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Abstract

Determinantal point processes (DPPs) enable the modeling of repulsion: they provide
diverse sets of points. This repulsion is encoded in a kernel K that can be seen as a matrix
storing the similarity between points. The exact algorithm to sample DPPs uses the spectral
decomposition of K, a computation that becomes costly when dealing with a high number
of points. Here, we present an alternative exact algorithm in the discrete setting that
avoids the eigenvalues and the eigenvectors computation. Instead, it relies on the Cholesky
decomposition of the matrix K and a thinning procedure. It can be, for some applications
specified below, faster than the original algorithm.

Keywords: Determinantal point processes, Exact Sampling, Thinning, Cholesky decom-
position, General marginal

1. Introduction

Determinantal point processes (DPPs) are processes that capture negative correlations. The
more similar two points are, the less likely they are to be sampled simultaneously. Then
DPPs tend to create sets of diverse points. They naturally arise in random matrix theory
(Ginibre, 1965) or in the modelling of a natural repulsive phenomenon like the repartition of
trees in a forest (Lavancier et al., 2015). Ever since the work of Kulesza and Taskar (2012a),
these processes have become more and more popular in machine learning, thanks to their
ability to draw subsamples that account for the inner diversity of data sets. This property
is useful for many applications, such as summarizing documents (Dupuy and Bach, 2018),
improving a stochastic gradient descent by drawing diverse subsamples at each step (Zhang
et al., 2017) or extracting a meaningful subset of a large data set to estimate a cost function
or some parameters (Tremblay et al., 2018b; Bardenet et al., 2017; Amblard et al., 2018).
Several issues are under study, as learning DPPs, for instance through maximum likelihood
estimation (Kulesza and Taskar, 2012b; Brunel et al., 2017), or sampling these processes.
Here we will focus on the sampling question and we will only deal with a discrete and finite
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determinantal point process Y , defined by its kernel matrix K, a configuration particularly
adapted to machine learning groundsets.

The main algorithm to sample DPPs is a spectral algorithm (Hough et al., 2006) : it
uses the eigendecomposition of K to sample Y . It is exact and in general quite fast. Yet, the
computation of the eigenvalues of K may be very costly when dealing with large-scale data.
That is why numerous algorithms have been conceived to bypass this issue. Some authors
tried to design a sampling algorithm adapted to specific DPPs. For instance, it is possible
to speed the initial algorithm up by assuming that K has a bounded rank (Kulesza and
Taskar, 2010; Gartrell et al., 2017). These authors use a dual representation of the kernel so
that almost all the computations in the spectral algorithm are reduced. One can also deal
with another class of DPPs associated to kernels K that can be decomposed in a sum of
tractable matrices (Dupuy and Bach, 2018). In this case, the sampling is much faster and
the authors study the inference on these classes of DPPs. At last, Propp and Wilson (1998)
use Markov chains and the theory of coupling from the past to sample exactly particular
DPPs : uniform spanning trees.

Another type of sampling algorithms is the class of approximate methods. Some authors
approach the original DPP with a low rank matrix, either by random projections (Kulesza
and Taskar, 2012a; Gillenwater et al., 2012) or thanks to the Nystrom approximation (Affandi
et al., 2013). The Monte Carlo Markov Chain methods offer also nice approximate sampling
algorithms for DPPs. It is possible to obtain satisfying convergence guarantees for particular
DPPs; for instance, k-DPPs with fixed cardinal (Anari et al., 2016; Li et al., 2016a) or
projection DPPs (Gautier et al., 2017). Li et al. (2016b) even proposed a polynomial-time
sampling algorithm for general DPPs, thus correcting the initial work of Kang (2013). These
algorithms are commonly used as they save significant time but the price to pay is the lack
of precision of the result.

As one can see, except the initial spectral algorithm, no algorithm allows for the exact
sampling of a generic DPP. The main contribution of this paper is to introduce such a general
and exact algorithm that does not involve the kernel eigendecomposition. The proposed
algorithm is a sequential thinning procedure that relies on two new results: (i) the explicit
formulation of the marginals of any determinantal point process and (ii) the derivation of
an adapted Bernoulli point process containing a given DPP.

The rest of the paper is organized as follows : in the next section, we present the
general framework of determinantal point processes and the classic spectral algorithm.
In Section 3, we provide an explicit formulation of the general marginals and pointwise
conditional probabilities of any determinantal point process, from its kernel K. Thanks
to these formulations, we first introduce a “naive”, exact but slow, sequential algorithm
that relies on the Cholesky decomposition of the kernel K. In Section 4, using the thinning
theory, we accelerate the previous algorithm and introduce a new exact sampling algorithm
for DPPs that we call the sequential thinning algorithm. Its computational complexity is
compared with that of the two previous algorithms. In Section 5, we display the results of
some experiments comparing these three sampling algorithms and we describe the conditions
under which the sequential thinning algorithm is more efficient than the spectral algorithm.
Finally, we discuss and conclude around this algorithm.
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2. DPPs and their Usual Sampling Method : the Spectral Algorithm

In the next sections, we will use the following notations. Let us consider a discrete finite set
Y = {1, . . . , N}. For M ∈ RN×N a matrix, we will denote by MA×B , ∀A,B ⊂ Y , the matrix
(M(i, j))(i,j)∈A×B and the short notation MA = MA×A. Suppose that K is a Hermitian
positive semi-definite matrix of size N ×N , indexed by the elements of Y , so that any of its
eigenvalues is in [0, 1]. A subset Y ⊂ Y is said to follow a DPP distribution of kernel K if,

∀A ⊂ Y,P (A ⊂ Y ) = det(KA).

