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Robust Invariant Sets and Active Mode Detection for Discrete-time
Uncertain Descriptor Systems

Ye Wang1, Sorin Olaru2, Giorgio Valmorbida2, Vicenç Puig1 and Gabriela Cembrano1,3

Abstract— In this paper, the computation of robust invariant
sets for discrete-time uncertain descriptor systems are investi-
gated. The studied descriptor systems are assumed to be regular
and stable subject to unknown but bounded disturbances. The
robust invariant sets of both causal and non-causal descriptor
systems are studied. It is recalled that a descriptor system can be
transformed into an equivalent system by using a suitable linear
coordinate transformation. Transformations for causal and non-
causal descriptor systems are used in the characterization of the
effect of the disturbances. For causal descriptor systems, two
robust positively invariant (RPI) sets are computed separately.
For non-causal descriptor systems, an RPI set and a robust
negatively invariant (RNI) set can be found. As a result, the
general RPI set of a descriptor system can be obtained from a
linear projection image of these two sets. Besides, active mode
detection method is proposed based on set invariance theory.

I. INTRODUCTION

Set invariance has played an essential role in control
theory with a variety of applications to constrained stan-
dard dynamic systems, uncertain control systems as well as
their related different control designs [1]. It is instrumental
for control strategies such as reference governor [2], fault
diagnosis [3], fault-tolerant control [4] and robust model
predictive control [5], [6]. The robust positively invariant
(RPI) set and minimal RPI (mRPI) set have been well studied
and the approximation of the mRPI set has been investigated
and summarized in [7], [8]. Alternatively, ultimate bounds
of dynamic systems [9] can lead to RPI set and the com-
putations of such ultimate bounds can be of relative low
complexity. An iterative strategy is proposed in [4] and leads
to the mRPI estimation based on the computation of ultimate
bounds.

In different scenarios, due to mass, volume or energy
conservation laws, the differential equations describing a
dynamic system are coupled with a set of algebraic equa-
tions. This class of systems described by differential and
algebraic equations is called descriptor systems or singular
systems. Instances of such systems are water distribution
networks [10], chemical processes [11], electrical circuits
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(IRI), CSIC-UPC, Universitat Politècnica de Catalunya-BarcelonaTech
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[12], aircrafts [13], biological systems [14] and economic
models [15]. A well-posed description, for which a solution
exists and is unique, is said to be regular. Regularity,
however, does not imply causality and models of interest in
economy are non-causal, see e.g. the Leontief model [15],
[16].

A. Contribution

The main contribution of this paper is to present the com-
putation of robust invariant (RI) sets for discrete-time regular
descriptor systems. For the case of non-causal descriptor
systems, we first decouple the set of states into causal and
anti-causal states. The computation of the mRPI set of the
causal states is obtained via an iterative method with ultimate
bounds. On the other hand, for the anti-causal states, we
introduce robust negatively invariant (RNI) sets. Then, we
apply the obtained computational results for active mode
detection. Finally, some numerical examples illustrate the
proposed methods.

B. Outline

The remainder of this paper is structured as follows: In
Section II, the problem statement and some preliminary
results are expressed. In Section III, main results on the com-
putation of mRPI sets of causal and non-causal descriptor
systems are presented. In Section IV, active mode detection
methods are proposed based on set invariance theory. In
Section V, numerical examples are provided to illustrate
the proposed methods. In Section VI, some conclusions are
drawn.

C. Notation

The Minkowski addition operator is denoted by ⊕. Ij
denotes the identity matrix of dimension j. Let X and Y
be two non-empty sets, the Hausdorff distance is defined by

dH (X ,Y) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
,

with d(x, y) the distance between two points x and y.

II. PROBLEM STATEMENT AND PRELIMINARY RESULTS

In this section, we recall some definitions for discrete-time
descriptor systems and results on set invariance.



A. Discrete-time Descriptor Systems

Consider the discrete-time linear time invariant (LTI)
descriptor system:

Ex(k + 1) = Ax(k) +Bww(k), (1)

where x(k) ∈ Rn denotes state vector, w(k) ∈ Rq denotes
the disturbance vector, A ∈ Rn×n, Bw ∈ Rn×q and E ∈
Rn×n with rank(E) = r ≤ n. For a descriptor system (1),
under the disturbance-free condition, we have the following
definitions:

Definition 1 (Regularity): The descriptor system (1) is
said to be regular if it has a unique solution.

If (1) is regular, we also say the matrix pair (E,A) is
regular.

Definition 2 (Causality): A regular descriptor system (or
a regular matrix pair (E,A)) is said to be causal if its state
x(k) at any time instant k is determined completely by the
initial condition x(0). Otherwise, it is called non-causal.

Definition 3 (Asymptotic Stability): A regular descriptor
system is said to be asymptotically stable if lim

k→∞
x(k) = 0.

Definition 4 (Admissibility): The descriptor system (1) is
said to be admissible if it is regular, causal and asymptoti-
cally stable.

Lemma 1 (Regularity, causality and asymptotic stability):
The following conditions can be used to verify [15]
• Regularity: the matrix pair (E,A) is regular if det(zE−
A) is not identically zero.

• Causality: the matrix pair (E,A) is causal if
deg (det(zE −A)) = rank(E).

• Stability: the matrix pair (E,A) is asymptoti-
cally stable if |λ(E,A)| < 1 for ∀λ (E,A) ∈
{z | det(zE −A) = 0}.

