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A Semi-Definite Programming Approach to Stability Analysis of Linear Partial
Differential Equations

Aditya Gahlawat1 and Giorgio Valmorbida2

Abstract— We consider the stability analysis of a large class of
linear 1-D PDEs with polynomial data. This class of PDEs contains,
as examples, parabolic and hyperbolic PDEs with spatially varying
coefficients and systems of in-domain/boundary coupled PDEs. Our
approach is Lyapunov based which allows us to reduce the stability
problem to verification of integral inequalities on the subspaces of
Hilbert spaces. Then, using the fundamental theorem of calculus and
Green’s theorem, we construct a polynomial optimization problem
to verify the integral inequalities. Constraining the solution of the
polynomial optimization problem to belong to the set of sum-of-squares
polynomials subject to affine constraints allows us to use semi-definite
programming to algorithmically construct Lyapunov certifi cates of
stability for the systems under consideration. We also provide numerical
results of the application of the proposed method on different types of
PDEs.

I. INTRODUCTION

Temporal evolution of processes involving spatially distributed
physical quantities requires Partial Differential Equations (PDEs)
to produce accurate models for analysis and control [19], [2].
Analysis of PDE systems brings forth technical challenges relative
to Ordinary Differential Equations (ODEs) due to the infinite
dimensional nature of the state-space. Owing to the maturity of
research on ODEs, a traditional method of analysis is to reduce
PDE systems, using spatial or spectral methods, to a system of
ODEs which can then be analyzed with relative ease [5], [8].

Recently, variousdirect methods, i.e., methods without finite-
dimensional approximation, have been developed for analysis and
control of PDEs. For controller synthesis, backstepping isan oft
used method wherein the problem of stabilizing boundary feedback
design is reduced to a hyperbolic PDE whose solution can be
obtained either analytically or numerically [9]. Similarly, one may
use Lyapunov’s second method for infinite-dimensional systems to
establish stability [3], [11]. Lyapunov’s method requiresthat the
structure of a Lyapunov Functional (LF) to be chosena priori. In
this paper we choose quadratic LF candidates of the form used
in our previous work in [6]. The reason for this choice, as we
established in [6], is that such LF candidates are successful in
providing stability certificates for parabolic PDEs. Additionally,
also in [6], we showed that such LFs are certificates of stability
for parabolic PDEs actuated by backstepping boundary feedback.

The LF candidates we consider lead to Lyapunov inequalities
defined by integral expressions containing quadratic termsin the
state defined on one-dimensional (1-D) and two-dimensional(2-D)
domains and their respective boundaries. Moreover, the verification
of these inequalities has to be performed on the spaces of functions
defined by the boundary conditions of the PDE whose stability
we wish to establish. The interplay between the 2-D domain/1-D
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versité Paris-Saclay, 3 Rue Joliot Curie, Gif-sur-Yvette91192, France
giorgio.valmorbida@l2s.centralesupelec.fr

domain and the boundary values has to be thus accounted for with
the Fundamental Theorem of Calculus (FTC) and Green’s theorem,
which are used in a similar way to [16].

A. Contribution

The paper presents a convex optimization based method for
the verification of integral inequalities on (subspaces of)Hilbert
spaces and its application to stability analysis of PDE systems
with polynomial data. The proposed method generalizes previous
approaches by the authors, see, for e.g. [6], [17], thus encompassing
a larger class of PDEs.

In order to accomplish our goals we first reduce the problem
of stability analysis to the verification of two Lyapunov integral
inequalities on (subspaces of) Hilbert spaces. To verify these
inequalities, we use FTC and Green’s theorem to construct poly-
nomial equations whose solution, if exists, verifies the Lyapunov
integral inequalities. Finally, we show that this polynomial equation
may be solved by searching for Sum-of-Squares (SOS) polynomials
under affine constraints thus rendering the problem of searching for
the solution as a Semi-Definite Program (SDP) [1, Chapter 3],[18],
a convex optimization problem.

B. Outline

The paper is organized as follows: In Section II we present the
problem statement and formulate the stability analysis problem as
the problem of verification of two integral inequalities. InSection III
we use positive semi-definite polynomial matrices to characterize a
class of non-negative/positive integral inequalities on Hilbert spaces.
In Section IV we use FTC and Green’s theorem to construct integral
terms which relate the domains on which the LF candidates are
defined to their boundaries, which we call slack integrals. Finally,
in Section V we present the main result and numerical experiments.

