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Characterisation of pendular capillary bridges derived from
experimental data using inverse problem method

B. Mielniczuk1,2,3 · O. Millet1 · G. Gagneux1 · M. S. El Youssoufi2,3

Abstract
In this study we use the recent analytical model to analyze capillary interactions in liquid bridge between two spherical 
grains, with fixed volumes of liquid and varying separation distance. Sequences of images of capillary bridges with 
different parameters are recorded during experimental tests. Geometrical parameters, as contact angle, half-filling angle and 
neck radius, are determined by image processing. Profiles of examined bridges are approximated as a Delaunay’s roulette 
and superposed on recorded images. Evolution of associated variables (Laplace pressure, capillary force) is also calculated. 
Results of theoretical modeling are compared with the experimental ones. They match very accurately for small volumes 
and/or small separation distances, when influence of gravity is not significant. For larger liquid volumes and/or larger 
separation distances between grains the influence of the gravity is observed as a distortion (loss of symmetry) of capillary 
bridge. To avoid this deformation, several test were realized in micro-gravity conditions. For these tests, theoretical results 
are in good agreement with experimental ones, also for higher liquid volumes and/or separations distances.

Keywords Capillary bridge · Young–Laplace equation · Inverse problem · Experimental measurement

1 Introduction

Liquid links between solid grains give origin of several phe-
nomena observed in unsaturated granular materials (soils,
powders). They have significant influence on mechanical
properties of these materials, because of intergranular capil-
lary forces arising between solid grains in presence of liquid.
These forces contribute strongly to the formation, deforma-
tion and flow of granular materials and they impart to them
an apparent macroscopic strength (sand castle effect), even
in the absence of the intrinsic cohesion or confining stress
(see e.g. [1–5]). Liquid in granular materials is distributed
in several ways, depending on material saturation. Starting
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from dry granular material, with increasing water content
it pass by pendular regime, when isolated liquid bridge are
observed, through funicular (capillary) regime (coalescence
on isolated bridges) to full saturation (see e.g. [6,7]).

One of the most common and simple geometries used in
analysis of capillary interactions is a single pendular bridge,
liquid link between two solid particles. It is usually a starting
point for further studies, as it constitutes also the elementary
form of liquid in unsaturated granular materials (at small
water content). The characteristics of pendular bridges have
been analyzed for over hundred years from theoretical and
experimental point of view (see e.g. [8–14]), assuming usu-
ally its circular (toroidal) shape [15–18].

In this paper, we propose several new elements concerning
the analysis of mechanical interactions of capillary bridges.
We use the solution of Young–Laplace equation for imposed
volume, when the capillary pressure is unknown, resolved as
an inverse problem with three given boundary conditions1

for second order differential equation. Subsequently, we use
image treatment techniques to determine the exact profile of
capillary bridge (nodoid, unduloid) and to calculate capillary
force and internal pressure. The analytical model was devel-

1 Filling angle δ, wetting angle θ and gorge radius y∗.
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oped in [14,19] and it is recalled in Sect. 2. In this model,
profiles of pendular capillary bridges are approximated as a
surface of revolution with constant mean curvature (Delau-
nay roulettes). Liquid bridges between two equal spheres are
analyzed for fixed volumes of liquid and varying separation
distance D between the grains, from contact to the rupture.
Main geometrical parameters (gorge radius y∗, contact angle
θ and half-filling angle δ) were determined during exper-
imental tests, realized in laboratory and in micro-gravity
conditions, using the setup described in Sect. 3. Capillary
bridge were approximated as Delaunay roulettes and mean
bridge curvature H , Laplace pressure Δp, liquid volume V
and capillary force Fcap were calculated. Results of realized
tests compared with results of modeling and results of earlier
experimental tests [20–23] are presented in Sect. 4 and con-
cluded in Sect. 5. The model of capillary interfaces which we
use here is based on Laplace law for pressure jumps. Possi-
ble generalization could involve a more detailed modeling of
the interfacial zone, following the methods used in [24]. The
results obtained allow for a more detailed description of cap-
illary bridges in granularmedia: they canbeused as a basis for
further and promising developments the micro/macro identi-
fication process studied in [25] or to calculate the contribution
of capillary stress to the total stress in unsaturated granular
media [26].

