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Generalised Absolute Stability using Lyapunov
Functions with Relaxed Positivity Conditions

R. Drummond , G. Valmorbida and S. R. Duncan

Abstract—Conditions are given for verifying stability
and computing upper bounds on the induced (regional)
L2 gain for systems defined by vector fields which are,
along with their Jacobian, rational in the states and
sector bounded nonlinearities. A class of candidate Lya-
punov functions is considered that are polynomial on
the states and the nonlinearities and have a polynomial
scaled Lurie-Postnikov term. The main result of the
paper is a set of conditions that relax the requirement
on the candidate Lyapunov function from being sum-
of-squares with respect to the nonlinearities and the
Lurie-Postnikov terms from being non-negative.

Introduction

This paper studies stability and induced L2 gain for the
class of systems described by the feedback structure of
Figure 1, i.e. those with vector fields, which are, along with
their Jacobian, rational on the state variables and sector-
bounded nonlinearities. We refer to the stability analysis of
this class of systems as generalised absolute stability. The
original problem of absolute stability, formulated by Lurie
and Postnikov [1] and summarised in [2], considered the
feedback interconnection of a linear system with a generic
passive nonlinear operator characterised by sector bounds.
The main difference between this classical problem and
the one considered here is that the nonlinear system with
a rational vector field replaces the linear system in the
feedback block.

To analyse such systems requires techniques from both
absolute stability theory and polynomial systems. A stan-
dard technique for verifying absolute stability is the search
for suitable Lyapunov functions, with classical functions
being the quadratic function of the circle criterion [3] and
the Lurie-Postnikov function of the Popov criterion [3].
When the nonlinearity is also slope restricted, more ad-
vanced candidate Lyapunov functions, which are quadratic
on both the states and the nonlinearity and include an
integral term, can also be considered [4, 5, 6]. This is the
class of Lyapunov function that is generalised in this paper
for the case of rational vector fields.

A generalisation of absolute stability was proposed in [7]
to extend the class of systems that could be analysed
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Figure 1. The feedback interconnection of the considered class of
system. The vector field f(x, φ(y), w) and its Jacobian are assumed
to be rational on x and φ(y) and affine in w.

beyond those with the rather restrictive linear feedback
structure. A main feature of [7] was the use of polynomi-
als to bound the nonlinearities, with the results taking
advantage of recent developments in polynomial opti-
mization, namely the sum-of-squares (SOS) relaxation for
positive polynomials. The generalisation presented in this
paper proposes a refinement based on the introduction of
Lyapunov/storage function candidates that contain poly-
nomial terms and scaled integral Lurie-Postnikov terms
that are not sum-of-squares. The advances in polynomial
optimization also motivated the approximation of vector
fields defined by (locally) analytic nonlinear functions by
polynomials systems [8, 9]. The analysis of non-polynomial
systems via polynomial optimisation methods was consid-
ered in [10], which used a recasting transformation on the
system.

Contribution

We propose a method to study systems defined by
vector fields that are, along with their Jacobian, rational
functions on both the states and sector bounded non-
linearities. The restriction on the Jacobian to be ratio-
nal leads to tractable numerical solutions of polynomial
Lyapunov inequalities. Moreover, we provide examples of
non-linearities that are not rational, but which have a
rational Jacobian. The results are based on the use of
Lyapunov/storage functions that are polynomial on the
states and the sector bounded nonlinearities and contain
a scaled Lurie-Postnikov term. The conditions for the
positivity of the Lyapunov functions extends the results
for quadratic functions of [4], namely, we do not impose
the Lurie-Postnikov term nor the polynomial terms on
the sector nonlinearities to be strictly positive. The pre-
scribed analysis also encompasses regional stability and



performance, with inclusion conditions on the level sets
of the Lyapunov function being used to obtain local
properties. More importantly, the conditions presented
are expressed in terms of the verification of polynomial
inequalities, which are cast as semi-definite programmes,
convex optimisation problems that can be efficiently solved
for low dimensional systems using software packages such
as YALMIP or SOSTOOLS.

A preliminary version of the material in this paper can
be found in [11], where only a global analysis was consid-
ered and a simpler version of the Lyapunov function than
the one studied here was proposed. Note that since the
vector field is defined by rational expressions and not by a
linear system, it is not possible to formulate the frequency
dependent interpretation of the stability conditions, such
as phase equivalent Zames-Falb multipliers [12], which are
generally considered to be the least conservative method
for the global analysis of absolute stability [12].

