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Online Policy Iterations for Optimal Control of Input-Saturated Systems

Simone Baldi 1 , Giorgio Valmorbida 2 , Antonis Papachristodoulou 2 and Elias B. Kosmatopoulos 3 Abstract-This work proposes an online policy iteration procedure for the synthesis of sub-optimal control laws for uncertain Linear Time Invariant (LTI) Asymptotically Null-Controllable with Bounded Inputs (ANCBI) systems. The proposed policy iteration method relies on: a policy evaluation step with a piecewise quadratic Lyapunov function in both the state and the deadzone functions of the input signals; a policy improvement step which guarantees at the same time close to optimality (exploitation) and persistence of excitation (exploration). The proposed approach guarantees convergence of the trajectory to a neighborhood around the origin. Besides, the trajectories can be made arbitrarily close to the optimal one provided that the rate at which the the value function and the control policy are updated is fast enough. The solution to the inequalities required to hold at each policy evaluation step can be efficiently implemented with semidefinite programming (SDP) solvers. A numerical example illustrates the results.

I. INTRODUCTION

This work proposes an online policy iteration procedure for the synthesis of sub-optimal and practically stabilizing control policies for uncertain Linear Time Invariant (LTI) Asymptotically Null-Controllable with Bounded Inputs (AN-CBI) systems. This class includes systems with eigenvalues on the imaginary axis (possibly repeated) but no pole with positive real part. The proposed policy iteration relies is appropriately modified so as to take into account the input saturation function: in particular, the policy evaluation step exploits a class of piecewise quadratic Lyapunov functions which is non-differentiable, but continuous, and depending both on the state and the deadzone function. The policy improvement step is based on a piecewise control policy: the solution of the policy improvement step requires the evaluation of the estimate of the derivative of the Lyapunov function under different candidate control laws, and the resulting mechanism guarantees at the same time close to optimality (exploitation) and persistence of excitation (exploration). The proposed approach guarantees convergence of the trajectory to a neighborhood of the origin. The solution to the inequalities which are required to hold at each step of the policy evaluation is obtained with the solution to semidefinite programmes (SDP).

Synthesis of globally stabilizing control laws for linear saturating systems is a nontrivial problem: even for Linear Time Invariant (LTI) Asymptotically Null-controllable with Bounded Inputs (ANCBI) systems it has been demonstrated with simple examples, that such a class can not, in general, be stabilized by static linear feedback [START_REF] Fuller | In-the-large stability of relay and saturating control systems with linear controllers[END_REF]. Different methods to compute globally asymptotically stabilizing nonlinear control laws for ANCBI systems have been proposed [START_REF] Sontag | Nonlinear output feedback design for linear systems with saturating controls[END_REF], [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF]. While global stability may not be achieved with linear control laws, strategies for semi-global (exponential) stabilization were presented in [START_REF] Lin | Semi-global exponential stabilization of linear systems subject to "input saturation" via linear feedbacks[END_REF] (see also the semi-global results for exponentially unstable plants in [START_REF] Zhou | Global stabilization of the double integrator system with saturation and delay in the input[END_REF]). However, semi-global results rely on low-gain strategies that may lead to poor performance (in terms of closed-loop convergence rate). In order to obtain faster transients, scheduled [START_REF] Henrion | Piecewise-linear robust control of systems with input constraints[END_REF] and nonlinear control laws [START_REF] Valmorbida | A polynomial approach to nonlinear state feedback stabilization of saturated linear systems[END_REF] have also been proposed in the context of semi-global stabilization. However optimality with respect to other criteria than the convergence rate, has not been explored. In the aforementioned approaches the plant is assumed to be known and the control synthesis is performed offline. Online extension via predictive techniques is considered in [START_REF] Tanaskovic | Adaptive receding horizon control for constrained mimo systems[END_REF].