2 Theoretical framework

We recall briefly the main results on capillary bridge proper-
ties obtained from analytical calculations of Young–Laplace
equation (more details are presented in [19]). In proposed
model, the knowledge of 3 input parameters (θ , δ and
y∗) enables to determine completely (and analytically) the
meridian of the profile, the surface, volume, and associated
capillary force of the capillary bridge. Seven shapes of the
meridian, with constant mean curvature, are possible accord-
ing to half-filling and contact angles δ and θ , and to the radius
of the capillary bridge neck y∗ [19]. The capillary pressure
at the right hand side of Young–Laplace equation is reconsti-
tuted from the given data (y∗, δ, θ ) according to the following
procedure.

Let us start again from theYoung–Laplace equationwhich
can be written as

y′′
(
1 + y′2)3/2 − 1

y
√
1 + y′2 = −Δp

γ
=: H (1)

Fig. 1 Convex profile of a capillary bridge

1 + y′2 = 4y2

H2
(
y2 − 2λ

H

)2 (2a)

where

λ = y
√
1 + y′2 + Hy2

2
(2b)

is a first integral of Young–Laplace equation. The associated
capillary force may be calculated at the neck radius y∗ as:

Fcap = FΔp + FST (3a)

where

FΔp = πγ Hy∗2 (3b)

and

FST = 2πγ y∗ (3c)

According to the signs of H and λ, Eq. (2) corresponds to
one that governs the Delaunay roulettes [27]

1 + y′2 = 4a2y2
(
y2 + εb2

)2 (4)

The case ε = 1 corresponds to a portion of unduloid whereas
the case ε = −1 corresponds to a portion of nodoid.
In this article, only pendular bridges between two spherical
grains of radius r are examined.We limit our study to concave
capillary bridgewith convexmeridian satisfying y∗ ≤ r sin δ

(Fig. 1).
Moreover,we only focus on nodoid and unduloid capillary

bridges which correspond to the main stable cases observed
experimentally. The criterion of determination of the shape
is recalled in the results 1 and 2, that are detailed in Appendix
and can be found also in [19].

where Δp is a pressure difference between inside and outside 
of the capillary bridge, γ is a surface tension, and y(x) is the 
shape of the meridian of the capillary bridge. The integration 
of Young–Laplace equation leads to the non-linear first order 
differential equation [19]



Once themeridian y(x) is known, the volume of the liquid
bridge can be calculated by

V = π

∫ xc

−xc
y2(x)dx − 2Vc (5a)

where± xc are the abscissas of triple points, Vc is the volume
of the spherical caps wet by the liquid

Vc = π

3
r3 (1 − cos δ)2 (2 + cos δ) (5b)

If themeridian is give in a parametric formas, for example,
Eqs. (13) or (17), then Eq. (5a) becomes

V = 2π
b4

a

∫ τ

0

(e − cos t) cos tdt

(e + cos t)2
√
e2 − cos2 t

− 2Vc (6)

in the case of a nodoid, using Eq. (13). Similarly, for the
unduloid (Eq. 17), one obtains

V = 2π
b4

a

∫ τ ′

0

(1 − e cos t)dt

(1 + e cos t)2
√
1 − e2 cos2 t

− 2Vc (7)

3 Experimental procedure

The experiment addresses the series of tests on capillary
bridges between two spherical grains, with fixed water
volume V and varying intergranular separation D. Exper-
imental setup is similar to one described in [21,23,28].
Monodispersed borosilicate glass spherical grains (precision
of diameter ± 2.5 µm, precision of sphericity ± 0.625 µm),
with diameter of 8 or 10mm are used. Both beads are fixed to
aluminum supports and positioned vertically one over with
use of positioning system. Before each test sequence, beads
are cleaned using 99% ethanol and left for several minutes to
totally evaporate. Separation distance D between the grains
is controlled using a micrometer stage. Initial D is set to zero
(grains in contact). Then, the water drop of the given vol-
ume (from 1 to 10 µl) is introduced into the gap between
them using laboratory micro-syringe (precision of 0.1 µl) to
form a symmetric liquid bridge. Then distance D is increas-
ing by steps of 0.1mm, until the bridge is broken down. At
each distance, after short time needed for bridge stabilization
(10–15 s), the photo of the created capillary bridge is taken.
For micro-gravity tests, experimental protocol is slightly dif-
ferent, because of time limit of 22 s for each zero gravity
phase during parabolic flight. Beads are initially in contact,
then D is changed quite fast to about 1mm at the beginning
of zero gravity phase (for D < 1 mm the influence of gravity
is marginal). Next, D is increased gradually up to the rupture,
with short stabilization time (about 3 s) after each 0.2mm.

