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Abstract

We consider the Schrödinger equation on a half space in any dimension with a class
of nonhomogeneous boundary conditions including Dirichlet, Neuman and the so-called
transparent boundary conditions. Building upon recent local in time Strichartz estimates
(for Dirichlet boundary conditions), we obtain global Strichartz estimates for initial data
in Hs, 0 ¤ s ¤ 2 and boundary data in a natural space Hs. For s ¥ 1{2, the issue of
compatibility conditions requires a thorough analysis of the Hs space. As an application we
solve nonlinear Schrödinger equations and construct global asymptotically linear solutions
for small data. A discussion is included on the appropriate notion of scattering in this
framework, and the optimality of the Hs space.

Abstract

On considère l’équation de Schrödinger sur le demi espace en dimension arbitraire pour
une classe de conditions au bord non homogènes, incluant les conditions de Dirichlet, Neu-
mann, et “transparentes”. Le principal résultat consiste en des estimations de Strichartz
globales pour des données initiales Hs, 0 ¤ s ¤ 2 et des données au bord dans un espace
naturel Hs, il améliore les estimées de Strichartz locales en temps obtenues récemment par
d’autres auteurs dans le cas des conditions de Dirichlet. Pour s ¥ 1{2, la définition des
conditions de compatibilité requiert une étude précise des espaces Hs. En application, on
résout des équations de Schrödinger non linéaires, et on construit des solutions dispersives
globales si les données sont petites. On discute également le sens précis donné à “solution
dispersive”, ainsi que la question de l’optimalité de l’espace Hs.
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1 Introduction

We consider the initial boundary value problem (IBVP) for the Schrödinger equation on a half
space $&%

iBtu�∆u � f,
u|t�0 � u0,
Bpu|y�0, Byu|y�0q � g,

px, y, tq P Rd�1 � R� � R�
t , (1.1)

where the notation Rt emphasizes the time variable. B is defined as follows: we denote L the
Fourier-Laplace transform on Rd�1 � R�

t

g Ñ Lgpξ, τq :�
» 8

0

»
Rd�1

e�τt�ixξgpx, tqdxdt, pξ, τq P Rd�1 � tz P C : Repzq ¥ 0u,

and B satisfies

LpBpa, bqq � b1pξ, τqLpaq � b2pξ, τqLpbq,with b1, b2 smooth on Repτq ¡ 0 and

@λ ¡ 0, b1pλξ, λ2τq � b1pξ, τq, b2pλξ, λ2τq � λ�1b2pξ, τq.

This kind of boundary conditions was considered by the author [3] for a large class of dispersive
equations on the half space. They are natural considering the homogeneity of the equation,
they include Dirichlet (b1 � 1, b2 � 0) and Neuman boundary conditions (b1 � 0, b2 �
p|ξ|2 � iτq�1{2, see section 3 for the choice of the square root), but also the important case
of transparent boundary conditions (b1 � 1, b2 � �p|ξ|2 � iτq�1{2). The label transparent
comes from the fact that the solution of the homogeneous IBVP with transparent boundary
conditions coincides on y ¥ 0 with the solution of the Cauchy problem that has for initial value
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the function u0 extended by 0 for y ¤ 0 (for motivation and more details see [1]).
Our aim here is to prove the well-posedness of the IBVP under natural assumptions on B
detailed in section 3, and prove that the solutions satisfy Strichartz estimates.
Let us recall that the linear, pure Cauchy problem on Rd can be solved by elementary semi-

group arguments, and its fundamental solution is explicitly given by
e�|x|2{p4itq

p4iπtqd{2 , an immediate

consequence being the dispersion estimate }eit∆u0}L8 À }u0}L1{td{2. A more delicate, but
essential consequence are Strichartz estimates :

for p ¡ 2,
2

p
� d

q
� d

2
, }eit∆u0}LppRt,LqpRdq À }u0}L2pRdq. (1.2)

Such estimates are a key tool for the the analysis of nonlinear Schrödinger equations (NLS) (see
the reference book [13]). Any pair pp, qq that satisfies the identity above is called admissible.
In the limit case p� � 2, q� � 2d{pd� 2q, in view of the critical Sobolev embedding H1

ãÑ Lq�

such estimates correspond (scaling wise) to a gain of one derivative. It is easily seen that (1.2)
remains true if Rt is replaced by r0, T s, and by Hölder’s inequality, the estimate is true on
r0, T s for q ¥ 2, 2{p � d{q ¥ d{2. For such indices it is usually called a Strichartz estimate
with “loss of derivatives”.
The study of the IBVP is significantly more difficult even for homogeneous Dirichlet boundary
conditions: the existence of dispersion estimates remained essentially open until very recently
(see the announcement [19]), and it is now well understood that Strichartz estimates strongly
depend on the geometry of the domain. One of the first breakthroughs on the analysis of
Strichartz estimates for the homogeneous BVP was due to Burq, Gérard and Tzvetkov [11],
who proved that if the domain is non trapping1 and ∆D is the Dirichlet Laplacian

for p ¥ 2,
1

p
� d

q
� d

2
, }eit∆Du0}LpLq À }u0}L2 ,

this corresponds to Strichartz estimates with loss of 1{2 derivative. Numerous improvements
have been obtained since [2][7], up to Strichartz estimates without loss of derivatives [18][7],
and their usual consequences for semilinear problems. Very recently, Killip, Visan and Zhang
[21] shrinked even more the gap between the IVP and the IBVP by proving the global well-
posedness of the quintic defocusing Schrödinger equation posed on the exterior of a convex
compact set, while the same result for the Cauchy problem (see [14], 2008) was a major
achievement.
Less results are available for nonhomogeneous boundary value problems, although the theory
in dimension 1 made very significant progresses. Actually, even in the simplest settings of
a half space the two following fundamental questions have not received completely satisfying
answers yet

1A typical example is the exterior of a compact star shaped domain.
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1. Given smooth boundary data, what algebraic condition should satisfy B for the BVP to
be well-posed ?

2. For such B, given s ¥ 0 what is the optimal regularity of the boundary data to ensure
u P CtHs?

In dimension one, with Dirichlet boundary conditions, question 2 is now well understood (see
Holmer [17]) : for a solution u P CtH

spR�q, the natural space for the boundary data is
Hs{2�1{4pR�

t q. An easy way to understand this regularity assumption is that it is precisely the
regularity of the trace of solutions of the Cauchy problem, as can be seen from the celebrated
sharp Kato smoothing. Let us recall here the classical argument of [20]

eit∆u0 �
»
R
e�it|ξ|

2
eixξxu0dξ � 1

2π

»
R�
e�itη

�
eix

?
ηxu0 � ei�x

?
ηxu0

�
dξ

ñ }eit∆u0|x�0} 9Hs{2�1{4 �
»
R�
p|xu0p?ηq|2 � |xu0p�?ηq|2q|η|s�1{2dη �

»
R
|xu0pξq|2|ξ|2sdξ

¤ }u0}2Hs .

Sharp Strichartz estimates without loss of derivatives were also derived, so that local well-
posedness can be deduced for various nonlinear problems. The Cauchy theory has been recently
significantly improved by Bona, Sun and Zhang [9], where the authors study the IBVPs with
spatial domain R� and r0, Ls. An interesting feature is that (contrary to the IBVP for the
KdV equation) the natural space for the boundary data must be replaced by Hs{2�1{2pR�

t q
when the domain is r0, Ls, and this space is optimal. The dispersive estimates on r0, Ls are
obtained by technics of harmonic analysis, in the spirit of the fundamental results of Bourgain
[10] for the Schrödinger equation on the torus.
Moreover the authors obtain the global well-posednes in H1 under various assumptions on the
nonlinearity. The global well-posedness is based on intricate energy estimates. Finally let us
mention that A.S. Fokkas developed the so-called unified transform method (in the spirit of
inverse scattering), a method for computing explicitly solutions to boundary value problems
in dimension 1. Since the seminal paper [15], the theory received numerous improvements,
with the most recent contribution [16] dealing also with the nonlinear Schrödinger equation on
the half-line. To our knowledge, Strichartz estimates have not yet been obtained through this
approach.
The BVP in dimension ¥ 2 poses new difficulties, because the geometry can be more complex,
and waves propagating along the boundary are harder to control (this issue appears even with
the trivial geometry of the half space). We expect that the answer to question 2 strongly
depends on the domain. Due to its role for control problems, the Schrödinger equation in
bounded domain has received significant attention, see [12, 27, 29] and references therein. In
unbounded domains with non trivial geometry, the regularity of the boundary data is different
and Strichartz estimates with loss can be derived (see the author’s contribution [4]).
In this article we only consider the case where the domain is the half space. The Schrödinger
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equation shares some (limited) similarities with hyperbolic equations, for which question 1
has been clarified in the seminal work of Kreiss [22]: there is a purely algebraic condition,
the so-called Kreiss-Lopatinskii condition, which leads to Hadamard type instability if it is
violated (see the book [5] section 4 and references therein). This condition was extended
by the author in [3] for a class of linear dispersive equations posed on the half space. A
consequence of the main result was that if this condition is satisfied then (1.1) is well posed
in CtH

s for boundary data in L2pRt, Hs�1{2pRd�1qq XHs{2�1{4pRt, L2q, a space that, scaling
wise, is a natural higher dimensional version of Hs{2�1{4pRtq. We point out however that the
Kreiss-Lopatinskii condition derived in [3] was quite restrictive, and in particular forbid the
Neuman boundary condition, a limitation which is lifted here.
On the issue of Strichartz estimates, Y.Ran, S.M.Sun and B.Y.Zhang considered in [28] the
IBVP (1.1) on a half space with nonhomogeneous Dirichlet boundary conditions. They derived
explicit solution formulas in the spirit of their work on the Korteweg de Vries equation with
J.Bona [8], and managed to use them to obtain local in time Strichartz estimates without
loss of derivatives. A very interesting feature was that the existence of solutions in CTH

s only

required boundary data in some space Hs which has the same scaling as L2
tH

s�1{2XHs{2�1{4
t L2

but is slightly weaker. We refer to paragraph 2.3 for a precise definition of Hs. The space Hs is
in some way optimal, as it is exactly the space where traces of solutions of the Cauchy problem
belong, see proposition 3.6. Note however that in the appendix we provide a construction
showing that it is less accurate for evanescent waves (solutions that exist only for BVPs and
remain localized near the boundary).
Although not stated explicitly in [28], we might roughly summarize their linear results as
follows:

Theorem 1.1 ([28]). For s ¥ 0, s � 1{2r2Zs, pu0, f, gq P HspRd�1 � R�q � L1pr0, T s, Hsq �
Hspr0, T sq. If pu0, f, gq satisfy appropriate compatiblity conditions, the IBVP (1.1) with Dirich-
let boundary conditions has a unique solution u P Cpr0, T s, Hsq, moreover for any pp, qq such
that p ¡ 2, 2

p � d
q � d

2 and T ¡ 0 it satisfies the a priori estimate

}u}Lppr0,T s,W s,qq À }u0}Hs � }f}L1pr0,T s,Hsq � }g}Hspr0,T sq.

In theorems 1.2,1.3, we provide two improvements to this result: we allow more general bound-
ary conditions, and our Strichartz estimates are global in time with a larger range of integra-
bility indices for f (any dual admissible pair). Some consequences for nonlinear problems are
then drawn in section 4.
For the full IBVP the smoothness of solutions does not only depend on the smoothness of
the data, but also on some compatibility conditions, the simplest one being u0|y�0 � g|t�0 in
the case of Dirichlet boundary conditions. This compatibility condition is trivially satisfied
if u0|y�0 � g|t�0 � 0 (that is, u0 P H1

0 ), but the non trivial case is mathematically relevant
and important for nonlinear problems. It is delicate to describe compatibility conditions for a
general boundary operator B, therefore we shall split the analysis in the following two simpler
problems :
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• General boundary conditions, “trivial” compatibility conditions in theorem 1.2,

• Dirichlet boundary conditions, general compatibility conditions in theorem 1.3.

As Hs is not embedded into continuous functions, g|t�0 does not have an immediate mean-
ing. Therefore we thoroughly study the functional spaces Hs in paragraph 2.3, including trace
properties which allow us to rigorously define the compatibility conditions, including the in-
tricate case s � 1{2 where g|t�0 has no sense, but a new global compatiblity condition is
required. The main new consequence for nonlinear problems is a scattering result in H1 for
pu0, gq small in H1�H1. To our knowledge, all previous global well-posedness results required
more smoothness on g.

