N
N

N

HAL

open science

Online policy iterations for optimal control of
input-saturated systems

Simone Baldi, Giorgio Valmorbida, Antonis Papachristodoulou, Elias

Kosmatopoulos

» To cite this version:

Simone Baldi, Giorgio Valmorbida, Antonis Papachristodoulou, Elias Kosmatopoulos. Online policy
iterations for optimal control of input-saturated systems. 2016 American Control Conference (ACC),

Jul 2016, Boston, United States. 10.1109/ACC.2016.7526568 . hal-01710299

HAL Id: hal-01710299
https://hal.science/hal-01710299
Submitted on 13 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01710299
https://hal.archives-ouvertes.fr

Online Policy Iterations for Optimal Control of Input-Saturate d Systems

Simone Baldh, Giorgio Valmorbid&, Antonis Papachristodouldwand Elias B. Kosmatopoulds

Abstract— This work proposes an online policy iteration the inequalities which are required to hold at each stepef th
procedure for the synthesis of sub-optimal control laws for policy evaluation is obtained with the solution to semiciédin
uncertain Linear Time Invariant (LTl) Asymptotically Null- programmes (SDP).

Controllable with Bounded Inputs (ANCBI) systems. The pro- Svnthesis of alobally stabilizi trol | for |i
posed policy iteration method relies on: a policy evaluation ynthesis of globally stabilizing control laws for linear

step with a piecewise quadratic Lyapunov function in both Saturating systems is a nontrivial prOblem: even for Linear
the state and the deadzone functions of the input signals; a Time Invariant (LTI) Asymptotically Null-controllable

policy improvement step which guarantees at the same time Bounded Inputs (ANCBI) systems it has been demonstrated
close to optimality (exploitation) and persistence of excitation with simple examples, that such a class can not, in genezal, b

(exploration). The proposed approach guarantees convergeac o . .
of the trajectory to a neighborhood around the origin. Besides, stabilized by static linear feedback [1]. Different metadd

the trajectories can be made arbitrarily close to the optimal Compute globally asymptotically stabilizing nonlineantol
one provided that the rate at which the the value function and laws for ANCBI systems have been proposed [2], [3]. While

the control policy are updated is fast enough. The solution to global stability may not be achieved with linear control
the inequalities required to hold at each policy evaluation step |5,y strategies for semi-global (exponential) stahiiira
can be efficiently implemented with semidefinite programming . .
(SDP) solvers. A numerical example illustrates the results. were pre;ented in [4] (see al‘.so the semi-global re§ults for
exponentially unstable plants in [5]). However, semi-glob

|. INTRODUCTION results rely on low-gain strategies that may lead to poor
erformance (in terms of closed-loop convergence rate). In
rder to obtain faster transients, scheduled [6] and neatin
control laws [7] have also been proposed in the context of
semi-global stabilization. However optimality with respe
to other criteria than the convergence rate, has not been
; ; ; . . §plored. In the aforementioned approaches the plant is
on the imaginary axis (possibly repeated) but no pole wit ssumed to be known and the control synthesis is performed

positive real part. The proposed policy iteration relies i%n‘fline. Online extension via predictive techniques is ¢dns
appropriately modified so as to take into account the ianétred in [8]

saturqtion function: i.n part.icular, the policy evaluatistep. Online techniques for adaptive control of uncertain input-
exploits a class of piecewise quadratic Lyapunov functlon§aturateol systems have mainly focused on the problem of
which is non-differentiable, but continuous, and depegdin - o : S

’ ’ uaranteeing global stability [9], [10] without optimalit
both on the state and the deadzone function. The poli g9 y [9], [10] ptimg!