Fig. 2 Global view of experimental apparatus

Scheme of experimental configuration is presented in
Fig. 2. During laboratory tests, a photo camera Nikon D5300
(resolution of 24 Mpixels) with macro-lens is used, while
scientific photo camera Basler ACE (15 Mpixels) with tele-
centric lens was used for micro-gravity tests. To obtain the
best possible contrast between capillary bridge profile and
background, LED-type back-light was applied. The images
are recorded using dedicated software, which allows to visu-
alize the image in real time, to adjust camera parameters
and to take photos without physical contact with the camera.
Original photos are then adjusted and treated as described
below.Tocalculate physical variables, all geometrical param-
eters are converted from pixels to millimeters, with use
of calibration slide, with the resolution of 0.01mm. For
each examined V , the sequence of 20-50 photos is obtained
(changing D, one photo for each D). Image are adjusted with
the help of image treatment tool imageJ. The part of the photo
is cropped, image is binarized (using threshold option) and
edges of grains and bridge are detected. The final image is
represented as a table of 1 for contour and 0 otherwise. Such
image is treated with Matlab code.

Main geometrical parameters of capillary bridge are pre-
sented in Fig. 3. Basing on prepared images, we define a
domain within which the capillary bridge is situated, lim-
ited by xup and xlow coordinates. Next, the centers c1 =
(xc1, yc1), c2 = (xc2 , yc2), mean radius r of both spheres and
the coordinates of triple points p1 to p4 are determined. The
neck radius y∗ is calculated as a half of minimal distance
between the both capillary bridge meridians, corresponding
to the position xnk on x−axis. Hence, the half-filling angles
δ j (all chosen positive) are found for each triple point p j by

δ j =

⎧
⎪⎪⎨

⎪⎪⎩

± arctan

(
yp j −yc1
xp j −xc1

)
, j = 1, 2

± arctan

(
yp j −yc2
xp j −xc2

)
, j = 3, 4

(8)

The resulting half-filling angle δ is found as an average over
all δ j .

The contact angle θ is calculated with use of the tangent
vectors to the sphere t( j)p and to the capillary bridge profiles



Fig. 3 Process of the image analysis used for the detection of the cap-
illary bridge characteristics

(approximated by a sixth degree polynomials) t( j)b at the triple
point j , pointing outside the bridge (Fig. 3). Then, the contact
angles for each triple point are found as

θ j = arccos
(
t( j)b · t( j)p

)
, j = 1, . . . , 4 (9)

Fig. 4 The capillary bridge gorge radii y∗ as function of interparticle
distance D for the capillary bridge between spheres of 8 and 10mm

4.1 Geometrical properties

Evolution of geometrical parameters is presented as a func-
tion of interparticle distance D in Fig. 4 (gorge radius y∗),
Fig. 5 (mean profile curvature H ) and Figs. 6 and 7 (contact
angle θ and half-filling angle δ).

Gorge radius y∗ decreases almost linearly with increasing
separation distance D, with similar evolution for both spheres
diameters.At small D, y∗ is slightly larger for 10mmspheres,
but y∗ at the rupture (critical gorge radius, at Dr ) has almost
the same values for both sphere diameters and it depends
only on the volume of the bridge. The higher is the volume
V , the higher separation distance at rupture (Dr ) is observed.
Dr varies from about 1.2mm for V = 1 µl, to about 2.2mm
for V = 10 µl.