Statement of the main results Let us begin with a word on the first order compatiblity
condition: if u0 P HspRd�1�R�q, s ¡ 1{2, u0|y�0 is well defined and belongs to Hs�1{2pRd�1q.
We will prove in proposition 2.1 the embedding Hs � CtH

s�1{2pRd�1q, therefore if u P CtHs

solves (1.1), necessarily
for s ¡ 1{2, g|t�0 � u0|y�0. (1.3)

(1.3) is the first order compatibility condition. If s � 1{2, (1.3) does not makes sense, but a
subtler condition is required: let ∆1 the laplacian on Rd�1, then

if s � 1{2,
»
Rd�1

» 8
0

|e�it2∆1
gpx, t2q � u0px, tq|2

t
dtdx   8. (1.4)

This is reminiscent of the famous Lions-Magenes global compatibility condition for traces
on domains with corners, with a twist due to the Schrödinger evolution, see definition (2.2)
and paragraph 3.3 for more details. When we say ”the compatibility condition is satisfied”,
we implicitly mean the strongest compatiblity condition that makes sense, so that for s   1{2
nothing is required. It is not difficult to define recursively higher order compatibility conditions
(see e.g. [4] section 2). Note however that higher order compatibility conditions involve also
the trace f |y�t�0, which makes sense only if f has some time regularity. We do not treat this
issue in the paper.
For nonlinear applications we are only interested by the H1 regularity, so we choose to consider
indices of regularity s P r0, 2s. Our main result requires a few notions : see section 2 for the

definition of the functional spaces Hs, Hs0 and H1{2
00 and section 3 for the definition of the

Kreiss-Lopatinskii condition.
We use the following definition of solution:

Definition 1.1. A function u P CpR�
t , L

2q is a solution of (1.1) if there exists a sequence
pun0 , fn, gnq P H2pRd�1 � R�q � LppR�

t ,W
2,qq � pL2pR�

t , H
2q XH1pR�

t , L
2qq, with

}pu0, f, gq � pun0 , fn, gnq}
L2�Lp

1
1
t Lq

1
1�H0

ÝÑn 0,

such that there exists a solution un P CtH2XC1
t L

2 to the corresponding IBVP and un converges
to u in CtL

2. A CtH
s solution is a solution in the CtL

2 sense with additional regularity.
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In our statements we shall use the following convention for any pp, qq P r1,8s2

B0
q,2pRd�1 � R�q :� Lq, B2

q,2pRd�1 � R�q :�W 2,q, B0
p,2pR�

t q � Lp, B1
p,2pR�

t q :�W 1,p. (1.5)

These equalities are not true for the usual definition of Besov spaces, but they allow us to give
shorter statements for a regularity parameter s P r0, 2s.
Theorem 1.2. If B satisfies the Kreiss-Lopatinskii condition (3.4), for s P r0, 2s, pp1, q1q an
admissible pair,

pu0, f, gq P Hs
0pRd�1 � R�q � �Lp11pR�

t , B
s
q11,2

q XBs
p11,2

pR�
t , L

q11q��Hs0pR�q,

(if s � 1{2, pu0, gq P H1{2
00 �H1{2

00 ), then the IBVP (1.1) has a unique solution u P CpR�, Hsq,
and for any pp, qq such that p ¡ 2, 2

p � d
q � d

2 , it satisfies the a priori estimate

}u}
LppR�t ,Bsq,2qXBs{2p,2 pR�t ,Lqq

À }u0}Hs � }f}
Lp

1
1 pR�t ,Bsq11,2

qXBs
p11,2

pR�t ,Lq
1
1 q � }g}HspR�t q.

Moreover, solutions are causal, in the sense that if puiqi�1,2 are solutions corresponding to
initial data pu0,i, fi, giq, such that u0,1 � u0,2, f1|r0,T s � f2|r0,T s, g1|r0,T s � g2|r0,T s, then
u1|r0,T s � u2|r0,T s.
For the Dirichlet BVP, well-posedness with non trivial compatibility conditions holds:

Theorem 1.3. In the case of Dirichlet boundary conditions, for s P r0, 2s, pp1, q1q an admissible
pair,

pu0, f, gq P HspRd�1 � R�q � �Lp11pR�
t , B

s
q11,2

q XBs
p11,2

pR�
t , L

q11q��HspR�
t q,

that satisfy the compatiblity condition, then (1.1) has a unique solution u P CpR�
t , H

sq, more-
over for any pp, qq such that p ¡ 2, 2

p � d
q � d

2 it satisfies the a priori estimate

}u}
LppR�t ,Bsq,2qXBs{2p,2 pR�t ,Lqq

À }u0}Hs � }f}
Lp

1
1 pR�t ,Bsq11,2

qXBs
p11,2

pR�t ,Lq
1
1 q � }g}HspR�t q.

Note that we have the usual range of indices for the integrability of f but some time
regularity is required. Such requirements are common for hyperbolic BVP (e.g. [26] proposition
4.3.1), and the regularity required here is sharp in term of scaling, so that we are able to deduce
the usual nonlinear well-posedness results from our linear estimates in section 4.

Plan of the article In section 2 we recall a number of standard results on Sobolev spaces,
and describe the Hs spaces (completeness, duality, density properties...). Section 3 starts with
the definition of the Kreiss-Lopatinskii condition, and is then devoted to the proof of theorems
1.2 and 1.3. In section 4, under classical restrictions on the nonlinearity we prove the local
well-posedness in H1 of the Dirichlet IBVP, and global well-posedness for small data. Finally
section 5 is devoted to the description of the long time behaviour of the global small solutions:
we prove that in some sense they behave as the restriction to y ¥ 0 of solutions of the linear
Cauchy problem. The appendix A is a small discussion on the optimality of the space Hs.
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2 Notations and functional background

2.1 Notations

The Fourier transform of a function u is denoted pu. As we will use Fourier transform in the
px, yq variable, x variable or px, tq variable, we use when necessary the less ambiguous notation
Fx,yu, Fxu, Fx,tu, for example

pu � Fx,tu :�
»
R

»
Rd�1

upx, tqe�ix�ξ�iδtdxdt.

The notation Rt emphasizes the time variable.
Lebesgue spaces on a set Ω are denoted LppΩq. For X a Banach space LptX :� LppRt, Xq or
depending on the context LppR�

t , Xq, similarly LpTX :� Lppr0, T s, Xq. Similarly, Lpx refers to
functions defined on Rd�1. When dealing with nonlinear problems, we shall use the convenient
but unusual notation Lp � L1{p.
We write a À b if a ¤ Cb with C a positive constant. Similarly, a � b if there exists C1, C2 ¡ 0
such that C1a ¤ b ¤ C2b.

2.2 Functional spaces

S 1pRdq is the set of tempered distributions, dual of SpRdq. LppΩq is the Lebesgue space, we
follow the usual notation p1 :� p{pp� 1q. For s P R,

HspRdq �
"
u P S 1pRdq :

»
Rd
p1� |ξ|2qs|pu|2dξ   8

*
.

9Hs is the homogeneous Sobolev space. For Ω open, HspΩq is defined as the set of restrictions
to Ω of distributions in HspRnq, with the restriction norm

}u}HspΩq � inf
v extension of u

}v}HspRdq.

Similarly, for X a Banach space, HspΩ, Xq denotes the Sobolev space of X valued distributions.
We recall a few facts (see e.g. [24],[25]):

1. For n integer, Ω smooth simply connected, HnpΩ, Xq coincides topologically with tu :³
Ω

°
|α|¤n |Bαu|2dxu, that is }u}HnpΩq � p³Ω°|α|¤n |Bαv|2dxq1{2, with constants that de-

pend on Ω, s. If Ω � I is an interval the constants only depend on 1{|I| and s, in
particular if I is unbounded they only depend on s. The same is true if Ω is a half space.

2. For any s ¥ 0, there exists a continuous extension operator Ts : HtpΩ, Xq Ñ HtpRd, Xq
for t ¤ s, moreover Ts can be chosen such that it is valued into functions supported in
tx : dpx,Ωq ¤ 1u. If s   1{2, the zero extension is such an operator and in this case the
operator’s norm does not depend on Ω.



2 NOTATIONS AND FUNCTIONAL BACKGROUND 9

3. Hs
0pΩq is the closure in Ω of C8

c . The extension by zero outside Ω is continuous Hs
0pΩq Ñ

HspRdq if s � 1{2rZs, but not if s � 1{2rZs. However it is continuous on the Lions-

Magenes space H
1{2
00 with norm

}u}
H

1{2
00

� }u}H1{2 �
�»

Ω

u2pxq
dpx,Ωcqdx


1{2
, (2.1)

and H
1{2
00 � rL2, H1

0 s1{2 (see [32] section 33).

For n P N, Wn,ppRdq is the Sobolev space with norm
�°

|α|¤n
³ |Bαu|pdx�1{p. The Besov spaces

on Rd are denoted Bs
p,qpRdq, they are defined by real interpolation [6]

@ 0 ¤ s ¤ 2, Bs
p,qpRdq � rLppRdq,W 2,ppRdqss{2,q.

As for Sobolev spaces Bs
p,qpΩq is defined by restriction. Due to the existence of extension

operators, it is equivalent to define Bs
p,qpΩq � rLppΩq,W 2,ppΩqss{2,q, the norm equivalence

depends on Ω. For n P N, the following inclusions stand ([6] Theorem 6.4.4)

@ p ¥ 2, Bn
p,2pΩq �Wn,ppΩq, Wn,p1pΩq � Bn

p1,2pΩq.

The extension by zero outside some set (which depend on the context) is generically denoted
P0, the restriction operator is denoted R.

2.3 The Hs spaces

Structure and traces

Proposition 2.1. For s ¥ 0, we define the space HspRd�1 � Rtq as the set of tempered
distributions g such that pg P L1

loc and

}g}2HspRd�1
x �Rtq :�

¼
Rd�1�R

p1� |ξ|2 � |δ|qs
a
||ξ|2 � δ||pg|2dδdξ   8.

When d is unambiguous, we write for conciseness HspRtq.
It is a complete Hilbert space, in which C8

c pRd�1
x � Rtq is dense, and has equivalent norm

}g}Hs :�
� ¼

Rd�1�R

p1� |ξ|2 � |δ|qs
a
||ξ|2 � δ||pg|2dδdξ
1{2

�
� ¼

Rd�1�R

p1� |ξ|2s � ||ξ|2 � δ|sq
a
||ξ|2 � δ||pg|2dδdξ
1{2

.
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The space H0 is denoted H. The map u Ñ ∇xu is continuous Hs Ñ Hs�1 for s ¥ 1, and
uÑ Btu is continuous Hs Ñ Hs�2 for s ¥ 2.
For s ¡ 1{2, Hs ãÑ C

�
Rt, Hs�1{2pRd�1

x q�, in particular for any t P R, the trace operator

g ÞÑ gp�, tq is continuous Hs Ñ Hs�1{2.

Proof. Obviously, Hs � Hs1 for s ¡ s1. Let g P H, from Cauchy-Schwarz’s inequality¼
Rd�1�R

|pgpξ, δq|p1� |ξ| � |δ|q�ddξdδ ¤ }g}H
�¼

1

p1� |ξ| � |δ|q2d
a
||ξ|2 � δ|dξdδ


1{2

À }g}H
�»

Rd�1

1

p1� |ξ|qd�1
dξdδ


1{2
À }g}H,

thus the embedding H ãÑ S 1 is continuous. We define the measure µ by dµ � p1 � |ξ|2 �
|δ|qs

a
||ξ|2 � δ|dδdξ. If gn is a Cauchy sequence in Hs, pgn is a Cauchy sequence in L2pdµq. By

completeness of Lebesgue spaces, there exists v P L2pdµq such that } pgn � v} ÝÑ 0. From the
previous computations, F�1

x,t pvq P S 1 and limS1 gn � F�1v P Hs.
The density of C8

c in Hs is obtained through the usual procedure. The equivalence of norms
is a consequence of the elementary inequality |a� b|s ¥ p1� 2�1{sqsp|a|s � 2|b|sq.
Let us now consider the trace problem. We start with the existence of a trace at t � 0:

gpx, 0q �
»
Rd�1�R

eix�ξpgpξ, δqdδdξ,
ñ }gp�, 0q}2Hs�1{2 �

»
Rd�1

|p1� ξ|q2s�1

���� »
R
pgdδ����2dξ

¤
»
Rd�1

�»
R
|pg|2a||ξ|2 � δ|p1� |ξ|2 � |δ|qsdδ

�p1� |ξ|q2s�1

»
R

1a
||ξ|2 � δ|p1� |ξ|2 � |δ|qsdδ



dξ.

Now clearly
³
R

1?
||ξ|2�δ|p1�|ξ|2�|δ|qsdδ is bounded for |ξ| ¤ 1, and for |ξ| ¥ 1 setting δ � |ξ|2µ

|ξ|2s�1

»
R

1a
||ξ|2 � δ|p|ξ|2 � |δ|qsdτ ¤

»
R

1a
|1� µ|p1� |µ|qsdµ   8.

Therefore the trace at t � 0 maps continuously HspRtq to Hs�1{2pRd�1q. It is easily checked
that the map Tr : g Ñ gp�, ��rq is an isometryHs Ñ Hs and for any g P Hs, lim0 }Trg�g}Hs �
0. Combining this observation with the existence of the trace at t � 0 implies the embedding
Hs ãÑ CtH

s�1{2.

Finally, we identify pHsq1 in a natural way:
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Proposition 2.2 (Duality of Hs spaces). For s ¡ 0, the topological dual pHsq1 is the set of
tempered distributions g1 such that pg1 P L1

loc and

}g1}2pHsq1 �
¼

Rd�1�Rt

p1� |ξ|2 � |δ|q�sa
||ξ|2 � δ| |pg1|2dδdξ   8,

SpRnq is dense in pHsq1, and pHsq1 acts on Hs with the L2 duality bracket

xg, g1yHs,pHsq1 �
¼ pgpg1dδdξ.

