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Positivity Conditions of Lyapunov Functions for Systems with

Slope Restricted Nonlinearities

G. Valmorbida, R. Drummond, S. R. Duncan

Abstract—This paper considers absolute stability
for Lur’e systems consisting of the interconnection of
a linear plant with a nonlinear feedback. The nonlin-
earity is assumed to be both sector bounded and slope
restricted. Stability of this system is determined using
a Lyapunov function with a quadratic term on both
the states and the nonlinearity. The main result of
this paper is to relax the positivity conditions that
have been imposed for such Lyapunov functions. This
allows Lyapunov functions to be constructed without
a positive definite quadratic matrix and whose scalars
of the Lur’e term are not sign-definite. We also show
that previous results can be simplified to the case
of the quadratic form with Lur’e term. The benefits
of considering such a Lyapunov function for stability
analysis are shown both for the global case and for the
local case.

Index Terms—Nonlinear systems, Lyapunov anal-
ysis, positivity conditions

I. Introduction

This paper is concerned with the absolute stability of
linear time-invariant systems with slope-restricted input
nonlinearities. Absolute stability is a classical problem
in systems and control theory that has been long studied
using frequency based methods including the celebrated
circle and Popov criterions for sector bounded nonlinear-
ities [10]. These methods rely on the representation of
the nonlinear system via the interconnection of a linear
term and a static nonlinearity, which allows the analysis
of the loop to be performed by assessing the properties
of the linear component. Variants of these methods for
the cases of MIMO systems [16] and multiple equilibria
[11] have also been developed. A strong motivation for
studying the class of slope-restricted nonlinearities was
set by the Kalman Conjecture [9].
Developments of these frequency based methods have

been proposed to reduce the conservatism on the anal-
ysis. The introduction of multipliers into the stabil-
ity problem, with the most famous example being the
Zames-Falb multiplier, has been shown to improve results
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Saclay, 3 Rue Joliot-Curie, Gif–sur–Yvette 91192, France
giorgio.valmorbida@l2s.centralesupelec.fr .R. Drummond
and S. R. Duncan are with the Control Group, Department
of Engineering Science, University of Oxford, 17 Parks
Road, OX1 3PJ Oxford, United Kingdom {ross.drummond,
stephen.duncan}@eng.ox.ac.uk. Work supported in part by
EPSRC grants EP/J010537/1 and EP/L505031/1.

at the expense of computational complexity (see [3] for
recent a review on the contribution of the works of
O’Shea [13] and Zames & Falb [20]). In recent years,
methods have been proposed to reduce the complexity
of multipliers [3]. Composite Lyapunov functions (LF),
where the LFs are constructed from the convex hull of
a set of invariant ellipsoids, have also been proposed [7].
LFs with the quadratic components with respect to both
the nonlinearities and the states and Lur’e terms were
studied in [15, 18]. Many of the tools and methods for
absolute stability analysis can be framed within the in-
tegral quadratic constraint framework which generalises
the frequency based approach as originally studied with
the circle and Popov criterions [12].
For quadratic LFs, the positivity of the LF is en-

forced by requiring a quadratic matrix to be positive-
definite [10]. In the case of Lur’e-type LFs, the relaxation
of the positivity constraints in the Lur’e coefficients has
been studied in [6, 14].

A. Contribution

This paper will further develop LFs that are quadratic
on both the state and the nonlinear terms and also
contain a Lur’e term. We present conditions for the
positivity of the LF that do not impose the positivity of
the scalars of the Lur’e terms nor impose the quadratic
terms on the nonlinearities to be positive definite.
The conditions for the positivity of both the LF and its

time-derivative rely on sector conditions that express the
fact that both the nonlinearities lie in a sector and their
slopes are bounded. By allowing the sector condition
to hold only locally (in a compact set containing the
origin), we can formulate conditions for the local stability
analysis and obtain estimates of the region of attraction
with contractive and invariant sets defined by level sets
of the LF. The proposed results are applied to a system
containing a logarithmic nonlinearity which satisfies a
sector condition only locally.
We also show that a number of Lur’e terms for slope

restricted nonlinearities presented in [18] yield the pro-
posed structure with a quadratic term on both the state
and the nonlinearities and a single Lur’e term.
Notation The set of real valued matrices of dimen-

sions n × m is denoted R
n×m, the set of symmetric

matrices of dimension n is denoted S
n, the set of diagonal

matrices is denoted D, the set of positive semi-definite



diagonal matrices is denoted D≥0. The interior of a set
D ⊂ R

m is denoted D◦, Im denotes the identity matrix
of dimension m, 1m denotes the row vector of dimension
m of which the entries are equal to 1. With α ≥ 0 we use
E(V, α) = {x ∈ R

n | V (x) ≥ α} i.e. the α sublevel set of a
positive-definite function V . We may drop the arguments
of some functions when it is clear from the context.

