem |1.3
t

® is well-defined L H' — C,L>.

We say that u is a local solution on [0,7’] of

i0u + Au = e|u|*tu,
u|t:O = uo, (42)
u|y:0 =4d.

if u is the restriction on [0,T'] of a fixed point of ®.

Theorem 4.1. Let (ug,g) € HY(R¥ 1 x RT) x HY(R}") such that ugly—o = gli—o, 1 < a <
1+4/(d—2). The IBVP ([4.2) has a unique mazimal solution in C([0, Tmax), H'). If Tiax < 0,
%im |u(t)|| g1 = 0©. For any T such that u exists on [0,T] and (p,q) an admissible pair, then

max

we LP([0,T], Wh9) n BY; ([0, T, LY).

If moreover 1 +4/d < a, there exists € > 0 such that if |uo| g + ||g]l3r < € then the solution
is global and for (p,q) admissible, u € LP(RS, W14) B;{;(R;r, L9).

Proof. We use the convenient notation LY/P = LP. Let us recall shortly the classical Kato’s
argument, with some modifications to handle time regularity.

Local existence For M to fix later, we set S the closed ball of radius M in L*(R*, H!) n
LP(RT, W) A B;’/ZQ(]RJF7 LY, ¢ =a+1, (p,q) admissible. We use on S the following distance

d(u,v) = u— UHL"’»‘(R*,LQ)qu(RJr,LT)-

(S,d) is a complete set (see e.g. [13] section 4.4). We fix an extension operator Pr as in lemma
such that for any v € S,

Supp(PTv) C Rdil X RJF X [_T, 2T]7 |‘PTU‘|B;/22(Rt,L‘1) S Tl/pil/QHUHB;/;(Rt’Lq)7 (43)
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and we construct a fixed point to ®, with ® defined at (4.1)).
Combining the inclusions B, < W, B(}, , D W (see [6] theorem 6.4.4), with the linear
estimates of theorem [I.3 we get

H(I)(U)HL‘lemL?WLqﬂB;’/;(R"',LQ) < HUOHHl + HgH’Hl + H|PTU|CL*1PTUHLplwl’q/mBlljl/éLq/.

Using aq’ = q, 112{‘] = 1/q, the embedding H' < L7 and assumption (4.3]), we have

a

[ Prol®™ Pro| g wiary S HPTUHZ?P’M T HPTUHGLEIMHVPTUHL{’L‘ZH1HL1*2/”([—T72T]7L‘”)
s T VOVl + T2 Prol 2 [V Prolg e (44)
S (Ta—l/p' +T1—2/p)Ma_ (45)

Similarly for the time regularity, we have using proposition and lemma [2.8

[ |PTU|“71PTU|\B;,/22(R7L¢) < l(Proy* | Lim2rm passa 1PVl gz

N

TP o) 7 TP Y2 o

1/2
Bp,2Lq
T2 Upp e,

N

Therefore for 0 < T <1,
”q)(v)HLTHlmprlvqu;qu < Juolgn + llglagr + (TP + TP A,

Choosing M > |lug| g1 + [g[#1, T small enough, ® maps S into S. Then from similar compu-
tations

|®(u) = @)l Lrr2mrre S TPl ppmn + [0l ) = vlgp - (4.6)

Up to decreasing T, the usual fixed point argument gives the existence of a unique fixed point
in S for T small enough. Estimate also implies uniqueness in L*H', and by causality
the solution does not depend on the choice of the extension operator.

Thanks to the local well-posedness in H', and the fact that the compatibility condition is
clearly propagated by the flow, the existence and uniqueness of a maximal solution follows.

1 da—1
Global existence Let us go back to (4.5)), assuming a > 1 +4/d. Then — = 4((a+1§ and
D a

Lo(_2\_1_ 1 ( a+1\_ 1 ( da-1 <0,
a—1 P p a-—1 P a—1 4

1 1 1 1 —
(1_)_:(1_a+1>:1(1_d<a1>)<0,
a p) p a P a 4
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’ 1 (12
Therefore L% ~ Lae-1 (1 P) c L® n LP. As we work with small data, we can assume that the
solution exists on [0, Ty], Ty = 1, and for any T > Tp, using H! — L4

lal* ™ al oy S \IU\I"Lw/LqHIU\I“’i( :) IVull e 1a
T T L&t =2 1a
S HUH([lg;‘HlmLpWLq'

The same computations can be applied to estimate time regularity, so that setting
m(T) = HUHL”TﬂHlmL’}WMmB;g [0.7,Lay Ve have with C independent of T > Ty
m(T) < C(Juol g + gz +m(T)%).