Online techniques for adaptive control of uncertain inputsaturated systems have mainly focused on the problem of guaranteeing global stability [START_REF] Chaoui | Direct adaptive control subject to input amplitude constraint[END_REF], [START_REF] Zhang | Continuous direct adaptive control with saturation input constraint[END_REF] without optimality considerations: these schemes guarantee global stability via a continuous-time direct adaptive controller. More recently, approaches to optimal control of input-saturated systems have been developed, with the aim of approximating the optimal solution to the Hamilton-Jacobi-Bellman equation. Since some knowledge of the dynamics is required to implement these techniques, online estimation must be employed. Interesting approaches, yet not taking input-saturation into account, are [START_REF] Werbos | Approximate dynamic programming for real time control and neural modelling[END_REF], [START_REF] Bhasin | A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems[END_REF], where actor-critic structures are combined with a third network meant to approximate the unknown system dynamics. Actor-critic structures are updated in such a way to approximate the optimal control solution and the optimal value function respectively. For constrainedinput systems some offline [START_REF] Abu-Khalaf | Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach[END_REF] and online [START_REF] Zhang | Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints[END_REF], [START_REF] Modares | Adaptive optimal control of unknown constrained-input systems using policy iteration and neural networks[END_REF], [START_REF]Online solution of nonquadratic two-player zero-sum games arising in the h ∞ control of constrained input systems[END_REF] actor-critic methods based on neural networks have been proposed, where however, the input saturation is assumed to be a sigmoidal continuous and differentiable function.

The paper is organized as follows: Section II presents the problem formulation; Section III recalls an offline policy iteration approach for input saturated systems; Section IV presents the estimation scheme for the uncertain system dynamics; Section V contains the online policy iteration approach for input-saturated systems, and Section VI the numerical implementation of the policy evaluation step. The numerical example in Section VII demonstrates the effectiveness of the proposed approach.

II. PROBLEM FORMULATION

We study the class of uncertain LTI Asymptotically Null-Controllable with Bounded Inputs (ANCBI) systems in the presence of input saturation, which consists of the set of dynamic linear systems without exponentially unstable modes. Consider the input-saturated system

ẋ = A(Θ * )x + B(Θ * )sat (u(x)) , x(0) = x 0 , (1) 
with x ∈ R n , u ∈ R m , A(Θ * ) ∈ R n×n and B(Θ * ) ∈ R n×m , max(ℜ(λ (A))) ≤ 0.
Both A and B are assumed to be matrices with unknown entries represented by Θ * . The function sat : R m → U ⊂ R m is a vector saturation function, with entries satisfying

(sat (u(x))) j =    u j , if u j > u j u j , if u j ≤ u j ≤ u j u j , if u j > u j
with u j and u j the upper and lower bound of the j-th input, respectively. The set of admissible inputs is defined as

U := u ∈ R m |u j ≤ u j ≤ u j , j = 1, . . . , m .
In the following, for convenience of notation, we introduce the dead-zone function dz (u(x)) := u(x)sat (u(x)), and rewrite (1) as

ẋ = A(Θ * )x +B(Θ * )u(x)-B(Θ * )dz (u(x)) , x(0) = x 0 . (2) 
We also introduce a cost function for the system (2) in the form

J = ∞ 0 L(x, u)dt = ∞ 0 x ′ Qx + (sat (u)) ′ Rsat (u) dt, ( 3 
)
where the prime denote transpose. To address the parametric uncertainty in the system, we will develop an adaptive control policy, combined with a parametric adaptation law taking the following form

Θ(t) = p( Θ(t), Ξ(t)), Θ(0) = Θ 0 (4a) Ξ(t) = g(Ξ(t), x(t), u(t)), ξ (0) = ξ 0 (4b) V (t) = s( Θ(t), u(t)), ( 4c 
) u + (t) = h( Θ(t),V (t)), (4d) 
where Θ are the estimates of Θ * , Ξ are auxiliary variables used for estimation, V indicates the value function, and u + (t) indicates the feedback law to be used in the time interval [t +kδt,t +(k +1)δt], where δt is the sampling time. The mappings, p, g, s, h will be designed to guarantee the convergence of the state in a neighborhood of the origin and to optimize the cost (3). Let us introduce the definitions below: Definition 1: [Practical stability [START_REF] Lasalle | Stability by Liapunov's direct method: with applications[END_REF]] Given a nonlinear system ẋ = f (x), with f (0) = 0, the origin of the system is practically stable if, for given (c, c) with 0 < c < c, every solution x(t, x 0 ) of the system satisfies

x 0 < c ⇒ x(t, x 0 ) < c, t ≥ t 0 for some t 0 ∈ R + . Definition 2: [Asymptotic minimization] Given a function J(ϑ ) and ϑ * = arg min ϑ J(ϑ ) the sequence {ϑ k } asymptotically minimizes J if lim k→∞ ϑ k = ϑ * .
The objective of the control problem can be stated as: 2)-( 4) guarantees the practical stability of the origin of ( 2) and the asymptotic minimization of the cost (3).