II. Problem statement

Consider the linear time-invariant (LTI) system with
input nonlinearities

{
ẋ = Ax+Bφ(y)
y = Cx+Dφ(y)

(1)

with x ∈ R
n, y ∈ R

m. The nonlinearity φ : Y → R
m,

Y ⊆ R
m is assumed time-invariant, Lipschitz on Y◦,

decentralized

φ(y) = [φ1(y1) φ2(y2) . . . φm(ym)]
T
, (2a)

sector bounded

φi(yi)

yi
∈ [δi, δi] ∀y ∈ Y0 ⊆ Y (2b)

which implies φ(0) = 0, and slope restricted

∂φi(yi) ∈ [γ
i
, γi] ∀y ∈ Y0 ⊆ Y (2c)

where ∂ denotes the sub-differential operator. The Lips-
chitz assumption on φ implies that ∂φi(yi) =

dφi

yi

almost
everywhere, relaxing the requirement for the nonlinearity
to be continuously differentiable [18, Section 2]. Via loop
transformations that modify both the linear component
and the nonlinearity, a sector non-linearity which lies in
the sector [δi, δi] can be transformed into a sector non-
linearity that lies in the sector [0, 1] (see [10, page 233]).
However, in this paper we preserve the sector [δi, δi]
to study stability properties of system (1). Figures 1-2
illustrate the above definitions. We also introduce the
matrices ∆ := diag(δ1, . . . , δm), ∆ := diag(δ1, . . . , δm)
Γ := diag(γ1, . . . , γm), Γ := diag(γ1, . . . , γm) to com-
pactly express the sector and slope bounds.
Assumption 2.1 (Well-posedness): The algebraic loop

in (1) is well-posed for all x ∈ X , 0 ∈ X . That is, for
each x ∈ X ⊆ R

n it corresponds a unique y satisfying the
equation y−Dφ(y) = Cx. Hence the mapping y : X → Y
is well-defined.
Provided the above assumption holds, we can define

the following set

X0 := {x ∈ R
n | y(x) ∈ Y0} , (3)

where the set Y0 ⊂ R
m corresponds to the set where the

sector and the slope restrictions hold, as defined in (2).
Under Assumption 2.1 this paper proposes a solution to
the following problem:
Problem 2.1: For system (1) with slope restricted non-

linearity φ, find a Lyapunov function to certify the
stability of the origin with an estimate of the region of
attraction contained in X0.

delmy

φi(yi)

yi

δiyi

Fig. 1. Sector-bounded nonlinearity.

∂φi(yi)

yi

γ
i

γi

Fig. 2. Bounds on the nonlinearity slope.

For the particular case of X0 = R
n a solution to the

above problem gives a certificate of the global stability
of the origin.

III. Preliminary Results

In this section we recall sector inequalities related to
slope-restricted nonlinearities and provide conditions for
the positive definiteness of the following quadratic-like
expressions

m(x, φ) =

[
x

φ

]T

M

[
x

φ

]

, (4a)

n(x, φ, φ̇) =





x

φ

φ̇





T

N





x

φ

φ̇



 (4b)

with M ∈ R
(n+m)×(n+m) and N ∈ R

(n+2m)×(n+2m). We
assume that φ satisfies (2) and that φ̇ denotes the time-
derivative of the nonlinearity φ along the trajectories
of (1).
Lemma 3.1: Assume φ satisfies (2a)-(2b). The inequal-

ities
(φi(yi)− δiyi)

(
δiyi − φi(yi)

)
≥ 0 (5)

i = 1, . . . ,m hold for y ∈ Y0.
The proof of the above lemma is straightforwardly ob-
tained from (2b). The following lemma presents an in-
equality related to the slope restrictions on φ.
Lemma 3.2: Assume φ satisfies (2a)-(2c) and that As-

sumption 2.1 holds. The inequalities
(

φ̇i(yi)− γ
i
ẏi

)(

γiẏi − φ̇i(yi)
)

≥ 0 (6)

i = 1, . . . ,m hold for y ∈ Y0.
Proof: From (2c) we have

0 ≤
(

∂φi − γ
i

)

(γi − ∂φi) .



