N
N

N

HAL

open science

A semi-definite programming approach to stability
analysis of linear partial differential equations
Aditya Gahlawat, Giorgio Valmorbida

» To cite this version:

Aditya Gahlawat, Giorgio Valmorbida. A semi-definite programming approach to stability analysis of
linear partial differential equations. 56th IEEE Conference on Decision and Control (CDC 2017), Dec

2017, Melbourne, Australia. 10.1109/CDC.2017.8263924 . hal-01710293

HAL Id: hal-01710293
https://hal.science/hal-01710293
Submitted on 13 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01710293
https://hal.archives-ouvertes.fr

A Semi-Definite Programming Approach to Stability Analysis of Linear Partial
Differential Equations

Aditya Gahlawat and Giorgio Valmorbida

Abstract— We consider the stability analysis of a large class of
linear 1-D PDEs with polynomial data. This class of PDEs cormtns,
as examples, parabolic and hyperbolic PDEs with spatially arying
coefficients and systems of in-domain/boundary coupled PBE Our
approach is Lyapunov based which allows us to reduce the stiiy
problem to verification of integral inequalities on the subpaces of
Hilbert spaces. Then, using the fundamental theorem of caldus and
Green’s theorem, we construct a polynomial optimization poblem
to verify the integral inequalities. Constraining the soluion of the
polynomial optimization problem to belong to the set of sumef-squares
polynomials subject to affine constraints allows us to use s@-definite
programming to algorithmically construct Lyapunov certifi cates of
stability for the systems under consideration. We also proide numerical
results of the application of the proposed method on differat types of
PDEs.

I. INTRODUCTION

Temporal evolution of processes involving spatially distted
physical quantities requires Partial Differential Eqoat (PDES)

domain and the boundary values has to be thus accounted tfor wi
the Fundamental Theorem of Calculus (FTC) and Green'’s ¢neor
which are used in a similar way to [16].

A. Contribution

The paper presents a convex optimization based method for
the verification of integral inequalities on (subspaces Hifpert
spaces and its application to stability analysis of PDE esyst
with polynomial data. The proposed method generalizesiquev
approaches by the authors, see, for e.g. [6], [17], thusrepassing
a larger class of PDEs.

In order to accomplish our goals we first reduce the problem
of stability analysis to the verification of two Lyapunov egtal
inequalities on (subspaces of) Hilbert spaces. To verifgs¢h
inequalities, we use FTC and Green’s theorem to construgt po
nomial equations whose solution, if exists, verifies the dumov

to produce accurate models for analysis and control [19], [Zintegral inequalities. Finally, we show that this polynairéquation

Analysis of PDE systems brings forth technical challengeative

may be solved by searching for Sum-of-Squares (SOS) polialem

to Ordinary Differential Equations (ODEs) due to the infnit under affine constraints thus rendering the problem of azaydor

dimensional nature of the state-space. Owing to the muptofit

the solution as a Semi-Definite Program (SDP) [1, Chapt€8],

research on ODEs, a traditional method of analysis is toaedu@ Convex optimization problem.
PDE systems, using spatial or spectral methods, to a sysfem g outline

ODEs which can then be analyzed with relative ease [5], [8].
Recently, variousdirect methodsi.e., methods without finite-
dimensional approximation, have been developed for aisafrsd
control of PDEs. For controller synthesis, backsteppingurisoft
used method wherein the problem of stabilizing boundargliaek

The paper is organized as follows: In Section Il we preseet th
problem statement and formulate the stability analysidlera as
the problem of verification of two integral inequalities.Section 111
we use positive semi-definite polynomial matrices to cheréae a

design is reduced to a hyperbolic PDE whose solution can Kdass of non-negative/positive integral inequalities dibéft spaces.

obtained either analytically or numerically [9]. Similgrone may
use Lyapunov’'s second method for infinite-dimensionalesysst to
establish stability [3], [11]. Lyapunov’'s method requirdmt the
structure of a Lyapunov Functional (LF) to be chosepriori. In