onsiderations: these schemes guarantee global stalbdity

Improvement step is based on a piecewise control policy: ¢, inyous-time direct adaptive controller. More relyent

the SO'.U tion of the _pollcy |mproverr_1en.t step requires th".ﬁpproaches to optimal control of input-saturated systems
evaluation of the estimate of the derivative of the Lyapunoy - e peen developed, with the aim of approximating the

function under different candidate control laws, and the o sojution to the Hamilton-Jacobi-Bellman equation

resulting mechanism guarantees at the same time closegﬁzme some knowledge of the dynamics is required to imple-
optimality (exploitation) and persistence of excitaticex

. ment these techniques, online estimation must be employed.
ploration). The proposed approach guarantees ConVer'g"énc‘?nteresting approaches, yet not taking input-saturatidn i
the trajectory to a neighborhood of the origin. The solutimn ]

account, are [11], [12], where actor-critic structures are
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This work proposes an online policy iteration procedur%
for the synthesis of sub-optimal and practically stahiligi
control policies for uncertain Linear Time Invariant (LTI)
Asymptotically Null-Controllable with Bounded Inputs (AN
CBI) systems. This class includes systems with eigenvalu



dynamics; Section V contains the online policy iteratiorpractically stableif, for given (c,c) with 0 < c < ¢, every
approach for input-saturated systems, and Section VI tl®lutionx(t,xo) of the system satisfies
numerical implementation of the policy evaluation step.

The numerical example in Section VII demonstrates the IXoll < e= [Ix(t,x0)l| <€, t=to

effectiveness of the proposed approach. for somety € R.,..
Il. PROBLEM FORMULATION (ﬁD)efini;ion 2: [Asymptotic minimization] Given a function
an

. . J
We study the class of uncertain LTI Asymptotically Null-
Controllable with Bounded Inputs (ANCBI) systems in the

presence of input saturation, which consists of the set of dy,q sequence {9} asymptotically minimizes J if
namic linear systems without exponentially unstable modepfmlHoo = 9*.

Consider the input-saturated system The objective of the control problem can be stated as:
x = A(0")x+B(0%)sat(u(x)), X(0) =X, 1) Problem 1: Design the functionsp(-,-), 9(-,-,-), s(,-)
and h(-,-) such that the closed-loop (2)-(4) guarantees the

with x € R, ue R™, A@") € R™" and B(©") € R™™,  practical stability of the origin of (2) and the asymptotic
maxJ(A(A))) <0. BothAandB are assumed to be matricesSminimization of the cost (3).

9" =arg rginJ(B)

with unknown entries represented By. The functionsat: | the following, multidimensional vectors are intended as
R™ — % C RM is a vector saturation function, with entriescojymn vectors, while the gradient of a scalar quantity with
satisfying respect to a vector is intended as a row vector. We introduce
uj, if uj >Tj the sector condition pertqining to the Qegdzone presepted i
(sat(u(x)); =< uj, if U <uj < [18]. The deac_izone functiodiz(u(x)) sat|sf|e_s_ the follow!ng
uj, if uj > uj sector inequality We recall the sector conditions preskinte
with Uj andy; the upper and lower bound of theth input, (18}
respectively. The set of admissible inputs is defined as dZ(u(x))M1 (u(x) —dz(u(x))) >0, VYxeR". (5)
% :={ueR"y; <u;<Tj,j=1,...,m}. implying that the deadzone function is contained in themect
[0,1]. Furthermore, define(x) := W satisfying

In the following, for convenience of notation, we introduce
the dead-zone functiomz(u(x)) := u(x) — sat(u(x)), and B 0 ifdz(u(x))=0 6
rewrite (1) as o) = u(x) if dz(u(x)) # 0, ©)

x=A(0")x+B(0")u(x) —B(©")dz(u(x)), x(0)=xXo. (2) which can be expressed by the two equalities