The paper is structured as follows. Section I sets up
the system to be studied. Section II introduces a set of
inequalities for verifying stability and computing upper
bounds on the induced L2 gain from input to output of
the system in some local/global domain. Section III details
a numerical formulation for the inequalities such that
they can be verified using convex programming. Numerical
examples illustrate the proposed method in Section IV.
The first numerical example shows the existence of a
common Lyapunov function for a benchmark saturated
system while the second example considers the stability
of a nonlinear vehicle model.

Notation: The ith row of matrix C ∈ Rp×n is denoted
Ci and the ith element of vector y is denoted yi. A
polynomial R[x] is a function that can be expressed as
p(x) = p1x + · · · + pmx

m. Polynomials of real coefficients
of dimension n in variable θ are denoted Rn[θ]. We use
R[θ] for n = 1. Polynomials on two variables θ1 and θ2
are denoted Rn[(θ1, θ2)]. The positive polynomials of di-
mension n are denoted Rn>0[(θ1, θ2)] and the non-negative
polynomials are Rn≥0[(θ1, θ2)]. The positive sum-of-squares
polynomials of dimension n are denoted Σn[(θ1, θ2)]. The
diagonal sum-of-squares polynomials are Σdiagn [(θ1, θ2)].
For p ∈ R[θ], deg(p, θ) stands for the degree of p on vari-
able θ. The set of non-negative reals is denoted R≥0. The
set of real symmetric matrices of dimension n is denoted
Sn and the subset of diagonal matrices is denoted Dn.
The sets of positive semidefinite symmetric and diagonal
matrices are respectively Sn≥0 and Dn≥0. The set of real
positive definite matrices are Sn>0 and Dn>0. The vector of
dimension n containing zeros is denoted 0n. The L2 norm

of a signal is denoted ‖z‖2 =
√∫∞

0
zT (θ)z(θ)dθ. We define

the ρ sublevel set of V by E(V, ρ) = {x ∈ Rn | V (x, φ) ≤ ρ}
for ρ ≥ 0. The time derivative of a function V (x, φ) : X0 →
R≥0 is denoted by the inner product V̇ = dV (x,φ)

dx ẋ+ dV
dφ φ̇ =

V̇ (x, φ) =

〈[
∇xV
∇φV

]
,

[
ẋ

φ̇

]〉
. In a slight abuse of notation,

we may drop the argument of functions, most notably with
φ(y(x)) = φ and φi(yi(x)) = φi.

I. Problem Statement

Consider the dynamical system

ẋ = D1(x, φ)−1N1(x, φ) +Bww (1a)

y = Cx (1b)

z = Czx (1c)

with x ∈ Rn, y ∈ Y ⊆ Rm, φ(y) : Y → Rm, φ ∈ C1,
output z ∈ Rnz , disturbance w ∈ Rnw , N1 ∈ Rn[(x, φ)],
D1 ∈ R>0[(x, φ)]. The nonlinearity φ(y(x)) is defined on
Y, which contains the origin and a domain Y0 satisfying
Y0 ⊆ Y ⊆ Rm. Define the set X0 as X0 = {x|y(x) ∈ Y0}.
This system can be interpreted by the feedback form of
Figure 1 with f(x, φ(y), w) defined by the RHS of (1a).

We will restrict the considered class of nonlinearities to
those which are memoryless, static, decentralised

φ(y) =
[
φ1(y1), φ2(y2), . . . , φm(ym)

]T
, (2a)

sector bounded with the nonlinearities φi being sign-
preserving operators on yi satisfying

φi(yi)

yi
∈ [0, δi] ∀y ∈ Y0 ⊆ Y (2b)

and
dφi(yi)

dyi
= D2i(yi, φi)

−1N2i(yi, φi), (2c)

where N2i ∈ R[(yi, φi)] and D2i ∈ R>0[(yi, φi)]. Defining
D̄2(y, φ) ∈ R>0[(y, φ)] and N̄2(y, φ) = diag(N̄21, . . . , N̄2m)
as

D̄2(y, φ) =
∏

i=1, ...,m

D2i(yi, φi) (3)

N̄2i(y, φ) = N2i(yi, φi)
∏

j=1, ...,m
i 6=j

D2j(yj , φj) (4)

such that

D−12i (yi, φi)N2i(yi, φi) = D̄−12 (y, φ)N̄2i(x, φ) (5)

gives

dφ(y)

dy
= D̄2(y, φ)−1N̄2(y, φ). (6)

The reason for introducing D̄2(y, φ) and N̄2(y, φ) is to
allow the denominator terms to be cancelled out in the
stability conditions.