In this paper, we study the descriptor systems that are not
necessarily admissible, i.e. we consider descriptor systems
which involves anti-causal states.

Assumption 1: The descriptor system (1) (the matrix pair
(E,A)) is regular and asymptotically stable.

We now establish transformations that decompose the
descriptor systems in subsystems suitable for analysis.

Definition 5 (Equivalence of descriptor systems):
The descriptor system (1) with (E,A,Bw) is said to
be restrictively equivalent to the descriptor system with
(Ẽ, Ã, B̃w) under the transformation (P,Q) if there exists
a pair of non-singular matrices P ∈ Rn×n and Q ∈ Rn×n
satisfying

QEP = Ẽ, QAP = Ã, QBw = B̃w. (2)
For a given descriptor system (1), we now present two

standard equivalent forms that are of interest.
1) Dynamic Decomposition Form: Consider the descrip-

tor system (1) with rank(E) = r, there always exists a
transformation (M,N) yielding

MEN =

[
Ir 0
0 0

]
,MAN =

[
A1 A2

A3 A4

]
,MBw =

[
Bw1

Bw2

]
, (3)

with A1 ∈ Rr×r, A2 ∈ Rr×(n−r), A3 ∈ R(n−r)×r, A4 ∈
R(n−r)×(n−r), Bw1 ∈ Rr×q and Bw2 ∈ R(n−r)×q .

Lemma 2 (Dynamic decomposition form): The descriptor
system (1) is causal if and only if there exists a transfor-
mation in the sense of Definition 5, giving (3) with a non-
singular block A4 [17, Ch.2].

Lemma 3 (Equivalent causal descriptor system):
A causal descriptor system defined in (1) with rank(E) = r
can be transformed in a standard dynamic form as

x̃(k + 1) = Ãx̃(k) + B̃ww̃(k), (4)

with

Ã =

[
A1 −A2A

−1
4 A3 0

−A−1
4 A3

(
A1 −A2A

−1
4 A3

)
0

]
, (5a)

B̃w =

[
Bw1 −A2A

−1
4 Bw2 0

−A−1
4 A3

(
Bw1 −A2A

−1
4 Bw2

)
−A−1

4 Bw2

]
. (5b)

and

x̃(k) = N−1x(k) =

[
x̃1(k)
x̃2(k)

]
, w̃(k) =

[
w(k)

w(k + 1)

]
, (6)

with x̃1(k) ∈ Rr, x̃2(k) ∈ Rn−r.

Proof: From (1), the transformation (M,N) gives

MENN−1x(k + 1) = MANN−1x(k) +MBww(k).

Using (3) and defining x̃(k) as in (6), we have

x̃1(k + 1) = A1x̃1(k) +A2x̃2(k) +Bw1w(k), (7a)
0 = A3x̃1(k) +A4x̃2(k) +Bw2w(k). (7b)

Since the descriptor system is causal, A4 is invertible
based on Lemma 2. Then, from (7b), it comes

x̃2(k) = −A−1
4 A3x̃1(k)−A−1

4 Bw2w(k). (8)

Substituting x̃2(k) in (7a) by (8), it gives

x̃1(k + 1) =
(
A1 −A2A

−1
4 A3

)
x̃1(k) +

(
Bw1 −A2A

−1
4 Bw2

)
w(k). (9)

From (8), we also have x̃2(k+1) = −A−1
4 A3x̃1(k+1)−

A−1
4 Bw2w(k + 1) and use (9) to obtain

x̃2(k + 1) =−A−1
4 A3

(
A1 −A2A

−1
4 A3

)
x̃1(k)−A−1

4 Bw2w(k + 1)

−A−1
4 A3

(
Bw1 −A2A

−1
4 Bw2

)
w(k) (10)

Hence, we obtain (4) and the proof is completed.
2) Kronecker Canonical Form:
Lemma 4 (Kronecker canonical form): The descriptor

system (1) is regular if and only if there exists a
transformation (M̂, N̂) yielding

M̂EN̂ =

[
Ip 0
0 N̄

]
, M̂AN̂ =

[
Ā 0
0 I(n−p)

]
, (11)

where N̄ is a nilpotent matrix and p ≤ r = rank(E).
Lemma 5 (Causality): Let the matrix pair (E,A) be given

in the regular form (11), then it is causal if and only if N̄ = 0.



B. Set Invariance

For the regular and stable descriptor system (1), the
additive disturbance vector w(k) belongs to a compact set
W , ∀k ∈ Z. As a consequence of the boundedness of
the disturbances and the stability, the system trajectories
are expected to be confined in a set within the state space
[18]. Given an initial state x(0) and unique solution of (1)
denoted by x(k), ∀k ∈ Z (the time instant k can be negative
for the backward propagation), the following definitions are
introduced in view of the set-theoretic analysis:

Definition 6 (Robust invariant set): A set Ω ∈ Rn is
said to be robust invariant with respect to the descriptor
system (1) if x(0) ∈ Ω implies x(k) ∈ Ω ∀w(k) ∈ W and
∀k ∈ Z.

Definition 7 (Robust positively invariant set): A set Ω ∈
Rn is said to be robust positively invariant with respect to (1)
if x(0) ∈ Ω implies x(k) ∈ Ω ∀w(k) ∈ W and ∀k ∈ Z[>0].