We also introduce a cost function for the system (2) in the @ (X)M2 (U(X) —@(x)) =0 (7
form . dZ (u(x)) Ms (40 — 9(x)) =0, (8)
J :/o L(x, u)dt:/O XQx+(sat(u))'Rsat(u)dt,  (3)  ywheremy,M,,Ms e R are diagonal matrices, arfd; is

where the prime denote transpose. To address the parame?r(i)é't've definite. Due to the monotonicity of the saturation

uncertainty in the system, we will develop an adaptive cantr gnd th?tdeﬁ dléonfe fut\r,]vcnon;,twe alsothalve tlh a.t the follgwmg
policy, combined with a parametric adaptation law taking th/Nequaiity holds for two arbitrary control po iciag(x) an

following form V(9
é(t) — p(®(1),Z(1), 6(0) =6 (4a) (dz(u(x)) —dz(v(x)))' (sat(u(x)) —sat(v(x))) > 0.  (9)
Sy = _ We adopt the well-known result from optimal control theory
=)= g(_(t),x(t):u(t)), §(0) =4 (4b) [19, Chap.3], that states that the optimal control polix)
V(t) = s(O(t),u(t)), (4c)  that minimizes (3) satisfies
ut(t) = h(O(t),V(1)), (4d) © = arg <Ti~r} { dd\)/(o (A BU) + Lix u)} 7 (10)

where © are the estimates ®*, = are auxiliary variables
used for estimationyV indicates the value function, and whereV°(x) is the value function (or cost-to-go function)
ut(t) indicates the feedback law to be used in the tim¢hat solves the Hamilton-Jacobi-Bellman (HJB) equation

interval [t 4+ kot, t + (k-+ 1) dt], wheredt is the sampling time. d Vo

The mappingsp, g, s, h will be designed to guarantee the min { (Ax+Bu) + L(x, u)} =0. (11)

convergence of the state in a neighborhood of the origin and u()e# X

to optimize the cost (3). In order to have a well-posed problem we make the
Let us introduce the definitions below: following assumption

Definition 1: [Practical stability [17]] Given a nonlinear ~ Assumption 1:There exists a globally stabilizing control
systemx'= f(x), with f(0) =0, the origin of the system is policy u for the system (1).
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According to standard converse-Lyapunov results [20] Adunction and piecewise control policy defined as follows.
sumption 1 implies the existence of a continuous, posisiven the value functiolv®(x) = W°(x,dz(u)) solution of
tive definite, radially unbounded control Lyapunov funatio (13), define the followingpproximatedoolicy improvement
(CLF) V :R" — R, which satisfies

constantsg;, i = 1,2,3 such that the following condition

min {(Z\;(Ax+8u)}<0, Vx # 0.

u(-) e

1_ 4., OW
gt = -SR'B

> ox , (16)

dz(uc)=0

The following lemma relates the CLF to the uncontrollablevhere the termapproximatedpolicy improvement indicated
region of system (1):
Lemma 1: Assumption 1 implies that there exist positive

holds, for all xe R",

su

Note that condition (12) implies that fore %, the choice

dv
(x)B‘ <g and|x > &=

dv
X — (X)Ax < —&.

X (12)

Let us define thauncontrollable regionof (1) to be the

bset# defined according to

R = {xeR”:|x| > g3 and ’(;z(x)B

<€1}.

u= 0 guarantees that < 0.

IIl. OFFLINE POLICY ITERATIONS UNDER SATURATION

CONSTRAINTS

that (16) coincides with the solution of

. [dVe
Ax+B L 17
argu(rpelg/{ gy (AX+BU)+ (x7u)}, 7)
only in a subset of the state space, i.e. in the set
Q°(x) = {x:dz(u°(x)) = 0}. (18)

See [21] for details.
Furthermore, the policyg+pl(x) in (16) defines the follow-
ing set,
Q% (x) = {x: dzug;*(x)) = 0}. (19)

which in general differs from the previously defined (18).
In order to discuss the properties of the policy (16) let

The iterative strategy in Algorithm 1 was presented in [21)s define the following state-space partition arising frow t

an

d provides an offline solution to Problem 1.