C. Notation

We denote byΩ the set{(x, y) ∈ R
2 : 0 ≤ y ≤ x ≤ 1},

Ω = {(x, y) ∈ R
2 : 0 ≤ x ≤ y ≤ 1} and ∆ = [0, 1] × [0, 1].

In the following definitionsα, β ∈ N. For w : [0, 1] → R
β , w ∈

Cα([0, 1]), we denote by∂i
xw(x) the i-th derivative ofw and

wα(x) =
[

w(x)T , ∂xw(x)T , · · · , ∂α
xw(x)T

]T
,

wb
α =

[

wα−1(1)
T , wα−1(0)

T
]T

,

w̄α(x) =
[

wα(x)
T ,

(

wb
α

)T
]T

.

Thus, wα : [0, 1] → R
β(α+1), wb

α ∈ R
2βα and w̄α : [0, 1] →

R
β(3α+1). We denote byN∂ , N ∈ N

βα×β(α+1) and N0, N1 ∈
N

βα×2βα the matrices satisfying∂xwα−1(x) = N∂wα(x),
wα−1(x) = Nwα(x), wα−1(0) = N0w

b
α, wα−1(1) = N1w

b
α.

We denote

Hα
(

[0, 1];Rβ
)

=
{

w : [0, 1] → R
β : w, ∂xw, . . . , ∂α−1

x w are

absolutely continuous on[0, 1] and



ˆ 1

0

(∂α
xw(x))T (∂α

xw(x)) dx < ∞
}

.

We also write L2

(

[0, 1];Rβ
)

= H0
(

[0, 1];Rβ
)

. The space
Hα

(

[0, 1];Rβ
)

is endowed with the standard inner product and

norm ‖w‖Hα =
√

〈wα, wα〉Hα =
√

´ 1

0
wα(x)Twα(x)dx, and

the spaceL2

(

[0, 1];Rβ
)

has the norm and inner product‖·‖L2
=

‖·‖H0 and 〈·, ·〉
L2

= 〈·, ·〉
H0 , respectively.

For anym,n ∈ N, we denote by0m,n the matrix of zeros of
dimensionsm-by-n and0m whenm = n. Similarly, we denote by
In the identity matrix of dimensionsn-by-n. The set of symmetric
matrices of dimensionn-by-n is donated bySn. For any square
matrix Q, we denoteHe(Q) = 1

2

(

Q+QT
)

.
We denote bySn[x] and Sn[(x, y)] the sets of symmetric

polynomial matrices of sizen-by-n in variablesx, andx and y,
respectively. Similarly, we denote byRm×n[x] andRm×n[(x, y)]
the sets of real polynomial matrices of sizem-by-n in variables
x and y. We denote byΣn[x] the set of Sum-of-Squares (SOS)
polynomials which, for allx ∈ [0, 1], belong toSn. Note that, by
definition, an SOS polynomial is non-negative for allx ∈ R [1,
Chapter 3]. We say that a polynomialS ∈ Sn[x] is positive semi-
definite on[0, 1] if S(x) � 0, for all x ∈ [0, 1]. Givenα, β, d ∈ N,
we define

Yq(α,β,d)(x, y) = Iβ(α+1) ⊗ z(x, y) ∈ R
q(α,β,d)×β(α+1), (1)

where q(α, β, d) = 1
2
β(α + 1)(d + 2)(d + 1), z(x, y) ∈

R
1

2
(d+2)(d+1) is the vector of monomials in the standard basis inx

andy up to degreed and⊗ denotes the Kronecker product. For ex-
ample, ford = 2, we havez(x, y) =

[

1 x y x2 xy y2
]T

.
For any bivariate functionK : Ω → R

n×n, we define the linear
map

Γ [K] =

{

K(x, y), x ≥ y

K(y, x)T , y > x
,

thus satisfying, for anyv : [0, 1] → R
n,

ˆ

∆

v(x)TΓ [K] v(y)d∆ =

ˆ 1

0

ˆ x

0

v(x)TK(x, y)v(y)dydx

+

ˆ 1

0

ˆ 1

x

v(x)TK(y, x)T v(y)dydx.

II. PROBLEM STATEMENT

Consider the following class of linear PDEs

∂tw(x, t) = A(x)wα(x, t), (2a)

whereA ∈ Rβ×β(α+1)[x]. The statew : [0, 1] × [0,∞) → R
β

belongs to the setB of functions satisfying the boundary conditions
defined as

B =
{

w ∈ Hα
(

[0, 1];Rβ
)

: Fwb
α = 0βα,1

}

, (2b)

whereF ∈ R
βα×2βα. We now provide a few examples of PDEs

which can be cast in the form of (2). Each of the following PDEs
is parameterized by a positive scalarλ.