Restrictions, extensions

Definition 2.1. For s ¥ 0, I an interval the space HspIq is the set of restrictions to Rd�1 � I
of distributions in HspRtq, with norm }g}HspIq :� inf

rg extension
}rg}Hs.

For s � 1{2rZs, we define Hs0 � Hs if s   1{2, and for s ¡ 1{2

Hs0ppa, bqq � tg P Hsppa, bqq : @ 0 ¤ 2k ¤ rs� 1{2s, lim
a,b

}Bkt gp�, tq}Hs�2k�1{2 � 0u.

Obviously, if a (or b) is finite, the definition above simply amounts to Bkt gp�, aq � 0.
A very convenient observation is that Hs is a kind of Bourgain space: let ∆1 be the laplacian
on Rd�1, we have using the change of variable δ � ξ2 � µ

}e�it∆1
g}2

9H
p1�2sq{4
t L2

xX 9H
1{4
t Hs

�
¼

|δ|1{2�1� |δ|s � |ξ|2sq��Fx,te�it∆g��2dδdξ
�
¼

|δ|1{2�1� |δ|s � |ξ|2sq|pgpξ, δ � ξ2q|2dδdξ

�
¼

|ξ2 � µ|1{2�1� |µ|s � |ξ|2sq|pgpξ, µq|2dµdξ.
so that }g}Hs � }e�it∆1

g}
9Hp1�2sq{4L2

xX 9H1{4Hs . The following results are elementary consequences
of this remark and the classical theory of Sobolev spaces.

Corollary 2.1. Let I an interval, g P HspIq. We define the zero extension P0 : g ÞÑ P0g

P0gp�, tq �
"
gp�, tq if t P I,
0 else.

We have the following assertions:

1. With constants only depending on s

}g}HspIq � }e�it∆1
g}

9Hp2s�1q{4pI,L2qX 9H1{4pI,Hsq.
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2. For any s ¥ 0, there exists an extension operator Ts such that for k ¤ s, Ts : HkpIq Ñ
HkpRq is continuous and for any g P HspIq, Tsgptq � 0 for t R pinf I � 1, sup I � 1q.
If s   1{2, P0 is such an operator.

3. For s ¥ 0, g P HspRq, then lim
TÑ8

}g}HsprT,8rq � 0.

4. For s ¥ 0, Hs0pRq � Hs, moreover if s � 1{2rZs P0 is continuous Hs0pIq Ñ HspRq.
5. The restriction operator pHpRqq1 Ñ pHpIqq1, g ÞÑ P �

0 pgq is a continuous surjection.

Proof. 1. is a direct consequence of the definition of Sobolev spaces by restriction.
2. According to paragraph 2.2, there exists an extension operator T such that

}T pe�it∆1
gq}

9Hp1�2sq{4pR,L2
xqX 9H1{4pR,Hsq À }e�it∆1

g}
9Hp1�2sq{4pI,L2

xqX 9H1{4pI,Hsq À }g}HspIq.

It is then clear that T � eit∆
1
T pe�it∆1q defines a continuous extension operator.

3. If r is an integer, limTÑ8 }f}HrprT,8rq � 0 is clear, then we can conclude by a density
argument and the inequality

}e�it∆g}
9Hp1�2sq{4pI,L2

xqX 9H1{4pI,Hsq ¤ }e�it∆g}HkpI,L2qXH1pI,Hsq, k ¥ p1� 2sq{4.
4. Let g P HspRq. By continuity of the trace and point 3

lim8 }Bkt gp�, tq}Hs�2k�1{2 À lim8 }g}HsprT,8qq,

the limit at �8 follows from a symmetry argument.
Now fix a P R. If for 0 ¤ 2k ¤ s�1{2, Bkt gp�, aq � 0, this implies clearly Bkt pe�it∆gqp�, aq � 0, so
that we can apply the continuity of the extension by 0 for e�it∆1

g in the usual Sobolev spaces.
5. Continuity follows from point 4, the surjectivity from the definition of HpIq.

Similarly to the Sobolev space H1{2pR�q, the zero extension is not continuous H1{2pR�q Ñ
H1{2pRq. Nevertheless, we observe that P0g P H1{2pRq if e�it∆1

P0g � P0e
�it∆1

g P 9H1{2L2 X
9H1{4H1{2, which is true if e�it∆1

g P 9H1{2pR�, L2q X 9H1{4pR�, H1{2q and (according to (2.1))

Ipgq :�
»
R��Rd�1

|e�it∆1
gpx, tq|2
t

dtdx   8. (2.2)

Or more compactly e�it∆1
g P 9H

1{2
00 pR�, L2q X 9H1{4pR�, H1{2q, endowed with the norm

}e�it∆1
g}

9H
1{2
00 L

2X 9H1{4H1{2 :� }e�it∆1
g}

9H1{2L2X 9H1{4H1{2 � Ipgq1{2.
These observations lead to the following definition:

Definition 2.2. We denote H1{2
00 pR�q :� tg P H1{2pR�q : P0g P H1{2pRqu, it coincides with

tg : e�it∆g P 9H
1{2
00 X 9H1{4H1{2u, and is a Banach space for the norm

}g}H1{2
00

� }e�it∆1
g}

9H1{2L2X 9H1{4H1{2 � Ipgq1{2. (2.3)

Remark 2.3. Of course we could also define H1{2
00 pIq, but it is not useful for this paper.
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Interpolation For basic definitions of interpolation, we refer to [6], sections 3.1 and 4.1. We
denote r�, �sθ the complex interpolation functor and r�, �sθ,2 the real interpolation functor with
parameter 2.

Proposition 2.4. For s0, s1 ¥ 0, 0   θ   1 we have

rHs0 ,Hs1sθ � Hp1�θqs0�θs1 (complex interpolation) ,

rHs0 ,Hs1sθ,2 � Hp1�θqs0�θs1 (real interpolation) .

Proof. By Fourier transform we are reduced to the interpolation of weighted L2 spaces. For real
interpolation, this is theorem 5.4.1 of [6], for complex interpolation this is theorem 5.5.3.

The interpolation of Hs0 spaces is a bit more delicate.

Proposition 2.5. For 0   θ   1, θ � 1{4, I an interval we have

rH0pIq,H2
0pIqsθ � H2θ

0 pIq (complex interpolation) ,

rH0pIq,H2
0pIqsθ,2 � H2θ

0 pIq (real interpolation) .

If s0 � 0, s1 � 2, θ � 1{4, then

rH0pR�q,H2
0pR�qs1{4 � H1{2

00 pR�q (complex interpolation) ,

rHpR�q,H2
0pR�qs1{4,2 � H1{2

00 pR�q (real interpolation) .

Proof. We only detail the case I � R�, the case of a general interval is similar. According
to corollary 2.1, for s P r0, 2szt1{2u the zero extension P0, resp. the restriction R to R�, is a
continuous operators Hs0pR�q Ñ HspRq, resp. HspRq Ñ HspR�q, with R �P0 � Id. Therefore
by interpolation

P0

�rHpR�q,H2
0pR�qss,2

� � H2spRq,
and from the existence of traces, if s ¡ 1{4, for g P rH,H2

0ss,2, gp0q � lim0� P0gptq � 0, thus
rH,H2

0ss,2 � H2s
0 pR�q. Conversely, for g P HspRq, we define

Sg : t P p0,8q Ñ gptq � 3gp�tq � 2gp�2tq.

Clearly, it is continuous HspRq Ñ HspR�q for 0 ¤ s ¤ 2, and when it makes sense Sgp0q �
0, BtSgp0q � 0 thus it is Hs0pR�q valued. By interpolation S is continuous H2spRq Ñ
rHpR�q,H2

0pR�qss,2. Now for s � 1{2 we can observe that S � P0 � Id on Hs0pR�q, there-
fore H2s

0 pR�q � rH,H2
0ss,2 and the identification is complete.

If s � 1{2, we observe that the same argument can be applied provided P0 acts continuously

H1{2
00 pR�q Ñ H1{2pRq, but this is true according to definition 2.2.
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2.4 Interpolation spaces and composition estimates

In order to treat nonlinear problems, estimates in Bs
p,2L

q require some composition estimates.

Proposition 2.6. Let A be a Banach space. For 0   θ   1, rLppR, Aq,W 1,ppR, Aqsθ,2 �
Bθ
p,2pR, Aq the fractional Besov space endowed with the norm

}u}2
Bθp,2A

:�
» 8

0

�}up� � hq � up�q}A
hθ


2dh

h
� }u}2LpA :� }u}2

9Bθp,2A
� }u}2LpA.

For completeness we include a short proof in the spirit of [32] of this well-known result.

Proof. We use the K-method for interpolation. Let Kphq � infu�u0�u1 }u0}LpA � h}u1}W 1,pA.
If u P rLppR, Aq,W 1,ppR, Aqsθ,2, then for any h ¥ 0 there exists pu0, u1q with u � u0 �
u1, }u0}LpA � h}u1}W 1,pA ¤ 2Kphq and }u}rLpA,W 1,pAsθ,2 :� p³80 pKphq{hθq2dh{hq1{2   8. The
standard estimate }u1p� � hq � u1p�q}Lp ¤ h}u1}W 1,p implies» 8

0

�}up� � hq � up�q}LpA
hθ


2dh

h
¤ 4

» 8
0

�
Kphq
hθ


2dh

h
.

Conversely, assume the left hand side of the equation above is finite and u P LpA. For h ¡ 0,
ρh � ρp�{hq{h with ρ P C8

c , ρ ¥ 0,
³
ρ � 1, supppρq � r�1, 1s, we set u0 � u�ρh�u, u1 � ρh�u.

Minkowski’s inequality gives

}u� ρh � u}LpA ¤
» h
�h
ρhpsq}up�q � up� � sq}LpAds À 1

h

» h
0
}up� � sq � up�q}LpAds,

}pρhq1 � u}LpA ¤
» h
�h

}ρ1hpsq
�
up� � sq � up�q�}LpAds À 1

h2

» h
0
}up� � sq � up�q}LpAds,

therefore Kphq ¤ }u � ρh � u}LpA � h}ρh � u}W 1,pA À h}u}LpA � 1
h

³h
0 }up� � sq � up�q}LpAds.

Also, it is obvious that for h ¥ 1, Kphq ¤ }u}Lp . By integration» 8
0

�
Kphq
hθ


2dh

h
À }u}2LpA �

» 1

0

�» h
0
}up� � sq � up�q}LpAds


2 dh

h3�2θ
.

We set fphq � }up� � hq � up�q}LpA, F phq �
³h
0 fds. An integration by parts and Cauchy-

Schwarz’s inequality gives» 8
0

�
F phq�q2 dh

h3�2θ
� 2

2� 2θ

» 8
0
fphqF phq dh

h2�2θ

¤ 2

2� θ

�» 8
0

�
fphq
hθ


2dh

h


1{2�» 8
0
F phq2 dh

h3�2θ


1{2
,

from which we deduce

» 8
0

�
Kphq
hθ


2dh

h
À }u}2LpA �

» 8
0

�}up� � hq � up�q}LpA
hθ


2dh

h
.
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Proposition 2.7. Let F : CÑ C such that |F puq| À |u|a, |F 1puq| À |u|a�1, a ¡ 1. Then

for 0   s   1, }F puq}Bsp,2pRt,Lqq À }u}a�1
Lp1 pRt,Lq1 q}u}Bsp2,2pRt,Lq2 q,

with

p1, q1, p2, q2 ¥ 1,
1

q
� a� 1

q1
� 1

q2
,

1

p
� a� 1

p1
� 1

p2
.

Proof. The LptL
q part of the norm is simply estimated with Hölder’s inequality on |u|a�1�|u|.

For the 9Bs
p,2 part, let 1{p � 1{p3 � 1{p2, 1{q � 1{q3 � 1{q2:» 8

0

� }F puqp� � hq � F puqp�q}LptLq
hs


2dh

h

À
» 8

0

�}p|up� � hq|a�1 � |up�q|a�1q|up� � hq � up�q|}LptLq
hs


2dh

h

À
» 8

0

�}pua�1}Lp3t Lq3 }up� � hq � up�q}Lp2t Lq2

hs


2dh

h

� }u}2pa�1q
L
p1
t Lq1

» 8
0

�}up� � hq � up�q}Lp2t Lq2

hs


2dh

h

¤ }u}2pa�1q
L
p1
t Lq1

}u}2Bsp2,2Lq2 .

Finally, as the nonlinear problems require to construct local solutions, we shall use the
following extension lemma.

Lemma 2.8. Let p ¥ 1, 0   s   1 with sp ¡ 1, A a Banach space. For any 0   T ¤ 1,
there exists an extension operator PT : Bs

p,2pr0, T s, Aq Ñ Bs
p,2pRt, Aq such that PTup�, tq � 0 if

t R r�T, 2T s and (with constants unbounded as spÑ 1)#
}PTu}LppRt,Aq À }u}Lppr0,T s,Aq,
}PTu}Bsp,2pRt,Aq À T 1{p�s}u}Bsp,2pr0,T s,Aq.

(2.4)

Proof. We fix χ P C8
c pr0, 1rq, χp0q � 1, and define the operator

P1 : Bs
p,2pr0, 1s, Aq Ñ Bs

p,2pR, Aqu ÞÑ

$''&''%
uptq, 0 ¤ t ¤ 1,
up2� tqχpt� 1q, 0 ¤ t ¤ 2,
up�tqχp�tq, �1 ¤ t ¤ 0,
0, else.