Algorithm 1 Modified policy iteration

1: Initialize:
2: c<+ 0.
3 Upw ¢ .
4 us, W
5: Policy evaluation
6:  Givenuj,, solvefor VE(x) = We(x,dz(u°(x)))
7
d VE&(x
dx( ) (Ax+Bsat(ugy)) +L(x,u5,) =0 (13)
8: Feasibility.
9:  With We(x,dz(u®(x))) of Policy evaluation check
10:
d V¢(x
dx( ) (Ax+Bsat(u®)) +L(x, ugy) <0 (14)
11:  if (13) isfeasible U°(x) < u®(x)
12:  elsel®(x) « uc Y (x)
13: Policy improvement
14: Update the piecewise control policy
15:
. c/ A — —
N { —%R g Bg\)/( “0 in :EU:EU:E (15)
pw T71C B in =C
u n=4
16:
17: if AWS(x(0)) := WS(x(0)) — W1 (x(0)) < &, STOP
18: elsec < ¢+ 1, goto Policy improvement

setsQ° and Q°+1 defined in (18)-(19)

= = QtnQett (Region 1)
=5 = Qo\Qett (Region 2)
=5 = QothQe (Region 3)
=¢ = RN\ (Q°UQ®') (Region 4)

and satisfyingJi=f = R" and=fN={ =0, i # |.

Remark 1: The seE corresponds to the set in which
both control policies respect the saturation bounds, &
to the set in which both control policies exceed the satarati
bounds. Notice thaE$ = 0, wheneveQ® c Q¢! and=§ =0,
wheneverQ®t! c Q°,

To study the stability properties of the policﬁ,gl, given
a globally stabilizing policyu® and a value functiolV® that
certify global stability, we define the piecewise policy

cr1y _ J sat(ught) in=§U=SUES
sat(upw )= { sat(u®) in=§ (20)
with the value function
WS in=SuU=SuU=¢
Wow = { we o =t (21)

whereWS, € ¢ is the unsaturated value function defined as
W, (X) :=WE(x,0). (22)

We obtain the following result
Proposition 1: The piecewise value function (21) certifies

In the algorithm, the policy evaluation and the policythe global stability of the piecewise control policy (20).
iteration steps are performed based on the piecewise value Proof: See [21]. [ ]



IV. ESTIMATION OF THE SYSTEM DYNAMICS V. ONLINE POLICY ITERATIONS UNDER SATURATION

The results of Section Il require the knowledge of matri- CONSTRAINTS

cesA andB. Its extension to the uncertain system (1) requires Algorithm 1 is now revised for online implementation.
an online parameter estimator. This task will be performeBifferently from Section IV, the iterations are not imple-
with standard techniques for parameter estimation. To thisented offline at each stepc e Z.,, but online at each time

purpose we write (1) as instantty, tx = 0,At,2At, ..., whereAt is the update sample
. time. The proposed algorithm is shown in Algorithm 2.
X = AmXx+ (A= Am)x+ Bsat(u), (23) In Algorithm 2,t, indicates the instant of time at which

with Ay, a Hurwitz matrix. We use the series-parallel parathe previous policy is updatec{iufj),j = 1,...,n} indi-

metric model [22] to obtain cates a set of candidate policie]ﬁ‘:lij)(tk) in (35) indicates
%= AR+ (A— An)x+ Bsat(u), (24) the estimates of the derivative of the value function caitad

at timety with the corresponding polic;tu‘{j). Furthermore,

wherexX'is the state of the parametric model aAdB are . (D)
. : . .the candidate control policiesu,’’ are calculated as follows
the matrices to be estimated. In order to develop a linear-in

the-parameters model for (23) we filter every component of . 1 1a VK’
X, x andsat(u) with a stable filterA /(s+A), A >0 W({x) = —SR7B — - (37)
dzuk-1)=0
sA
2= g% (25a) +uf = hN£A),), (38)
A where { are the coefficients of the expression in (37),
Xt = (25b)  andAZ() are zero-mean random vectors|in2ay, —ay]"U
N [a, 20" satisfying
= 1 =
Vi = g satly)- (25¢) [ag®,..ag®]| "< = (39)
. k
We thus obtain where ai is a positive sequence aril is a finite positive
zt = AnXt + (A— Am)Xs + Byy, (26) number independent afy. The following result is given.