Multiplying the above expression by ẏ2, with ẏ the time-
derivative of y along the trajectories of (1), gives

0 ≤ ẏ2i

(

∂φi − γ
i

)

(γi − ∂φi)

=
(

∂φiẏi − γ
i
ẏi

)

(γiẏi − ∂φiẏi)

=
(

φ̇i(yi)− γ
i
ẏi

)(

γiẏi − φ̇i(yi)
)

.

Note that, under Assumption 2.1, we have y(x, φ) =
Cx + Dφ, and ẏi(x, φ, φ̇) = CAx + CBφ + Dφ̇. It
follows that (5) and (6), with yi being the ith row of y
satisfying (1), are quadratic on x, φ and φ̇. The following
lemmas use Lemmas 3.1 and 3.2 to formulate conditions
for the positivity of the expressions (4).
Lemma 3.3: If there exists a matrix T ∈ D

m
≥0 such that

m(x, φ) − s1(T, x, φ) > 0 (7a)

with

s1(T, x, φ) := (φ−∆y(x)) T
(
∆y(x)− φ

)
(7b)

thenm(x, φ) > 0 for all x ∈ R
n and for any φ : Rm → R

m

satisfying (2a)-(2b).
Lemma 3.4: If there exists matrices T1, T2 ∈ D

m
≥0 such

that

n(x, φ, φ̇)− s1(T1, x, φ) − s2(T2, x, φ, φ̇) > 0 (8a)

with s1 defined in (7b) and

s2(T2, x, φ, φ̇) :=
(

φ̇− Γẏ(x, φ, φ̇)
)

T2

(

Γẏ(x, φ, φ̇)− φ̇
)

(8b)
then n(x, φ, φ̇) > 0 for all x ∈ R

n and for all φ : Rm →
R

m satisfying (2).
Proof: If (8a) holds we have

n(x, φ, φ̇) > s1(T1, x, φ) + s2(T2, x, φ, φ̇)

=
∑m

i=1

[
T1(i,i) (φi − δiyi(x))

(
δiyi(x)− φi

)

+T2(i,i)

(

φ̇i − γ
i
ẏi(x)

) (

γiẏi(x) − φ̇i

)]

≥ 0

where we have used inequalities (2b) and (2c) and the
non-negative terms Tj(i,i) ≥ 0, j = 1, 2, i = 1, . . . ,m.
From the above lemmas, we note that the non-

negativity of m(x, φ) and n(x, φ, φ̇) does not necessarily
require the positive-semidefiniteness of matrices M and
N in (4). This stems from the fact that x, φ and φ̇

are not independent but are related via the inequalities
s1(x, φ) ≥ 0 and s2(x, φ, φ̇) ≥ 0, that hold on the set X0,
following the definition of the sector inequalities (2b),(2c)
and the definition of the set X0. The inequality (7a) has
been extensively used to verify the negative-definiteness
of the derivative of the LF in the stability analysis of in-
put saturating systems [10, page 232] (see also [8, 17] for
local sector conditions). In [18, 5], (8a) has been used to
study the time-derivative of the LFs with terms (4a). In
the following section, the stability analysis of system (1)
with LF containing terms of the form given in (4a) uses

Lemma 3.3 to formulate conditions for the positivity of
the LF itself (not only to study the time-derivative of the
LF).