Definition 8 (Minimal RPI set): A RPI set Ω∞ ∈ Rn is
said to be minimal RPI with respect to (1) if it is contained
in every closed RPI set of (1).

Definition 9 (L-step robust negatively invariant set):
The set Ω ∈ Rn is L-step robust negatively invariant with
respect to the descriptor system (1) if the state x(L) ∈ Ω
implies x(L+ k) ∈ Ω for ∀w(k) ∈ W and ∀k ∈ Z[−L,0].

For standard LTI systems (corresponding to (1) with E =
In), the mRPI sets are known to be not finitely determined
[18] and it is characterized as a limit set. A number of
strategies to approximate the mRPI sets have been proposed
[4], [7], [8], [9]. The iterative method proposed in [4] yields
a polytopic approximation of the mRPI set and will be used
in the next section as the main constructive method.

III. MAIN RESULTS ON SET ANALYSIS FOR DESCRIPTOR
SYSTEMS

A. Minimal Robust Positively Invariant Set of Causal De-
scriptor Systems

For a regular and stable descriptor system (1), which is
also causal, the set analysis can be made based on (4) into
two sub-spaces as in the following theorem.

Theorem 1 (mRPI set of admissible descriptor systems):
Consider the admissible descriptor system (1) and two non-
singular matrices M and N =

[
N1 N2

]
satisfying (3),

the mRPI set Ωc of the admissible descriptor system (1) is
given by the Minkowski addition of the image of two mRPI
sets for two subcomponents as follows:

Ωc = N1Φ1 ⊕N2Φ2, (12)

with
Φ1 =

∞⊕
i=0

Ãi1B̃w1W, (13a)

Φ2 =
(
−A−1

4 A3Φ1

)
⊕
(
−A−1

4 Bw2W
)
. (13b)

Proof: From (5), the descriptor system (1) is equivalent
to the following two subsystems:

x̃1(k + 1) = Ã1x̃1(k) + B̃w1w(k), (14a)

x̃2(k + 1) = Ã2x̃1(k) + B̃w2w(k) + B̃w3w(k + 1), (14b)

with Ã1 = A1 − A2A
−1
4 A3, Ã2 = −A−1

4 A3(A1 −
A2A

−1
4 A3), B̃w1 = Bw1 − A2A

−1
4 Bw2, B̃w2 =

−A−1
4 A3(Bw1 −A2A

−1
4 Bw2), B̃w3 = −A−1

4 Bw2.
At the same time, the stability implies the matrix Ã1 is

Schur. Then, the characterization of the mRPI set of x̃1 can
be obtained as in (13a) using the classical LTI notions [18].
On the other hand, the mRPI set Φ2 of x̃2 can be found by a
linear projection image of the set Φ1 in (13a), which bounds
the signal x̃1(k). This leads to

Φ2 = Ã2Φ1 ⊕ B̃w1W ⊕ B̃w2W,

=
(
−A−1

4 A3Φ1

)
⊕
(
−A−1

4 Bw2W
)
.

Subsequently, by means of the Minkowski addition of the
sets obtained via the images defined by the matrices N1 and
N2, the RPI set of the admissible descriptor system (1) can
be obtained. Hence, the proof is completed.

Lemma 6 (Ultimate bounds [9]): Given a standard LTI
system (1) with E = In and the Schur matrix A ∈ Rn×n,
the Jordan decomposition form of A = V ΛV −1 and the
compact disturbance set w(k) ∈ W = {w ∈ Rq | |w| ≤ w}
for ∀k ∈ N+, the set

Φ =
{
x ∈ Rn |

∣∣V −1x
∣∣ ≤ (I − |Λ|)−1 ∣∣V −1Bw

∣∣w + θ
}

(15)

is RPI and attractive for all the trajectories of this system,
where θ is an arbitrary small vector with positive elements.

Corollary 1 (Approximation of the mRPI set): Consider
the admissible descriptor system (1), an RPI approximation
of the mRPI set (12) for the admissible descriptor system (1)
is given by

Ωc0 = N1Φ̂1,0 ⊕N2Φ̂2,0, (16)

with

Φ̂1,0 =
{
x̃1 ∈ Rnx̃1 |

∣∣V −1
1 x̃1

∣∣ ≤ (I − |Λ1|)−1
∣∣∣V −1

1 B̃w1

∣∣∣w + θ1

}
, (17a)

Φ̂2,0 =
(
−A−1

4 A3Φ̂1,0

)
⊕
(
−A−1

4 Bw2W
)
, (17b)

where Ã1 = V1Λ1V
−1
1 , θ1 is an arbitrary small vector with

all positive elements.
Furthermore, the sets Ωci = N1Φ̂1,i⊕N2Φ̂2,i with i ∈ N+

can be constructed based on the recurrence:

Φ̂1,i = Ã1Φ1,i−1 ⊕ B̃w1W, (18a)

Φ̂2,i =
(
−A−1

4 A3Φ̂1,i

)
⊕
(
−A−1

4 Bw2W
)
, (18b)

and lead to RPI approximation of the mRPI set (12) with

Ωc
0 ⊇ Ωc

1 ⊇ · · · ⊇ Ωc
i ⊇ · · · ⊇ Ωc, (19)

for any ε > 0, it exists an i ∈ N+ such that dH (Ωci , Ω
c) < ε.