The mean curvature H of the profile (Fig. 5) depends on
volume of water V and on separation distance D. Evolution
of H for the spheres of 10mm follows the evolution of H for
8mm spheres, with higher H for the larger beads. H is ini-
tially positive and it decreases almost linearly with increase
of D. For small volumes, the slope of the curve H(V ) is
higher than for larger ones. For each observed case, curve H
passes through zero and becomes negative before the rupture
of the bridge: at about 70–90% of the final separation D,
depending on water volume V (see Fig. 5). The sign of H
determines the sign of Laplace pressureΔp inside the bridge
(see Eq. 2) and the type ofDelaunay’s roulette approximating
the bridge profile (see Sect. 2).

Two angles need to be determined to calculate bridge pro-
file and physical variables: half-filling angle δ and contact
angle θ (see Sect. 3). Their evolution is presented in Figs. 6
and 7. Evolution of both angles is very similar for both sphere
diameters. Value of θ initially decreases with increasing D,

The resulting contact angle θ is taken as an average over all 
θ j . More details of image treatment procedure may be found 
in [29].
With the determined geometrical parameters ( y∗, δ,  θ), the  
criterion for determining the shape of capillary bridge (given 
in Results 1 and 2) is checked and the corresponding parame-
ters a and b2 are calculated. Then, the resulting parameterized 
curves (portion of nodoid or of unduloid) are plotted on the 
image of the capillary bridge profile obtained experimentally, 
as presented in Figs. 8 and 14. Variables related with capillary 
bridge properties (intergranular force Fcap, Laplace pressure 
Δp, bridge volume V and other parameters) are then calcu-
lated using equations presented in Sect. 2 and in “Appendix”.

4 Experimental results

Using the procedure described above, experimental data are 
analyzed for each examined configuration. Measured geo-
metrical parameters are used to determine the type of curve 
(portion of nodoid or unduloid), to reconstruct and trace the 
bridge profile and to calculate bridge characteristics.



Fig. 5 The mean curvature H of capillary bridge between the spheres
of 8 and 10mm, as a function of interparticle distance D. H > 0
corresponds to the nodoid case and H < 0 to the unduloid one

Fig. 6 Evolutionof contact angle δ as a functionof interparticle distance
D for the capillary bridge between spheres of 8 and 10mm

but it becomes constant very soon (not at the smallest vol-
umes, where it fluctuates). At this moment, half-filling angle
δ is still decreasing. Angle δ decreases from the beginning
to about 50% of final separation Dr , than it remains constant
up to the rupture. Constant value of δ denotes the pinning of
contact line (see i.e. [28]). From this moment, there is no fur-
ther movement of contact points (triple points), and change
of separation D influences only on contact angle θ , which
increase up to the rupture. Such phenomena was observed
earlier also for evaporation sessile drops [30] and for evapo-
rating capillary bridges [28].

Fig. 7 Evolution of half-filling angle δ as a function of interparticle
distance D for the capillary bridge between spheres of 8 and 10mm

4.2 Capillary bridge profiles

The capillary bridge profile is classified as a type of
Delaunay’s roulette, using the criterion (12) or (16). Two
types of curves were recorded: nodoid (for positive H )
and unduloid (negative H ). For H = 0, catenoid shape
should appear, but this profile is not stable and it has
not been observed in our tests. The parameters a and b2

are found according to Eq. (14) for nodoids and Eq. (18)
for unduloids. Calculated bridge profiles are superposed
in the original photos to validate the approach, used in
theoretical model. Example of sequence, obtained for cap-
illary bridge between 10mm spheres, with 4 µl of water
and different D are presented in Fig. 8. Calculated con-
tact points and bridge meridians are traced on recorded
images.

Passage between nodoid and unduloid is observed at cer-
tain D0, which corresponds to zero Laplace pressure Δp (or
H = 0) and to the theoretical appearance of catenoid shape,
which was not observed during our experiments (not stable
form). Values of D0 are presented as a function of water vol-
ume V in Fig. 9. The curve passing by determined points is
fitted with use of equations presented in the same Figure.