and similarly for (24) Theorem 2:Let At be sufficiently small. Then, for arbi-

2t = AnXi + (A— Am)X; + Bus, (27) trary smallo_r.>.0, the_rg e>fist finite positive constangs,
B2, v and a finite positive integel = ﬁ(%,) such that the

wherez;, X¢, andvs are all measurable signals to be used fo . .. . .
f f 9 Followmg condition holds: ifa satisfies

the estimator. After collecting all the entries Afand B in

©* = [A B’ and defining® = [A B]', we adopt a parameter O<ak<pB, if ‘dT\;ké‘ <& ork<h
estimator pased on integral cost and gradient update [82], s > B otherwise
as to obtain

whereé; is a positive design constant satisfying

O=P(—yRO—yQ), 6(0)=0p (28a)

R=—BR+ 4 vi]'[% vi], R(0)=0 (28b)
— _ 1 _ and the adaptive gaip of the estimator satisfies
Q=-BQ—[x; vi] 4, Q(0)=0 (28c)

y=¥
where B and y are positive constants anfl denotes a .
projection operator which has to be designed to keep tfigen, the proposed adaptive control scheme guarantees that

}s < & <}£
41 1_21

estimates inside a convex set. the closed-loop solutions are bounded and, moreover,
The estimation law (28) satisfies the following properties: limsup|x(t)| < &3, w.p.1
Theorem 1:[22] t—w -
) e:=2 -2t € £oNL and
i) limyeo ‘O‘ =0 —a< .,?(t;r) <0, if X &% or (X8 & - w.p.1
/ ~
i) if |x; vi| is persistently exciting, the® — ©* ex- where

ponentially and the rate of convergence increases with

Z(tH) = min dve (Ax+BuU) +L(x,u)
y. k /) — U(-)E”Z/ dX ?

1A parameter estimator can be developed also in the case whire omnd .% is a subset OofRN x R™ (M) that satisfies % =
a subset of entries oA and B needs to be estimated, by bringing to the

left-hand side of (26) and (27) all the quantities that arevkm and do not 0,vk > h. )
need to be estimated. Proof: See Appendix. [ ]




Algorithm 2 Online policy iteration

1:

10:

11:

12:
13:
14:

15:
16:
17:
18:

19:
20:
21:

22:

23:

24:

25:

26:
27:

Initialize:
k<« 0.
ok, « WO
{2 P
Pollcy evaluation
Givenu,, AlD = Atty_1), BKY
solve for VK(x) = WK(x,dz(u¥(x)))

= é(tk—l),

d VK(x)

1)y _
dx )=0

(A(kfl)x+ Bk Ysat (u(pﬁl)» FL(X, Uy
(29)

de(X) 1)) <0 (30)

(A_\x+ B_sat(u(pk\,;l))) +L(X, Uy

A=AKD 1 AA B=B*b  AB with AA,AB € ./
(31)

K= {AAAB|AA’AA<I7I AB'AB < nki } (32)

Feasibility.
With WK(x,dz(u¥(x))) of Policy evaluation check

d V&(x)
dx
if (13) isfeasible T¥(x) + uX(x)

elset¥(x) + u-1(x)
Estimation

(A(k’l>x+A(k*1>sat (uk)> +L(xuf,) <0
(33)

Update the estimated\(ty), B(t) according to (28),

Remark 2: Each policy evaluation step (29)-(30) returns a
set of plants that are stabilized by the control IawvuSuch a
set is given by/ in (32). This set is used in the estimation
law (28) to project the estimate. This approach resembles
the so-called ‘certainty equivalence principle’ of adaati
control [22], where the control policy is stabilizing for ¢h
estimated plant and it is updated by solving the underlying
control problem for the estimated plant.