It is not difficult to check that P1 is bounded Lppr0, 1s, Aq Ñ LptA, W 1,ppr0, 1s, Lqq ÑW 1,p
t Lq,

with bounds independent of p, thus it is also bounded Bs
p,2pr0, 1s, Aq Ñ Bs

p,2pR, Aq. Let Dλ be
the dilation operator Dλ : u ÞÑ up�, λ�q, we set

PT � D1{T � P1 �DT .
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From a direct computation, }PTu}LptA ¤ 3}χ}8}u}LpTA, thus we are left to prove the second

inequality in (2.4).
As sp ¡ 1, by Sobolev’s embedding }DTu}2L8pr0,1s,Aq À }u}Bsp,2pr0,T s,Aq thus

}P1DTu}LptLq À }P1DTu}L8A À }DTu}L8pr0,1s,Aq À }u}Bsp,2pr0,T s,Lqq.
On the other hand for v P Bs

p,2 an extension of u, basic computations give

}DT v}2
9Bsp,2L

q �
» 8

0

}pDT vqpt� hq � pDT vqptq}2LptLq
h1�2s

dh ¤ T 2s�2{p}v}2Bsp,2 ,

thus for T ¤ 1, }P1DTu}Bsp,2pRt,Lqq À }u}Bsp,2pr0,1s,Lqq, from which we get with the same scaling

argument }D1{TP1DTu}Bsp,2pRt,Lqq À T 1{s�1{p}u}Bsp,2pr0,1sq.

3 Linear estimates

The plan to solve (1.1) is based on a superposition principle: let us denote abusively u0 an
extension of u0 to Rd. If we can solve the Cauchy problem"

iBtv �∆v � f,
v|t�0 � u0,

px, y, tq P Rd � R.

and the boundary value problem$&%
iBtw �∆w � 0,
w|t�0 � 0,
Bpw|y�0, Byw|y�0q � g �Bpv|y�0, Byv|y�0q,

px, y, tq P Rd�1 � R� � R�. (3.1)

then v|y¥0 � w is the solution to 1.1. For this strategy to be fruitful we need a number of
results: Strichartz estimates for v, trace estimates for v|y�0, Byv|y�0, existence and Strichartz
estimates for w. This is the program that we follow through section 3.

3.1 The pure boundary value problem

Consider the linear boundary value problem$&%
iBtu�∆u � 0,
Bpu|y�0, Byu|y�0q � g,
up�, 0q � 0.

(3.2)

We use the following notion of solution (slightly stronger than definition 1.1):

Definition 3.1. Let g P Hs0pR�q. We say that u is a solution of the BVP (3.2) if u P
CpR�, Hsq, there exists a sequence gn P Xk¥0H

k
0 pRd�1�R�

t q with }g�gn}Hs Ñn 0 and smooth
solutions un P C8pR�,Xk¥0H

kq of (3.2) with boundary data gn such that }u�un}L8Hs Ñn 0.
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The Kreiss-Lopatinskii condition We recall the notation of the introduction

LpBpa, bqqpξ, τq � b1Lapξ, τq � b2Lbpξ, τq,

with b1, b2 anisotropically homogeneous: b1pλξ, λ2τq � b1pξ, τq, b2pλξ, λ2τq � λ�1b2pξ, τq.
Of course, the operator B must satisfy some conditions. First of all, it should be defined
independently of Repτq :� γ ¡ 0, so according to Paley-Wiener’s theorem we assume that
b1, b2 are holomorphic in τ on tpτ, ξq P C � Rd�1, Repτq ¡ 0u. Moreover we assume that b1
extends continuously on tpiδ, ξq P pR� Rd�1qzt0uu, and a.e. in pδ, ξq, lim

γÑ0
b2pξ, γ � iδq exists.

The Kreiss-Lopatinskii condition is an algebraic condition that we introduce with the following
heuristic: assume that (3.2) has a solution u P CbpR�

t ,SpRd�1�R�qq, and consider its Fourier-
Laplace transform Lupξ, y, τq � ´ e�τt�iξxupx, y, tqdx dt. Then Lu satisfies

B2
yLu � p|ξ|2 � iτqLu.

The condition limyÑ8 Lupyq � 0 requires

Lu � e�
?
|ξ|2�iτyLupy � 0q. (3.3)

Here,
?� is the square root defined on CziR� such that

?�1 � �i. From (3.3), the condition
Bpu|y�0, Byu|y�0q � g rewrites pb1 �

a
|ξ|2 � iτb2qLup0q � Lg, so that Lup0q is uniquely

determined from Lg with uniform bounds if

Dα, β ¡ 0 : @ pγ, δ, ξq P R� � R� Rd�1, α ¤
���� �b1b2



�
�

1

�
a
|ξ|2 � iτ


 ���� ¤ β. (3.4)

Definition 3.2. B satisfies the (generalized) Kreiss-Lopatinskii condition if (3.4) is true.

By homogeneity b1 is uniformly bounded, thus (3.4) implies that b2
a
|ξ|2 � iτ is uniformly

bounded for Repτq ¥ 0, although b2 may be infinite at some points pξ, iδq. The vector

V� :�
�

1

�
a
|ξ|2 � iτ



is the so-called stable eigenvector, and algebraically (3.4) means that

the symbol of B, as a linear operator C2 Ñ C, defines an isomorphism spanpV�q Ñ C.
Obviously, the Dirichlet boundary condition bD :� p1, 0q satisfies the uniform Kreiss Lopatin-
skii condition. It is also possible to include the Neuman boundary condition as well as the
transparent boundary condition into this framework by setting

LBN pa, bq � Lbpξ, τqa
|ξ|2 � iτ

(Neuman), (3.5)

LBT pa, bq � Lapξ, τq � Lbpξ, τqa
|ξ|2 � iτ

(Transparent). (3.6)
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With this convention, bN �V� � �1 and bT �V� � 2, so that both satisfy the Kreiss-Lopatinskii
condition. Let us point out that in the case of Neuman boundary conditions, BN pu, Byuq P H
is equivalent to Byu|y�0 P H1, indeed

}P0g}2HpRq �
»
Rd

|LpByu|y�0q|2
||ξ|2 � δ|

a
||ξ|2 � δ|dξdδ � }P0Byu|y�0}2H1 . (3.7)

The Kreiss-Lopatinskii condition and the backward BVP For general boundary con-
ditions, the boundary value problem is not always reversible. Indeed if we solve (3.2) for t ¤ 0,
g supported in R�

t , the parameter γ in the Laplace transform is negative therefore the appro-
priate square root in formula (3.3) is defined on CziR�, and maps �1 to i. Let us denote it
sq. Even if we dismiss analyticity issues, there is no reason that “backward (3.4)” stands

Dα, β ¡ 0 : @ pγ, δ, ξq P R� � R� Rd�1, α ¤
���� �b1b2



�
�

1
�sqp|ξ|2 � iτq


 ���� ¤ β. (3.8)

For example, take the forward transparent boundary condition pb1, b2q � p1, �1?
|ξ|2�δ q, then

@ pξ, δq such that |ξ|2 � δ   0,

�� 1
�ia

||ξ|2 � δ|

�
� � 1

�i
a
||ξ|2 � δ|



� 0,

and therefore the backward Kreiss-Lopatinskii condition fails in the region t|ξ|2�δ   0u. Note
however that the Kreiss-Lopatinskii condition is true for the backward Dirichlet boundary
value problem. It is also true for the Neuman boundary value problem provided we choose
pb1, b2q � p0, 1{sqp|ξ|2 � iτqq instead of pb1, b2q � p0, 1{

a
|ξ|2 � iτq. The fact that the BVP

with transparent boundary condition is not reversible is rather natural: the dissipation due to
waves going out of the domain prevents to go back in time.

Well-posedness The main result of this section states that theorem 1.2 is true in the case
of the pure BVP.

Proposition 3.1. If B satisfies the Kreiss-Lopatinskii condition (3.4), and g P Hs0pR�q, 0 ¤
s ¤ 2 pH1{2

00 if s � 1{2), the problem (3.2) has a unique solution. Moreover it satisfies2

for 0 ¤ s ¤ 2,
2

p
� d

q
� d

2
, p ¡ 2, }u}

LppR�,Bsq,2qXBs{2p,2 pR�,Lqq
À }g}Hs

0pR�q. (3.9)

Proof. Existence We first justify the existence of gn as in definition 3.1. For any M ¡ 0,
according to corollary 2.1 there exists gM P HspRq that coincides with g for t P r0,M s,
and vanishes if t ¤ 0 or t ¥ M � 1. Next we shift gδM px, tq � gM px, t � δq, and recall

2We recall our unusual notation B1
p,2 :� W 1,p, B2

q,2 :� W 2,q
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lim0 }gδM � gM}Hs � 0. Let ρ P C8
c pRd�1 � Rtq with supppρq � t|t| ¤ 1u, ³ ρ dxdt � 1. Then

setting ρε � ρp�{εq{εd,

}ρε � gδM � gδM}2Hs �
¼

Rd�1�R

|1� pρpεξ, εδq|2|xgδM |2p1� |ξ|2 � |δ|qs
a
||ξ|2 � δ|dδdξ Ñε 0,

supppρε � gδM q � tpx, tq : δ � ε ¤ t ¤M � 1� δ � εu.
Now we remark gδM P Hs ñ e�it∆g P 9H1{4pR, L2q � L4pR, L2q, thus ρε � gδM P Xk¥0H

k.
Moreover limMÑ8 }g}HsprM,8rq � 0 thus if P0g is the extension by zero for t ¤ 0

lim
MÑ8

}gM � P0g}HspRd�1�Rtq � 0.

We also remark that for ε ¤ δ, supppρε � gδM q � tt ¥ 0u, so that an appropriate choice of
εn ¤ δn,Mn, provides a smooth sequence pgnq as in definition 3.1.
For such gn, we postpone the existence of a smooth solution un and a priori estimate (3.9) to
the next paragraphs. Now if (3.9) is true for smooth solutions, the case pp, qq � p8, 2q implies
that punq converges to a solution u in L8Hs, and the estimate on un for general pp, qq provides
the estimate on u.

Uniqueness It is again a consequence of the a priori estimate applied to the smooth solutions.

The main issue is thus to prove estimate (3.9) : it was obtained very recently in [28] with
}u}LpW s,q in the left hand side for bounded time intervals. While the core of the LptL

q estimate
does not require significant modifications we include a full proof for comfort of the reader.

Proof of estimate (3.9), s � 0 We assume that the Kreiss-Lopatinskii condition (3.4) is
satisfied, and that g P Xk¥0H

k
0 pRd�1 � R�

t q. Let us look back at the formal computation
leading to (3.3), which makes sense for smooth functions and reads

Lu � e�
?
|ξ|2�iτ y Lg

b � V�pξ, τq .

According to the Kreiss-Lopatinskii condition (3.4), |Lg{pb � V�q| � |Lg|, uniformly in pτ, ξq,
so that using Paley-Wiener’s theorem Lg{pb � V�q is the Fourier-Laplace transform of some g1

supported in t ¥ 0.
Now we let γ Ñ 0: since g P Xk¥0H

k
0 pRd�1�R�

t q, its zero extension belongs to Xk¥0H
kpRd�1�

Rtq, and we can (abusively) identify Lgpξ, iδq �yP0gpξ, δq, with

@ k ¥ 0,

»
Rd�1�R

p1� |ξ|2 � |δ|2qk|yP0g|2dδdξ   8.

Since | pg1| � |yP0g|, g1 P Xk¥0H
kpRd�1 � Rtq and for any s ¥ 0, }g1}Hs � }g}Hs , moreover

it is supported in t ¥ 0 thus its restriction belongs to Xk¥0Hs0pR�
t q. Since by construction
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u|y�0 � g1, we are reduced to solve the IBVP (3.2) with smooth Dirichlet boundary condition
g1. We abusively denote pupξ, δq for Lupξ, iδq, drop the index 1 of g1 and simply assume

pupξ, δq � e�
?
|ξ|2�δ ypgpξ, δq, g P Xk¥0H

k
0 .