4.3 Volume

The defined volume of water V is introduced between the
grains with use of laboratory syringe. Volume Vint is also
calculated by integration of determined profiles (Eqs. 6 and
7) and by using Pappus–Guldin theorem (VGul on recorded
bridge profiles). Both methods of volume calculations give
similar results (VGul � Vint ), which validates theoreti-
cal approach. The volume of the bridge is considered as



D = 0.16 mm, y∗ = 1.67 mm, δ = 22.6◦, θ = 12.2◦, nodoid D = 0.66 mm, y∗ = 1.16 mm, δ = 17.85◦, θ = 10.5◦, nodoid

D = 1.16 mm, y∗ = 0.83 mm, δ = 16.9◦, θ = 8.6◦, nodoid D = 1.66 mm, y∗ = 0.52 mm, δ = 16.9◦, θ = 14.8◦, unduloid

Fig. 8 Resulting bridge profiles superposed on the original images for glass spheres of 10mm. The data are for fixed volume V = 4µl and various
distance D between particles (red: nodoid shape, blue: unduloid shape, calculated from theory)

Fig. 10 The calculated capillary bridge volumes Vint (Eqs. 6 and 7)
and VGul (calculated using Pappus–Guldin theorem) as a function of
interparticle distance D for the spheres of 8mm

4.4 Laplace pressure

Laplace pressure Δp is proportional to the mean bridge
curvature H and it is calculated with use of Eq. (1) and repre-
sented inFig. 11. Surface tension coefficient of distilledwater
used in experiments is γ = 0.072 N/m. Laplace pressure
evolution follows the evolution of H . At the beginningΔp is
negative (positive suction), with attractive pressure resulting
force FΔp (first term of Eq. (3)) acting on the surface area of

Fig. 9 Separation distance D0 corresponding to Δp = 0 and to passage 
from nodoid to undoloid for examined capillary bridges

constant during each test, but results presented in Fig. 10 
show a decrease of V during experiments (in laboratory). 
Although each test lasts no more than 3 min, the volume of 
the bridge decrease up to 10% for the highest examined vol-
umes, because of water evaporation from the bridge surface. 
Evaporation of capillary bridge will be reduced in further 
experiments by using a glove box with controlled atmo-
sphere.



Fig. 11 The calculated Laplace pressure Δp as a function of interpar-
ticle distance D for capillary bridges between spheres of 8 and 10mm

capillary bridge. When curvature H becomes negative, Δp
becomes positive and force FΔp becomes repulsive. Change
of sign of Δp at D0 (Fig. 9) is linked directly to the change
of geometry describing the bridge, from nodoid to unduloid
shape, as presented in Fig. 8.

4.5 Capillary force

The capillary force Fcap can be evaluated by Eq. 3, includ-
ing two contributing forces: pressure resulting force FΔp =
πγ Hy∗2 and surface tension resulting force FST = 2πγ y∗.
In Fig. 12, Fcap is plotted as a function of the distance
D between the grains. In general, the decrease of Fcap is
observedwith increasing D. Only for 10mmspheres at 10µl,
initial increase of Fcap is noted at small D. The rupture of
liquid bridge is observed at similar Drup for both examined
sphere diameters. The capillary force at the moment of rup-
ture is higher for larger V .

Calculated Fcap is compared with capillary force mea-
sured in earlier experiments with use of laboratory balance
(Fig. 13), [20–23]. The liquids with different surface tension
coefficients were used (γ = 0.072 N/m for actual results,
γ = 0.0496 N/m for earlier tests [18,22,23,28]). Both results
are thus normalizedwith respect to γ , tomake possible direct
comparison of measured and calculated values. Although, in
general the results are in good accordance, it is seen that for
small D, calculated force is higher than measured one. With
increasing D, this difference becomes smaller and close to the
rupture measured force becomes higher than the calculated
one. Such difference may result from different experiment
conditions. Comparison of measured and calculated capil-
lary force during the same test will be realized in a next
work.

Fig. 12 Calculated capillary force Fcap as a function of interparticle
distance D for capillary bridge between spheres of 8 and 10mm

Fig. 13 Calculated and measured capillary forces Fcap as a function of
interparticle distance D for the spheres of 8mm

4.6 Micro-gravity tests

For larger liquid volumes V and/or a separation distance D
relatively high, the capillary bridge loses its symmetry due to
the effects of gravity on the liquid. Water is driven towards
the lower part of the bridge (see Fig. 8). To estimate the
importance of the acceleration of gravity on the shape of the
bridge profile, we can use the Bond number

Bo = Δρgr2/γ, (10)

where Δρ is the difference in densities between water and
air, g is the acceleration of gravity. The influence of gravity
is negligible if

Bo/ | 2ξr |� 1 (11)

where ξ is the bridge curvature [31].