Remark 3: The rationale behin@4) is that among a set
of possible candidate control laws, the one that minimizes
(35), i.e. that more closely satisfies the HJB equation is
chosen. This choice guarantees the so-called ‘exploitatio
task’ of the control policy. Furthermore, the candidate
control policies are generated randomly so as to satisfy
condition (39): this guarantees the so-called ‘exploration
task’ of the control policy, i.e. persistence of excitatemd
convergence of the estimates to their real value. It can be
shown that the Bernoulli distribution satisfy conditi¢d9)
[23]: other distributions (segmented uniform, U-shaped a
also possible [24, Sect. 7.3].

VI. NUMERICAL IMPLEMENTATION OF POLICY

EVALUATION

In the following we provide asufficient condition for
calculating a (piecewise) certificat/(x,dz(u¥)) for global
stability of the system (1) with the piecewise defined policy

EW To this purpose let us defing = dzu¥). Given a policy
defined as
UI;()W:{ UK(X) o
u(k—l) (X)

=(
X € Uieqa, 2k3} i (40)

X€—4 9

with P = Py the projection operator that keeps thefind W(x,q¥), MP*(&) satisfying

estimate inside the set’X.
Policy improvement
Update the piecewise control policy

u(t)=arg | min Vg (t), (34)
iu()J 1..n
. V' 4 5
Uyt = G [Atox + Bty
FQUX(t)) +ufj R, (39)
ut’) in=Xuzku=k
UW‘{ (Uh) inzk (36)
=4

if AWK(x(0)) := WX(x(0))
updatingW andu

else gotoPolicy evaluation
k—k+1

—~ w1 (x(0)) < 5, STOP

_0(TV)\(/ (Ak*1x+ Bkt (u',‘)w— qlgw)) _ Z\(;\ifp"/pw
N XIQ(X)X o (UIF()W o qll(DW)/R(X) (uly(Jw - qlgw)

+ TP (E ) (U — ofS) + /P MIBY(E) (/P — /Py

+NE(E) (/P — g - 0 vxeR" (41)

pu(&) =

and

with
&= [ X ulgw qu qok/pvv/ ]17
where ¢¥/P¥ denotes the time-derivative af¢ along the

trajectories corresponding to polict%w and I'lf‘”. The ex-
pression foru*/PY is

= 990 (8 () )

Uk/ pw



Finally, (30)-(32) can be rewritten using the following pro VII. NUMERICAL EXAMPLE

erty In the following, we present a numerical example to illus-

trate the results obtained via the proposed policy itenatio

oW ; :
A ((Ak L4 AA)X+ (B 1+AB)( Sw qu>) The procedure has been implemented in SOSTOOLS [25]
X AW and the formulated SDPs were solved with SeDuMi [26]. The
== (Ak Ix+ Bk 1( pw—q'gw)) dimension of the example helps to illustrate the results by
1 dV\)/( 1 oW plotting the computed value functions and the time-evohuti
_ < — 5 AAX > ( glAAx> of the control policies. It is also worth mentioning that as
& 0x & 0x the number of variables and the degrees of the involved
10w 10w polynomials increase, the dimensions of the related SDPs
<£2 ox EZAB( pw qu)) (ezaxszAB( pw qp""))can be large.
Consider the following 1-input 1-state system
+ (12 ) ‘ZW ‘ZW + E2XAA AAX
& X X(t) = —ax+bsat(u(t)), x(0)= -1 (49)
2
J“92( pw qu) AB/AB( pw qu) with a and b two positive and unknown constants. The