The sector boundedness of the nonlinearity can be used
to obtain a polynomial inequality, known as the sector
inequality, that relates y and φ(y).

Fact 1: If the sector condition of (2b) holds, then

s1(y, φ, T (x, φ)) := φTT (x, φ)
(
∆y − φ

)
≥ 0 ∀y ∈ Y0 (7)

where T = diag(τ1, τ2, . . . , τm) with τi ∈ R≥0[(x, φ)] for
i = 1, 2, . . . , m and ∆ = diag(δ1, . . . , δm).

The sector inequalities relating φ(y) and its argument
are used to verify the positivity of polynomials in y and
φ(y) as in the fact below.



Fact 2: Consider a polynomial p1 ∈ R[(y, φ)]. If the
inequality

p1(y, φ)−s1(y, φ, T (x, φ)) ≥ 0 ∀x ∈ X0 (8)

holds then p1(y, φ) ≥ 0 ∀x ∈ X0.
This paper proposes solutions to the following problems:
Problem 1 (Stability): Provide conditions that guaran-

tee local stability of the origin of system (1).
Problem 2 (L2 gain): Obtain (local) upper bounds for

the induced L2 gain from w to z of (1).

II. Main Results

This section gives a set of conditions in terms of inequal-
ities to solve Problems 1 and 2. The analysis is based upon
Lyapunov function candidates of the form

V (x, φ) = V0(x, φ) +

m∑
i=1

∫ yi

0

λi(σ) φi(σ) dσ (9)

where V0 ∈ R[(x, φ)], V0(0, 0) = 0, and λi ∈ R[σ], i =
1, . . . ,m. The integral term in (9) is referred to as the
Lurie-Postnikov term.

Using (7), a polynomial lower bound for V (x, φ) is given
by the following lemma:

Lemma 1: Let V0 ∈ R[(x, φ)] and λi ∈ R[σ] for i =
1, . . . ,m defining (9) be given and let X0 ⊆ Rn, 0 ∈ X0

with φ satisfying (2). If there exists λ̃i ∈ R≥0[σ] for i =
1, . . . ,m, such that

λi(σ) ≥ −λ̃i(σ), i = 1, . . . ,m, ∀x ∈ X0 (10a)

V (x, φ) = V0(x, φ) (10b)

−
m∑
i=1

∫ yi(x)

0

δiσλ̃i(σ) dσ > 0 ∀x ∈ X0,

where δi is the sector bound, then V (x, φ) > 0 ∀x ∈
X0\{0}.

Proof: We use (10) and the sector bounds (2b) to
obtain that V (x, φ) is lower bounded by V (x) as follows

V (x, φ) = V0(x, φ) +
∑m
i=1

∫ yi(x)
0

λi(σ)φi(σ)dσ

≥ V0(x, φ)−
∑m
i=1

∫ yi(x)
0

λ̃i(σ)φi(σ)dσ

= V0(x, φ)−
∑m
i=1

∫ yi(x)
0

λ̃i(σ)φi(σ)dσ

−
∑m
i=1

∫ yi(x)
0

δiσλ̃i(σ)dσ

+
∑m
i=1

∫ yi(x)
0

δiσλ̃i(σ)dσ

= V0(x, φ)−
∑m
i=1

∫ yi(x)
0

δiσλ̃i(σ)dσ

+
∑m
i=1

∫ yi(x)
0

λ̃i(σ)(δiσ − φi(σ))dσ
≥ V (x, φ).

(11)

The following gives a set of inequalities that use the
lower bound of Lemma 1 to verify solutions to Problems 1
and 2. Note that the term

pl(x) :=

m∑
i=1

∫ yi(x)

0

δiσλ̃i(σ) dσ (12)

in (10b) is a polynomial Pl ∈ R[x].

Theorem 1: Suppose there exists polynomials V0 ∈
R[(x, φ)], Tj = diag(τj1, τj2, . . . , τjm) j = 1, 2 with
τj,· ∈ R≥0[(x, φ)], λ̃i ∈ R≥0[σ], λi ∈ R[σ], i = 1, 2, . . . , m
and a scalar η ∈ R>0 such that (10a) and

V (x, φ)− s1(x, φ, T1(x, φ)) ≥ 0 ∀x ∈ X0, (13a)

−
〈[
∇xV
∇φV

]
,

[
ẋ

φ̇

]〉
− Ω(z, w) (13b)

− s1(x, φ, T2(x, φ)) > 0 ∀x ∈ X0,

E(V, ρ) ⊆ X0 (13c)

hold with
a) Ω(z, w) = 0 and w = 0 ;
b) Ω(z, w) = −wTw + η−1zT z;

then
a) The origin of (1) is locally asymptotically stable with

domain of attraction E(V, ρ).
b) The induced L2 gain from w to z is upper-bounded by√

η, that is, ‖z‖2‖w‖2 ≤
√
η for all solutions of (1) satisfying

x(0) = 0 and ‖w‖2 ≤ ρ
1
2 .