1) Example1: Consider the followingparabolic PDE with
distributed coefficients

∂tv(x, t) =
(

x2 + 1
)

∂2
xv(x, t) + 0.5x∂xv(x, t) + λv(x, t), (3a)

v(0, t) =0, ∂xv(1, t) = 0. (3b)

This PDE may be set in the form of (2) withα = 2, β = 1 and

w(x, t) =v(x, t),

A(x) =
[

λ 0.5x x2 + 1
]

, F =

[

0 0 1 0
0 1 0 0

]

.

2) Example2: Now consider the followingsystem of hyper-
bolic PDEs coupled in-domain and at the boundaries

∂tv1(x, t) = (λ− 1)
(

x2 + 1
)

∂xv1(x, t)+(x− 3)v2(x, t), (4a)

∂tv2(x, t) = (x+ 1) ∂xv2(x, t), (4b)

v1(0, t)− 3v2(0, t) = 0, v2(1, t) = 0. (4c)

This PDE may be set in the form of (2) withα = 1, β = 2 and

w(x, t) =
[

v1(x, t) v2(x, t)
]T

,

A(x) =

[

0 x− 3 (λ− 1)
(

x2 + 1
)

0
0 0 0 x+ 1

]

,

F =

[

0 0 1 −3
0 1 0 0

]

.

3) Example3: Finally, consider the followingEuler-Bernoulli
beam modeltaken from [9, Exercise 8.3]

∂2
t v(x, t) + ∂4

xv(x, t) = 0, (5a)

∂2
xv(0, t)−

1

1− λ
∂xtv(0, t) = 0, (5b)

∂3
xv(0, t) + (1− λ)∂tv(0, t) = 0, ∂2

xv(1, t) = 0, (5c)

v(1, t) = 0. (5d)

We may re-write (5) as

∂t

[

∂2
xv(x, t)
∂tv(x, t)

]

=

[

∂t∂
2
xv(x, t)

−∂4
xv(x, t)

]

,

∂2
xv(0, t)−

1

1− λ
∂xtv(0, t) = 0,

∂3
xv(0, t) + (1− λ)∂tv(0, t) = 0, ∂2

xv(1, t) = 0,

∂tv(1, t) = 0.

With this representation, we may write (5) in the form of (2) with
α = 2, β = 2 and

w(x, t) =
[

∂2
xv(x, t) ∂tv(x, t)

]T
,

A(x) =

[

0 0 0 0 0 1
0 0 0 0 −1 0

]

,

F =









0 0 0 0 1 0 0 − 1
1−λ

0 0 0 0 0 1− λ 1 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0









.

We wish to establish the stability of (2) by constructing Lyapunov
functional (LF) certificates of exponential stability. In particular, we
wish to construct LFs of the form

V (w) =
1

2

ˆ 1

0

w(x, t)TTb(x)w(x, t)dx

+
1

2

ˆ

∆

w(x, t)TΓ
[

T̄
]

w(y, t)d∆, (6)

where Tb ∈ Sβ[x] and T̄ ∈ Rβ×β[(x, y)]. As stated in the
Introduction, parabolic PDE systems with boundary backstepping
based control laws admit LF certificates of stability which have the
same structure as (6) [6]. The numerical results in [6] also indicate
that such LFs are not conservative for spatially distributed scalar
parabolic PDEs.

Let us now formulate conditions for the exponential stability
of (2). We begin by computing the time derivative of (6) along
the trajectories of (2). Consider a scalarδ > 0 and define

Vd(w) = −∂tV (w)− 2δV (w), (7)



which can be put in the form (see the Appendix in the expanded
version of this manuscript in [7])

Vd(w) =

ˆ 1

0

w̄α(x)
TUb(x)w̄α(x)dx

+

ˆ

∆

wα(x)
TΓ
[

Ū
]

wα(y)d∆, w ∈ Hα
(

[0, 1];Rβ
)

,

(8)

where

Ub(x) =−He

([

Tb(x)A(x) 0β,2βα

03βα,β(α+1) 03βα,2βα

])

−He

([

δTb(x) 0β,3βα

03βα,β 03βα

])

,

Ū(x, y) =−
1

2

(

[

T̄ (x, y)TA(x)
0βα,β(α+1)

]T

+

[

T̄ (x, y)A(y)
0βα,β(α+1)

]

)

−
1

2

[

2δT̄ (x, y) 0β,βα

0βα,β 0βα

]

.

The following theorem casts the verification of exponential
stability of (2) as the verification of two integral inequalities.