In Section IV we use FTC and Green’s theorem to constructjiate
terms which relate the domains on which the LF candidates are
defined to their boundaries, which we call slack integraisalfy,

in Section V we present the main result and numerical exparim

this paper we choose quadratic LF candidates of the form us%j Notafi
in our previous work in [6]. The reason for this choice, as we™ otation

established in [6], is that such LF candidates are sucdessfu

providing stability certificates for parabolic PDEs. Additally,

also in [6], we showed that such LFs are certificates of stpbil In the following definitionsa, 8 € N. For w :

for parabolic PDEs actuated by backstepping boundary tesdb

The LF candidates we consider lead to Lyapunov inequalities

defined by integral expressions containing quadratic tamihe
state defined on one-dimensional (1-D) and two-dimensi(2xal)
domains and their respective boundaries. Moreover, théoation
of these inequalities has to be performed on the spaces ctidas

defined by the boundary conditions of the PDE whose stabilit;f_
we wish to establish. The interplay between the 2-D domdin/1
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Q={(z,y) eR*:0<z<y<1}andA = [0,1] x [0,1].
_ [0,1] = R?, w e
€([0,1]), we denote bydiw(x) thei-th derivative ofw and

wa(z) = [w(@)", dew(@)”, -, w@)T]",

wh = [wa 1 (D7, wa1(0)7]",
Bala) = [wala)?, (uh)"]”

hus, wa : [0,1] — RA+D) wl € R** and @, : [0,1] —
RPGo+D) \We denote byNy, N € NPexB@+) and Ny, Ny €
Nfox2Be the matrices satisfyingd,wa—1(z) = Nawa(z),
Wa—1(x) = Nwa (), wa—1(0) = Now?, Wwa-1(1) = Niwb.
We denote

We denote byQ the set{(z,y) € R* : 0 < y < = < 1},

H ([0,1];R5) :{w:[O,I]—HRﬁ ©w, Opw, ..., 05w are

absolutely continuous oft, 1] and



/1 (B2 w(z))" (0Sw(x)) dr < oo}.

0
We also write £ ([0,1;R?) = H° ([0,1;R?). The space

H ([0,1]; R?) is endowed with the standard inner product and

norm [[wllse = /e Wa)ym = 1/ Jo wa(2)Twa(z)dz, and
the spaceC, ([0, 1];R”) has the norm and inner produ¢t|., =
[l30 @and (-, ) ., = (-, )40, respectively.

For anym,n € N, we denote by0,,,, the matrix of zeros of
dimensionsm-by-n and0,,, whenm = n. Similarly, we denote by
I,, the identity matrix of dimensions-by-n. The set of symmetric
matrices of dimensiom-by-n is donated byS™. For any square
matrix @, we denoteHe(Q) = 1 (Q + Q™).

We denote byS™[z] and S"[(x,y)] the sets of symmetric
polynomial matrices of size-by-n in variablesz, and x and y,
respectively. Similarly, we denote b *"[z] and R™*"[(z, y)]
the sets of real polynomial matrices of sizeby-n in variables

2) Example2: Now consider the followingsystem of hyper-
bolic PDEs coupled in-domain and at the boundaries

A1 (z,t) = (A= 1) (x + 1) Oxv1(x, t)+Hx — 3)va(z,t), (4a)
Orva(x,t) = (z + 1) Orva(z,1), (4b)
v1(0,t) — 3v2(0,t) =0, w2(1,t) =0. (4c)
This PDE may be set in the form of (2) with= 1, 8 = 2 and
w(z,t) = [vl (z,t) vg(x,t)]T
o z-3 =1 (2*+1 0
Ale) = {0 0 (g ) z+1]’
0 0 1 -3
F= {0 10 0 } ‘

3) Example3: Finally, consider the followingzuler-Bernoulli
beam modeltaken from [9, Exercise 8.3]

z andy. We denote byx"[z] the set of Sum-of-Squares (SOS)

polynomials which, for allz € [0, 1], belong toS™. Note that, by
definition, an SOS polynomial is non-negative for alle R [1,
Chapter 3]. We say that a polynomiéle S™[z] is positive semi-
definite on[0, 1] if S(z) = 0, for all z € [0, 1]. Givena, 3,d € N,
we define

Y,

(a,8,d)x B(a+1)
q € Rq I

(0.8,0) (@, Y) = I(at1) ® 2(2,y) 1)