IV. Main results

This section is concerned with the LF of the form

V (x) = V0(x) +

m∑

i=1

λi

∫ yi(x)

0

φi(s) ds, (9a)

V0(x) =

[
x

φ(y(x))

]T [
P11 P12

PT
12 P22

] [
x

φ(y(x))

]

(9b)

The terms involving the integral are referred to as the
Lur’e terms [2].
The positivity of the above function can be enforced

by requiring both P :=
[
P11 P12

PT

12
P22

]

> 0 and λi ≥ 0, as

discussed in [18] and as in [19] for the case P12 = 0, P22 =
0. For the latter structure, the relaxation of the non-
negativity of the coefficients λi was considered in [14], [6]
and [1].
Define Λ := diag(λ1, . . . , λm) to be used in the fol-

lowing lemma that presents conditions for the positivity
of V without imposing positive-definiteness of P nor the
non-negativity of the coefficients λi.
Lemma 4.1: Consider V as in (9) with φ satisfying

(2a)-(2b) and such that Assumption 2.1 holds. If there
exists a matrix Λ̃ ∈ D

m
≥0 such that

Λ ≥ −Λ̃ (10a)

V0(x)−
1

2
yT (x)(∆ −∆)Λ̃y(x) > 0, (10b)

then V (x) > 0 ∀x ∈ X ⊂ R
n.

Proof: We prove the claim with the relations in (11)
(see the top of the next page), where we use (10a) to
obtain a positive-definite lower bound for (9) and we
assume well-posedness of the algebraic loop for all x ∈ X .

Remark 4.1: [Lur’e terms in the LF of [18]] Consider
the function

V̄ (x) =

[
x

φ(x)

]T

P̄

[
x

φ(x)

]

+

4∑

j=1

m∑

i=1

gj,i(x) (12)

where

g1,i(x) := µ1,i

∫ yi(x)

0

φi(s)ds (13a)

g2,i(x) := µ2,i

∫ yi(x)

0

[
δis− φi(s)

]
ds (13b)

g3,i(x) := µ3,i

∫ yi(x)

0

[γi − ∂φi(s)] sds (13c)

g4,i(x) := µ4,i

∫ yi(x)

0

∂φi(s)
[
δis− φi(s)

]
ds (13d)

with P̄ > 0 and µj,i ≥ 0, i = 1, . . . ,m, j = 1, . . . , 4 which
clearly yield gj,i(x) ≥ 0 i = 1, . . . ,m, j = 1, . . . , 4 for φ

satisfying (2) with δi = γ
i
= 0, i = 1, . . . ,m. In [18], V̄



V (x) = V0(x) +
∑m

i=1 λi

∫ yi(x)

0 φi(s)ds

≥ V0(x) +
∑m

i=1 λi

∫ yi(x)

0 (φi(s)− δis)ds

≥ V0(x) −
∑m

i=1 λ̃i

∫ yi(x)

0
(φi(s)− δis)ds

= V0(x) −
1
2y

T (x)(∆ −∆)Λ̃y(x)−
∑m

i=1 λ̃i

∫ yi(x)

0
(φi(s)− δis)ds

= V0(x) −
1
2y

T (x)(∆ −∆−∆)Λ̃y(x)−
∑m

i=1 λ̃i

∫ yi(x)

0
φi(s)ds

= V0(x) −
1
2y

T (x)(∆ −∆)Λ̃y(x) +
∑m

i=1 λ̃i

∫ yi(x)

0 ((δis− φi(s))ds

= V0(x) −
1

2
yT (x)(∆ −∆)Λ̃y(x)

︸ ︷︷ ︸

>0 from (10b)

+

m∑

i=1

λ̃i

∫ yi(x)

0

(δis− φi(s))ds

︸ ︷︷ ︸

≥0 from Λ̃≥0 and (2b).

(11)

was used to obtain upper-bounds of the induced L2 gain
for system (1) with additive disturbance terms.

By using the relations
∫ yi

0

φi(s)∂φi(s)ds =
1

2
φ2
i (yi)

∫ yi

0

∂φi(s)sds = φ2
i (ui)ui +

∫ yi

0

φi(s)ds,

it is straightforward to obtain

4∑

j=1

m∑

i=1

gj,i(x) =

[
x

φ(x)

]T

M̄

[
x

φ(x)

]

(14)

+

m∑

i=1

µi

∫ yi(x)

0

φi(s)ds

with M̄ =
[
CT 0
DT I

]

M [C D
0 I ] where

M =

[
∆M2 + ΓM3

1
2 (∆M4 −M3)

1
2 (∆M4 −M3) − 1

2M4

]

,

with Mj = diag(µj,1, . . . , µj,m), j = 1, . . . , 4, and µi =
(µ1,i − µ2,i + µ3,i − δiµ4,i).