If δ � |ξ|2 ¥ 0,
a
δ � |ξ|2 P R�is the usual square root, else

a
δ � |ξ|2 � �i

a
|δ � |ξ|2|. The

solution upx, y, tq is then obtained by inverse Fourier transform. We split the integral depending
on the sign of δ � |ξ|2, the change of variables δ � |ξ|2 � �η2 gives

upx, y, tq � 1

p2πqd
»
Rd�1

»
δ¤�|ξ|2

eiy
?
|δ�|ξ|2|eipδt�x�ξqpgpξ, δqdδdξ

� 1

p2πqd
»
Rd�1

»
δ¡�|ξ|2

e�y
?
δ�|ξ|2eipδt�x�ξqpgpξ, δqdδdξ

� 1

p2πqd
»
Rd�1

» 8
0
eipyη�x�ξqe�itp|ξ|

2�η2q2ηpgpξ,�η2 � |ξ|2qdη dξ

� 1

p2πqd
»
Rd�1

» 8
0
e�yη�ix�ξeitp�|ξ|

2�η2q2ηpgpξ,�|ξ|2 � η2qdη dξ
:� u1 � u2. (3.10)

From the smoothness of g the integrals are absolutely convergent, infinitely differentiable in
x, y, t, and give a solution to (3.2), so that the formal computation is justified for smooth
solutions. Moreover, the formula is well defined for t P R (and actually cancels for t   0 by
Paley-Wiener’s theorem), therefore we will focus on proving the seemingly stronger, but more
natural estimate

}u}LppR,Lqq À }g}HpR�q. (3.11)

Control of u1 Let pφpξ, ηq :� 2ηpgpξ,�η2 � |ξ|2q1η¥0, we observe u1px, y, tq � eit∆φ, so that
the classical Strichartz estimate (1.2) gives

}u1}LppR�,LqpRd�1�R�q ¤ }u1}LppR,LqpRdqq À }φ}L2

� }pφ}L2 (3.12)

�
¼

η2|pgpξ,�|ξ|2 � η2q|2dηdξ (3.13)

�
»
Rd

» �|ξ|2
�8

a
||ξ|2 � δ||pgpξ, δq|2dδdξ (3.14)

¤ }g}2H. (3.15)

Control of u2 As mentioned before, it is more convenient to let t vary in R rather than R�,
obviously bounds in LppR, LqpRd�1 � R�qq imply bounds in LppR�, LqpRd�1 � R�qq.
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The idea in [28] is to use a TT � argument similar to the classical one for the Schrödinger
equation, namely if we set pψ � 2ηpgpξ,�|ξ|2 � η2q1η¥0 then (3.10) reads

u2 � 1

p2πqd
»
Rd�1

»
R
e�y|η|�ix�ξeitp�|ξ|

2�η2q pψpξ, ηqdη dξ :� T pψq,

with }ψ|}L2 À }g}H. Consider T as an operator L2pRd�1 � Rq Ñ LppRt, LqpRd�1 � R�qq, the
TT � argument consists in proving

}TT �}Lp1Lq1ÑLpLq   8.

If such a bound holds true, then }T �f}2L2 � xTT �f, fy À }f}2
Lp1Lq1

, thus T � is continuous

Lp
1
Lq

1 Ñ L2, and by duality T : L2 Ñ LpLq is continuous, which gives the expected bound
}u2}LpLq À }g}H. Now let us write

u2px, y, tq � 1

p2πqd
¼
Rd

¼
Rd

e�y|η|�itp|ξ|
2�η2q�ix�ξe�ix1�ξ�iy1ηψpx1, y1qdx1dy1dηdξ

� 1

p2πqd
¼
Rd

�¼
Rd

e�y|η|�itp|ξ|
2�η2q�ix�ξe�ix1�ξ�iy1ηdξdη



ψpx1, y1qdx1dy1.

We denote3 X � px, yq P Rd�1 � R�, X1 � px1, y1q P Rd, observe that Tψ can be seen as the
action of a kernel with parameter KtpX,X1q on ψpX1q:

u2px, y, tq � 1

p2πqdOppKtq � ψ.

According to the TT � argument, it suffices to bound OppKtq � OppKtq� : Lp
1pR, Lq1pRd�1 �

R�qq Ñ LppR, LqpRd�1 � R�qq. After a few computations one may check

OppKtq �OppKtq� f �
»
Rd�1�R��Rs

�»
Rd
KtpX,X1qKspX2, X1qdX1



fpX2, sqdX2ds

:�
»
Rs

�»
Rd�1�R�

Nt,spX,X2qfpX2, sqdX2



ds (3.16)

�
»
Rs

�
OppNt,sq � fp�, sq

�pXqds (3.17)

Lemma 3.2. We have for pX,X2q P pRd�1 � R�q2

Nt,spX,X2q � p2πqd
»
Rd
eip|ξ|

2�η2qps�tqeiξ�px�x2qe�py�y2q|η|dηdξ.

3While X corresponds to the space variable px, yq that we use throughout the paper, the variable X1 is
purely artificial.
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Proof. According to identity (3.16)

Nt,s �
»
Rd
KtpX,X1qKspX2, X1qdX1

�
»
R3d

e�itp|ξ|
2�η2q�ix�ξ�y|η|�ipξ�x1�ηy1qeisp|ξ1|

2�η21q�ix2�ξ1�y2|η1|�ipξ1�x1�η1y1q

dηdξdη1dξ1dX1

� p2πqd
»
Rd
e�itp|ξ|

2�η2q�ix�ξ�y|η|FX1Ñξ,ηF�1
pξ1,η1qÑX1

�
e�ix2�ξ1�y2|η1|�isp|ξ1|

2�η21q
�
dξdη

� p2πqd
»
Rd
e�itp|ξ|

2�η2q�ix�ξ�y|η| e�ix2ξ�y2|η|�isp|ξ|
2�η2qdξdη,

which is the expected result.

The estimate of Nt,s requires a (classical) substitute to Plancherel’s formula :

Lemma 3.3. The map L : f Ñ ³8
0 e�λyfpyqdy is continuous L2pR�q Ñ L2pR�q.

Proof. We have

}Lf}22 � xLf,Lfy �
»
pR�q3

e�λpy1�y2qfpy1qfpy2qdy2dy1dλ �
»
pR�q2

fpy1qfpy2q
y1 � y2

dy1dy2

Splitting pR�q2 � ty2 ¤ y1u Y ty1 ¤ y2u, we remark

}Lf}22 �
» 8

0
fpy1q 1

y1

» y1
0

fpy2q
1� y2{y1

dy2dy1 �
» 8

0
fpy2q 1

y2

» y2
0

fpy1q
1� y1{y2

dy1dy2.

One easily concludes using |fpy2q{p1� y2{y1q| ¤ |fpy2q| and Hardy’s inequality.

Proposition 3.4. The operator OppNt,sq satisfies for 2 ¤ p ¤ 8

}OppNt,sqv}LppRd�1�R�q À
}v}Lp1 pRd�1�R�q
|t� s|dp1{2�1{pq . (3.18)

Proof. The case p � 8: according to proposition 3.2

Nt,spX,X2q �
»
Rd
eip|ξ|

2�η2qps�tqeiξ�px�x2qe�py�y2q|η|dηdξ

�
»
Rd�1

ei|ξ|
2ps�tqeiξ�px�x2qdξ

»
R
eiη

2pt�sqe�py�y2q|η|dη

� e
i
|x�x2|

2

4pt�sq

p4iπpt� sqqpd�1q{2

»
R
eiη

2pt�sqe�py�y2q|η|dη
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The Van Der Corput lemma implies�� »
R
eiη

2pt�sqe�py�y2q|η|dη
�� À }e�py�y2q|η|}L8η � }pe�py�y2q|η|q1}L1

ηa
|t� s| À 1

|t� s|1{2 .

Therefore |Nt,s| À 1{|t� s|d{2 uniformly in X,X2, this implies the case p � 8.
For the case p � 2 we use Plancherel’s formula and lemma 3.3:

}OppNt,sqv}L2 �
���� »

Rd�1

ei|ξ|
2ps�tqeiξ�x

»
R�R�Rd�1

e�iξ�x2�iη
2ps�tq�py�y2qηvpX2qdηdX2dξ

����
L2
xy

�
�������� »

Rd�1

e�iξ�x2
»
R�R�

e�iη
2ps�tqe�py�y2q|η|vpX2qdηdy2dx2

����
L2
ξ

����
L2
y

�
�������� »

R
e�|η|y

»
R�
e�iη

2ps�tqe�y2|η|vpX2qdy2dη

����
L2
y

����
L2
x2

À
��������e�iη2ps�tq »

R�
e�y2|η|vpX2qdy2

����
L2
η

����
L2
x2

À }vpX2q}L2
X2
.

The general case follows from an interpolation argument.

The estimate on OppKtq � OppKtq� now follows from the Hardy-Littlewood-Sobolev lemma

(e.g. theorem 2.6 in [23]): for p ¡ 2,
2

p
� d

q
� d

2
, we have 1� 1

p
� 1

p1
� d

�
1

2
� 1

q



, thus

}OppKtq �OppKtq�f}LptLqX �
���� »

R
OppNt,sqfp�, sqds

����
LptL

q
X

À
���� »

R

}fp�, sq}
Lq

1

X

|t� s|dp1{2�1{qqds
����
Lpt

À }f}
Lp

1

t L
q1

X

.

Using the TT � argument this ends estimate (3.9) for the case s � 0.

Estimate (3.9), the case s � 2 By differentiation of formula (3.10), for |α| � β � 2γ ¤ 2,
and using the case s � 0

}BαxBβy Bγt u}LptLq À
�¼

||ξ|2 � δ|p1�βq{2|ξ|α|δ|γ |pg|2dδdξ
1{2
À }g}2H2

0pR�t q
.

Remark 3.5. We recall that in the inequality above, pg abusively denotes yP0g. Since P0g must
belong to H2 we can not simply take g P H2pR�q.
Obviously, the same argument applies as soon as s is an even integer, but since the non-integer
case is slightly more delicate, we chose to consider only s ¤ 2 for simplicity.
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Estimate (3.9), the case 0   s   2 This is an interpolation argument. For p ¡ 2, 2{p �
d{q � d{2, the solution map is continuous

HpR�q Ñ LppRt, Lqq, H2
0pR�q Ñ LppRt,W 2,qq XW 1,ppRt, Lqq,

thus by interpolation it is continuous rH,H2
0ss,2 Ñ LppRt, B2s

q,2q X Bs
p,2pRt, Lqq, this gives the

result by using the interpolation identities of proposition 2.5 and by restriction on t ¥ 0.

The boundary value problems on r�T,8r and Rt A natural question (and actually
useful in the rest of the paper) is the solvability of the BVP on other time intervals than
r0,8r. As we mentioned before, the backward BVP can be ill-posed. However translations
have a better behaviour: first, we extend the operator pa, bq Ñ Bpa, bq to distributions in
HpRq �H1pRq with the formula

Bpa, bq � F�1
x,t

�
b1pξ, iδqpapξ, δq � b2pξ, iδqpbpξ, δq�.

Under the Kreiss-Lopatinskii condition, this extension maps H �H1 Ñ HpRq. For g P HpRq
smooth, supported in t ¥ 0 and u a smooth solution to the pure BVP (3.2), we define uT �
upt� T q for some T P R. Then from the explicit formula (3.3), uT satisfies

FBpuT |y�0, ByuT |y�0q � e�iT δLgpξ, iδq � Fpgp� � T qq,

so that uT is a solution of the BVP$&%
iBtv �∆v � 0, px, y, tq P Rd�1 � R� � r�T,8r,
Bpv|y�0, Byv|y�0q � gp� � T q,
vp�,�T q � 0.

Therefore up to the appropriate translation of g, to solve a BVP on r�T,8r is equivalent to
solve a BVP on r0,8r. A useful consequence of this remark is the well-posedness of the BVP
posed on Rd�1 � R� � Rt.

Corollary 3.1. Consider the boundary value problem$&%
iBtu�∆u � 0,
Bpu|y�0, Byu|y�0q � g,
limtÑ�8 up�, tq � 0.

px, y, tq P Rd�1 � R� � Rt. (3.19)

If B satisfies the Kreiss-Lopatinskii condition (3.4) and g P HspRq, 0 ¤ s ¤ 2, there exists a
unique solution u P CpR, Hsq, moreover it satisfies estimate (3.9) with R�

t replaced by Rt.
If g vanishes on Rd�1�s �8, T s, then so does u on pRd�1 � R�q�s �8, T s.
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Proof. Fix g P HspRq. By density there exists gn P C8
c pRd�1 � Rtq such that

}g � gn}HspRtq ÝÑn 0.

We can assume that gn is supported in r�Tn,8r, and Tn is increasing. By translation invariance
in time, there exists a smooth solution un to$&%

iBtun �∆un � 0,
Bpun|y�0, Byun|y�0q � gn,
unp�,�Tnq � 0.

px, y, tq P Rd�1 � R� � r�Tn,8r. (3.20)

As was pointed out in the proof of estimate (3.9), setting un|s�8,�Tnr � 0 defines a smooth
extension of un, which solves the boundary value problem with gn|s�8,�Tns � 0.
Let n ¥ p, then supppun � upq � r�Tn,8r and a priori estimate (3.9) implies

}un � up}L8pR,HspRqq À }gn � gp}Hspr�Tn,8rq À }gn � gp}HspRq.

This implies that punq converges to some u P CtHs. Moreover

@n P N, lim�8 }unptq}Hs � 0 ñ lim�8 }uptq}Hs � 0.

The other estimates can be obtained as for proposition 3.1.
In the case where g is supported in Rd�1 � rT,8r, it suffices to observe that we can assume
that gn is supported in Rd�1 � rT � 1{n,8r, and use the previous observation on the support
of smooth solutions.

3.2 Estimates for the Cauchy problem

Pure Cauchy problem We recall (see (3.4)) that the Kreiss-Lopatinskii condition reads
α ¤ |b1 �

a
|ξ|2 � δb2| ¤ β, therefore we define Λ the Fourier multiplier of symbol

a
||ξ|2 � δ|

that acts on functions defined on Rd�1�Rt. In order to control }Bpu|y�0, Byu|y�0q}Hs it suffices
to control }u|y�0}Hs and }Λ�1Byu|y�0}Hs .