If |upllz1 + [lg]2y1 < € small enough, then from the fixed point argument m(1) < Ae for some
A > 0. Choosing B > max(A,C) and ¢ small enough such that C' 4+ CB%% ! < B, for any
T € [0, Tinax[. m(T) < Be thus Tyax = 0. Since u € L*H' n LP(R},W"9) n BY; (R}, L9)
for some (p,q) admissible, it is also true for arbitrary admissible (p,q) by using the same
computations. ]

Remark 4.1. For the Schrodinger equation on R?, global well-posedness for small data is known
provided ags < a, where ag = (vd? +12d + 4+ d + 2)/(2d) < 1 + 4/d is the so-called Strauss
exponent, see [30]. Strichartz estimates for “non admissible pairs” ([I3], section 2.4) are the
missing tool for reaching this range.

5 Asymptotic behaviour

The aim of this section is to show that the global small solution constructed in section [4] scatters
in the sense that it is asymptotically linear. For the Cauchy problem, the classical deﬁnition[ﬂ
is
Jpe H : lim |e " u(t) — = 0. 1
pe Jimle™ P u(t) = ¢fm =0 (5.1)

We propose a natural extension for the Dirichlet boundary value problem: we define the
resolvent operator ®(g, s, t,ug) = v(t,-) where v is the solution of

10rv + Av =0,
'U|r=s = Uo,
U|xd=0 =g.
Note that by reversibility of the boundary value problem with Dirichlet boundary conditions,

®(g, s,t,up) is well defined if ¢ is defined on [s,¢], in particular we do not require s < ¢, and
we have the usual formulas

q)(gvsatyé(gﬂglasﬂ’b())) = (I)(ga s1,t, uO)v @(g + h,s,t,ug + UO) = (I)(gvs7tv U()) + (I)(h737t7 ’U()),

Sup to some flexibility for the functional settings.
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and we will freely use the fact that linear estimates directly give estimates on ®.
In view of (5.1)), the natural definition for scattering is then :

Definition 5.1. If u is a global solution to (4.2)), we say that it scatters in H' if

1. M p— =
JpeH : lim [®(g,1,0,u(t)) — ¢]m = 0.

Remark 5.1. Since the flow acts continuously on H', this is equivalent to the more “forward”
definition
JpeH': lim |y (0,t, ) —ut) | =0,

which has the advantage of making sense for non reversible BVP (but is not as easily checked).
Proposition 5.2. The global solution constructed in sectz’on@ scatters in H'.

Proof. Tt suffices to check that ®(g,t,0,u(t)) is a Cauchy sequence. We keep the same notation
as in the previous section. For ¢ > s, we have

®(g,1,0,u(t)) = (g,5,0,u(s)) = ®(0,,0, u(t) — (g, s,t, u(s)))
On the other hand, u(t) — ®(g, s,t,u(s)) is the value at time ¢ of the solution of

i0rz + Az = |u|*Tul,sy,
Z|r—s = u(s) —u(s) =0,

Z|y=0 = 0.
We deduce |®(g,t,0,u(t)) — ®(g,s,0,u(s))||g < H|u|a71uHLP’([goo[,WLq')mB;,/Qz([s,OO[,Lq/) —s 0,
therefore by Cauchy’s criterion ®(g,t,0,u(t)) converges in H'. O

Due to the presence of boundary conditions, there is some “room” for other definitions of
scattering. The purpose of the next proposition is to show that the asymptotic behaviour is
actually trivial, in the sense that the solution converges to the restriction on y > 0 of e*®yp
for some ¢ € H'(RY). We denote Ap the Dirichlet laplacian.