Theorem 1:Given the PDE (2), suppose there exist positive
scalarsµ, δ and polynomial matricesTb ∈ Sβ[x] and T̄ ∈
Rβ×β[(x, y)] such that

V (w) ≥ µ‖w‖2L2
, ∀w ∈ L2

(

[0, 1];Rβ
)

, (9)

Vd(w) ≥ 0, ∀w ∈ B ⊂ Hα
(

[0, 1];Rβ
)

, (10)

whereV (w) andVd(w) are defined in (6) and (8), respectively.
Then, there exists a positive scalarκ such that the solution of (2)

satisfies

‖w(·, t)‖L2
≤ κe−δt‖w(·, 0)‖L2

, ∀t ≥ 0. (11)
Proof: Let us choose the LF candidateV (w). Since the

condition in (9) holds, we have that there exists a positive scalarθ
such that

µ‖w(·, t)‖2L2
≤ V (w) ≤ θ‖w(·, t)‖2L2

, ∀t ≥ 0, (12)

where the existence of the upper bound is a consequence ofTb and
T̄ being polynomial matrices defined on bounded domains.

Now, for this LF candidate, we have from (7) that

Vd(w) =− ∂tV (w)− 2δV (w),

and since (10) holds for allw ∈ B and thus forw that solve (2),
we have that

−∂tV (w)− 2δV (w) ≥ 0, ∀t ≥ 0. (13)

Integrating this expression in time producesV (w) ≤
e−2δt

V (w(0)). Using (12) produces µ‖w(·, t)‖2L2
≤

e−2δtθ‖w(·, 0)‖2L2
. Then, taking the square root we conclude

that (11) holds withκ =
√

θ/µ.
We have reduced the problem of stability analysis of (2) to the

verification of the integral inequalities in (9) and (10). Thus, the
remainder of the work considers the following problem:

Problem: Verify if V (w) is strictly positive, i.e., (9) is ver-
ified on L2

(

[0, 1];Rβ
)

, and Vd(w) is non-negative onB ⊂
Hα

(

[0, 1];Rβ
)

.
We verify (9) by generalizing the methods proposed in [6]

and [17]. Namely, we test the positive semi-definiteness of a
polynomial matrix associated toTb and T̄ . Since (10) requires
Vd(w) ≥ 0 only on the subsetB of Hα

(

[0, 1];Rβ
)

, it calls for
a different formulation than the one adopted to verify (9). In this

case we first construct a set of integral termsS(w) which have the
same structure asVd(w) and satisfyS(w) = 0, for all w ∈ B.
We refer to such expressions asslack integrals. We then check for
the positive semi-definiteness of a polynomial matrix associated
to Vd(w) + S(w) which guaranteesVd(w) + S(w) ≥ 0, for all
w ∈ Hα

(

[0, 1];Rβ
)

.
The construction of slack integrals is presented in SectionIV.

These integrals generalize the results presented in [13], [14] for
time-delay systems and in [17] for PDE analysis using (6) with
T̄ = 0.

III. POSITIVE/NON-NEGATIVE INTEGRAL
INEQUALITIES ON HILBERT SPACES

In this section we construct a set of positive/non-negativeintegral
inequalities which are parameterized by Positive Semi-Definite
(PSD) polynomial matrices. The results provided are a general-
ization of [6, Theorem 1]. Throughout this section we will use the
polynomial matrixYq(α,β,d)(x, y) defined in (1).

We begin by constructing non-negative integral inequalities on
Hα

(

[0, 1];Rβ
)

, givenα, d ∈ N, that have the same form asVd(w)
in (8). Let us define

R (w)=

ˆ 1

0

w̄α(x)
TRb(x)w̄α(x)dx+

ˆ

∆

wα(x)
TΓ
[

R̄
]

wα(y)d∆,

(14)

whereRb ∈ Sβ(3α+1)[x] and

R̄(x, y) =R12(x)Yq(α,β,d)(x, y) + Yq(α,β,d)(y, x)
TR13(y)

T

+

ˆ y

0

Yq(α,β,d)(z, x)
TR33Yq(α,β,d)(z, y)dz

+

ˆ x

y

Yq(α,β,d)(z, x)
TRT

23Yq(α,β,d)(z, y)dz

+

ˆ 1

x

Yq(α,β,d)(z, x)
TR22Yq(α,β,d)(z, y)dz, (15)

for some (polynomial) matricesR12, R13 ∈ Rβ(α+1)×q(α,β,d)[x],
R22, R33 ∈ S

q(α,β,d) and R23 ∈ R
q(α,β,d)×q(α,β,d), which also

define

R(x)=



















Rb(x)