Problem 1: Design the functions p(•, •), g(•, •, •), s(•, •) and h(•, •) such that the closed-loop (
In the following, multidimensional vectors are intended as column vectors, while the gradient of a scalar quantity with respect to a vector is intended as a row vector. We introduce the sector condition pertaining to the deadzone presented in [START_REF] Dai | Piecewise-quadratic lyapunov functions for systems with deadzones or saturations[END_REF]. The deadzone function dz (u(x)) satisfies the following sector inequality We recall the sector conditions presented in [START_REF] Dai | Piecewise-quadratic lyapunov functions for systems with deadzones or saturations[END_REF]:

dz ′ (u(x))Π 1 (u(x) -dz (u(x))) ≥ 0, ∀ x ∈ R n . (5) implying that the deadzone function is contained in the sector [0, I]. Furthermore, define φ (x) := d dz(u(x)) dt satisfying φ (x) = 0 if dz (u(x)) = 0 u(x) if dz (u(x)) = 0, (6) 
which can be expressed by the two equalities

φ ′ (x)Π 2 ( u(x) -φ (x)) = 0 (7) dz ′ (u(x)) Π 3 ( u(x) -φ (x)) = 0. ( 8 
)
where Π 1 , Π 2 , Π 3 ∈ R m×m diag are diagonal matrices, and Π 1 is positive definite. Due to the monotonicity of the saturation and the deadzone functions, we also have that the following inequality holds for two arbitrary control policies u(x) and v(x)

(dz (u(x)) -dz (v(x))) ′ (sat (u(x)) -sat (v(x))) > 0. ( 9 
)
We adopt the well-known result from optimal control theory [START_REF] Kirk | Optimal Control Theory: An Introduction[END_REF]Chap.3], that states that the optimal control policy u o (x) that minimizes (3) satisfies

u o = arg min u(•)∈U d V o dx (Ax + Bu) + L(x, u) , (10) 
where V o (x) is the value function (or cost-to-go function) that solves the Hamilton-Jacobi-Bellman (HJB) equation min

u(•)∈U d V o dx (Ax + Bu) + L(x, u) = 0. ( 11 
)
In order to have a well-posed problem we make the following assumption Assumption 1: There exists a globally stabilizing control policy ū for the system (1).

According to standard converse-Lyapunov results [START_REF] Freeman | Inverse optimality in robust stabilization[END_REF] Assumption 1 implies the existence of a continuous, positive definite, radially unbounded control Lyapunov function (CLF) V : R n → R + which satisfies min

u(•)∈U d V dx (Ax + Bu) < 0, ∀x = 0.
The following lemma relates the CLF to the uncontrollable region of system (1):

Lemma 1: Assumption 1 implies that there exist positive constants ε i , i = 1, 2, 3 such that the following condition holds, for all x ∈ R n ,

d V dx (x)B < ε 1 and |x| > ε 3 ⇒ d V dx (x)Ax < -ε 2 . ( 12 
)
Let us define the uncontrollable region of (1) to be the subset R defined according to

R = x ∈ R n : |x| > ε 3 and ∂ V ∂ x (x)B < ε 1 .
Note that condition [START_REF] Bhasin | A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems[END_REF] implies that for x ∈ R, the choice u = 0 guarantees that V < 0.

III. OFFLINE POLICY ITERATIONS UNDER SATURATION

CONSTRAINTS

The iterative strategy in Algorithm 1 was presented in [START_REF] Baldi | Piecewise polynomial policy iterations for synthesis of optimal control laws in input-saturated systems[END_REF] and provides an offline solution to Problem 1.

Algorithm 1 Modified policy iteration

1: Initialize:

2: c ← 0. 3: u c pw ← u 0 . 4:
u c pw ← u 0 . 5: Policy evaluation:

6: Given u c pw , solve for V c (x) = W c (x, dz (u c (x))) 7: d V c (x) dx Ax + Bsat u c pw + L(x, u c pw ) = 0 ( 13 
)
8: Feasibility:

9:
With W c (x, dz (u c (x))) of Policy evaluation, check 10:

d V c (x) dx (Ax + Bsat (u c )) + L(x, u c pw ) < 0 (14) 11: if (13) is feasible, u c (x) ← u c (x) 12:
else u c (x) ← u (c-1) (x) 13: Policy improvement:

14:
Update the piecewise control policy 15:

u c+1 pw = -1 2 R -1 B ′ ∂W c ∂ x ′ q c =0 in Ξ c 1 ∪ Ξ c 2 ∪ Ξ c 3 u c in Ξ c 4 ( 15 
)
16:

17: if ∆W c (x(0)) := W c (x(0)) -W (c-1) (x(0)) < δ , STOP 18: else c ← c + 1, goto Policy improvement.
In the algorithm, the policy evaluation and the policy iteration steps are performed based on the piecewise value function and piecewise control policy defined as follows.