Where q(a, B8,d) 2[3(04 + 1)(d + 2)(d + 1), z(z,y) €
R? (@+2)(a+1) is the vector of monomials in the standard basis in

andy up to degreel and® denotes the Kronecker product. For ex-

ample, ford = 2, we havez(z,y) = [1 = y 2° ay yQ]T

For any bivariate functiorl : Q@ — R™*", we define the linear
K(z,y),

map
rixl= {K(y )"

thus satisfying, for any : [0,1] — R",

/()TF[K] YAA = //
+/O /z v(z)" K (y,z)"

Il. PROBLEM STATEMENT
Consider the following class of linear PDEs

atw(xvt) = A(x)wa(x,t),
where A € R#*Pe+D[z]. The statew : [0,1] x

>y
y>:c7

Ju(y)dydx

v(y)dydz.

(22)
[0,00) — R?

belongs to the sdf of functions satisfying the boundary conditions

defined as

B :{w eH” ([07 1];]RB) . Fub = Ogml}, (2b)

where ' ¢ R#**252 We now provide a few examples of PDEs
which can be cast in the form of (2). Each of the following PDEs

is parameterized by a positive scakar
1) Examplel: Consider the followingparabolic PDE with
distributed coefficients

Orv(z,t)
v(0,1)

= (m2 +1) 2 (x,t) 4+ 0.520,v(x, t) + Mv(z, t), (3a)
=0, Jzv(1,t) =0. (3b)
This PDE may be set in the form of (2) with= 2,8 =1 and

w(z,t) =v(x,t),
0 0
ol

0
Alz) =[x 05z 2°+1], F:{O )

1
0

(,)+8v(xt)70 (5a)
20(0,t) — —axtv(o t) =0, (5b)
20(0,8) + (1 — A\)dew(0,8) =0, dzv(1,t) =0, (5¢)
v(l t)=0. (5d)
We may re-write (5) as
2 2

o o) - [Zaisn)

920(0,1) — Laﬂv(o,t) —0,

92v(0,) + (1 — A\)dw(0,t) =0, dzv(1,t) =0,

o (1,t) = 0.

With this representation, we may write (5) in the form of (2w
a=2,8=2and

w(z,t) = [D7v(z,t) 8tv(:c,t)]T,

0000 0 1

A@ =10 0 0 0 -1 o
00001 0 0 —7%
000000 1-Xx1 0
"/t o000 0 0 0
01000 O 0 O

We wish to establish the stability of (2) by constructing pyaov
functional (LF) certificates of exponential stability. lanticular, we
wish to construct LFs of the form

%/0 w(z, )" Ty (2)w(z, t)dx
+ % /A w(z,t)"T [T] w(y,t)dA,

where T, € S°[z] and T € R°*P[(z,y)]. As stated in the
Introduction, parabolic PDE systems with boundary baghstey
based control laws admit LF certificates of stability whicvé the
same structure as (6) [6]. The numerical results in [6] atslicate
that such LFs are not conservative for spatially distridusealar
parabolic PDEs.

Let us now formulate conditions for the exponential st&pili
of (2). We begin by computing the time derivative of (6) along
the trajectories of (2). Consider a scafar- 0 and define

‘Vd(w) = —8,5‘1/

V(w)

(6)

(w) =209 (w), @)



which can be put in the form (see the Appendix in the expandechse we first construct a set of integral ternis)) which have the

version of this manuscript in [7])
1

Va(w) —/ Do ()" Up () o (z)dz
0

+ /Awa(x)TF [U] wa(y)dA, weH” ([07 1];R628’)

where

i) == t1e ([gh 700 o))
Osﬁaﬁ(aﬂ) 030,280

_He([ ) O] )
ot == ([ ) + )
B % {25T(z,y)

Oﬁ,ﬁa] ‘
0ga,8

0sa

same structure a$/;(w) and satisfys(w) = 0, for all w € B.

We refer to such expressions slack integrals We then check for
the positive semi-definiteness of a polynomial matrix asged

to V;(w) + S(w) which guarantees/;(w) + S(w) > 0, for all

w e H* ([0, 1];R7).

The construction of slack integrals is presented in Sedfan
These integrals generalize the results presented in [13], for
time-delay systems and in [17] for PDE analysis using (6hwit
T=0.