Proof: From Fact 2, if (13a) holds, then V (x) >
0 ∀ x ∈ X0. Positivity of V (x, φ) > 0 then follows from
Lemma 1. Denote by V̇ (x) the time derivative of the
Lyapunov function V (x, φ) along the trajectories of (1)

such that V̇ (x, φ) =

〈[
∇xV
∇φV

]
,

[
ẋ

φ̇

]〉
. Invoking Fact 2, if

(13b) holds, then

−V̇ (x, φ)− Ω(z, w) > 0 ∀x ∈ X0. (14)

With

a) Ω(z, w) = 0, then (14) implies V̇ (x, φ) < 0 ∀x ∈ X0.
The set inclusion condition (13c) enforces the con-
tainment of the sublevel sets of the Lyapunov function
E(V, ρ) in the region where the local sector holds. The
satisfaction of (13a) and (13b) implies positive invari-
ance and contraction of the sublevel sets E(V, ρ) which
define an inner estimate of the region of attraction of
the system.

b) Ω(z, w) = −wTw + η−1zT z, then integrating (14)

from 0 to t∗ with x(0) = 0 gives
∫ t∗
0
wT (τ)w(τ)dτ >

η−1
∫ t∗
0
zT (τ)z(τ)dτ + V (x(t∗)). For ‖w‖2 ≤ ρ

1
2 ,

we obtain ρ > η−1
∫ t∗
0
zT (τ)z(τ)dτ + V (x(t∗)) ≥

V (x(t∗)), that is x(t∗) ∈ E(V, ρ), thus from (13c)
it follows that x(t∗) ∈ X0 for t∗ ∈ [0,∞). There-
fore, with ‖w‖ ≤ ρ

1
2 , (13b) and (13c) hold true

and
∫ t∗
0
w(τ)Tw(τ)dτ ≥ η−1

∫ t∗
0
z(τ)T z(τ)dτ that is

‖z‖2
‖w‖2 ≤

√
η.

Remark 1: Note that Theorem 1 does not require strict
positivity of the polynomials λi, nor of the terms of V0
related to the variables φ. Positivity of the nonlinear
terms of V0 is relaxed by including the sector information
into (13a) while the positivity of λi is relaxed by using the
polynomial lower bound of the Lurie-Postnikov term given
in Lemma 1. ?



III. Numerical Formulation

In this section, we propose numerical relaxations to
solve the polynomial inequality constraints of Theorem 1.
These relaxations use the SOS formulation for positive
polynomials, which is briefly explained in the appendix.
See [13] for a comprehensive analysis.

The set containment condition in (13c) can be cast
as a polynomial inequality in the case when the Lurie-
Postnikov term is itself a polynomial. Otherwise, we ver-
ify (13c) by relying on (10b) and use a polynomial outer
approximation of E(V, ρ). This outer approximation is
obtained by noting from (10b) that V (x, φ) ≤ V (x, φ),
thus E(V, ρ) ⊆ E(V , ρ).

To formulate (13) as polynomial inequalities, in this
section we assume X0 to be a semi-algebraic set, that is
∃ gi(x) ≥ 0, i = 1, . . . , np such that X0 = {x ∈ Rn|gi(x) ≥
0, i = 1, . . . , np}. In the proposition below, we denote
g(x) = [g1(x), . . . , gnp(x)].

The following proposition gives a convex formulation of
Theorem 1, expressed as an SDP.