Proof: By Lemma 6, the RPI set Φ1 of x̃1 from the
subsystem (14a) can be approximated by ultimate bounds as
Φ̂1,0 in (17a). Therefore, the mRPI set Φ̂2,0 for x̃2 can be
obtained through a linear image as follows:

Φ̂2,0 =
(
−A−1

4 A3Φ̂1,0

)
⊕
(
−A−1

4 Bw2W
)
. (20)

As introduced in [4] (see Algorithm 1), the iterative
approximation of the mRPI set (18) can be obtained through



i-step propagation. Ultimately, given a constant ε, the con-
strained dH (Ωci , Ω

c) < ε can be achieved for a finite index
i by exploiting the convergence of the sequence Ωci to Ωc.

In this subsection, we have proved that an admissible
descriptor system can be transformed into an standard dy-
namic system with two subsystems of particular structure.
The mRPI sets of these two subsystems can be computed
separately. As a result, the mRPI set of the admissible
descriptor system is a linear projection image of two mRPI
sets from its transformed equivalent subsystems.

B. Minimal Robust Positively Invariant Set of Non-causal
Descriptor Systems

We now extend the results of the previous subsection to the
non-causal descriptor systems. If the descriptor system (1)
is regular and stable but not causal, there still exists a
unique solution at each sampling time instant and thus the
set characterization of the dynamics can be investigated. For
a regular descriptor system, the Kronecker canonical form
in (11) is used in this subsection.

From Lemmas 4 and 5, a non-causal descriptor system can
be transformed in (11) with a nilpotent matrix N̄ satisfying
N̄ 6= 0. As introduced in [15, Ch.8], it is always possible
for a regular arbitrary matrix pair (E,A) to find a suitable
transformation (M̂, N̂) yielding (11). Computationally effi-
cient methods exist to obtain these transformations as e.g.
[19].

By using Lemma 4, we set the new state variable with the
partitioned form as

x̌(k) = N̂x(k) =

[
x̌1(k)
x̌2(k)

]
, M̂Bw =

[
B̌w1

B̌w2

]
, (21)

with x̌1(k) ∈ Rň1 , x̌2(k) ∈ Rň2 and n = ň1 + ň2.
Therefore, from (11) and (21), an equivalent system of a

non-causal descriptor system (1) can be expressed into the
following two subsystems:

x̌1(k + 1) = Āx̌1(k) + B̌w1w(k), (22a)

N̄ x̌2(k + 1) = x̌2(k) + B̌w2w(k). (22b)

As shown in (22), the non-causal descriptor system (1) is
stable if and only if the matrix Ā is Schur. Hence, the mRPI
set of a non-causal descriptor system can be formulated in
the following theorem.

Theorem 2 (mRPI set of non-causal descriptor systems):
Consider the non-causal descriptor system (1) in the
equivalent form (11) and its solutions x(k),∀k ∈ Z>0. The
mRPI set of the non-causal descriptor system (1) can be
obtained by the Minkowski addition of the image of two
invariant sets with N̂1 and N̂2 as follows:

Ωn = N̂1Θ1 ⊕ N̂2Θ2, (23)

with
Θ1 =

∞⊕
i=0

ĀiB̌w1W, (24a)

Θ2 =

s−1⊕
i=0

N̄ iB̌w2W, (24b)

where s ∈ N+ is scalar satisfying N̄s−1 6= 0 and N̄s = 0.
Besides, N̂ =

[
N̂1 N̂2

]
.

Proof: The non-causal descriptor system can be de-
composed in two subsystems, where (22a) is a standard
dynamic difference equation. Hence, the mRPI set of x̌1 can
be constructed as in (24a). On the other hand, from (22b),
the anti-causal state x̌2(k) can be propagated as follows:

x̌2(k) = N̄ x̌2(k + 1)− B̌w2w(k),

x̌2(k + 1) = N̄ x̌2(k + 2)− B̌w2w(k + 1),

...

and after the L-step iterations, it becomes

x̌2(k) = N̄Lx̌2(k + L)−
L−1∑
i=0

N̄ iB̌w2w(k + i). (25)

Since N̄ is a nilpotent matrix, there exists a finite index s
such that the following conditions holds:

N̄s−1 6= 0,

N̄s = 0.

Therefore, considering the structural relations s ≤ nx̌2
≤

L, we have that the solution x̌2 ∈ Rnx̌2 is well defined as a
solution of (22b) and (25) can be written as

x̌2(k) =

s−1∑
i=0

N̄ iB̌w2w(k + i). (27)

With the compact set W , the RNI set of x̌2 can be
explicitly computed as follows:

Θ2 =

s−1⊕
i=0

N̄ iB̌w2W

= B̌w2W ⊕ N̄B̌w2W ⊕ · · · ⊕ N̄s−1B̌w2W. (28)

Finally, the mRPI set Ωn of the non-causal descriptor sys-
tem (1) can be obtained by the linear image and Minkowski
addition of Θ1 and Θ2. Hence, the proof is completed.

It is worth to be mentioned that Theorem 2 is built
under the assumption that the solution of the system (1) is
defined for any k ∈ Z[>0]. The properties of the infinite-time
trajectory lead to a positive invariance concept although the
system is not causal. Theorem 2 need to be reconsidered
whenever the trajectories are defined only for a finite-time
interval.