Il. POSITIVE/NON-NEGATIVE INTEGRAL
INEQUALITIES ON HILBERT SPACES

In this section we construct a set of positive/non-negatitegral
inequalities which are parameterized by Positive Semi+itefi
(PSD) polynomial matrices. The results provided are a ganer
ization of [6, Theorem 1]. Throughout this section we wileuke
polynomial matrixY; ., 3,q)(z,y) defined in (1).

We begin by constructing non-negative integral inequesiton

The following theorem casts the verification of exponentiaky~ ([0,1]; R?), givena, d € N, that have the same form a4 (w)

stability of (2) as the verification of two integral inequags.

Theorem 1:Given the PDE (2), suppose there exist positive

scalarsu,d and polynomial matricesl;, € S°[z] and T €
RP*B(z,y)] such that

9)
(10)

V() 2 plwlz,, vw e L2 (0,15 R%),
Va(w) > 0, vw e B H* ([0,1;R?),

where 7(w) and ¥;(w) are defined in (6) and (8), respectively.

Then, there exists a positive scalasuch that the solution of (2)

satisfies

[w(, )|z < ke flw(-,0)lc5,  VE>0. (11)
Proof: Let us choose the LF candidat®(w). Since the
condition in (9) holds, we have that there exists a posittadas ¢
such that

)z, < V(w) < fllw(,t vt >0,

N/Hw('7 )||2£27 (12)

where the existence of the upper bound is a consequeri€e afd
T being polynomial matrices defined on bounded domains.
Now, for this LF candidate, we have from (7) that

Vy(w) = — 9V (w) — 20V (w),

and since (10) holds for atb € B and thus forw that solve (2),
we have that

-0V (w) —26Y(w) >0, Vt>0. (13)
Integrating this expression in time produces/(w) <
e 'Y (w(0)). Using (12) produces plw(,,t)||z, <
e ?'9||lw(-,0)[|Z,. Then, taking the square root we conclude

that (11) holds withx =

Vo/u.

We have reduced the problem of stability analysis of (2) ® th

verification of the integral inequalities in (9) and (10).ush the
remainder of the work considers the following problem:

Problem: Verify if 7(w) is strictly positive, i.e., (9) is ver-
ified on Egg[o, 1;R?), and 74(w) is non-negative onB C
H ([0, 1];R7).

in (8). Let us define

‘]{(w):/1 Wa ()" Ry () Wa (:r)da:+/

0 A

wa (2)"T [R] wa (y)dA,
(14)
where R, € S7G3>*V[z] and
R(z,y) =R12(2)Yy(a,8,0) (@) + Ya(a,5,0 () Ria(y)”

+/ Yy(ap.0)(2,%) " Ra3Yy(a,5.a)(2,y)dz
0
N T pT
+/ Yo(a,8,a)(2, %) RasYy(a,p.0) (2, y)dz
/ Yy(apt)(2,2) " Ro2Yy(a p.0)(2,9)dz,  (15)
for some (polynomial) matrice®,», Ri3 € R+ xalefd) (g

Raa, Rss € SU®Ad and Rys € RUHdxalb.d) \which also
define

R12 R13 xT
Bo(@) - {Owa,q((a,l)&d)] {Oma,q((a,i,d)}
R(z)= { Riz(z) w Ras Ro3
0280,q(a,8,d)
{ Rus(x) r RT Ra
028a,q(a,8,2) » *

e §PBat)+2q(a,f,d) [z]. (16)
The following theorem states the conditions on the polyradmi
matrix R(z) whose submatrices defing, and R such that (14) is
non-negative ori* ([0, 1]; R”).
Theorem 2:Given (polynomial) matrices which defing (w)
in (14), if

R(xz) =0, Vzel0,1], a7
where R(x) is defined in (16), then
R(w) >0, VweH"([0,1);R” (18)

The proof of this theorem can be found in the expanded version

We verify (9) by generalizing the methods proposed in [6}this manuscript in [7].
and [17]. Namely, we test the positive semi-definiteness of a We now present a corollary in which we construct strictlyifies

polynomial matrix associated t@, and 7. Since (10) requires
V4(w) > 0 only on the subseB of #* ([0, 1]; R”), it calls for
a different formulation than the one adopted to verify (9).this

integral inequalities onCs ([0, 1];R?) that have the same form
as 7(w) in (6). This corollary corresponds to setting = 0 in
Theorem 2.