Proposition 3.6. The solution eit∆u0 of the Cauchy problem"
iBtu�∆u � 0,
u|t�0 � u0,

px, y, tq P Rd�1,

satisfies the following estimates for 0 ¤ s ¤ 2:

@ p ¡ 2,
2

p
� d

q
� d

2
, }u}

LppRt,Bsq,2qXBs{2p,2 pRt,Lqq
À }u0}Hs , (3.21)

}u|y�0}HspRtq � }Λ�1pByu|y�0q}HspRtq À }u0}Hs . (3.22)
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Proof. The LpBs
q,2 estimate in (3.21) is the classical Strichartz estimate, see e.g. [13] Corollary

2.3.9. Since Btu � i∆u, }u}W 1,pLq À }u0}H2 , and the B
s{2
p,2L

q bound follows by interpolation.
For the trace estimate, we observe that the solution of the Cauchy problem satisfies

@ px, y, tq P Rd�1, peit∆u0qpx, yq � 1

p2πqd
¼

e�ip|ξ|
2�η2qteix�ξ�iyηxu0pξ, ηqdξdη,

ñ peit∆u0qpx, 0q � 1

p2πqd
¼

e�ip|ξ|
2�η2qteix�ξxu0pξ, ηqdξdη.

We consider the integral over η ¥ 0, and use the change of variables δ � �pη2 � |ξ|2q»
Rd�1

»
R�
e�ip|ξ|

2�η2qteix�ξxu0pξ, ηqdηdξ �
»
Rd�1

» �|ξ|2
�8

eiδteix�ξ
xu0

�
ξ,
a
||ξ|2 � δ|a

||ξ|2 � δ|
�
dδdξ

:� p2πqdF�1
x,t pψq.

Then for s ¥ 0, reversing the change of variable

}F�1
x,t pψq}2HspRtq �

»
Rd

a
|δ � |ξ|2|p1� |δ| � |ξ|2qs|ψpξ, δq|2dδdξ

�
»
Rd�1

» �|ξ|2
�8

a
|δ � |ξ|2|p1� |δ| � |ξ|2qs

����xu0

�
ξ,
a
||ξ|2 � δ|�a

||ξ|2 � δ|

����2dδdξ
À

¼
Rd�1�R�

p1� |ξ|2 � |η|2qs|xu0pξ, ηq|2dηdξ � }u0}2Hs .

Symmetric computations can be carried for η P R�, we conclude

}eit∆u0|y�0}HspRtq À }u0}Hs .

The estimate for }Λ�1pByu|y�0q}Hs is done similarly by writing

pByu|y�0q � 1

p2πqd
¼
Rd

e�ip|ξ|
2�η2qteix�ξiηxu0pξ, ηqdξdη,

and using the fact that after the change of variable, the η factor becomes
a
||ξ|2 � δ|, so that

it balances precisely the symbol of Λ�1.

Remark 3.7. Inequality (3.22) is a multi-dimensional variant (not new) of the sharp Kato-
smoothing property that we already mentioned in the introduction. It is clear that the argu-
ment also works for s ¥ 2.
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Pure forcing problem We consider u �
» t

0
eipt�sq∆fpsqds solution of"

iBtu�∆u � if,
up�, 0q � 0.

px, tq P Rd�1.

Our aim is to obtain an estimate of the kind }u|y�0}HspRtq À }f}L1
tH

s . If the integral
³t
0 was

replaced by
³8
0 , we might simply apply proposition 3.6

u|y�0 � eit∆
�» 8

0
e�is∆fpsqds


����
y�0

,

ñ }eit∆
�» 8

0
e�is∆fpsqds


����
y�0

}Hs ¤ �� » 8
0
e�is∆fpsqds��

Hs À }f}L1
tH

s .

Combined with proposition 3.6, this implies } ³80 eipt�sq∆fpsqds|y�0}Hs À }f}L1
tH

s . Unfortu-
nately, due to the intricate nature ofHs, which measures both time and space regularity, we can
not apply the celebrated Christ-Kiselev lemma to deduce bounds for

³t
0 e

ipt�sq∆fpsqds|y�0 (see
also remark 3.9 for a discussion on this issue). Nevertheless, we have the following proposition.

Proposition 3.8. For 0   s   2, pp, qq, and pp1, q1q admissible pairs, we have���� » t
0
eipt�sq∆fpsqds

����
Lp1 pRt,Bsq1,2qXB

s
p1,2

pRt,Lq1 q
À }f}

Lp1 pRt,Bsq1,2qXB
s{2

p1,2
pRt,Lq1 q, (3.23)���� » t

0
eipt�τq∆fpτqdτ

����
y�0

����
HspRtq

À }f}
Lp1 pRt,Bsq1,2qXB

s{2

p1,2
pRt,Lq1 q, (3.24)����Λ�1

�
By
» t

0
eipt�τq∆fpτqdτ


����
y�0

����
HspRtq

À }f}
Lp1 pRt,Bsq1,2qXB

s{2

p1,2
pRt,Lq1 q. (3.25)

Proof. We start with (3.23) and (3.24). As a first reduction, we point out that according to
the usual Strichartz estimates (see [13], theorem 2.3.3 to corollary 2.3.9) and proposition 3.6����eit∆ » 0

�8
e�is∆fpsqds|y�0

����
HspRtq

À
���� » 0

�8
e�is∆fpsqds

����
HspRd�1�R�q

À }f}
Lp

1

t B
s
q1,2

,����eit∆ » 0

�8
e�is∆fpsqds

����
LptB

s
q,2

À
���� » 0

�8
e�is∆fpsqds

����
Hs

À }f}
Lp

1

t B
s
q1,2

,

and

����Bt » 0

�8
eipt�sq∆fpsqds

����
LpLq

�
���� » 0

�8
eipt�sq∆∆fpsqds

����
LptL

q

À }f}
Lp

1

t W
2,q1 .

So, by interpolation ����eit∆ » 0

�8
e�is∆fpsqds

����
B
s{2
p,2L

q

À }f}Lp1Bs
q1,2
.
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Therefore, it suffices to estimate
³t
�8 e

ipt�sq∆fpsqds, which is the solution of iBtu � ∆u � if ,
lim�8 u � 0. In this case, the analog of (3.23) is also a consequence of the classical results in
[13], and the analog of (3.24) relies on the following duality argument.

The case s � 0 We fix g P H1pRq and denote v the solution of the backward Neuman
boundary value problem$&%

iBtv �∆v � 0,
lim�8 vptq � 0
Byv|y�0 � g

px, y, tq P Rd�1 � R� � Rt.

According to the discussion p.18 and corollary 3.1, this problem is well-posed and the solution
is in Xpρ,γq admissibleL

ρ
tL

γ . We extend v on Rd � Rt by reflection

vpx, y, tq �
"
vpx, y, tq, y ¥ 0,
vpx,�y, tq, y   0.

In particular, v|y�0� � v|y�0� and Byv|y�0� � �Byv|y�0� � �g. Using a density argument,
the following integration by part is justified:»

Rt

»
Rd
ifvdxdydt � �

»
Rt

»
Rd
uiBtv �∆vdxdydt

�
»
Rt

»
Rd�1

�u|y�0Byv|y�0� � u|y�0Byv|y�0�dxdt

�
»
Rt

»
Rd�1

Byu|y�0v|y�0� � Byu|y�0v|y�0�dxdt

� 2

»
Rt

»
Rd�1

u|y�0gdxdt.

Taking the supremum over }g}H1 � 1, by duality we deduce

}u|y�0}HpRtq ¤
1

2
}f}Lp1 pRt,Lq1 q sup

}g}H1�1
}v}LptLq À }f}

Lp
1

t L
q1 . (3.26)

Higher order estimates We recall that ∆1 is the Laplacian in the x variable. If f P
Lp

1

t W
2,q1 , then ∆1u is the solution of

iBt∆1u�∆∆1u � ∆1f, lim�8 ∆1uptq � 0,

therefore the estimate for s � 0 implies }∆1u|y�0}H À }∆1f}
Lp

1

t L
q1 À }f}

Lp
1

t W
2,q1 . By interpola-

tion we get for 0   s   2»
Rd

a
||ξ|2 � δ|p1� |ξ|2sq|zu|y�0|2dδdξ À }f}2

Lp
1

t B
s
q1,2

. (3.27)
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Similarly, if f PW 1,p1Lq
1
, then Btu satisfies

iBtBtu�∆Btu � Btf, lim�8 Btuptq � 0,

the estimate for s � 0 gives }Btu|y�0}H À }Btf}Lp1t Lq1 and by interpolation again»
Rd

a
||ξ|2 � δ||p1� |δ|sq|zu|y�0|2dδdξ À }f}2

Bs
p1,2

Lq
1 . (3.28)

Combining (3.27) and (3.28) implies for 0   s   2

}u|y�0}Hs À }f}
B
s{2

p1,2
Lq1XLp1t Bsq1,2

.

Estimate (3.25) For s � 0, we only sketch the similar duality argument : consider v solution
of the backward BVP with Dirichlet boundary condition g, and extend it on Rd � Rt as an
odd function in the y variable. The same computations as for (3.24) lead to

sup
gPHpRtq

»
Rt�Rd�1

Byu|y�0gdxdt À }f}Lp1Lq1 }g}HpRtq,

ñ
����Byu|y�0

����
H1pRtq

À }f}Lp1 pLq1 q,

according to (3.7), this estimate is precisely (3.25) for s � 0. The case 0   s ¤ 2 follows from
the same differentiation/interpolation argument.

Remark 3.9. The space Lp
1
Bs
q1,2 X B

s{2
p1,2L

q1 seems natural at least scaling wise. In the case of
dimension 1, Holmer [17] managed to prove (3.24) with only }f}Lp1W s,q1 in the right hand side
under the condition s   1{2. For s ¥ 1{2, it is convenient to add some time regularity.
A (very formal) argument is as follows: suppose that u is a smooth solution of iBtu � ∆u �
f, u|t�0 � 0. If u|y�0 P H2, then f |y�0 � iBtpu|y�0q � p∆uq|y�0, where iBtg P H and w � ∆u
satisfies iBtw�∆w � ∆f, w|t�0 � 0, so that the a priori estimate for s � 0 gives p∆uq|y�0 P H.
Therefore f |t�0 should belong to H, which can not be deduced from f P L1

tH
2.

Now if f PW 1,1
t L2 X L1

tH
2, from the numerology of Sobolev embeddings one expects

f PW 3{4,1
t H1{2 ñ “almost” f |y�0 PW 3{4,1

t L2
ãÑ H

1{4
t L2,

f PW 1{2,1
t H1 ñ “almost” f |y�0 PW 1{2,1

t H1{2
ãÑ L2

tH
1{2,

in particular, f |y�0 almost belongs to H1{4L2 X L2H1{2
ãÑ H.

3.3 Proof of theorems 1.2 and 1.3

Up to using regularized data un0 P H2
0 , fn P W 1,p1

0 Lq
1 X Lp

1
W 2,q1

0 , gn P H2
0 all quantities are

well-defined, so we mainly focus on the issue of a priori estimates in this paragraph.
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Proof of theorem 1.2 First we point out a confusion to avoid for the operator B: if BR
is the Fourier multiplier with same symbol as B, P0 the zero extension to t ¤ 0, and R the
restriction to t ¥ 0, we have

B � R �BR � P0.

We recall that P0 (resp. R) is continuous Hs0pR�q Ñ HspRq, s � 1{2 (resp. HspRq Ñ Hs0pR�q),
and by duality P0 : H1pR�q Ñ H1pRq, R : H1pRq Ñ H1pR�q are continuous.

The case s � 0 We follow the method and notations from the beginning of section 3: let
v the solution of the Cauchy problem, w the solution of (3.1), that is

"
iBtv �∆v � f,
v|t�0 � u0,

$&%
iBtw �∆w � 0,
w|t�0 � 0,
Bpw|y�0, Byw|y�0q � g �Bpv|y�0, Byv|y�0q.

Since }v}LpLq À }u0}L2 �}f}
L
p11
t Lq

1
1

(Propositions 3.6 and 3.8), it suffices to check that w exists

and }w}LptLq À }u0}L2�}f}
L
p11
t Lq

1
1
�}g}H. Let us write BRpa, bq � B1,Rpaq�B2,Rpbq. According

to the Kreiss-Lopatinskii condition the symbols b1 and
a
|δ � |ξ|2|b2 are bounded uniformly in

pδ, ξq. From the estimates of section 3.2, }v|y�0}HpRtq � }Byv|y�0}H1pRtq À }u0}L2 , this implies

}B1,R � P0 �Rpu|y�0q}HpRtq À }P0 �Ru|y�0}HpRtq À }u0}L2 .

}B2,R � P0 �RpByu|y�0q}2HpRtq �
¼

|b2pξ, δq|2
a
||ξ|2 � δ| |Fx,t

�
P0 �RpByu|y�0q

�|2dξdδ
À
¼

p||ξ|2 � δ|q�1{2 |Fx,t
�
P0 �RpByu|y�0q

�|2dξdδ
� }P0 �RpByu|y�0q}2H1pRtq À }u0}L2 ,

We can now apply proposition 3.1 which gives the existence of w with the expected Strichartz
estimate, then v � w solves (1.1).
The causality follows by taking the difference of two solutions and using the property on
support of solutions in Corollary 3.1.