Corollary 2 (Approximation of the non-causal mRPI set):
As defined in Theorem 2, the mRPI set (23) of the non-causal
descriptor system (1) can be approximated by

Ωn0 = N̂1Θ̂1,0 ⊕ N̂2Θ2, (29)

with

Θ̂1,0 =
{
x̌1 ∈ Rnx̌1 |

∣∣V̄ −1
1 x̌1

∣∣ ≤ (I − ∣∣Λ̄1

∣∣)−1 ∣∣V̄ −1
1 B̌w1

∣∣w + θ̄1

}
, (30a)

Θ2 = B̌w2W ⊕ N̄B̌w2W ⊕ · · · ⊕ N̄s−1B̌w2W, (30b)

where Ā = V̄1Λ̄1V̄
−1
1 , θ̄ is an arbitrary small vector with

positive elements and N̂ =
[
N̂1 N̂2

]
.



Furthermore, any set Ωnj = N̂1Θ̂1,j ⊕ N̂2Θ2 with j ∈ N+

where
Θ̂1,j = Ã1Φ1,j−1 ⊕ B̃w1W, (31)

is also an RPI approximation of the mRPI set (23) with

Ωn
0 ⊇ Ωn

1 ⊇ · · · ⊇ Ωn
j ⊇ · · · ⊇ Ωn. (32)

Moreover, for any ε > 0, it exists an i ∈ N+ such that
dH
(
Ωnj , Ω

n
)
< ε.

Proof: By Lemma 6, the mRPI set Θ1 of x̌1 can be
approximated by Θ1 ⊆ Θ̂1 in (30a). As in Corollary 1, by
the iterative algorithm, Ωnj can be obtained.

C. Robust Negatively Invariant Set for Finite-time Trajecto-
ries of Non-causal Descriptor Systems

We consider the non-causal descriptor system (1) focused
on trajectories defined only on a finite-time window x(k),
k ∈ Z[0,L] with L > 0. The dynamics obey to the equivalent
subsystems in (22) but the set-theoretic characterization need
to be relaxed in order to consider the finite number of dy-
namical constraints as well as the non-causal particularities.

The difficulties are related to the mixture of causal and
anti-causal dynamics in (22a) and (22b). For (22a), the
positive invariance will be the appropriate concept while
for (22b), the negative invariance offers the suitable frame-
work.

Theorem 3 (L-step RNI set): Consider the anti-causal
subsystem (22b). The set ΥL is L-step negatively invariant
if

ΥL ⊇ N̄ΥL ⊕
{
−B̌w2W

}
⊇ · · · ⊇ N̄LΥL

L−1⊕
i=0

{
−N̄ iB̌w2W

}
. (33)

Proof: For x̌2(k + L) ∈ ΥL, k ∈ Z[−L,0], from (25),
(33) can be obtained by the backward propagations.

Remark 1: Given two sets ΥL1 and ΥL2 which are L1-
and L2-step RNI with L1 > L2, we have ΥL1 ⊇ ΥL2 .

Remark 2: The set Θ2 in (24b) is a L-step RNI for ∀L ≥
0.

Remark 3: Let the set Θ2 constructed as in (24b). A L-
step RNI set ΥL for (22b) can be constructed iteratively
starting from Υ 0 = Θ2 and using for i ∈ Z[1,L] the recursive
construction:

Υ i =
{
x̌2 ∈ X2 | ∃w ∈ W, N̄x− B̌w2w ∈ Υ i−1

}
, (34)

and X2 ⊆ Rň2 is the physical constraint of the state x̌2.
Theorem 4 (L-step RI set): Consider the non-causal de-

scriptor system (1) in the equivalent form (11). The set

ΩL = N̂1Θ1 ⊕ N̂2Υ
L (35)

guarantees that x(k) ∈ ΩL for ∀k ∈ Z[0,L] if x̌1(0) ∈ Θ1

and x̌2(L) ∈ ΥL.
Proof: x(k) has two equivalent subcomponents x̌1(k)

and x̌2(k). From (24a), Θ1 is RPI for x̌1(k). If x̌1(0) ∈ Θ1,
then it follows x̌1(k) ∈ Θ1 for ∀k ∈ Z[0,L].

At the same time, ΥL is the L-step RNI set for x̌2(k)
as discussed in Theorem 3. If x̌2(L) ∈ ΥL, then it follows
x̌2(k) ∈ ΥL for ∀k ∈ Z[0,L].

Therefore, by the Minkowski addition of the linear pro-
jection image, (35) can be obtained.

Proposition 1: Consider the non-causal descriptor system
(1) in the equivalent form (11) and define a finite-time
trajectories x(k), k ∈ Z[0,L] with L > 0. If x(0) ∈ Ω0

for L > s with N̄s = 0 and N̄s−1 6= 0, then x(k) ∈ Ω0 for
k ∈ Z[0,L−s] and x(k) ∈ Ωk−(L−s) for k ∈ Z[L−s,L], where
Ωi = N̂1Θ1 ⊕ N̂2Υ

i with Υ i in (34).
Proof: For k ∈ Z[0,L−s], from (25), x(k) is contained

in the RI set Ω0 = Θ2 as defined in (35). On the other hand,
for k ∈ Z[L−s,L], the anti-causal component is contained
in Υ i, which can be propagated by using (34) leading to the
confinement of the finite time trajectories for L−s < k < L.