Given the value function V c (x) = W c (x, dz(u c )) solution of (13), define the following approximated policy improvement

u c+1 ap (x) = - 1 2 R -1 B ′ ∂W c ∂ x ′ dz(u c )=0 , (16) 
where the term approximated policy improvement indicated that ( 16) coincides with the solution of arg min

u(•)∈U d V c dx (Ax + Bu) + L(x, u) , (17) 
only in a subset of the state space, i.e. in the set

Ω c (x) = {x : dz(u c (x)) = 0} . (18) 
See [START_REF] Baldi | Piecewise polynomial policy iterations for synthesis of optimal control laws in input-saturated systems[END_REF] for details. Furthermore, the policy u c+1 ap (x) in ( 16) defines the following set,

Ω c+1 (x) = x : dz(u c+1 ap (x)) = 0 . ( 19 
)
which in general differs from the previously defined [START_REF] Dai | Piecewise-quadratic lyapunov functions for systems with deadzones or saturations[END_REF]. In order to discuss the properties of the policy ( 16) let us define the following state-space partition arising from the sets Ω c and Ω c+1 defined in ( 18)-( 19)

Ξ c 1 := Ω c ∩ Ω c+1 (Region 1) Ξ c 2 := Ω c \Ω c+1 (Region 2) Ξ c 3 := Ω c+1 \Ω c (Region 3) Ξ c 4 := R n \(Ω c ∪ Ω c+1 ) (Region 4)
and satisfying

∪ i Ξ c i = R n and Ξ c i ∩ Ξ c j = / 0, i = j. Remark 1: The set Ξ c
1 corresponds to the set in which both control policies respect the saturation bounds, and Ξ c 4 , to the set in which both control policies exceed the saturation bounds. Notice that Ξ c 2 = / 0, whenever Ω c ⊂ Ω c+1 and Ξ c 3 = / 0, whenever Ω c+1 ⊂ Ω c .

To study the stability properties of the policy u c+1 ap , given a globally stabilizing policy u c and a value function W c that certify global stability, we define the piecewise policy

sat u c+1 pw = sat u c+1 ap in Ξ c 1 ∪ Ξ c 2 ∪ Ξ c 3 sat (u c ) in Ξ c 4 ( 20 
)
with the value function

W c pw := W c un in Ξ c 1 ∪ Ξ c 2 ∪ Ξ c 3 W c in Ξ c 4 ( 21 
)
where W c un ∈ C 1 is the unsaturated value function defined as

W c un (x) := W c (x, 0). ( 22 
)
We obtain the following result Proposition 1: The piecewise value function [START_REF] Baldi | Piecewise polynomial policy iterations for synthesis of optimal control laws in input-saturated systems[END_REF] certifies the global stability of the piecewise control policy [START_REF] Freeman | Inverse optimality in robust stabilization[END_REF].

Proof: See [START_REF] Baldi | Piecewise polynomial policy iterations for synthesis of optimal control laws in input-saturated systems[END_REF].

IV. ESTIMATION OF THE SYSTEM DYNAMICS

The results of Section III require the knowledge of matrices A and B. Its extension to the uncertain system (1) requires an online parameter estimator. This task will be performed with standard techniques for parameter estimation. To this purpose we write (1) as

ẋ = A m x + (A -A m )x + Bsat(u), ( 23 
)
with A m a Hurwitz matrix. We use the series-parallel parametric model [START_REF] Ioannou | Robust Adaptive Control[END_REF] to obtain

ẋ = A m x + ( Â -A m )x + Bsat(u), ( 24 
)
where x is the state of the parametric model and Â, B are the matrices to be estimated. In order to develop a linear-inthe-parameters model for [START_REF] Kosmatopoulos | An adaptive optimization scheme with satisfactory transient performance[END_REF] we filter every component of ẋ, x and sat(u) with a stable filter λ /(s + λ ), λ > 0

z f = sλ s + λ x, ( 25a 
)
x f = λ s + λ x, ( 25b 
)
ν f = λ s + λ sat(u). ( 25c 
)
We thus obtain

z f = A m x f + (A -A m )x f + Bν f , (26) 
and similarly for ( 24)