The case s � 2 Here we assume f P Lp1t W 2,q1 X W 1,p1

t Lq
1
, u0 P H2

0 pRd�1 � R�q, g P
H2

0pR�q. According to proposition 3.1, we can use again a superposition principle provided

Bpv|y�0, Byv|y�0q P H2
0pR�q or equivalently BR � P0 �Rpv|y�0, Byv|y�0q P H2pRq,

since for any g, BR � P0g is supported in t ¥ 0. Now u0 P H2
0 , thus v|y�t�0 � u0|y�0 � 0,

therefore estimate (3.22) and corollary 2.1 imply

}B1,R � P0 �Rpv|y�0q}H2pRq À }u0}H2 � }f}Lp1W 2,q1XW 1,p1Lq1 .
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Moreover, estimate (3.22) also implies

}∆1Byv|y�0}2H1pRtq � }BtByv|y�0q}2H1pRtq �
¼
Rd

| {Byv|y�0|2a
||ξ|2 � δ| p|ξ|

2 � |δ|q2dξdδ

À }u0}2H26� }f}2
Lp1W 2,q1XW 1,p1Lq1

.

But since u0 P H2
0 pRd�1 � R�q, Byv|y�t�0 � Byu0|y�0 � 0 thus

BtP0 �RpByv|y�0q � P0 �RpBtByv|y�0q, ∆1P0 �RpByv|y�0q � P0 �Rp∆1Byv|y�0q.

By continuity of P0 � R : H1 Ñ H1, pP0 � RpBtByv|y�0q, P0 � Rp∆1Byv|y�0qq P pH1q2. Finally,
using the boundedness of b2

a
||ξ|2 � δ| we get

}B2,R � P0 �RpByv|y�0q}H2 À }BtP0 �RpByv|y�0q}H1 � }∆1P0 �RpByv|y�0q}H1

À }u0}H2 � }f}Lp1W 2,q1XW 1,p1Lq1

which implies as expected B2,R � P0 �RpByv|y�0q P H2pRq.

The case 0   s   2 After fixing an extension operator, since pu0, fq Ñ Bpv|y�0, Byv|y�0q
is continuous L2 � Lp

1

t L
q1 Ñ HpR�q and H2

0 �
�
W 1,p1

t Lq
1 X Lp

1

t W
2,q1q Ñ H2

0pR�q, the general
case follows by interpolation.

Proof of theorem 1.3 Let s P r0, 2s. We fix extensions of u0, f to y ¤ 0 and solve"
iBtv �∆v � f,
v|t�0 � u0,

px, y, tq P Rd � R.

From the estimates for the Cauchy problem, v|y�0 P HspRq. Consider the BVP$&%
iBtw �∆w � 0,
w|t�0 � 0,
w|y�0 � g � v|y�0,

px, y, tq P Rd�1 � R� � R�. (3.29)

If s ¡ 1{2, the trace v|y�t�0 � u0|y�0 is well defined and belong to Hs�1{2. Moreover the
compatibility condition gives pg � v|y�0q|t�0 � g|t�0 � u0|y�0 � 0 so that for s P r0, 2szt1{2u,
g � v|y�0 P Hs0pR�q. From proposition 3.1 there exists a unique solution w P CpR�

t , H
sq to

(3.29). Now u :� v|y¥0 � w is a solution of (1.1), it satisfies the expected estimate because
according to propositions 3.1, 3.6 and 3.8, v and w do.
In the case s � 1{2, we first note that

@ t ¥ 0,

» t
0
eipt�sq∆fpsqds �

» t
0
eipt�sq∆P0 �Rpfpsqqds,
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and since p11 ¤ 2, P0�Rpfq P B1{4
p11,2

pRt, Lq11qXLp11pRt, B1{2
q11,2

q. From Proposition 3.8
³t
0 e

ipt�sq∆P0�
Rfpsqds|y�0 P H1{2pRq, and clearly vanishes for t ¤ 0, therefore R

� ³t
0 e

ipt�sq∆fpsqds|y�0q P
H1{2

00 pR�q (by definition 2.2 of H1{2
00 ). In order to solve (3.29), we are left to prove that if

the compatibility condition is satisfied, then peit∆u0q|y�0 � g P H1{2
00 pR�q. From the previous

estimates, we know peit∆u0q|y�0 � g P H1{2pR�q, and we must check condition (2.2), that is :¼
R��Rd�1

��peitB2yu0q|y�0 � e�it∆1
gpx, tq��2

t
dtdx   8.

Using the change of variable tÑ ?
t, the compatibility condition (1.4) ensures¼

R��Rd�1

��u0px,
?
tq � e�it∆1

gpx, tq��2
t

dtdx   8.

Therefore we only need to estimate u0px,
?
tq�peitB2yu0q|y�0. We use the following interpolation

argument: if u0 P H1pRdq, the identity u0px,
?
tq � peitB2yu0q|y�0 � u0px,

?
tq � u0px, 0q �

u0px, 0q � peitB2yu0q|y�0 makes sense, and thanks to Hardy’s inequality¼
R��Rd�1

|u0px,
?
tq � u0px, 0q|2
t3{2

dtdx � 2

¼
R��Rd�1

|u0px, yq � u0px, 0q|2
y2

dydx À }Byu0}2L2 .

Similarly, the sharp Kato smoothing (3.22) implies }peitB2yu0q|y�0}
9H
3{4
t L2 À }u0}H1 so that the

(fractional) Hardy’s inequality gives¼
R��Rd�1

|peitB2yu0q|y�0 � u0px, 0q|2
t3{2

dtdx À }peitB2yu0q|y�0}2
9H
3{4
t L2

À }u0}2H1 .

On the other hand, we have by a similar simpler argument¼
R��Rd�1

|u0px,
?
tq|2 � |peitB2yu0q|y�0|2

t1{2
À }u0}2L2 � }peitB2yu0q|y�0}2

9H1{4L2 À }u0}2L2 .

We deduce by interpolation¼
R��Rd�1

|u0px,
?
tq � peitB2yu0q|y�0|2

t
dt À }u0}2H1{2 .

This implies peit∆u0q|y�0 � g P H1{2
00 . We can then end the proof4 as for the case s � 1{2.

4Note that u0 was extended to Rn, but the argument clearly independent of the choice of the extension
operator.
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4 Local and global existence

For simplicity, we only consider nonlinearities of the type ε|u|a�1u, a ¡ 1, ε P t�1, 1u Dirichlet
boundary conditions, u0 P H1. More general nonlinearities and indices of regularity can be
treated with similar methods, see chapter 4 from [13].
Since so far we have always considered global solution, some clarifications for local solutions
of nonlinear problems are required. For PT an extension operator as in lemma 2.8, consider
the map Φ : v P L8pR�

t , H
1q ÞÑ Φpvq the solution of$&%

iBtu�∆u � ε|PT v|a�1PT v,
u|t�0 � u0,
u|y�0 � g.

(4.1)

If 1   a   1� 4{pd� 2q, 2   a� 1   2d{pd� 2q thus by Sobolev’s embedding v P L8t La�1. If

pp, a� 1q is admissible, we deduce |PT v|a�1PT v P Lp
1

t X Lpa�1q1 , and according to theorem 1.3
Φ is well-defined L8t H1 Ñ CtL

2.
We say that u is a local solution on r0, T s of$&%

iBtu�∆u � ε|u|a�1u,
u|t�0 � u0,
u|y�0 � g.

(4.2)

if u is the restriction on r0, T s of a fixed point of Φ.

Theorem 4.1. Let pu0, gq P H1pRd�1 � R�q � H1pR�
t q such that u0|y�0 � g|t�0, 1   a  

1�4{pd�2q. The IBVP (4.2) has a unique maximal solution in Cpr0, Tmaxq, H1q. If Tmax   8,
lim
Tmax

}uptq}H1 � 8. For any T such that u exists on r0, T s and pp, qq an admissible pair, then

u P Lppr0, T s,W 1,qq XB
1{2
p,2 pr0, T s, Lqq.

If moreover 1 � 4{d ¤ a, there exists ε ¡ 0 such that if }u0}H1 � }g}H1   ε then the solution

is global and for pp, qq admissible, u P LppR�
t ,W

1,qq XB
1{2
p,2 pR�

t , L
qq.

Proof. We use the convenient notation L1{p � Lp. Let us recall shortly the classical Kato’s
argument, with some modifications to handle time regularity.

Local existence For M to fix later, we set S the closed ball of radius M in L8pR�, H1q X
LppR�,W 1,qq XB

1{2
p,2 pR�, Lqq, q � a� 1, pp, qq admissible. We use on S the following distance

dpu, vq � }u� v}L8pR�,L2qXLqpR�,Lrq.

pS, dq is a complete set (see e.g. [13] section 4.4). We fix an extension operator PT as in lemma
2.8: such that for any v P S,

supppPT vq � Rd�1 � R� � r�T, 2T s, }PT v}B1{2
p,2 pRt,Lqq

À T 1{p�1{2}v}
B

1{2
p,2 pRt,Lqq

, (4.3)
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and we construct a fixed point to Φ, with Φ defined at (4.1).
Combining the inclusions B1

q,2 � W 1,q, B1
q1,2 � W 1,q1 (see [6] theorem 6.4.4), with the linear

estimates of theorem 1.3 we get

}Φpvq}
L8t H

1XLptW 1,qXB1{2
p,2 pR�,Lqq

À }u0}H1 � }g}H1 � }|PT v|a�1PT v}Lp1W 1,q1XB1{2

p1,2
Lq1
.

Using aq1 � q, 1�2{q
a�1 � 1{q, the embedding H1

ãÑ Lq and assumption (4.3), we have

}|PT v|a�1PT v}Lp1 pR,W 1,q1 q À }PT v}a
Lap

1

t Lq
� }PT v}a�1

L8t L
q}∇PT v}LptLq}1}L1�2{ppr�T,2T s,L8q

À T a�1{pp1q}v}aL8t H1 � T 1�2{p}PT v}a�1
L8H1}∇PT v}LpTLq (4.4)

À pT a�1{p1 � T 1�2{pqMa. (4.5)

Similarly for the time regularity, we have using proposition 2.7 and lemma 2.8

}|PT v|a�1PT v}B1{2

p1,2
pR,Lq1 q À }pPT vqa�1}

L
1�2{p
T L1�2{q}PT v}B1{2

p,2L
q

À T 1�2{p}v}a�1
L8t L

qT
1{p�1{2}v}

B
1{2
p,2L

q

À T 1{2�1{pMa.

Therefore for 0 ¤ T ¤ 1,

}Φpvq}
L8H1XLpW 1,qXB1{2

p,2L
q À }u0}H1 � }g}H1 � pT a�1{p1 � T 1{2�1{pqMa.

Choosing M ¡ }u0}H1 � }g}H1 , T small enough, Φ maps S into S. Then from similar compu-
tations

}Φpuq � Φpvq}L8t L2XLptLq À T 1�2{pp}u}L8t H1 � }v}L8t H1qa�1}u� v}LptLq . (4.6)

Up to decreasing T , the usual fixed point argument gives the existence of a unique fixed point
in S for T small enough. Estimate (4.6) also implies uniqueness in L8H1, and by causality
the solution does not depend on the choice of the extension operator.
Thanks to the local well-posedness in H1, and the fact that the compatibility condition is
clearly propagated by the flow, the existence and uniqueness of a maximal solution follows.

Global existence Let us go back to (4.5), assuming a ¥ 1� 4{d. Then
1

p
� dpa� 1q

4pa� 1q and

1

a� 1

�
1� 2

p



� 1

p
� 1

a� 1

�
1� a� 1

p



� 1

a� 1

�
1� dpa� 1q

4



¤ 0,

1

a

�
1� 1

p



� 1

p
� 1

a

�
1� a� 1

p



� 1

a

�
1� dpa� 1q

4



¤ 0.
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Therefore Lap
1 XL

1
a�1

�
1� 2

p

�
� L8 XLp. As we work with small data, we can assume that the

solution exists on r0, T0s, T0 ¥ 1, and for any T ¥ T0, using H1
ãÑ Lq

}|u|a�1u}
Lp

1

T W
1,q1 À }u}a

Lap
1

T Lq
� }u}a�1

L
1
a�1

�
1� 2

p

�
T Lq

}∇u}LpTLq

À }u}aL8T H1XLpW 1,q .

The same computations can be applied to estimate time regularity, so that setting
mpT q � }u}

L8T H
1XLpTW 1,qXB1{2

p,2 pr0,T s,Lqq
, we have with C independent of T ¥ T0

mpT q ¤ Cp}u0}H1 � }g}H1 �mpT qaq.
If }u0}H1 � }g}H1 ¤ ε small enough, then from the fixed point argument mp1q ¤ Aε for some
A ¡ 0. Choosing B ¡ maxpA,Cq and ε small enough such that C � CBaεa�1   B, for any

T P r0, Tmaxr, mpT q ¤ Bε thus Tmax � 8. Since u P L8H1 X LppR�
t ,W

1,qq X B
1{2
p,2 pR�

t , L
qq

for some pp, qq admissible, it is also true for arbitrary admissible pp, qq by using the same
computations.