IV. A SET-BASED ACTIVE MODE DETECTION FOR
DESCRIPTOR SYSTEMS

As an application of the obtained mRPI sets, the identifi-
cation of different modes in a descriptor system (1) can be
performed. In this subsection, we propose two solutions to
the problems of mode detection for a causal and a switched
non-causal descriptor systems based on the characterization
of RPI sets. In safety critical systems, a fault can be in-
terpreted as a change in the mode of operation. Therefore,
active mode detection can be seen an important step towards
fault-tolerant control.

A. Two-mode Descriptor Systems

Given the causal descriptor system:

Eσ(k)x(k + 1) = Aσ(k)x(k) +Dσ(k)w(k) +Bσ(k)u(k), (36)

where σ(k) is a constant function σ : N→ {1, 2}. The signal
u(k) ∈ Rm denotes an input vector that can be used for set
separation at time instant k and Bσ(k) is the associate input
matrix.

Practically, the descriptor system (36) has two modes of
functioning:

(i) Mode 1:

E1x(k + 1) = A1x(k) +D1w(k) +B1u(k), (37)

(ii) Mode 2:

E2x(k + 1) = A2x(k) +D2w(k) +B2u(k). (38)

Assumption 2: The matrix pairs (E1, A1) and (E2, A2)
are admissible.

Active Mode Detection Problem for Causal Descriptor
Systems: Considering that W is a compact polyhedral set
containing the origin in its interior, the mRPI sets with
respect to (37) and (38) can be approximated by applying
Corollary 1 assuming u(k) = 0 for ∀k ∈ N+. Therefore,
active mode detection using u(k) 6= 0 is summarized in the
following steps.

1) Compute the mRPI sets Ω1 and Ω2 for (E1, A1, D1)
and (E2, A2, D2) respectively for u = 0.

2) Consider the nominal systems

E1x̄
m1(k + 1) = A1x̄

m1(k) +B1u(k), (39a)
E2x̄

m2(k + 1) = A2x̄
m2(k) +B2u(k), (39b)



and the states xm1(k) and xm2(k) of (37) and (38)
satisfy the following conditions for ∀k ∈ N+:

xm1(k) ∈ x̄m1(k)⊕Ω1, if xm1(0) ∈ Ω1, (40a)
xm2(k) ∈ x̄m2(k)⊕Ω2, if xm2(0) ∈ Ω2. (40b)

3) Find a suitable u(k) for ∀k ∈ N+ such that
{x̄m1(k)⊕Ω1} ∩ {x̄m2(k)⊕Ω2} = ∅.

4) On-line monitoring: Consider the sequence of states
x(k) from (36). If for some time index k it holds x(k) ∈
x̄m1(k) ⊕ Ω1, then the trajectory is governed by the
Mode 1. Alternatively, if x(k) ∈ x̄m2(k)⊕Ω2, then the
system is governed by Mode 2.

B. Switched Non-causal Descriptor Systems
As discussed in Section III-B, the mRPI set of non-causal

descriptor system can be computed by a linear projection
image of a RPI set of causal states and a finite-step RNI set of
anti-causal states. With respect to the non-causal descriptor
system, it is important to notice that the RNI set of non-
causal states will grow for a finite number of steps before the
mode switch. Hence, this property can be used for identifying
the mode change of a switch non-causal descriptor system.

The switched non-causal descriptor system (36) is rede-
fined with σ(k) = 1 for ∀k ∈ Z≤k0

and σ(k) = 2 for
∀k ∈ Z>k0 as the following two modes:

(i) Mode 1:

Ê1x(k + 1) = Â1x(k) + D̂1w(k) + B̂1u(k), (41)

with Ê1 =

[
In1

0
0 N̄1

]
, Â1 =

[
Ā1 0
0 In2

]
, ∀k ∈ Z≤k0

,

(ii) Mode 2:

Ê2x(k + 1) = Â2x(k) + D̂2w(k) + B̂2u(k), (42)

with Ê2 =

[
N̄2 0
0 In1

]
, Â2 =

[
In2

0
0 Ā2

]
, ∀k ∈ Z>k0

,

where Ā1 ∈ Rn1×n1 and Ā2 ∈ Rn2×n2 are assumed to
be Schur matrices, N̄1 and N̄2 are nilpotent matrices and
not identically zero and the finite step of N̄1 and N̄2 are
denoted as s1 and s2 such that N̄s1

1 = 0 with N̄s1−1
1 6= 0

and N̄s2
2 = 0 with N̄s2−1

2 6= 0.
The non-causal descriptor system switches from Mode 1 to

Mode 2 at some moment k0. The objective of the following
procedure is to detect in finite time in which mode the
switched non-causal system is operating for a finite number
of steps before the mode switch.

Active Mode Detection Problem for Switched Non-
Causal Descriptor Systems: The problem is summarized in
the following off-line and on-line procedures:

Off-line procedure:
1) Compute the mRI sets Ωn1 and Ωn2 for (Ê1, Â1, D̂1)

and (Ê2, Â2, D̂2) by using Corollary 2.
2) Compute the L-step RI set ΩLi for (Ê1, Â1, D̂1) with

the corresponding index s of the nilpotent matrix.
3) Find the test signal ∃u(k) such that the nominal states

x̄m1(k) and x̄m2(k) satisfy

{x̄m1(k)⊕Ωn1 } ∩ {x̄m2(k)⊕Ωn2 } = ∅, (43a){
x̄m1(k)⊕ΩLi

}
∩ {x̄m2(k)⊕Ωn2 } = ∅, (43b)

(a) Subsystem 1 (b) Subsystem 2

Fig. 1. The RPI and mRPI sets of equivalent causal descriptor subsystems:
RPI sets (ultimate bounds) are plotted in purple region; mRPI sets are plotted
in red region.