Proposition 5.3. There exists p € H} such that |u(t) — e*5p

converges as t — oo to the restriction on y = 0 of the solution of

ollgr —¢ 0. Equivalently, u

{z&tv—kAv:O, r e RY

U|t:0 = A(@)a

where A(p) is the antisymetric extension on y < 0 of ¢.
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Proof. Let us fix R a lifting operator H'/2(R41) » H'(R%*! x R*), P an extension operator
HY R, ) — HI(R;). We define

Pe: HH([t, 0[ xR — HIR x RY), g = P(g(- + 1) (- 1),
so that for r > ¢, Prg(r) = g(r). We now consider the backward operator :
<I>(77tg, t, 0, u)

For t > S, q)(Ptga t7 07 u(t)) - (I)(Psg’ S, 07 U(S)) = ‘13(73,59 - Psgv t) Oa U(t) - (I)(g7 S, t7 U(S))) . We
already know (see the previous proof) that

”u(t) - q)(g’ 5,1, U(S))HHI — 0,
moreover lim lgl3(t,op) = O (corollary point 3), thus |Pi(g)|1 —w 0. We deduce
|®(Prg.t,0,u(t)) — ®(Psg,s,0,u(s))| —s¢ 0, thus from Cauchy’s criterion

Jpe ! li%nq)(Pth,OaU(t)) = ¢

We remark now that ®(Pyg,t, 7, u(t)) — eXT"D2D (u(t) — Rg(t)) is the solution of

10rw + Aw = 0,
w|7‘=t = Rg(t)v
wly—o = Pig.

Since || g]l1([t,00p) =0 0, we have [Prgl31 —o 0 and from the embedding #' < C([t, x|, H'/?),
we have |Rg(t)||g1 = 0, this implies

lim |@(Peg, t, 7, u(t) — €T O22 (u(t) = Rg(0)| 1z — 0,

—00 T

in particular for 7 =0, tlim |®(Prg, t,0,u(t)) — e A0 (u(t) — Rg(t))|| g = 0.
—00

As ®(Pyg,t,0,u(t)) —¢ ¢ € H', we deduce e A0 (u(t) — Rg(t))) —¢ ¢ too. Furthermore for
any t, e A0 (u(t) — Rg(t)) € H} which is closed so ¢ € H}. Finally from |[Rg(t)| g —+ 0 we

conclude [[u(t) — e*AP |y — 0.
The equivalent statement simply comes from the fact that A(e?2Pp) = €A Ap. O

A Remarks on the optimality of H

A natural question is wether H is the weakest space for which the solution to (1.1)) is CyL?.
We consider the BVP

10w+ Au = 0,

limu(t) =0,

—o0

Uly—0 = g.
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We formulate our problem as follows

. - /2 o p(§,9)
Is there a weight p > 0 such that ||ul 72 < (J|g|2p(§,5)d5d§)1 and inf ——~-— =07
t V€7 + 4] (A1)

The aim of this section is to show that the answer to this question is positive, even under the
stronger assumptions that p < 4/|[|¢|2 + d| and for any A > 0, p(A&, A26) = Ap(&,§). However

we will see that region where the inf is realized is a bit peculiar.
We recall that the solution is given by Lu = e ¥V ‘5|2+5§, and that we can split u as

1 * ) x- —3 2 2 ~
uent) = WJR“J €)= g (€, —n® — |¢])dn dg
1 > — ix-& _it(—|&|2+n? ~
Ty JRJO ¢TI G e, — |6 + 0?)dn de
= ui + us.

This splits the frequencies in two regions {§ < —[¢|*} := Ry and {§ > —[|¢|?} := Re. In the
usual terminology of boundary value problems these are the hyperbolic and elliptic regions
(see [31] in the context of the Schrédinger equation). According to Plancherel’s formula,

[ur(t = )2 ~ [ng(&, —n* = €)llz, ~ 1€, 0) lIE1* + o] 12,

therefore the weight A/ 1€]? + 0] can not be modified in Ry,
In Re, we set J(&,m) = /1/p( 5, €12 +12), (&, n) = 25(&, —|€|? + [n|*)4/np. We remark that
is equivalent to sup J = 400, and