The above expressions show that (12) can be written
as (9a) with matrix P replaced by matrix P̄ + M̄ .
However, since matrix P̄ + M̄ is not necessarily positive
definite and the coefficients µi are not sign definite (as
can be seen from the above expressions: note the − 1

2M4

term in the (2, 2) block of matrix M), the results of [18]
imply that V as defined in (9a) may have the term V0

with P which is not positive definite and Lur’e terms
that are not necessarily non-negative.

Here, instead of using V̄ with positive-definite and
non-negative µi,j we will apply the conditions for the
positivity of V as detailed in Lemma 4.1. ⋆

The following theorem presents conditions for the
stability of the origin of Lur’e system (1) with slope-
restricted nonlinearities:

Theorem 4.1: If there exists a matrix P ∈ R
n+m×n+m,

matrices Λ ∈ D
m, Λ̃, T0, T1, T2 ∈ D

m
≥0 and a scalar α > 0

such that (10a) holds,

V0(x)−
1

2
yT (∆−∆)Λ̃y − s1(T0, x, φ) > 0 (15a)

∀x ∈ R
n, φ ∈ R

m,

−

〈[
∇xV

∇φV

]

,

[
Ax+Bφ

φ̇

]〉

− s1(T1, x, φ) − s2(T2, x, φ, φ̇) > 0 (15b)

∀x ∈ R
n, φ ∈ R

m, and

E(V, α) ⊆ X0 (15c)

then the origin of (1) is locally asymptotically stable and
E(V, α) is an estimate of its region of attraction. In the
case X0 = R

n, then the origin is globally asymptotically
stable.

Proof: Provided the sector inequalities (2b) and (2c)
hold, that is, provided the trajectories live in the set X0,
it follows from lemmas 3.3- 3.4that V (x) is positive and

V̇ (x) =

〈[

∇xV
∇φV

]

,

[
Ax+Bφ

φ̇

]〉

, the time-derivative

of V is negative along the trajectories of system (1).
Following [10, Theorem 4.1], if (15c) holds, the E(V, α)
is invariant and contractive, hence defining an estimate
of the basin of attraction of (1).
A convenient property of the quadratic inequalities (15)
is that their representation is affine on P , Λ, Λ̃, Ti,
i = {0, 1, 2}. These matrices can be variables of a con-
vex semi-definite program whenever the system matrices
(A,B,C,D) and the sector bounds ∆,∆,Γ,Γ are given.
The inclusion condition (15c) may, in some cases, be

specified in terms of quadratic-like inequalities as in the
Lyapunov inequalities. This depends on the description
of the set X0 and on the computation of an explicit
form for the Lur’e term. In Section V, Example 5.2
introduces a set X0 defined by linear inequalities and a
logarithmic nonlinearity which allows for a quadratic-like
representation of the LF.

V. Numerical Results

We present numerical results obtained with the solu-
tion to the linear matrix inequalities associated to the
inequalities in Theorem 4.1.
Example 5.1: This example considers the SISO system

G(s) = −0.5s2−s+1
(s2+0.1s+1) , with the bounds of φ given by δ = 0,

γ = 0, δ = δ∗, γ = δ∗. With a bisection algorithm



we maximize δ∗ such that the inequalities (15) hold.
In order to compare with different LF structures from
the literature we also compute the maximal value of δ∗

such that the inequalities (15) hold for V , for V0 (i.e.
V with Λ = 0), for the LF of the Circle Criterion,
VQ(x) = xTP11x,which corresponds to V with P12 =
0, P22 = 0, Λ = 0 and for the LF of the Popov criterion

VQL(x) = xTP11x+
m∑

i=1

λi

∫ yi

0

φs(s)ds,

which corresponds to V with P12 = 0, P22 = 0. The
obtained results are detailed in Table I where it is shown
that with the LF defined by V we obtain the least
conservative upper bound on the sector condition δ∗.

VQ V0 VQL V

δ∗ 0.236 0.236 0.725 0.999
TABLE I

Maximum value of δ∗ for different structures of the LF.

The function V obtained for system (1) with the
bounds defined by δ∗ corresponds to the following values
for P and Λ

P =





2.3833 −0.0149 1.4652
−0.0149 2.3222 −0.2928
1.4652 −0.2928 1.3280



 ,Λ = −2.5254.