Proposition 1: If there exists V0 ∈ R[(x, φ)],
V0(0, 0) = 0, T1, T̄2 ∈ Σdiagm [(x, φ)], λi(σ) ∈ R[σ],
λ̃i(σ) ∈ Σ[σ], satisfying λi(σ) + λ̃i(σ) ∈ Σ[σ] for
i = 1, . . . , m, qj ∈ Σnp [(x, φ)] for j = 1, . . . , 3, η ∈ R>0,
ε > 0,

V (x, φ)− s1(y(x), φ, T1)− εxTx− qT1 (x, φ)g(x, φ) ∈ Σ[(x, φ)],

(15a)

−

(〈[
∇xV
∇φV

]
,

[
D1(x, φ))−1N1(x, φ) +Bww
D̄2(φ, y)−1N̄2(φ, y)ẏ(x)

]〉
(15b)

− Ω(w, z)

)
·
(
D1(x, φ)D̄2(x, φ)

)
− s1(y, φ, T2)

− qT2 (x, φ)g(x, φ)− εxTx ∈ Σ[(x, φ,w)],

ρ− V (x, φ)− qT3 (x, φ)g(x, φ) ∈ Σ[x], (15c)

then

a) Ω(w, z) = 0 and w = 0, the origin of (1) is lo-
cally asymptotically stable with domain of attraction
E(V, ρ).

b) Ω(z, w) = wTw − η−1zT (x)z(x) an upper-bound for
the induced L2 gain of (1) is given by

√
η for all

solutions of (1) satisfying x(0) = 0, x(t) ∈ X0 and
‖w‖ ≤ ρ 1

2 .

Proof:
We show that (15) implies (13). From (15a), it follows

that V (x)−s1(y(x), φ, T1) ≥ εxTx+qT1 (x, φ)g(x, φ). Since
gj(x, φ) ≥ 0 ∀x ∈ X0, we obtain (13a).

Similarly, (15b) implies(〈[
∇xV
∇φV

]
,

[
D1(x, φ)−1N1(x, φ) +Bww

D̄2(φ, y)−1N̄2(φ, y)ẏ

]〉

− Ω(w, z)

)
·
(
D1(φ, y)D̄2(φ, y)

)
≥ 0 ∀x ∈ X0. (16)

Dividing the above by the positive polynomial
(D1(x, φ)D̄2(x, φ)) we obtain (14), which is Fact 2
applied to (13b).

Finally, (15c) implies ρ − V (x, φ) ≥ 0 ∀x ∈ X0, thus
E(V , ρ) ⊆ X0 and since E(V, ρ) ⊆ E(V , ρ), (13c) holds.

Remark 2: For quadratic formulations V (x, φ) = xTPx,
a convex optimization problem that enlarges the estimate
of the region of attraction is obtained using the function
log( det(P )). For the enlargement of the estimate of E(V, ρ)
used here, one can rely on a sequence of solutions to SDPs
optimising the ERA as proposed in [14]. ?

IV. Examples

A function satisfying (2b) and (2c) globally (with
Y = R) is the tan−1(y) function. Indeed, in this case, (2b)
holds with δ = 1 and the slope constraint (2c) holds since

d tan−1(y)

dy
=

1

1 + y2
∈ [0, 1). (17)

The function tan−1(y) can be regarded as a smooth ap-
proximation of the saturation function and also appears
in applications, as detailed in the example below.

A. Numerical Example 1: Smooth Saturation

Consider the Lurie-Postnikov system[
ẋ1
ẋ2

]
=

[
−0.05 1
−10 −0.5

] [
x1
x2

]
+

[
0
1

]
tan−1(y), (18a)

y =
[
9.9 0.495

] [x1
x2

]
. (18b)

The above system is adapted from [15, Example 4.3.1] with
the difference being that smooth saturation is considered
here, with the non-differentiable saturation function ap-
proximated by tan−1(y). In [15, Example 4.3.1], the au-
thors show that there does not exist a common quadratic
function for both the open-loop system and the linear
closed loop system (i.e. the system obtained by replacing
tan−1(y) by y in (18a)). However, using V (x, φ) as in (9)
with deg(V0(x, φ), x) = 4 and the degrees of the other
polynomials of Proposition 1 being two, we can prove
the global stability of the non-linear closed-loop system.
Suitable level sets of V (x, φ) depict the decrease of the
function along the trajectories of the system in Figure 2.