Remark 4.1. For the Schrödinger equation on Rd, global well-posedness for small data is known
provided aS   a, where aS � p?d2 � 12d� 4 � d � 2q{p2dq   1 � 4{d is the so-called Strauss
exponent, see [30]. Strichartz estimates for “non admissible pairs” ([13], section 2.4) are the
missing tool for reaching this range.

5 Asymptotic behaviour

The aim of this section is to show that the global small solution constructed in section 4 scatters
in the sense that it is asymptotically linear. For the Cauchy problem, the classical definition5

is
Dϕ P H1 : lim

tÑ�8 }e
�it∆uptq � ϕ}H1 � 0. (5.1)

We propose a natural extension for the Dirichlet boundary value problem: we define the
resolvent operator Φpg, s, t, u0q � vpt, �q where v is the solution of$&%

iBrv �∆v � 0,
v|r�s � u0,
v|xd�0 � g.

Note that by reversibility of the boundary value problem with Dirichlet boundary conditions,
Φpg, s, t, u0q is well defined if g is defined on rs, ts, in particular we do not require s ¤ t, and
we have the usual formulas

Φpg, s, t,Φpg, s1, s, u0qq � Φpg, s1, t, u0q, Φpg � h, s, t, u0 � v0q � Φpg, s, t, u0q � Φph, s, t, v0q,
5up to some flexibility for the functional settings.
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and we will freely use the fact that linear estimates directly give estimates on Φ.
In view of (5.1), the natural definition for scattering is then :

Definition 5.1. If u is a global solution to (4.2), we say that it scatters in H1 if

Dϕ P H1 : lim
tÑ�8 }Φpg, t, 0, uptqq � ϕ}H1 � 0.

Remark 5.1. Since the flow acts continuously on H1, this is equivalent to the more “forward”
definition

Dϕ P H1 : lim
t
}Φgp0, t, ϕq � uptq}H1 � 0,

which has the advantage of making sense for non reversible BVP (but is not as easily checked).

Proposition 5.2. The global solution constructed in section 4 scatters in H1.

Proof. It suffices to check that Φpg, t, 0, uptqq is a Cauchy sequence. We keep the same notation
as in the previous section. For t ¡ s, we have

Φpg, t, 0, uptqq � Φpg, s, 0, upsqq � Φp0, t, 0, uptq � Φpg, s, t, upsqqq

On the other hand, uptq � Φpg, s, t, upsqq is the value at time t of the solution of$&%
iBrz �∆z � |u|a�1u1r¥s,
z|r�s � upsq � upsq � 0,
z|y�0 � 0.

We deduce }Φpg, t, 0, uptqq � Φpg, s, 0, upsqq}H1 À }|u|a�1u}
Lp1 prs,8r,W 1,q1 qXB1{2

p1,2
prs,8r,Lq1 q Ñs 0,

therefore by Cauchy’s criterion Φpg, t, 0, uptqq converges in H1.

Due to the presence of boundary conditions, there is some “room” for other definitions of
scattering. The purpose of the next proposition is to show that the asymptotic behaviour is
actually trivial, in the sense that the solution converges to the restriction on y ¥ 0 of eit∆ϕ
for some ϕ P H1pRdq. We denote ∆D the Dirichlet laplacian.

Proposition 5.3. There exists ϕ P H1
0 such that }uptq � eit∆Dϕ}H1 Ñt 0. Equivalently, u

converges as tÑ8 to the restriction on y ¥ 0 of the solution of"
iBtv �∆v � 0,
v|t�0 � Apϕq, x P Rd

where Apϕq is the antisymetric extension on y ¤ 0 of ϕ.
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Proof. Let us fix R a lifting operator H1{2pRd�1q Ñ H1pRd�1 �R�q, P an extension operator
H1pR�

t q Ñ H1pRtq. We define

Pt : H1prt,8r�Rd�1q Ñ H1pR� Rdq, g Ñ Ppgp� � tqqp� � tq,
so that for r ¥ t, Ptgprq � gprq. We now consider the backward operator :

ΦpPtg, t, 0, uq.
For t ¡ s, Φ

�
Ptg, t, 0, uptqq � ΦpPsg, s, 0, upsq

� � Φ
�
Ptg � Psg, t, 0, uptq � Φpg, s, t, upsqq�. We

already know (see the previous proof) that

}uptq � Φpg, s, t, upsqq}H1 Ñs 0,

moreover lim
tÑ8 }g}H1prt,8rq � 0 (corollary 2.1 point 3), thus }Ptpgq}H1 Ñ8 0. We deduce

}Φ�Ptg, t, 0, uptqq � ΦpPsg, s, 0, upsq
�} Ñs,t 0, thus from Cauchy’s criterion

Dϕ P H1 : lim
t

ΦpPtg, t, 0, uptqq � ϕ.

We remark now that ΦpPtg, t, τ, uptqq � eipτ�tq∆Dpuptq �Rgptqq is the solution of$&%
iBτw �∆w � 0,
w|τ�t � Rgptq,
w|y�0 � Ptg.

Since }g}H1prt,8rq Ñ8 0, we have }Ptg}H1 Ñ8 0 and from the embeddingH1
ãÑ Cprt,8|, H1{2q,

we have }Rgptq}H1 Ñ8 0, this implies

lim
tÑ8 }ΦpPtg, t, τ, uptqq � eipτ�tq∆Dpuptq �Rgptqq}L8τ H1 Ñ 0,

in particular for τ � 0, lim
tÑ8 }ΦpPtg, t, 0, uptqq � e�it∆Dpuptq �Rgptqq}H1 � 0.

As ΦpPtg, t, 0, uptqq Ñt ϕ P H1, we deduce e�it∆Dpuptq �Rgptqqq Ñt ϕ too. Furthermore for
any t, e�it∆Dpuptq �Rgptqq P H1

0 which is closed so ϕ P H1
0 . Finally from }Rgptq}H1 Ñt 0 we

conclude }uptq � eit∆Dϕ}H1 Ñ 0.
The equivalent statement simply comes from the fact that Apeit∆Dϕq � eit∆Aϕ.

A Remarks on the optimality of H
A natural question is wether H is the weakest space for which the solution to (1.1) is CtL

2.
We consider the BVP $'&'%

iBtu�∆u � 0,
lim�8 uptq � 0,

u|y�0 � g.
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We formulate our problem as follows

Is there a weight p ¡ 0 such that }u}CtL2 À � » |pg|2ppξ, δqdδdξ�1{2 and inf
ppξ, δqa
||ξ|2 � δ| � 0 ?

(A.1)
The aim of this section is to show that the answer to this question is positive, even under the
stronger assumptions that p ¤

a
||ξ|2 � δ| and for any λ ¡ 0, ppλξ, λ2δq � λppξ, δq. However

we will see that region where the inf is realized is a bit peculiar.

We recall that the solution is given by Lu � e�y
?
|ξ|2�δpg, and that we can split u as

upx, y, tq � 1

p2πqd
»
Rd�1

» 8
0
eipyη�x�ξqe�itp|ξ|

2�η2q2ηpgpξ,�η2 � |ξ|2qdη dξ

� 1

p2πqd
»
Rd�1

» 8
0
e�yη�ix�ξeitp�|ξ|

2�η2q2ηpgpξ,�|ξ|2 � η2qdη dξ
� u1 � u2.

This splits the frequencies in two regions tδ   �|ξ|2u :� Rh and tδ ¡ �|ξ|2u :� Re. In the
usual terminology of boundary value problems these are the hyperbolic and elliptic regions
(see [31] in the context of the Schrödinger equation). According to Plancherel’s formula,

}u1pt � 0q}L2 � }ηpgpξ,�η2 � ξ2q}L2
ξ,η

� }pgpξ, δq ||ξ|2 � δ|1{4}L2 ,

therefore the weight
a
||ξ|2 � δ| can not be modified in Rh.

In Re, we set Jpξ, ηq �
a
η{ppξ,�|ξ|2 � η2q, ϕpξ, ηq � 2pgpξ,�|ξ|2 � |η|2q?ηp. We remark that

(A.1) is equivalent to sup J � �8, and»
|ϕ|2pξ, ηqdη � 2

»
Rd�1

» 8
�|ξ|2

|pgpξ, δq|2ppξ, δqdδ,
Now without loss of generality we can assume that for any pξ, ηq, ϕpξ, ηq P R�, and we bound

}u2p�, tq}L2
x,y

�
���� » 8

0
e�yη2ηpgpξ,�|ξ|2 � η2qdη

����
L2
ξ,y

�
���� » 8

0
e�yηϕpξ, ηqJpξ, ηqdη

����
L2
ξ,y

�
����� »r0,8r3 e�ypη1�η2qϕpξ, η1qϕpξ, η2qJpξ, η1qJpξ, η2qdη1dη2dy


1{2����
L2
ξ

�
�»

Rd�1

»
r0,8r2

Jpξ, η1qJpξ, η2q
η1 � η2

ϕpξ, η1qϕpξ, η2qdη1dη2dξ


1{2
(A.2)
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Using the decomposition pR�q2 � tη1   η2u Y tη2   η1u, we see that (A.2) is bounded by
}ϕ}2L2 if

T : ϕ ÞÑ Jpξ, η1q
η1

» η1
0
Jpξ, η2qϕpξ, η2qdη2 is bounded L2 Ñ L2. (A.3)

Due to scaling invariances, it seems natural to add some homogeneity assumptions: if u is a
solution of the BVP with boundary data g, then for any λ ¡ 0, λd{2upλx, λy, λ2tq is a solution
with boundary data gpλx, λ2tq and same CtL

2 norm. The norm of the boundary data is scale
invariant if »

|pgpξ, δq|2 ppλξ, λ2δq
λ

dξdδ �
»
|pgpξ, δq|2ppξ, δqdξdδ,

which is true provided p is anisotropically homogeneous: ppλξ, λ2δq � λppξ, δq. This is equiva-
lent to the Jpλξ, ληq � Jpξ, ηq. Somewhat surprisingly, even with these strong assumptions it
is possible to construct J satisfying (A.1).

Proposition A.1. There exists ppξ, δq such that (A.1) is true, moreover we can choose p such
that

@ pλ, ξ, δq P R�� � Rd�1 � R, ppλξ, λ2δq � λppξ, δq, and ppξ, δq ¤
a
||ξ|2 � δ|.

Proof. We keep the notations of the discussion above. For simplicity, we assume d � 2, and
define :

rpξ, ηq �
"
j if 2j � 2�j ¤ η

ξ ¤ 2j , j P N,
0 else.

Obviously, J :� 1� r ¥ 1 is 0-homogeneous and unbounded, thus

p �
a
δ � ξ2{J2pξ,

a
δ � ξ2q ¤

a
δ � ξ2, inf p � 0 and ppλξ, λ2δq � λppξ, δq.

Developping in (A.3) Jpξ, η1qJpξ, η2q � 1 � rpξ, η1q � rpξ, η2q � rpξ, η1qrpξ, η2q it suffices to
estimate each term separately. By symmetry, we can simply consider the integral over η1 ¥ η2.
The term with 1 is bounded thanks to Hardy’s inequality, for the term with rpξ, η2q we write» 8

0

1

η2
1

�» η1
0
rpξ, η2qϕpξ, η2qdη2


2

dη1 À
8̧

k�0

» ξ2k
ξ2k�1

1

η2
1

�» 2kξ

0
rϕpξ, η2qdη2


2

dη1

À
8̧

k�0

2�k

ξ

� ķ

j�0

» ξ2j
ξp2j�2�jq

jϕdη2


2

À
8̧

k�0

2�k

ξ

� ķ

j�0

}ϕpξ, �q}L2prξp2j�2�jq,ξ2jsqj
a

2�jξ

2

À }}ϕpξ, �q}L2prξp2j�2�jq,ξ2jsq}l2j ¤ }ϕpξ, �q}2L2
η
.
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Similarly for the term with rpξ, η1q» 8
0

r2pξ, η1q
η2

1

�» η1
0
ϕpξ, η2qdη2


2

dη1 À
8̧

k�0

» ξ2k
ξp2k�2�kq

k2

η2
1

�» 2kξ

0
ϕpξ, η2qdη2


2

dη1

À
8̧

k�0

k22�3k

ξ
}ϕpξ, �q}2L22kξ À }ϕpξ, �q}2L2

η
.

The last term rpξ, η1qrpξ, η2q is easier to estimate, we conclude by integration in ξ»
R

»
pR�q2

Jpξ, η1qJpξ, η2q
η1 � η2

ϕpξ, η1qϕpξ, η2qdη2dη1dξ À }ϕ}2L2pRd�1�R�q � }pg}L2ppdδdξq,

despite the fact that J is larger than 1 and unbounded.

Remark A.2. Let us point out that the contribution of the elliptic region Re to the solution
corresponds to a superposition of so-called evanescent waves, that do not propagate like solu-

tions of the Cauchy problem: for pδ, ξq such that δ � |ξ|2 ¡ 0, the wave e�y
?
||ξ|2�δ|eipδt�x�ξq is

a solution of the Schrödinger equation on Rd�1 � R� remaining localized near the boundary.
As mentionned before, for frequencies that correspond to propagating waves, the weighta
δ � |ξ|2 is optimal.

Acknowledgement C.A. was partially supported by the french ANR project BoND ANR-
13-BS01-0009-01.
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