Givenw € £ ([0,1];R”) and 3, d € N, let us define

T~ v T |

A

w(x)TF [T] w(y)dA, (19)
whereT;, € S”[x] and
T(z,y) =Ti2(2)Yy0,8,0)(®,y) + Ya(0,8,0) (¥, @) Tra(y)”

/ Yo0,8,q)(2 yx)" T33Y500,8,4)(2,y)dz
0

+/ Y(Oﬁd)(z x)TTzstq(o,a,d)(Zyy)dZ
/ a(0,8,d) (%, z)” T22Yy00,8,0)(2,y)dz, (20)

for anyle, Tis € RBXQ(O'ﬁ’d) [m], Tzz, Tss € Sq(o’ﬁ'd) andT23 S
R4 d)xa(0.8.4) "\which also define

Tb(l’) T12(:E) T13(:c)
T(z) = |Ti2(x)"  Too Tos | € 8PT290ED ) (21)
Tz (z)" T3s T33

Corollary 1: Given (polynomial) matrices which defing(w)
in (19), if there exists a positive scalarsuch that
€ls Oﬁ’zqw"”] =0, Vzel0,1, (22

T(x)—
(=) {02(1(0,/3,(1),/3 024(0,5,4)
whereT'(z) is defined in (21), then,

T(w) > e|w|z,, Ywe L ([0,1; R’ (23)

Similar to Theorem 2, a detailed proof of this corollary cam b

found in [7].
IV. SLACKINTEGRALS

In Section Il we cast the stability of (2) as a test of postyidand
non-negativity of integral inequalities in (9) and (10).3$ection V
we will show that Corollary 1 is sufficient to verify (9). Thesm 2,
however, is too conservative to verify (10) because it edsr
V4(w) > 0 on the entire spacé® ([0, 1]; R”), while we are only
interested in non-negativity over the subgetc H ([0, 1];R?).
As discussed in Section I, to solve this problem we constslack

Proof: The identity (25) is established by expanding

/O ddx (z)dz — (9(1) —9(0)) =0,

with
9(z) =wa—1(2)" K1 (2)wa—1(2) + wa—1(z)" Ka(2)wg,

[ |
Next, we present the quadratic form of the Green’s theorems. T
proof of the following lemma is provided in the expanded i@rs
of this manuscript in [7].
Lemma 2 (Green’s theorem quadratic fornfjor anyH,, Hs €
RA*B(z,y)], the following identity holds

/o We (x)THe (Hp(2)) Wa (x)dx

+ /A wa(z) T [H] waly)dA =0, Yw e H" ([07 1];R6) )

where
_ [Hu(z) Hp(z)
Hy(x) = |:Hb3(CC) 0240 :| ,
Hy (z) = — N* (Hy(z,2) + Ho(z,2)) N,
Hys(z) =NTHy(x,0)No, Hys(x) = N{ Ho(1,z)N,
I;l(x7y) = NT (8UH1(:C7y) - avcH?(:C7y)) N

+ 1 NTHl(:C7y)N3 - NgHQ(:C7y)N)
In the following lemma we formulate an integral equationttha
holds on the seB given in (2b). The proof of the following lemma
is provided in the expanded version of this manuscript in [7]
Lemma 3:GivenF' € R?**25« the following identity holds true
for all w € B:

1
/ o (z) " He (By(x)) wa (z)dz = 0,
0
where
0 Bi(x)F
B _ B(a+1) 1 7
) {Owaﬂwﬂ) Bs(x)F

integrals.s(w) which we defined as integral expressions with the

same structure as};(w) and satisfies
S(w) =0,
Then, we may use Theorem 2 to test if

Vy(w) + S(w) >0, Vw e H ([0, 1];]1@‘*) ,

Yw € B. (24)

which, if true, would imply that?;(w) > 0, Yw € B, owing
to (24).
We will construct slack integrals using quadratic forms loé t

Fundamental Theorem of Calculus (FTC) and Green’s theorem.