[

R12(x)
02βα,q(α,β,d)

] [

R13(x)
02βα,q(α,β,d)

]

[

R12(x)
02βα,q(α,β,d)

]T

R22 R23

[

R13(x)
02βα,q(α,β,d)

]T

RT
23 R33



















∈ Sβ(3α+1)+2q(α,β,d)[x]. (16)

The following theorem states the conditions on the polynomial
matrix R(x) whose submatrices defineRb and R̄ such that (14) is
non-negative onHα

(

[0, 1];Rβ
)

.
Theorem 2:Given (polynomial) matrices which defineR (w)

in (14), if
R(x) � 0, ∀x ∈ [0, 1], (17)

whereR(x) is defined in (16), then

R (w) ≥ 0, ∀w ∈ Hα
(

[0, 1];Rβ
)

. (18)
The proof of this theorem can be found in the expanded versionof
this manuscript in [7].

We now present a corollary in which we construct strictly positive
integral inequalities onL2

(

[0, 1];Rβ
)

that have the same form
as V (w) in (6). This corollary corresponds to settingα = 0 in
Theorem 2.



Givenw ∈ L2

(

[0, 1];Rβ
)

andβ, d ∈ N, let us define

T (w)=

ˆ 1

0

w(x)TTb(x)w(x)dx+

ˆ

∆

w(x)TΓ
[

T̄
]

w(y)d∆, (19)

whereTb ∈ Sβ[x] and

T̄ (x, y) =T12(x)Yq(0,β,d)(x, y) + Yq(0,β,d)(y, x)
TT13(y)

T

+

ˆ y

0

Yq(0,β,d)(z, x)
TT33Yq(0,β,d)(z, y)dz

+

ˆ x

y

Yq(0,β,d)(z, x)
TT T

23Yq(0,β,d)(z, y)dz

+

ˆ 1

x

Yq(0,β,d)(z, x)
TT22Yq(0,β,d)(z, y)dz, (20)

for anyT12, T13 ∈ Rβ×q(0,β,d)[x], T22, T33 ∈ S
q(0,β,d) andT23 ∈

R
q(0,β,d)×q(0,β,d), which also define

T (x) =





Tb(x) T12(x) T13(x)

T12(x)
T T22 T23

T13(x)
T T T

23 T33



 ∈ Sβ+2q(0,β,d)[x]. (21)

Corollary 1: Given (polynomial) matrices which defineT (w)
in (19), if there exists a positive scalarǫ such that

T (x)−

[

ǫIβ 0β,2q(0,β,d)

02q(0,β,d),β 02q(0,β,d)

]

� 0, ∀x ∈ [0, 1], (22)

whereT (x) is defined in (21), then,

T (w) ≥ ǫ‖w‖2L2
, ∀w ∈ L2

(

[0, 1];Rβ
)

. (23)
Similar to Theorem 2, a detailed proof of this corollary can be
found in [7].

IV. SLACK INTEGRALS

In Section II we cast the stability of (2) as a test of positivity and
non-negativity of integral inequalities in (9) and (10). InSection V
we will show that Corollary 1 is sufficient to verify (9). Theorem 2,
however, is too conservative to verify (10) because it enforces
Vd(w) ≥ 0 on the entire spaceHα

(

[0, 1];Rβ
)

, while we are only
interested in non-negativity over the subsetB ⊂ Hα

(

[0, 1];Rβ
)

.
As discussed in Section II, to solve this problem we construct slack
integralsS(w) which we defined as integral expressions with the
same structure asVd(w) and satisfies

S(w) = 0, ∀w ∈ B. (24)

Then, we may use Theorem 2 to test if

Vd(w) + S(w) ≥ 0, ∀w ∈ Hα
(

[0, 1];Rβ
)

,

which, if true, would imply thatVd(w) ≥ 0, ∀w ∈ B, owing
to (24).

We will construct slack integrals using quadratic forms of the
Fundamental Theorem of Calculus (FTC) and Green’s theorem.

Lemma 1 (FTC quadratic form):For anyK1 ∈ Rβα×βα[x] and
K2 ∈ Rβα×2βα[x] the following identity holds
ˆ 1

0

w̄α(x)
THe (Kb(x)) w̄α(x)dx = 0, ∀w ∈ Hα

(

[0, 1];Rβ
)

,

(25)
where

Kb =

[

Kb1(x) Kb2(x)
02βα,β(α+1) Kb3

]

,

Kb1(x) =NT ∂xK1(x)N +NTK1(x)N∂ +NT
∂ K1(x)N,

Kb2(x) =NT
∂ K2(x) +NT ∂xK2(x),

Kb3 =NT
0 K1(0)N0 −NT

1 K1(1)N1 +N0K2(0)−N1K2(1).

Proof: The identity (25) is established by expanding
ˆ 1

0

d

dx
g(x)dx− (g(1)− g(0)) = 0,

with

g(x) =wα−1(x)
TK1(x)wα−1(x) + wα−1(x)

TK2(x)w
b
α.