4) Consider the initial state x(0) ∈ {x̄m1(0)⊕Ωn1 }.
On-line procedure:
Consider a sequence of the states x(k) of the switched

non-causal descriptor system and check the following con-
ditions:

1) If x(k) /∈ {x̄m1(k)⊕Ωn1 } and x(k) ∈
{x̄m2(k)⊕Ωn2 }, then the non-causal system is
switched from Mode 1 to Mode 2.

2) If x(k) /∈ {x̄m1(k)⊕Ωn1 } and x(k) ∈{
x̄m1(k)⊕ΩLi

}
, then a switch from Mode 1 to

Mode 2 will occur at most (k + s− i).
3) If x(k − 1) ∈

{
x̄m1(k)⊕ΩLi

}
and x(k) /∈{

x̄m1(k)⊕ΩLi+1

}
, then this switch from Mode 1 to

Mode 2 occurs at time instant k.

V. ILLUSTRATIVE EXAMPLES

A. A Causal Descriptor System

Consider a causal descriptor system (1) with

E =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , A =


0.5 1 0.2 0
0 0.6 0 0
1 0 0.2 0.8
0 1 0 0.6

 , D =


0.3 0
0 0.7

0.2 0.2
0.9 0.6

 .
Let w(k) ∈ W1 =

{
w ∈ Rq1 | |w(k)| ≤

[
0.2 0.3

]T}
.

By applying Corollary 1, approximations of the mRPI sets
for two subsystems are shown in Fig. 1.

B. Non-causal Descriptor System: Dynamic Leontief Model

Given an uncertain dynamic Leontief model with describes
the time pattern of production sectors by [15],[16]:

x(k) = Fx(k) +G (x(k + 1)− x(k)) +Bu(k) +Dw(k), (44)

with

F =

1.25 0.5 1.5
0.75 0.5 1.1
0.25 0 1.5

 , G =

 1 0.5 0.75
0.25 0 0.5

0 0 0

 ,
B =

[
−1 −1 −1

]T
.

As in [16], a state feedback law K with u(k) = Kx(k)
is used as follows:

K =
[
0.3828 0.1427 0.4087

]
.



Fig. 2. The RNI set of x̃2 in the non-causal subsystem

Fig. 3. The mRPI set of non-causal descriptor system

Then, the resulting closed-loop descriptor system can be
rewritten as follows:

Ex(k + 1) = Ax(k) +Dw(k),

with

E = G,A =

[
1.1328 0.1427 −0.3413
−0.1172 0.6427 −0.1913
0.1328 0.1427 −0.0913

]
, D = BK.

Let

w(k) ∈ W2 =
{
w ∈ Rq2 | |w| ≤ [0.2 0.3 0.1]

T
}
.

By using the transformation
(
M̂, N̂

)
:

M̂ =

−0.5524 −0.7530 3.8890
0.5393 −1.1540 −0.0193

0 0 4.6456

 ,
N̂ =

−0.2576 0.6414 0.5385
−0.3391 −0.8020 0.5596
−0.9048 −0.3206 −0.6998

 ,
this dynamic Leontief model can be transformed into the
form in (11). Hence, the mRPI set of x̃1 can be computed:

x̃1 ∈ Θ̂1 = {x ∈ Rnx̌1 | |x| ≤ 0.4261} .

And the RNI set Θ2 of x̃2 can be computed through a
backward propagation with N̄2 = 0 as shown in Fig. 2.

As shown in Fig. 3, the mRPI set Ωn of this dynamic
Leontief model can be approximated in the following set:

Ωn = {x ∈ Rn | Hx ≤ b} ,

Fig. 4. The mRPI sets of two-mode descriptor system

with

H =


−0.7856 0.5476 0.0184
0.4949 0.5318 −0.3402
−0.6190 −0.2308 −0.6609
0.6190 0.2308 0.6609
0.7856 −0.5476 −0.0184
−0.4949 −0.5318 0.3402

 , b =


0.2873
0.5971
0.3561
0.3561
0.2873
0.5971

 .

C. Active Mode Detection: A Two-mode Descriptor System

Given a two-mode causal descriptor system (36) with

E1 = E2 =

1 0 0
0 1 0
0 0 0

 , D1 = D2 =

0.5 0.6
1.2 0.2
0 0.8

 ,

A1 =

0.42 0.95 0
0.1 0.35 0
0.5 0.8 1

 , A2 =

0.65 1.2 0
0 0.01 0

0.5 0.8 1

 .
From these two matrix pairs (E1, A1) and (E2, A2), it can

be verified that both are admissible. Let

w(k) ∈ W3 =
{
w ∈ Rq3 | |w| ≤ [0.02 0.01]

T
}
.

Therefore, the mRPI sets of two modes can be obtained by
applying Corollary 1. The computation results of two mRPI
sets are shown in Fig. 4. An input signal and its distribution
matrices are chosen as follows:

B1 = B2 =
[
1 1 0

]T
,

and u(k) = 0.5 for ∀k ∈ N+. The set separation result is
shown in Fig. 5. This figure shows two state sets for two-
mode descriptor system are separated by the selection of the
input signal. Besides, the system states are propagating in
the blue dashed line. From Fig. 5, this state is staying in the
orange set. Hence, it implies that the system is in Mode 1.