For the function VQL we obtain P11 = [ 1.7996 0.1182
0.1182 1.9164 ], Λ =

−2.7677. Note that the Lur’e coefficients are negative.
For the function V0 we obtain

P =





0.5148 0.0221 0.0941
0.0221 0.5325 −0.1255
0.0941 −0.1255 −0.5802



 .

where the corresponding P22 block is negative (entry
−0.5802). And for VQ we have computed

P11 =

[
0.5323 0.0415
0.0415 0.5325

]

.

◦
Example 5.2: Motivated by applications of electrical

energy storage devices known as supercapacitors [4] we
now study a SISO system with the nonlinearity φ(y) =
ln (1+y), the shifted logarithmic function as depicted in
Figure 3. This nonlinearity has an asymptote at yi = −1
and is defined in Y = (−1,∞).
Set Y0 = [y, y], with −1 < y < 0, 0 < y < ∞.

The corresponding sector and slope bounds δ, δ, γ, γ
in (2b), (2c) are given by

δ =
ln (1 + y)

y
, δ =

ln (1 + y)

y
, (16a)

γ =
1

1 + y
, γ =

1

1 + y
. (16b)

We take y = −0.99 and y = 2 and use the correspond-
ing bounds (16) to perform the local analysis. We con-

sider the SISO system G(s) = 0.1(s+0.1)
(s2+10s+1) and compute

-1 0 1 2 3
-2

-1

0

1

2

delM

y y

γ

γ

δ

Fig. 3. Local sector bounds and slope bounds for the function
φ(y) = ln(1 + y) (black solid lines). Lines crossing the origin
define the sector f(y) := δy (blue solid line), f(y) := δy (red
solid line), lines depicting the slope restriction, passing through y,
g(y) := ln(1 + y) + γy − γy (blue dashed line), and through y,
g(y) := ln(1 + y) + γy − γy (red dashed line).

the largest level sets of the Lyapunov functions V , V0, VQ,
VQL that satisfy the inclusion. The inclusion was checked
by inspection and we do not present inclusion conditions.
These level sets are shown in figure 4, where trajectories
that asymptotically converge to the origin are depicted
in green. Note that by including more information about
the nonlinearity, the function V gives a better description
of the domain of attraction when compared with the
estimates obtained with VQ, VQL and V0.
For this example, the computed values of P and Λ that

formed V were

P =





0.0808 −0.0343 0.4712
−0.0343 1.6648 −0.0093
0.4712 −0.0093 −0.0106



 ,Λ = −0.2914

showing that both the positive definite requirement on
P and the non-negative condition on Λ could simultane-
ously be relaxed.
For the logarithmic nonlinearity, the Lur’e terms are

given by
∫ yi

0

ln(1 + s) ds = (1 + yi) ln(1 + yi)− yi,

hence, for φ(y(x)) = [ ln(1+y1(x)) ... ln(1+ym(x)) ], the func-
tion V (x) in (9a) has quadratic form. ◦

VI. Conclusions

In this paper, stability analysis of Lur’e type systems
with slope-restricted nonlinearities was carried out for
LFs that have a quadratic-like term on the state and
the nonlinearity and Lur’e type terms. We have pro-
posed relaxed conditions for the positivity of the LF (cf.
Lemma 4.1) and have used sector inequalities to propose
conditions for the global and local stability of the origin
of Lur’e systems.
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Fig. 4. Level sets of the LF V (blue solid lines), the largest level
sets contained in X0 of V0 (orange solid lines), of VQL (grey solid
lines), and of VQ (purple solid lines), a set of stable trajectories
(green solid lines) and the set X0, in which the local sector condition
holds (delimited by black solid lines).

The inequalities on the proposed conditions are of
quadratic nature and are affine in the Lyapunov func-
tion coefficients and in the multipliers associated with
the sector inequalities. Thanks to these properties, it is
possible to obtain equivalent LMI formulations.
Numerical examples illustrate the results and provide

comparison between them to different LF structures. For
a SISO Lur’e system of order two defined by a logarith-
mic nonlinearity, the obtained estimates of the region
of attraction significantly improve estimates defined by
quadratic functions.
We are currently developing conditions for state-

feedback design for Lur’e systems using the Lyapunov
functions studied in this paper.
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