Next, we present the quadratic form of the Green’s theorem. The
proof of the following lemma is provided in the expanded version
of this manuscript in [7].

Lemma 2 (Green’s theorem quadratic form):For anyH1,H2 ∈
Rβα×βα[(x, y)], the following identity holds
ˆ 1

0

w̄α(x)
THe (Hb(x)) w̄α(x)dx

+

ˆ

∆

wα(x)
TΓ
[

H̄
]

wα(y)d∆ = 0, ∀w ∈ Hα
(

[0, 1];Rβ
)

,

where

Hb(x) =

[

Hb1(x) Hb2(x)
Hb3(x) 02βα

]

,

Hb1(x) =−NT (H1(x, x) +H2(x, x))N,

Hb2(x) =NTH1(x, 0)N0, Hb3(x) = NT
1 H2(1, x)N,

H̄(x, y) =
1

2
NT (∂yH1(x, y)− ∂xH2(x, y))N

+
1

2

(

NTH1(x, y)N∂ −NT
∂ H2(x, y)N

)

.

In the following lemma we formulate an integral equation that
holds on the setB given in (2b). The proof of the following lemma
is provided in the expanded version of this manuscript in [7].

Lemma 3:GivenF ∈ R
βα×2βα the following identity holds true

for all w ∈ B:
ˆ 1

0

w̄α(x)
THe (Bb(x)) w̄α(x)dx = 0,

where

Bb(x) =

[

0β(α+1) B1(x)F
02βα,β(α+1) B2(x)F

]

,

for anyB1 ∈ Rβ(α+1)×βα[x] andB2 ∈ R2βα×βα[x].
We now use the results in Lemmas 1-3 to formulate slack

integrals on the setB ∈ Hα
(

[0, 1];Rβ
)

.
Let us define

S(w) =

ˆ 1

0

w̄α(x)
THe (Kb(x) +Hb(x) +Bb(x)) w̄α(x)dx

+

ˆ

∆

wα(x)
TΓ
[

H̄
]

wα(y)d∆, (26)

whereKb is parameterized byK1 and K2 as in Lemma 1,Hb

andH̄ are parameterized byH1 andH2 as in Lemma 2 andBb is
parameterized byB1 andB2, and the matrixF which defines the
setB as in Lemma 3.

We now state the main result of this section.
Theorem 3:Given matrixF which defines the setB in (2b), the

following identity holds true

S(w) = 0, ∀w ∈ B, (27)

whereS(w) is parameterized by anyKi, Hi andBi, i ∈ {1, 2},
as in in (26).

Proof: We begin by considering the following decomposition

S(w) =

ˆ 1

0

w̄α(x)
THe (Kb(x) +Hb(x) +Bb(x)) w̄α(x)dx



+

ˆ

∆

wα(x)
TΓ
[

H̄
]

wα(y)d∆ =
3
∑

i=1

Θi, (28)

where

Θ1 =

ˆ 1

0

w̄α(x)
THe (Kb(x)) w̄α(x)dx,

Θ2 =

ˆ 1

0

w̄α(x)
THe (Hb(x)) w̄α(x)dx

+

ˆ

∆

wα(x)
TΓ
[

H̄
]

wα(y)d∆,

Θ3 =

ˆ 1

0

w̄α(x)
THe (Bb(x)) w̄α(x).

From Lemmas 1 and 2 we have that

Θ1 = 0 and Θ2 = 0, ∀w ∈ Hα
(

[0, 1];Rβ
)

. (29)

From Lemma 3 we have that

Θ3 = 0, ∀w ∈ B. (30)

Therefore, from (28)-(30) we conclude that the expression in (27)
holds for allw ∈ B.

V. MAIN RESULT

In this section we use the results formulated in Sections III-IV
to construct a method of verifying the stability of PDE (2). Let us
proceed with the following.