D. Active Mode Detection: A Switched Non-causal Descrip-
tor System

Given a switched non-causal descriptor system including
two modes (41) and (42) can be transformed to

Ê1 =


1 0 0 0
0 1 0 0
0 0 0 0.75
0 0 0 0

 , Â1 =


0.42 0.95 0 0
0.1 0.35 0 0
0 0 1 0
0 0 0 1

 , D̂1 =


0.2 0.6
0.9 0.5
0.06 0.96
1.5 0.15

 ,

Ê2 =


0 0.48 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , Â2 =


1 0 0 0
0 1 0 0
0 0 0.65 0.8
0 0 0 0.01

 , D̂2 =


0.06 0.96
1.5 0.15
0.2 0.6
0.9 0.5

 ,



Fig. 5. Mode detection result of two-mode descriptor system

(a) (x1, x2) space (b) (x3, x4) space

Fig. 6. Mode detection results of switched non-causal descriptor system

and let

x(k) ∈ X =
{
x ∈ Rn | |x| ≤

[
0.1 0.1 0.1 0.1

]T}
,

w(k) ∈ W4 =
{
w ∈ Rq4 | |w| ≤

[
0.02 0.01

]T}
.

Matrices B̂1 and B̂2 are the following:

B̂1 =
[
2 1 0.1 0.65

]T
, B̂2 =

[
0.1 0.65 2 1

]T
,

and the input signal is set as u(k) = 0.25 for ∀k ∈ N+.
As shown in Fig. 6, the system states of the non-causal
system are switched between two modes. From k = 1 to
k = 2, the state x(k) is located in the set {x̄m1(k)⊕Ωn1 }.
Hence, the switched non-causal system (36) is Mode 1. At
k = 3, x(k) /∈ {x̄m1(k)⊕Ωn1 } and x(k) ∈

{
x̄m1(k)⊕ΩLi

}
implies there is a switch forthcoming. And at k = 4,
the conditions x(k − 1) ∈

{
x̄m1(k)⊕ΩLi

}
and x(k) /∈{

x̄m1(k)⊕ΩLi+1

}
are satisfied. Hence, the switch occurs at

k = 4.

VI. CONCLUSION

The RPI sets of causal and non-causal descriptor sys-
tems have been computed in this paper. The coordinate
transformation for descriptor system are used to find a
suitable equivalent system in order to compute the RPI
sets for each subsystem. In particular, it is shown that the
non-causal descriptor system can be transformed into two
subsystems including causal and anti-causal states. In order
to compute the RPI set of non-causal descriptor systems, we
have introduced the RNI set with a finite horizon. The RPI
and RNI sets can be obtained through forward and backward
propagations. Finally, the mode detection based on the RPI
set is discussed. A descriptor system with different modes
can be detected and identified by implementing the RPI set

separation. As a future work, the control design for the set
separation in the framework of descriptor systems will be
explored.
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[8] S. Raković, “Minkowski algebra and Banach contraction principle
in set invariance for linear discrete time systems,” in 46th IEEE
Conference on Decision and Control, 2007, pp. 2169–2174.

[9] E. Kofman, H. Haimovich, and M. Seron, “A systematic method to
obtain ultimate bounds for perturbed systems,” International Journal
of Control, vol. 80, no. 2, pp. 167–178, 2007.

[10] Y. Wang, V. Puig, and G. Cembrano, “Economic MPC with peri-
odic terminal constraints of nonlinear differential-algebraic-equation
systems: Application to drinking water networks,” in 2016 European
Control Conference, Aalborg, Denmark, 2016, pp. 1013–1018.

[11] L. Biegler, S. Campbell, and V. Mehrmann, Control and Optimization
with Differential-Algebraic Constraints. Philadelphia, USA: Society
for Industrial and Applied Mathematics, 2012.

[12] R. Riaza, Differential-algebraic systems: Analytical aspects and circuit
applications. New York, USA: World Scientific Publishing Company,
2008.

[13] B. Stevens, F. L. Lewis, and E. Johnson, Aircraft Control and Simu-
lation: Dynamics, Controls Design, and Autonomous Systems. New
York, USA: Wiley-Blackwell, 2016.

[14] Q. Zhang, C. Liu, and X. Zhang, Complexity, Analysis and Control of
Singular Biological Systems. London, UK: Springer, 2012.

[15] L. Dai, Singular Control Systems. Berlin Heidelberg, Germany:
Springer, 1989.

[16] L. Zhang, J. Lam, and Q. Zhang, “Lyapunov and Riccati equations
of discrete-time descriptor systems,” IEEE Transactions on Automatic
Control, vol. 44, no. 11, pp. 2134–2139, 1999.

[17] G. Duan, Analysis and Design of Descriptor Linear Systems. New
York, USA: Springer, 2010.

[18] I. Kolmanovsky and E. Gilbert, “Theory and computation of distur-
bance invariant sets for discrete-time linear systems,” Mathematical
problems in engineering, vol. 4, no. 4, pp. 317–367, 1998.

[19] M. Gerdin, “Computation of a canonical form
for linear differential-algebraic equations,” Linköping
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