B. Numerical Example 2: Vehicle Stability

The second example considers the application of the
presented results to a physical system and involves the
estimation of the maximal region of attraction of a vehicle
model. Consider the following vehicle dynamics model
from [16]

mv̇ = −mu0ω + Ffy(y1) + Fry(y2) (19a)

Iω̇ = −aFfy(y1)− bFry(y2) (19b)

y1 =
v

u0
+
aω

u0
(19c)

y2 =
v

u0
− bω

u0
(19d)
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Figure 2. Convergence of the state trajectories of (18) (blue). Level
sets of the computed function V (x, φ) (black) and lines corresponding
to the set {x ∈ R2 : | tan−1(y(x))| = 0.8} (red) are also shown.
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Figure 3. Estimate of the region of attraction (E(V, ρ)) (black
solid) of the vehicle model of numerical example 4 obtained using
the polynomial Lyapunov function of Proposition 1. Also shown
are sublevel sets of the Lyapunov function (black dashed), stable
trajectories of the system (blue) and unstable trajectories (red).

with states lateral velocity v and rotational velocity ω.
The model parameters are mass m = 2527 kg, longitudinal
speed u0 = 20 m s−1, moment of inertia I = 6550 kg m2,
mass centre from front axle a = 1.37 m, mass centre from
rear axle b = 1.86.

The nonlinearity of the model enters via the tyre forces
Ffy(y1) and Fry(y2) given in [16] by

Ffy = −2Cf (φ1(y1)−Kfφ1(y1)3) (20a)

Fry = −2Cr(φ2(y2)−Krφ2(y2)3) (20b)

where Cr = Cf = 57300 N rad−1 are the cornering
stiffnesses and Kf = Kr = 4.87 are tyre force parameters.
Compared to the “Magic Formula Tire Models” of [17,

Chapter 4], this definition of the tyre forces assumes that
the tyre slips do not become large. Under the assumption
of small steering angle deflection, the front and rear tyre
lateral slip angles are

φ1(y1) = tan−1 (y1) , (21a)

φ2(y2) = tan−1 (y2) . (21b)

This vehicle model can be expressed as (1) with D1 = 1,
Bw = 0, Cz = 0, D̄2 = (1 + y21)(1 + y22),

C =

[ 1
u0

a
u0

1
u0
− b
u0

]
, (22a)

N1 =

[
−u0ω

0

]
(22b)

+

[
− 2Cf

m
2CfKf

m − 2Cr

m
2CrKr

m
2aCf

I − 2aCfKf

I − 2bCr

I
2bCrKr

I

]
φ1(y1)
φ1(y1)3

φ2(y2)
φ2(y2)3

 ,
N̄2 =

[
(1 + y22) 0

0 (1 + y21)

]
. (22c)

The region of attraction for this model obtained us-
ing Proposition 1 is shown in Figure 3. We have used
deg(V0(x, φ), x) = 8 and with the other polynomial vari-
ables of Proposition 1 being of degree 2. Including the
nonlinearities of the model directly within the stability
analysis of the system in this manner will give a more
representative picture of the stability profile of the real
system compared to using a linear analysis, as is commonly
used [17, Chapter 11].

V. Conclusion

This paper has considered the generalised stability
problem with conditions being derived to verify stability
and obtain minimal L2 gain bounds from disturbance to
output. The class of nonlinear systems considered is, along
with its Jacobian, a rational function of the states and
sector bounded nonlinearities. The conditions were derived
using a Lyapunov (storage) function that is polynomial
with respect to the states and the nonlinearity and has
a polynomially scaled integral term. The main result of
the paper relaxes strict positivity of the terms of this
Lyapunov function so as to reduce the conservatism of the
conditions. As a consequence, the Lyapunov functions are
not required to be sum-of-squares with respect to the non-
linearity and the scaling terms are also not required to be
strictly positive. A convex formulation for the conditions
was given such that they could be efficiently verified, as
shown in two numerical examples.

A system of practical interest in the form (1) is the finite
dimensional approximation of the electrochemical model of
a supercapacitor [18]. In such a system, the (locally) sector
bounded nonlinearity ln(1+ax) appears. We are currently
extending the results of this paper to the problem of
computing the L2 gain of the supercapacitor to estimate
its resistance. Due to the relatively high dimension (20



states) of the discretised supercapacitor model, a numeri-
cal solution of the optimization problem in Proposition 1
currently cannot be obtained.

Appendix

Definition 1: A multivariate polynomial p(θ) is said to
be a sum-of-squares polynomial if there exists a finite set
of polynomials hi ∈ R[θ] satisfying

p(θ) =

n∑
i=1

h2i (θ). (23)

The search for a sum-of-squares decomposition of a poly-
nomial is affine in the coefficients of hi and as such can be
expressed as a semi-definite programme (SDP) [13].

Proposition 2: A polynomial p(θ) ∈ R[θ] of degree 2d
is an sum-of-squares polynomial if and only if there exists
Q ∈ S≥0 and a vector of monomials Z(θ) ∈ RM [θ] such
that

p(θ) = Z(θ)TQZ(θ) (24)

then p(θ) is sum-of-squares.
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