oW (Ak*1x+ ékil( - )) N (1 ) oW’ 9w saturation bounds are0.5 < u < 0.5 and the initial globally
pw — Hpw &2 dOx ox Stabilizing (but not optimal) state-feedbaafk) = —0.3x. For
, this system we consider the cost as in (3) w@h=1 and
+£1n1x’x+82n2( pw—q'gw) (ugw_qu) 42) R 1.Fora=1,b=1,4(0)=2,b(0) =15, B=3,A =3,
=10, ax = 10, At = 0.01 we apply the proposed online
By using (42) and the Schur complement, (30)-(32) results i 'ﬁollcy iterations.
an expressior,(¢) linear with respect to the optimization = The simulation is run for 5 seconds. Fig. 1 shows the
variables. The relations (5)-(7) can be used to obtain gnline evolution of the state and input with the proposed
sufficient condition for the negativity off +L(xu). Notice  adaptive law. Fig. 2 shows the online evolution of the set

that, due to (40), the variable,, in (41) satisfies ¥ inside which the estimates are projected. Finally Fig. 3
‘ " _(k-1) shows the offline evolution of the cost using the controllers
(Upw—U) =0 X€ U123 (43)  synthesized at every time step: it can be observed that the
cost is monotonically decreasing. The online evolution of
(Usy—uk)y=0 xe —E;k Y. (44)  the Hamilton-Jacobi-Bellman equation is also shown: it can

be observed that for the presented example the controller
synthesized at every time step are stabilizing not only the
estimated plant, but also the actual plant.

Therefore, considering the representation of sets

—(k—1 o .
Uie{1,2,3}:i( = {xeR"poj(x,u,u) >0,j=1,...,no}

Eikfl) = {X € IRn| p4j (X,Q7U) 2 07 J = 17 te n4}
(45) :
we obtain the following sufficient condition for (41) and §42 o8
to hold with control policy (40) ng
p1(6)+pz(f)+l'l41(£)(ut,w—uk)+
Zmo )Poj (x,u.T) = 0 (46) .
(&) + pz(f)+l'l4z(é)(U';,W—u("*1))+ o
Zrm )Paj(x,u,T) = O (47) : 2o : :
Fig. 1: Online state (upper) and input (lower) evolution.
My >0 (48)
SinceW(x, g¥) is an upper bound of the value function (given VIIl. C ONCLUSIONS

that the current policy may not be the optimal one), we solve _ o )
This work proposed an online policy iteration procedure

minimize W(x(0),dz(u¥(x(0)))) for the synthesis of approximately optimal control laws
subject to(46) — (48) for uncertain Linear Time Invariant (LTI) Asymptotically
Null-Controllable with Bounded Inputs (ANCBI) systems.
that minimizes the cost-to-go function with initial stat@®). The proposed policy iteration method relies on: a policy
evaluation step with a piecewise quadratic Lyapunov famcti



x10® ‘ ‘ ‘ that we are not in the uncontrollable region. For this reason

4
Al we have to define the following four cases faf > &s:
<
32 A~ ~ .
° Case 1x(tx) ¢ # and %Bk > & This means that we are
. ‘ ‘ ‘ ‘ not in the uncontrollable region, and we estimate correctly
0 ! 2 ¢ ¢ ° that we are not inside that region.
1.5><10’5
A We have that
3 . VoK .
E k
o5 1 Ve = o |AX(®) +B(+u)) (50)
% ' 2 Time 3 : s whereV? indicates the optimal value function®k =V°(t,),
_ while A andB are the matrices associated with the real plant
Fig. 2: Online evolution of the set/™. (the argumen® is omitted for easiness of notation). From
the fact that we are outside the uncontrollable region, we ca
045 ‘ ‘ ‘ ‘ verify that
p 044 1 0V0k .
g min B [iu“)} < —c&10 51
20.43N 1 je{1,...m} X 1k ( )
© 042} ]
0'410 i é é 4‘1 5 and . OVOk
min VoK = 2 Ax(ty) — cera 52
o ‘ ‘ ‘ jefL.my ED T 9x (t) — cera (52)

By making the difference between the derivativeVdf with
the real plant and the derivative @fwith the estimated one,
we obtain