Lemma 1 (FTC quadratic form)For anyk; € R?**%<[z] and
K> € RP*25[1] the following identity holds

/o We (x)THe (Kp(2)) Wa (x)dx

0, YweH® ([07 1];11{{‘*) :

(25)
where
K, — { Ky (x) Kya(x)
028a,8(a+1) Kbz |’
Kpi () =N"8,K1(z)N + N"K1(z)Np + Nj K1(x)N,
Kpa(x) =Nj Ko(z) + N7 0, K2 (),
Kpz =N§ K1(0)No — N{ K1 (1) N1 4+ NoK2(0) — N1 K»(1).

for any By € RP(@TVxF[y] and By € R?PxFog].

We now use the results in Lemmas 1-3 to formulate slack

integrals on the seB € H* ([0, 1];R”).
Let us define

S(w) :/0 We, (:C)THe (Ko (z) + Ho(z) + Bp(z)) Wa (z)dz

+/Awa(x)TF [FI] wa (y)dA,

where K, is parameterized by<; and K> as in Lemma 1,H,
and H are parameterized b§f; and H» as in Lemma 2 and3, is
parameterized by3; and B2, and the matrix¥' which defines the
setB as in Lemma 3.

We now state the main result of this section.

Theorem 3:Given matrix F' which defines the sdf in (2b), the
following identity holds true

S(w) =0, Ywe B, @7)

where s(w) is parameterized by an;, H; and B;, i € {1,2},
as in in (26).
Proof: We begin by considering the following decomposition

(26)

S(w) :/0 Wa (:c)THe (Ky(z) + Hp(z) + Bp(z)) Wa (z)dz



z € R, we conclude thall’(x) satisfies (22). Thereforer (w) >
el|lwl|z,, for all w € £2 ([0, 1]; R?). Moreover, from (6) we have

3

+ / wa () T [H] wa(y)dA = 6, (28)
A i—1

- that 7/(w) = 17(w) and thus

where
1 > .RA
0, :/ wa(:c)THe (Kb(x))wa(a:)dx, (V(w) = NHw”lizv Vw € Lo ([07 1]7R ) ’ (33)
01 . with u = %e. Similarly, since (32¢)-(32d) hold, we conclude from
O, :/ Wa(x)" He (Hy(x)) Wa (x)dx Theorem 2 that
0

+ /A wa(2)"T [A] wa (y)dA, R(w) 20, vwen (0,1;R%). (34)

oo _ Now, let us define
O3 2/ Wa(z)" He (By(x)) Wa ().
0

From Lemmas 1 and 2 we have that

©:1=0 and 6, =0, YweH" ([0,1];11@). (29)

fP(w):/O zDa(x)TPb(x)wa(:c)d:c+/Awa (:c)TF [P} wa (y)dA,
(35)

where
From Lemma 3 we have that

Py(z) =He (Uy(x) + Ky(x) + Hy(x) + Bo(z)) — Ro(z),

©;=0, VYweB. (30) P(z,y) =U(z,y) + H(z,y) — R(z,y).

Therefore, from (28)-(30) we conclude that the expressin(Rir)
holds for allw € B. m Since (32e)-(32g) hold, we deduce that

V. MAIN RESULT Py(z) =0, Vzel0,1, P(z,y) =0, V(z,y)€A.

In this section we use the results formulated in Section$MIl  Therefore, we get
to construct a method of verifying the stability of PDE (2ptlus
proceed with the following. P(w) >0, Ywe H* ([07 1]; ]R[“') . (36)
Theorem 4:Consider the PDE (2). For any givehe N, positive
scalarse, § and polynomialYy .. 5,4 € Rq(aﬂ»d)xﬁ(aﬂq(%y)] From the definition of?(w) in (35) it is clear that?(w) = Vy(w)+
defined in (1), suppose there exist: S(w) — R (w), where?;(w) is defined in (8) ands(w) is defined
in (26). Thus, using (36) we obtain