Theorem 4:Consider the PDE (2). For any givend ∈ N, positive
scalarsǫ, δ and polynomialYq(α,β,d) ∈ Rq(α,β,d)×β(α+1)[(x, y)]
defined in (1), suppose there exist:

(polynomial) matrices definingR (w) in (14), (31a)

(polynomial) matrices definingT (w) in (19), (31b)

ST ∈ Sβ+2q(0,β,d)[x], SR ∈ Sβ(3α+1)+2q(α,β,d)[x], (31c)

K1 ∈ Rβα×βα[x], K2 ∈ Rβα×2βα[x], (31d)

H1,H2 ∈ Rβα×βα[(x, y)], S ∈ Sβ(3α+1)[x], (31e)

B1 ∈ Rβ(α+1)×βα[x], B2 ∈ R2βα×βα[x], (31f)

such that

T (x)−

[

ǫIβ 0β,2q(0,β,d)

02q(0,β,d),β 02q(0,β,d)

]

− ST (x)ω(x) ∈ Σβ+2q(0,β,d)[x], (32a)

ST ∈ Σβ+2q(0,β,d)[x], (32b)

R(x)− SR(x)ω(x) ∈ Σβ(3α+1)+2q(α,β,d)[x], (32c)

SR(x) ∈ Σβ(3α+1)+2q(α,β,d)[x], (32d)

He (Ub(x) +Kb(x) +Hb(x) +Bb(x))

−Rb(x)− S(x)ω(x) ∈ Σβ(3α+1)[x], (32e)

S(x) ∈ Σβ(3α+1)[x], (32f)

Ū(x, y) + H̄(x, y)− R̄(x, y) = 0α+1, (32g)

where ω(x) = x(1 − x), T (x) and R(x) are defined in (21)
and (16), respectively,Kb is defined usingKi as in Lemma 1,
Hb and H̄ are defined usingHi as in Lemma 2,Bb is defined
using Bi and F as in Lemma 3, and polynomialsUb and Ū are
defined usingδ in (8) and withTb and T̄ defined in (19).

Then, (2) is exponentially stable.
Proof: Since the polynomial matrix in (32a) is Sum-of-Squares

(SOS),ST is SOS in (32b) andω(x) ≥ 0, for all x ∈ [0, 1],
using the property that a SOS polynomial is non-negative forall

x ∈ R, we conclude thatT (x) satisfies (22). Therefore,T (w) ≥
ǫ‖w‖L2

, for all w ∈ L2

(

[0, 1];Rβ
)

. Moreover, from (6) we have
thatV (w) = 1

2
T (w) and thus

V (w) ≥ µ‖w‖L2
, ∀w ∈ L2

(

[0, 1];Rβ
)

, (33)

with µ = 1
2
ǫ. Similarly, since (32c)-(32d) hold, we conclude from

Theorem 2 that

R (w) ≥ 0, ∀w ∈ Hα
(

[0, 1];Rβ
)

. (34)

Now, let us define

P(w)=

ˆ 1

0

w̄α(x)
TPb(x)w̄α(x)dx+

ˆ

∆

wα(x)
TΓ
[

P̄
]

wα(y)d∆,

(35)

where

Pb(x) =He (Ub(x) +Kb(x) +Hb(x) +Bb(x))−Rb(x),

P̄ (x, y) =Ū(x, y) + H̄(x, y)− R̄(x, y).

Since (32e)-(32g) hold, we deduce that

Pb(x) � 0, ∀x ∈ [0, 1], P̄ (x, y) = 0, ∀(x, y) ∈ ∆.

Therefore, we get

P(w) ≥ 0, ∀w ∈ Hα
(

[0, 1];Rβ
)

. (36)

From the definition ofP(w) in (35) it is clear thatP(w) = Vd(w)+
S(w)− R (w), whereVd(w) is defined in (8) andS(w) is defined
in (26). Thus, using (36) we obtain

Vd(w) + S(w) − R (w) ≥ 0, ∀w ∈ Hα
(

[0, 1];Rβ
)

.

Using (34) the previous expression may be reduced to

Vd(w) + S(w) ≥ 0, ∀w ∈ Hα
(

[0, 1];Rβ
)

. (37)

Now, from Theorem 3 we have thatS(w) = 0, for all w ∈ B, thus,
from (37) we deduce that

Vd(w) ≥ 0, ∀w ∈ B ⊂ Hα
(

[0, 1];Rβ
)

. (38)

Since (33) and (38) hold, we apply Theorem 1 to complete the
proof.