ẑ f = A m x f + ( Â -A m )x f + Bν f , (27) 
where z f , x f , and ν f are all measurable signals to be used for the estimator. After collecting all the entries of A and B in Θ * = [A B] ′ and defining Θ = Â B ′ 1 , we adopt a parameter estimator based on integral cost and gradient update [START_REF] Ioannou | Robust Adaptive Control[END_REF], so as to obtain

Θ = P -γ R Θ -γ Q , Θ(0) = Θ 0 (28a) Ṙ = -β R + x ′ f ν ′ f ′ x ′ f ν ′ f , R(0) = 0 (28b) Q = -β Q -x ′ f ν ′ f ′ z ′ f , Q(0) = 0 (28c)
where β and γ are positive constants and P denotes a projection operator which has to be designed to keep the estimates inside a convex set. The estimation law (28) satisfies the following properties:

Theorem 1: [22] i) ε := z f -ẑ f ∈ L 2 ∩ L ∞ ii) lim t→∞ Θ = 0 iii) if x ′ f ν ′ f ′
is persistently exciting, then Θ → Θ * exponentially and the rate of convergence increases with γ.

1 A parameter estimator can be developed also in the case where only a subset of entries of A and B needs to be estimated, by bringing to the left-hand side of ( 26) and (27) all the quantities that are known and do not need to be estimated.

V. ONLINE POLICY ITERATIONS UNDER SATURATION

CONSTRAINTS

Algorithm 1 is now revised for online implementation. Differently from Section IV, the iterations are not implemented offline at each step c, c ∈ Z + , but online at each time instant t k , t k = 0, ∆t, 2∆t, . . ., where ∆t is the update sample time. The proposed algorithm is shown in Algorithm 2.

In Algorithm 2, t + k indicates the instant of time at which the previous policy is updated, ±u k ( j) , j = 1, . . . , n indicates a set of candidate policies, V k (± j) (t k ) in (35) indicates the estimates of the derivative of the value function calculated at time t k with the corresponding policy ±u k ( j) . Furthermore, the candidate control policies ±u ( j) k are calculated as follows

h k (ζ , x) = - 1 2 R -1 B′ ∂ V k ∂ x ′ dz(u (k-1) )=0
(37)

±u k ( j) = h k (ζ ± ∆ζ ( j) , x), ( 38 
)
where ζ are the coefficients of the expression in (37), and ∆ζ ( j) are zero-mean random vectors in

[-2α k , -α k ] n ∪ [α k , 2α k ] n satisfying ∆ζ (1) , . . . , ∆ζ (n) -1 < Ξ α k , (39) 
where α k is a positive sequence and Ξ is a finite positive number independent of α k . The following result is given.

Theorem 2: Let ∆t be sufficiently small. Then, for arbitrary small ᾱ > 0, there exist finite positive constants β 1 , β 2 , γ l and a finite positive integer h = O 1 γ such that the following condition holds: if

α k satisfies 0 < α k ≤ β 2 if d V k dx B < ε1 or k ≤ h α k ≥ β 1 otherwise
where ε1 is a positive design constant satisfying

1 4 ε 1 < ε1 ≤ 1 2 ε 1
and the adaptive gain γ of the estimator satisfies γ ≥ γ l then, the proposed adaptive control scheme guarantees that the closed-loop solutions are bounded and, moreover, 

-ᾱ < L (t + k ) < 0, if x k ∈ R or (x k , θk ) ∈ S k , w.p.1 where L (t + k ) = min u(•)∈U d V o dx (Ax + Bu) + L(x, u) and S k is a subset of R n × R n×(n+m) that satisfies S k = / 0, ∀k > h. Proof: See Appendix.
Algorithm 2 Online policy iteration 1: Initialize:

2: k ← 0. 3: u k pw ← u 0 . 4:
u k pw ← u 0 . 5: Policy evaluation:

6: Given u k pw , Â(k-1) = Â(t k-1 ), B(k-1) = B(t k-1 ), 7: solve for V k (x) = W k (x, dz u k (x) ) 8: d V k (x) dx Â(k-1) x + B(k-1) sat u (k-1) pw +L(x, u (k-1) pw ) = 0 (29) 9: d V k (x) dx Āx + Bsat u (k-1) pw + L(x, u (k-1)
pw ) < 0 (30) 10:

Ā = Â(k-1) + ∆A, B = B(k-1) + ∆B with ∆A, ∆B ∈ N k (31)
11:

N k = ∆A, ∆B | ∆A ′ ∆A ≺ η k 1 I, ∆B ′ ∆B ≺ η k 2 I , ( 32 
)
12: Feasibility:

13: With W k (x, dz u k (x) ) of Policy evaluation, check 14: d V k (x) dx Â(k-1) x + Â(k-1) sat u k + L(x, u k pw ) < 0 (33) 15: if (13) is feasible, u k (x) ← u k (x) 16:
else u k (x) ← u (k-1) (x) 17: Estimation: 

u(t + k ) = arg min ±u k ( j) , j=1,...,n V k (± j) (t k ), (34) 22: 
V k

(± j) (t k ) = ∂V k ∂ x ′ Â(t k )x(t k ) + B(t k )(±u k ( j) ) +Q(x(t k )) + u k ( j) Ru k ( j) , (35) 
23:

u k+1 pw = u(t + k ) in Ξ k 1 ∪ Ξ k 2 ∪ Ξ k 3 u k in Ξ k 4 ( 36 
)
24: 

25: if ∆W k (x(0)) := W k (x(0)) -W (k-1) (x(0)) < δ ,
k ← k + 1
Remark 2: Each policy evaluation step ( 29)-( 30) returns a set of plants that are stabilized by the control law u k pw . Such a set is given by N k in (32). This set is used in the estimation law (28) to project the estimate. This approach resembles the so-called 'certainty equivalence principle' of adaptive control [START_REF] Ioannou | Robust Adaptive Control[END_REF], where the control policy is stabilizing for the estimated plant and it is updated by solving the underlying control problem for the estimated plant.

Remark 3: The rationale behind (34) is that among a set of possible candidate control laws, the one that minimizes (35), i.e. that more closely satisfies the HJB equation is chosen. This choice guarantees the so-called 'exploitation task' of the control policy. Furthermore, the candidate control policies are generated randomly so as to satisfy condition (39): this guarantees the so-called 'exploration task' of the control policy, i.e. persistence of excitation and convergence of the estimates to their real value. It can be shown that the Bernoulli distribution satisfy condition (39) [START_REF] Kosmatopoulos | An adaptive optimization scheme with satisfactory transient performance[END_REF]: other distributions (segmented uniform, U-shaped) are also possible [START_REF] Spall | Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control[END_REF]Sect. 7.3].

VI. NUMERICAL IMPLEMENTATION OF POLICY

EVALUATION

In the following we provide a sufficient condition for calculating a (piecewise) certificate W (x, dz(u k )) for global stability of the system (1) with the piecewise defined policy u k pw . To this purpose let us define q k = dz(u k ). Given a policy u k pw defined as

u k pw = u k (x) x ∈ ∪ i∈{1,2,3} Ξ (k-1) i u (k-1) (x) x ∈ Ξ (k-1) 4 , (40) 
find W (x, q k ), Π pw i (ξ ) satisfying

p 1 (ξ ) = - ∂W ∂ x Âk-1 x + Bk-1 u k pw -q k pw - ∂W ∂ q k φ k/pw -x ′ Q(x)x -(u k pw -q k pw ) ′ R(x)(u k pw -q k pw ) + q k ′ pw Π pw 1 (ξ )(u k pw -q k pw ) + φ k/pw ′ Π pw 2 (ξ )( uk/pw -φ k/pw ) + q k ′ Π pw 3 (ξ )( uk/pw -φ k/pw ) 0 ∀x ∈ R n (41) and Π pw 1 (ξ ) 0 with ξ = x ′ u k′ pw q k′ pw φ k/pw′ ′ ,
where φ k/pw denotes the time-derivative of q k along the trajectories corresponding to policy u k pw and Π pw 1 . The expression for uk/pw is

uk/pw = d u k (x) dx Ax + B u k pw -q k pw .
Finally, (30)-(32) can be rewritten using the following property