; : ‘ ; : . - ok .
i ’ ok gk [Ax(tkHB(iuU))}

ViEh — Vi) ox
Fig. 3: Offline evolution of the cost using the controllers synthedi at avk Ak Ak (i)
every time step (upper) and online evolution of the Hamiltanabi-Bellman “x {A X(tk) + B*(£u )] (53)

equation (lower). With a solid line is the HIB for the estintatgant. ~ ~ )
- ﬁ(‘@k’) + ﬁ(’@k‘)(iu“)) (54)

Est, Real HIB
& & &
(=] (=] (=]
o o o

which is non-differentiable, but continuous, and polynaimi where®* = @ — 6. The choice of the control input guaran-
in both the state and the deadzone functions of the inptges a persistence of excitation that implies

signals; a policy improvement step which guarantees at the . 1

same time close to optimality (exploitation) and persiséen o= ﬁ(f)' (55)
of excitation (exploration). The proposed approach guaran y

tees convergence of the trajectory to a neighborhood aroukt$ing (53) and (55) we then obtain
the origin. Besides, the trajectories can be made arbjtrari ) o 1 1

close to the optimal one provided that the rate at which the Ve -V = ﬁ(@) + ﬁ(@)ak- (56)
the value function and the control policy are updated is fast o ) )
enough. Combining (56) and (52) we then obtain that, if

Future work includes the extension of the proposed 1
methodology to linear systems with exponentially unstable a>0 (kT,)’ (57)

modes for which only local stability is achievable. Such an

extension is under study and will account for generalizeH1en

sector condition which is instrumental to compute region arq  min \'/(Oikn+Q(x)+(iu(j))TR(iu“)) =

of attraction estimates. We will also generalize the oladin je{l...m

conditions to systems defined by polynomial vector fields arg min \'A/("i.)+Q(x)+(iu(i>)TR(iu(J)) (58)
and polynomial input matrices. je{t...mp =+

APPENDIX and3p; > 0: ax > 1 we have—a < .Z(t) < 0.

PROOF OFTHEOREM 2 N N .
o . . Case 2x(tx) € #Z and“%kBk < & This means that we are

_ Estimating the matrixB creates the following problem: , the yncontrollable region, and we estimate correctlyt tha
it might happen that we are in the uncontrollable region e are inside that region.

(defined by| 2%B¥| < &) but we estimate (viaZkBk| > &)
ox ox



Inside the uncontrollable region we have [7]
oV ok
WAX< 82, (59)
which implies, by choosing the input as in the algorithm  [8]
\./Ok(t;—) < —&++/meray = —a. (60) [9]

Case 3 x(i) ¢ # and Bk < & This means that we
are not in the uncontrollable region, and we estimat&?
erroneously that we are inside that region.
[11]
By using similar reasoning as in Case 1, we obtain

(61) [12]

So, if & < &/2, and using the reverse triangular inequality,
we obtain that if¢’( ) < 1, then Case 3 is never verified. [3]

Case 4x(tx) e Z and‘ “BK > & This means that we are .
in the uncontrollable reglon and we estimate erroneous[y]
that we are not inside that region.

N . . . . [15
If &1/4 < &, and using the reverse triangular mequallt)l ]
we have that

VK,
‘dek > £1/4. (62) [16]

Then the same arguments of Case 1 hold, after replaging

with & /4. [17]

From the analysis of these 4 cases we have thét(ﬁ*y) [18]
£1, thenvo(tk ) < 0. We conclude the proof by noticing that,
since At is sufficiently small, we have that there exists e{
positive integek” > h+1 such thaty € 2" and ﬁ( ) <& |20
holds for allk € {h+1,....k"} which, in turn |mpI|es that
eitherVeo(t,) < —a (if x g%) orVo(ty) < —a (if xce % [21]
and|x(tk)| > &3) for all ke {h+1,...,k*}. It is then possible
to show closed-loop signal boundedness and convergence of

X(t) to the subse{x: R": |x| < &3}. [22]
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