Fig. 15 Evolution of gorge radius y∗ as a function of interparticle dis-
tance D for laboratory and micro-gravity tests (0G)

Fig. 16 Comparison of calculated mean curvature H as a function of
interparticle distance D for laboratory and micro-gravity tests (0G)

It has also significant consequences on the stability of the
capillary bridge. For now, taking into account the gravity in
the general theoretical modeling do not allow to obtain sim-
ple analytical solution. It is therefore necessary to get rid of
the effects of gravity in order to validate the modeling, car-
ried out on a wide range of parameters (volume of the liquid
bridge, grain size, separation distance,...). By now, a prelimi-
nary series of tests were realized inmicro-gravity conditions,
during parabolic flight (joint project between LMGC, LaSIE
and CNES). In Fig. 14, identical capillary bridges (diameter
=10mm, V = 10 µl, D = 2.06mm), tested in laboratory
and in micro-gravity are presented, to visualize the influence
of gravity on capillary bridge.
In laboratory tests, the mass of water is displaced toward
the lower sphere. In consequence, gorge radius y∗ is lower
(see Fig. 15), which affects on other geometrical parame-
ters (mean curvature H , half-filling angle δ) and variables
(Laplace pressure ΔP , capillary force Fcap). Comparison of
results obtained in laboratory and during parabolic flight for
capillary bridges between the spheres of 8 and 10 mm, with
the volumeof 10µl, is presented inFigs. 15 (gorge radius), 16
(mean curvature) and 17 (capillary force).

Fig. 14 Resulting bridge profiles superposed on the original images 
for glass spheres of 10 mm. The data are for fixed volume V = 10 µl 
and separation distance between particles D = 2.06 mm (blue: unduloid 
shape, calculated from theory). The images were recorded in laboratory 
(a) and during parabolic flight, in zero gravity phase (0G, b). a lab., 
y∗ = 0.79 mm, δ = 22.2◦, θ = 13.5◦, nodoid. b 0G, y∗ = 0.99 mm, 
δ = 20.8◦, θ = 20.2◦, unduloid

This is the case for capillary bridges containing low water 
volume and at low separation distance. In our experiments, 
calculated profiles of capillary bridges fit well the ones 
recorded with use of photo camera, for small volumes of 
water and small separations. If the volume becomes higher, 
the gravity force may deform capillary bridge. In such cases, 
calculated variables are no more correct.

An example showing the influence of gravity on a cap-
illary bridge profile is shown in Fig. 14. In this case, the 
value of Bond number is close to 0.3 and the influence of 
gravity can no longer be neglected. It can be seen that the 
theoretical profile, corresponding to the absence of gravity, 
is quite far from the actual profile of the capillary bridge. 
This distortion of the bridge capillary significantly alters its 
shape, its geometric properties and resulting capillary force.



Fig. 17 Comparison of calculated capillary forces Fcap as a function
of interparticle distance D for laboratory and micro-gravity tests (0G)

Fig. 18 Comparison of two calculated contributions to total capillary
forces Fcap (see Eq. 3) as a function of interparticle distance D, for
laboratory and micro-gravity tests (0G)

Is is seen, that gorge radius y∗ is higher for micro-gravity
tests, particularly for higher D. Also other geometrical
parameters (δ, θ , H ) differ significantly. In results, calcu-
lated Δp and Fcap close to the rupture are larger for bridges
tested in micro-gravity conditions. In addition, the rupture
of capillary bridges occurs at larger separations D, in par-
ticular for capillary bridges between the spheres of bigger
diameter. However, the passage between two types of Delan-
uay’s roulettes occurs at the same separation distance for
laboratory and micro-gravity tests (see Fig. 16). The gravity
influences differently the two forces contributing to total cap-
illary force Fcap, as showed in Fig. 18. Almost no changes
in FΔp are observed between laboratory and micro-gravity
tests (maximumdifference of 0.007·10−3 N for 8mmspheres
and 0.013 · 10−3 N for 10mm spheres), while FST is visibly
higher formicro-gravity tests (maximumdifference of 0.077·

10−3 N for 8mm spheres and 0.086 · 10−3 N for 10mm
spheres).