- ∂W ∂ x ( Âk-1 + ∆A)x + ( Bk-1 + ∆B) u k pw -q k pw = - ∂W ∂ x Âk-1 x + Bk-1 u k pw -q k pw - 1 ε 1 ∂W ∂ x -ε 1 ∆Ax ′ 1 ε 1 ∂W ∂ x -ε 1 ∆Ax - 1 ε 2 ∂W ∂ x -ε 2 ∆B u k pw -q k pw ′ 1 ε 2 ∂W ∂ x -ε 2 ∆B u k pw -q k pw + 1 ε 2 1 + 1 ε 2 2 ∂W ∂ x ′ ∂W ∂ x + ε 2 1 x∆A ′ ∆Ax + ε 2 2 u k pw -q k pw ′ ∆B ′ ∆B u k pw -q k pw ≤ - ∂W ∂ x Âk-1 x + Bk-1 u k pw -q k pw + 1 ε 2 1 + 1 ε 2 2 ∂W ∂ x ′ ∂W ∂ x + ε 2 1 η 2 1 x ′ x + ε 2 2 η 2 2 u k pw -q k pw ′ u k pw -q k pw ( 42 
)
By using (42) and the Schur complement, (30)-(32) results in an expression p 2 (ξ ) linear with respect to the optimization variables. The relations ( 5)-( 7) can be used to obtain a sufficient condition for the negativity of dW dt + L(x, u). Notice that, due to (40), the variable u k pw in (41) satisfies

(u k pw -u k ) = 0 x ∈ ∪ i∈{1,2,3} Ξ (k-1) i (43) (u k pw -u (k-1) ) = 0 x ∈ Ξ (k-1) 4 . (44) 
Therefore, considering the representation of sets

∪ i∈{1,2,3} Ξ (k-1) i = x ∈ R n |p 0 j (x, u, u) ≥ 0, j = 1, . . . , n 0 Ξ (k-1) 4 = x ∈ R n |p 4 j (x, u, u) ≥ 0, j = 1, . . . , n 4
(45) we obtain the following sufficient condition for (41) and (42) to hold with control policy (40)

p 1 (ξ ) + p 2 (ξ ) + Π 41 (ξ )(u k pw -u k ) + n 0 ∑ j=1 m 0 (ξ )p 0 j (x, u, u) 0 (46) p 1 (ξ ) + p 2 (ξ ) + Π 42 (ξ )(u k pw -u (k-1) ) + n 4 ∑ j=1 m 4 (ξ )p 4 j (x, u, u) 0 (47) Π 1 0 (48) 
Since W (x, q k ) is an upper bound of the value function (given that the current policy may not be the optimal one), we solve minimize W (x(0), dz(u k (x(0))))

subject to (46) -(48)

that minimizes the cost-to-go function with initial state x(0).

VII. NUMERICAL EXAMPLE

In the following, we present a numerical example to illustrate the results obtained via the proposed policy iterations. The procedure has been implemented in SOSTOOLS [START_REF] Papachristodoulou | SOSTOOLS: Sum of squares optimization toolbox for MATLAB[END_REF] and the formulated SDPs were solved with SeDuMi [START_REF] Henrion | Sedumi interface 1.02: a tool for solving lmi problems with sedumi[END_REF]. The dimension of the example helps to illustrate the results by plotting the computed value functions and the time-evolution of the control policies. It is also worth mentioning that as the number of variables and the degrees of the involved polynomials increase, the dimensions of the related SDPs can be large.

Consider the following 1-input 1-state system

ẋ(t) = -ax + bsat(u(t)), x(0) = -1 (49) 
with a and b two positive and unknown constants. The saturation bounds are -0.5 ≤ u ≤ 0.5 and the initial globally stabilizing (but not optimal) state-feedback u(x) = -0.3x. For this system we consider the cost as in The simulation is run for 5 seconds. Fig. 1 shows the online evolution of the state and input with the proposed adaptive law. Fig. 2 shows the online evolution of the set N k inside which the estimates are projected. Finally Fig. 3 shows the offline evolution of the cost using the controllers synthesized at every time step: it can be observed that the cost is monotonically decreasing. The online evolution of the Hamilton-Jacobi-Bellman equation is also shown: it can be observed that for the presented example the controller synthesized at every time step are stabilizing not only the estimated plant, but also the actual plant. 

VIII. CONCLUSIONS

This work proposed an online policy iteration procedure for the synthesis of approximately optimal control laws for uncertain Linear Time Invariant (LTI) Asymptotically Null-Controllable with Bounded Inputs (ANCBI) systems. The proposed policy iteration method relies on: a policy evaluation step with a piecewise quadratic Lyapunov function which is non-differentiable, but continuous, and polynomial in both the state and the deadzone functions of the input signals; a policy improvement step which guarantees at the same time close to optimality (exploitation) and persistence of excitation (exploration). The proposed approach guarantees convergence of the trajectory to a neighborhood around the origin. Besides, the trajectories can be made arbitrarily close to the optimal one provided that the rate at which the the value function and the control policy are updated is fast enough.