Since the set of polynomials is closed under differentiation and
integration, we have thatKb andH̄ containing∂xK1(x), ∂xK2(x),
∂yH1(x, y) and∂xH2(x, y) in Lemmas 1-2 are polynomials. More-
over, since the polynomialYq(α,β,d)(x, y) is fixed, the termsRb,
R̄, Tb and T̄ in Theorem 2 and Corollary 1 are polynomials affine
in their respective (polynomial) matrices. Therefore, theconditions
in (32) are simply either,1) a verification of the membership of
polynomial matrices in the set of SOS polynomials as in (32a)-(32f),
or, 2) enforcement of affine constraints on the polynomial variables
as in (32g). Indeed, the problem of searching for SOS polynomials
subject to affine constraints is a Semi-Definite Program (SDP), [1,
Chapter 3], [18]. We are then interested in solving

SDP Problem: Find (31) subject to (32). (39)

The numerical implementation is performed by constructingthe
underlying SDP for (39) by using the freely available packages
SOSTOOLS [12] or YALMIP [10]. Then, the associated SDP is
solved, for example, using SeDuMi [15] or SDPA [20] solvers.



d = 2 4 6 8

Example1 Eqn. (3) λ = 3.263 3.263 3.409 3.409

Example2 Eqn. (4) Inf. Inf. λ = 0.999 0.999

Example3 Eqn. (5) λ = 0.999 0.999 0.999 -

TABLE I: Maximum λ ∈ R for which problem (39) is feasible for
Examples1-3 in Equations (3)-(5), respectively, as a function of
polynomial degreed. Here, Inf. denotes infeasibility.

d = 2 d = 4 d = 6 d = 8

Example1 Eqn. (3) 4.415 8.111 20.273 48.080

Example2 Eqn. (4) 7.085 12.796 49.751 141.297

Example3 Eqn. (5) 25.663 113.708 360.876 -

TABLE II: Computer run time (in seconds) for performing the
search for variables which solve problem (39) using SeDuMi for
Examples1-3 in Equations (3)-(5), respectively.

A. Numerical Examples

We now determine the stability of PDEs (3), (4) and (5) presented
in Section II by solving (39) for each of these systems. Recall that
each of these systems are parameterized by a positive scalarλ ∈ R.
The parameterλ can alter the stability properties of these systems,
and thus, allows us to measure the effectiveness of the proposed
methodology.

We run the numerical codes for the example PDEs withǫ =
10−3, δ = 10−4 and maximum polynomial degree allowed by
the memory resources of8 giga bytes of RAM. In the following
examples, we search for the maximumλ ∈ R for which the
conditions of problem (39) are feasible using a bisection search
with a resolution of10−3. These results are provided in Table I.
The discussion of the results is provided below.

Example1: Using finite-differences with1500 uniformly dis-
tributed spatial points, we approximate that the parabolicPDE in (3)
is stable forλ < 3.412. As illustrated in Table I, the maximumλ for
which the problem (39) is feasible isλ = 3.409 which is99.91% of
the value of3.412 obtained via the finite-difference approximation.

Example2: Using [4, Lemma 3.1], it can be established that the
coupled first order hyperbolic PDE in (4) is exponentially stable
for λ < 1. As illustrated in Table I, the maximumλ for which
problem (39) is feasible isλ = 0.999 which is 99.9% of the
stability value of1.

Example3: Finally, the Euler-Bernoulli beam model in (5) is
stable forλ < 1 (see [9, Exercise 8.3]). From Table I we observe
that the maximumλ for which problem (39) is feasible isλ = 0.999
which is 99.9% of the stability value of1. Note that owing to
memory constraints, we could only solve the problem (39) fora
maximum degree ofd = 6.

Note that our method successfully establishes the stability of the
example PDEs within99.9% of the approximated/analytic stability
margin forλ. Finally, the time taken to search for variables which
solve problem (39) is provided in Table II.

VI. CONCLUSION

We presented a method to verify exponential stability of a
large class of 1-D PDEs with polynomial data. The presented
methodology relies on using Lyapunov’s method to reduce the
problem of stability to the verification of integral inequalities. An
application of the fundamental theorem of calculus and Green’s
theorem allows us to formulate a polynomial problem for verifying
the integral inequalities. Using the properties of SOS polynomials
allowed us to solve the polynomial problem in a computationally
efficient manner by casting the problem as an SDP. The numerical

experiments indicate that the method can predict the stability of the
systems considered up to a high degree of accuracy.

We would like to extend this method to consider an even
larger class of PDEs, for example, by including Partial (Integro)-
Differential Equations (P(I)DEs) and boundary feedback. Further-
more, we would like to formulate this theory for general PDEs,
i.e., PDEs not constrained to have polynomial data. Eventually,
we would like to extend this framework to in-domain/boundary
controller synthesis for PDEs.
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