5 Conclusions

In this paper, knowing the geometry of the granular assembly
in the pendular regime (half-filling and contact angles, gorge
radius), we propose a simple way of calculating/determining
the exact geometric properties of capillary doublets and
the associated capillary force and Laplace pressure. The
accuracy and validity of themodelwas demonstrated by com-
parison with the experimental results. The results from theo-
retical modeling match very accurately experimental results
for small liquid volumes and small separations between par-
ticles. For larger ones, the capillary bridge loses its symmetry
due the effects of gravity. In order to remove the distortion
effect due to gravity, initial experiments in micro-gravity
conditions, during a parabolic flight (Airbus ZeroGofNoves-
pace society and CNES) have been performed. Realisation
of the experiments in microgravity enables to separate the
couplings between the gravity and capillary effects, it simpi-
fies theoretical modeling and comparison with experiments.
We found that the profile of capillary bridge profile evolves
from nodoid to unduloid shape with increasing separation
distance D between the grains. This passage is accompanied
by the increase of internal pressure, from initially negative
values to positive pressure at the rupture, while capillary
force decreases (with increasing D). Experimental valida-
tion of proposedmodel justifies its further development, with
its adaptation to other configurations of capillary bridges
(sphere-plate, plate-plate), including of dynamic processes
(extension, evaporation, coalescence of pendular bridges)
and analysis of stability/rupture of liquid bridges, envisaged
in the nearest future. Enhanced analytical model will be also
validated experimentally in laboratory and in micro-gravity
conditions. It would also constitute a base for further mod-
eling in macroscopic scale (sample scale).
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Appendix: Results for determination of
nodoid and unduloid shape

Result 1 If the observed data (y∗, δ, θ ) are such that

r sin δ sin (δ + θ) < y∗ < r sin δ (12)

with H > 0 and λ > 0, then the meridian of the capillary
bridge is a portion of nodoid whose parameterization is given
by

x(t) = b2

a

∫ t

0

cos udu

(e + cos u)
√
e2 − cos2 u

(13a)

y(t) = b

√
e − cos t

e + cos t
, t ∈ [−τ, τ ] (13b)

where

τ = arccos

(
e
b2 − r2 sin2 δ

b2 + r2 sin2 δ

)
(13c)

e =
√
a2 + b2

a
(13d)

is the unique solution in (0, π/2) of the equation y(τ ) =
r sin δ. The associated geometrical parameters are given by:

a = 1

2

r2 sin2 δ − y∗2

y∗ − r sin δ sin (δ + θ)
(14a)

b2 = y∗r sin δ
r sin δ − y∗ sin (δ + θ)

y∗ − r sin δ sin (δ + θ)
(14b)

The capillary pressureΔp and the mean curvature H may be
calculated as:

Δp = −2γ
y∗ − r sin δ sin (δ + θ)

r2 sin2 δ − y∗2 , (15a)

H = −Δp

γ
= 1

a
(15b)

Result 2 If the observed data (y∗, δ, θ ) are such that

0 < y∗ < r sin δ sin (δ + θ) (16)

with H < 0 and λ > 0, then the meridian of the capillary
bridge is a portion of unduloid whose parameterization is
given by:

x(t) = b2

a

∫ t

0

du

(1 + e cos u)
√
1 − e2 cos2 u

(17a)

y(t) = b

√
1 − e cos t

1 + e cos t
, t ∈ [−τ ′, τ ′] (17b)

where

τ ′ = arccos

(
1

e

b2 − r2 sin2 δ

b2 + r2 sin2 δ

)
(17c)

is a unique solution in (0, π/2) of the equation y(τ ′) =
r sin δ. The geometrical parameters are given by:

a = 1

2

r2 sin2 δ − y∗2

r sin δ sin (δ + θ) − y∗ (18a)

b2 = y∗r sin δ
r sin δ − y∗ sin (δ + θ)

r sin δ sin (δ + θ) − y∗ (18b)

The capillary pressureΔp and the mean curvature H may be
calculated as:

Δp = γ

a
, H = −1

a
(19)
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