Future work includes the extension of the proposed methodology to linear systems with exponentially unstable modes for which only local stability is achievable. Such an extension is under study and will account for generalized sector condition which is instrumental to compute region of attraction estimates. We will also generalize the obtained conditions to systems defined by polynomial vector fields and polynomial input matrices.

APPENDIX PROOF OF THEOREM 2

Estimating the matrix B creates the following problem: it might happen that we are in the uncontrollable region (defined by

∂V k ∂ x B k ≤ ε1 ) but we estimate (via ∂V k ∂ x Bk ≥ ε1 )
that we are not in the uncontrollable region. For this reason we have to define the following four cases for |x| > ε 3 :

Case

1: x(t k ) / ∈ R and ∂V k ∂ x
Bk ≥ ε1 This means that we are not in the uncontrollable region, and we estimate correctly that we are not inside that region.

We have that

V o k (± j) = ∂V o k ∂ x Ax(t k ) + B(±u ( j) ) (50) 
where V o indicates the optimal value function, V o k = V o (t k ), while A and B are the matrices associated with the real plant (the argument Θ is omitted for easiness of notation). From the fact that we are outside the uncontrollable region, we can verify that min j∈{1,...,m}

∂V o k ∂ x B ±u ( j) < -cε 1 α k (51)
and min j∈{1,...,m}

V o k (± j) = ∂V o k ∂ x Ax(t k ) -cε 1 α k (52)
By making the difference between the derivative of V o with the real plant and the derivative of V with the estimated one, we obtain

V o k (± j) -V k (± j) = ∂V o k ∂ x Ax(t k ) + B(±u ( j) ) - ∂V k ∂ x Âk x(t k ) + Bk (±u ( j) ) (53) = O( Θk ) + O( Θk )(±u ( j) ) (54) 
where Θk = Θ -Θk . The choice of the control input guarantees a persistence of excitation that implies

Θk = O( 1 kγ ). (55) 
Using ( 53) and (55) we then obtain

V o k (± j) -V k (± j) = O( 1 kγ ) + O( 1 kγ )α k . (56) 
Combining ( 56) and (52) we then obtain that, if V k (± j) + Q(x) + (±u ( j) ) T R(±u ( j) ) (58)

ε 1 > O( 1 kγ ), (57) 
and ∃β 1 > 0 : α k > β 1 we have -ᾱ < L (t + k ) < 0.

Case 2: x(t k ) ∈ R and ∂V k ∂ x Bk < ε1 This means that we are in the uncontrollable region, and we estimate correctly that we are inside that region.

Inside the uncontrollable region we have

∂V o k ∂ x Ax < ε 2 , (59) 
which implies, by choosing the input as in the algorithm

V o k (t + k ) < -ε 2 + √ mε 1 α k = -ᾱ. ( 60 
)
Case 3: x(t k ) / ∈ R and ∂V k ∂ x Bk < ε1 This means that we are not in the uncontrollable region, and we estimate erroneously that we are inside that region. By using similar reasoning as in Case 1, we obtain

∂V o k ∂ x B - ∂V k ∂ x Bk < O( 1 kγ ). (61) 
So, if ε1 < ε 1 /2, and using the reverse triangular inequality, we obtain that if O( 1 kγ ) < ε 1 , then Case 3 is never verified. Bk ≥ ε1 This means that we are in the uncontrollable region, and we estimate erroneously that we are not inside that region.

If ε 1 /4 < ε1 , and using the reverse triangular inequality we have that

∂V k ∂ x Bk > ε 1 /4. ( 62 
)
Then the same arguments of Case 1 hold, after replacing ε 1 with ε 1 /4.

From the analysis of these 4 cases we have that, if O( 1 kγ ) < ε 1 , then V o (t + k ) < 0. We conclude the proof by noticing that, since ∆t is sufficiently small, we have that there exists a positive integer k * > h + 1 such that x k ∈ X and O( 1 kγ ) < ε 1 holds for all k ∈ {h + 1, . . . , k * } which, in turn implies that either V o (t + k ) <ᾱ (if x k ∈ R) or V o (t + k ) < -ᾱ (if x k ∈ R and |x(t k )| ≥ ε 3 ) for all k ∈ {h + 1, . . . , k * }. It is then possible to show closed-loop signal boundedness and convergence of x(t) to the subset {x : R n : |x| < ε 3 }.
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