(polynomial) matrices defining® (w) in (14), (31a)
(polynomial) matrices defining (w) in (19), (31b) Vy(w) + S(w) — R(w) >0, Ywe H” ([O, 1]; RB) .
B+24(0,8,d) B(3a+1)+2q(a,B,d)
Sr e 8T [z, SreS ! [z],  (31c) Using (34) the previous expression may be reduced to
Ky e RFPg] Ky € RPFO*2Pg], (31d) )
Hy, Hs € RBQXBQ[(LE,ZJ)], S e Sﬁ(3&+1)[x]7 (31e) 'Vd(w) + S(w) >0, VweH ([07 1]; R ) . (37)
By € RFHXBarg) By e RPBy), (31f)  Now, from Theorem 3 we have thatw) = 0, for all w € B, thus,
from (37) we deduce that
such that
T | s Va(w) >0, vweBcH (0,1;RY).  (39)
024(0,8.a).8  O24(0,8,a)
Since (33) and (38) hold, we apply Theorem 1 to complete the
_ ST(ZC)W(m) e 2B+2q(0,ﬁ,d) [:CL (32&) proof ( ) ( ) ppy p .
Sp e 208D (32b) Since the set of polynomials is closed under differentraémd
R(z) — Sr(z)w(z) € yBBat+1)+2q(e,8,d) [z], (32c) integration, we have tha, and H containingd. K1 (z), 0 K2 (),
Sn(z) € SPGB ) (320) OyHi(z,y) andd, Ha(x,y) in Lemmas 1-2 are polynomials. More-

over, since the polynomial; . s q4)(z,y) is fixed, the termsR,,
He (Us(z) + Ki(z) + Hy(z) + By (w)) R, T, andT in Theorem 2 and Corollary 1 are polynomials affine
— Ry(z) — S(z)w(z) € PB>TV[z], (32e) in their respective (polynomial) matrices. Therefore, thaditions
8(3a+1) in (32) are simply either]l) a verification of the membership of
‘Sj(x) €x 7 [x], i (32) polynomial matrices in the set of SOS polynomials as in (32aj),
Uz,y) + H(z,y) — R(z,y) = Oa+1, (329)  or, 2) enforcement of affine constraints on the polynomial vaeisb
where w(z) = (1 — @), T(z) and R(z) are defined in (21) as i_n (3290). Ir_1deed, the _prob_lem of se_arch_in_g for SOS polyalsm
and (16), respectively, is defined using; as in Lemma 1, subject to affine constraints is a Semi-Definite Program (SR

H, and H are defined usingd; as in Lemma 2,B; is defined Chapter 3], [18]. We are then interested in solving

using B; and I as in Lemma 3, and polynomials, and U are SDP Problem: Find (31) subject to (32) (39)
defined using) in (8) and withT, andT" defined in (19).
Then, (2) is exponentially stable. The numerical implementation is performed by constructing

Proof: Since the polynomial matrix in (32a) is Sum-of-Squaresunderlying SDP for (39) by using the freely available padsag
(SOS), St is SOS in (32b) andv(z) > 0, for all z € [0,1], SOSTOOLS [12] or YALMIP [10]. Then, the associated SDP is
using the property that a SOS polynomial is non-negativeafbr solved, for example, using SeDuMi [15] or SDPA [20] solvers.



d=2 4 6 8
Examplel Eqn. (3) | A =3.263 | 3.263 3.409 3.409
Example2 Eqn. (4) Inf. Inf. A=0.999 | 0.999
Example3 Eqgn. (5) | A =0.999 | 0.999 0.999 -

TABLE I: Maximum X € R for which problem (39) is feasible for

Examples1-3 in Equations (3)-(5), respectively, as a function of

polynomial degreel. Here, Inf. denotes infeasibility.

d=2 d=4 d=26 d=38

Examplel Eqgn. (3) | 4.415 8.111 20.273 48.080
Example2 Eqn. (4) | 7.085 12.796 49.751 | 141.297
Example3 Eqgn. (5) | 25.663 | 113.708 | 360.876 -

TABLE II: Computer run time (in seconds) for performing the
search for variables which solve problem (39) using SeDudi f

Examplesl1-3 in Equations (3)-(5), respectively.

A. Numerical Examples

We now determine the stability of PDEs (3), (4) and (5) préseén
in Section Il by solving (39) for each of these systems. Rebak
each of these systems are parameterized by a positive scaldt.

experiments indicate that the method can predict the #tabflthe
systems considered up to a high degree of accuracy.

We would like to extend this method to consider an even
larger class of PDEs, for example, by including Partial €imb)-
Differential Equations (P(I)DEs) and boundary feedbaclttrer-
more, we would like to formulate this theory for general PDEs
i.e., PDEs not constrained to have polynomial data. Evdgiua
we would like to extend this framework to in-domain/boundar
controller synthesis for PDEs.
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