Jieteman =2 f 5) (€, 6)ds

Now without loss of generality we can assume that for any (£,7), ¢(£,1) € RT, and we bound

Jus( D)z ~ foewzm I+ P)dn

z,y

2
Lé,y

oo}

_ f e Vo (€,m) T (€, m)dn

0

2
LE;y

1/2
_ ( j e ol (6 ) (€ nz)dmdmdy)

2
L&

- J (€, m)J (€, m2) 172
- <JIR{d 1 JO e nm + o 90(5,771)<P(£,7]2)d771d172d£> (A.2)
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Using the decomposition (RT)? = {5 < m} U {n2 < m}, we see that is bounded by
lell? if

J(&m)

m

Due to scaling invariances, it seems natural to add some homogeneity assumptions: if w is a
solution of the BVP with boundary data g, then for any X > 0, A%2u(\z, Ay, A%t) is a solution
with boundary data g(Az, A*t) and same C;L? norm. The norm of the boundary data is scale
invariant if

M1
T:p— f J(&€,m2)¢(€,m2)dns is bounded L? — L2. (A.3)
0

2
[ 15t PP dgas - [ ace.o)ppte. yasas

which is true provided p is anisotropically homogeneous: p(A¢, A28) = Ap(€,6). This is equiva-
lent to the J(A\E, An) = J(&,7n). Somewhat surprisingly, even with these strong assumptions it
is possible to construct J satisfying (A.1)).

Proposition A.1. There exists p(§,d) such that (A.1) is true, moreover we can choose p such
that

V(N ES) e R™ x RITL X R, p(AE,A%0) = Ap(€,6), and p(&,8) < v/[|€]2 + .

Proof. We keep the notations of the discussion above. For simplicity, we assume d = 2, and
define : , , ,
jif2r —277 <1<, jeN,

r(&,m) ={ ¢

Obviously, J := 1+ r = 1 is 0-homogeneous and unbounded, thus
§+E2)J%(6,4/0 + €2) < /6 + €2, infp = 0 and p(AE, A26) = Ap(€, 6).

Developping in (A.3) J(&,m)J(&n2) = 1+ r(§,m) + r(&n2) + r(§,m)r(S, m2) it suffices to
estimate each term separately. By symmetry, we can simply consider the integral over n; = ns.

The term with 1 is bounded thanks to Hardy’s inequality, for the term with (£, 72) we write

0 else.

w1/ m 2 © g2 2* 2
f 2<J T(f,nz)sO(é,nz)dnz) dm < ZJ (J TsO(E,nz)dnz) dm
o M1 \Jo Lo vE2k1 7)1
0 9— £2J 2
< — Jedn )
g £ ( ]Z()L(zjz—fd ’
0] _
S Z (2 (&, M 2(eer -y, e2i7)dV 277€ )
< H”SO( 7')\|L2([5(2a42—.7‘),g2j])Hl; < (8, ')Hig‘
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Similarly for the term with (&, 1)

k

0 7”2(5,7’]1) < 1 p )Qd &2 ( okg ; >2d
f — 3 J e ne)dne ) dp < J2k - f @(&,m2)dna | dm
k22~

0 m 0
3k

= le(€, )I722"¢ < (€, )7

s T MS

§

The last term (&, n1)r(&,n2) is easier to estimate, we conclude by integration in £

(&;m)J (& m2) 9 .
J J]R"’)Q WS"(faﬁl)‘P(fam)dmdmdf S HSOHLQ(Rd_lXR‘*') ~ HgHLQ(pd&lf)ﬂ

despite the fact that J is larger than 1 and unbounded. O

Remark A.2. Let us point out that the contribution of the elliptic region R, to the solution
corresponds to a superposition of so-called evanescent waves, that do not propagate like solu-
tions of the Cauchy problem: for (6,€) such that & 4 |¢|? > 0, the wave e ¥VIIEP+olgil0t+2:€) g
a solution of the Schrédinger equation on R%~! x R* remaining localized near the boundary.
As mentionned before, for frequencies that correspond to propagating waves, the weight

\/0 + |€|? is optimal.
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13-BS01-0009-01.
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