The spectral algorithm is standard to draw a determinantal point process. It relies on
the eigendecompostition of its kernel K. It was first introduced by Hough et al. (2006) and
is also presented in a more detailed way by Scardicchio et al. (2009); Kulesza and Taskar
(2012a) or Lavancier et al. (2015). It proceeds in 3 steps : the first step is the computation
of the eigenvalues λj and the eigenvectors vj of the matrix K. The second step consists
in randomly selecting a set of active eigenvectors according to N Bernoulli variables of
parameter λi, for i = 1, . . . , N . The third step is drawing sequentially the associated points
using a Gram-Schmidt process.

Algorithm 1 The spectral sampling algorithm

1. Compute the orthonormal eigendecomposition (λj , v
j) of the matrix K.

2. Select the active frequencies: Draw a Bernoulli process X ∈ {0, 1}N with parameter
(λj)j .

Denote by n the number of active frequencies, {X = 1} = {j1, . . . , jn}. Define the
matrix V =

(
vj1 vj2 · · · vjn

)
∈ RN×n and denote by Vk ∈ Rn the k-th line of V , for

k ∈ Y.

3. Return the sequence Y = {y1, y2, . . . , yn} sequentially drawn as shown:
For l = 1 to n

• Sample a point yl ∈ Y from the discrete distribution,

plk =
1

n− l + 1

(
‖Vk‖2 −

l−1∑
m=1

|〈Vk, em〉|2
)
,∀k ∈ Y.

• If l < n, define el = wl
‖wl‖ ∈ Rn where wl = Vyl −

∑l−1
m=1〈Vyl , em〉em.

This algorithm is exact and relatively fast but it becomes heavy when the size of the
groundset grows. For a groundset of size N and a sample of size n, the third step costs
O(Nn3) because of the Gram-Schmidt orthonormalisation. Tremblay et al. (2018a) propose
to speed it up thanks to optimized computations and they achieve the complexity O(Nn2)
for this third step. Nevertheless, the eigendecomposition of the matrix K is the heaviest part
of the algorithm, as it runs in time O(N3), and we will see in the numerical results that this
first step represents in general more than 90% of the running time of the spectral algorithm.
As nowadays the amount of data explodes, in practice the matrix K is very large so it seems
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relevant to try to avoid this costly operation. We compare the time complexities of the
different algorithms presented in this paper at the end of Section 4. In the next section, we
show that any DPP can be exactly sampled by a sequential algorithm that does not require
the eigendecomposition of K.

3. Sequential Sampling Algorithm

Our goal is to build a competitive algorithm to sample DPPs that does not involve the
eigendecomposition of the matrix K. To do so, we first develop a “naive” sequential sampling
algorithm and subsequently, we will accelerate it thanks to a thinning procedure, presented
in Section 4.

3.1 Explicit General Marginal of a DPP

First, we need to explicit the marginals and the conditional probabilities of any DPP. When
I − K is invertible, a formulation of the explicit marginals already exists (Kulesza and
Taskar, 2012a), it implies to deal with a L-ensemble L instead of the matrix K. However,
this hypothesis is reductive : among others, it ignores the useful case of projection DPPs,
when the eigenvalues of K are either 0 or 1. We show below that general marginals can easily
be formulated from the associated kernel matrix K. For all A ⊂ Y , we denote IA the N ×N
matrix with 1 on its diagonal coefficients indexed by the elements of A, and 0 anywhere else.
We also denote |A| the cardinal of any subset A ⊂ Y and A ∈ Y the complementary set of
A in Y.

Proposition 1 (Distribution of a DPP) For any A ⊂ Y, we have

P(Y = A) = (−1)|A| det(IA −K).

Proof We have that P(A ⊂ Y ) =
∑
B⊃A

P(Y = B). Thanks to the Möbius inversion formula

(see Appendix A), for all A ⊂ Y,

P(Y = A) =
∑
B⊃A

(−1)|B\A|P(B ⊂ Y ) = (−1)|A|
∑
B⊃A

(−1)|B| det(KB)

= (−1)|A|
∑
B⊃A

det((−K)B)

Besides, Kulesza and Taskar (2012a) state in Theorem 2.1 that ∀L ∈ RN×N ,∀A ⊂ Y,∑
A⊂B⊂Y

det(LB) = det(IA + L). Then we obtain P(Y = A) = (−1)|A| det(IA −K).

We have by definition P(A ⊂ Y ) = det(KA) for all A, and as a consequence P(B ∩ Y =
∅) = det((I −K)B) for all B. The next proposition gives for any DPP the expression of the
general marginal P(A ⊂ Y,B ∩ Y = ∅), for any A,B disjoint subsets of Y , using K. In what
follows, HB denotes the symmetric positive semi-definite matrix

HB = K +KY×B((I −K)B)−1KB×Y .
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Theorem 2 (General Marginal of a DPP) Let A,B ⊂ Y be disjoint. If P(B ∩ Y =
∅) = det((I −K)B) = 0, then P(A ⊂ Y,B ∩ Y = ∅) = 0. Otherwise, the matrix (I −K)B is
invertible and

P(A ⊂ Y,B ∩ Y = ∅) = det((I −K)B) det(HB
A ).

Proof Let A,B ⊂ Y disjoint such that P(B ∩ Y = ∅) 6= 0. Using the previous proposition,

P(A ⊂ Y,B ∩ Y = ∅) =
∑

A⊂C⊂B

P(Y = C) =
∑

A⊂C⊂B

(−1)|C| det(IC −K).

For any C such that A ⊂ C ⊂ B, one has B ⊂ C. Hence, by reordering the matrix
coefficients, and using the Schur’s determinant formula,

det(IC −K) = det

(
(IC −K)B (IC −K)B×B

(IC −K)B×B (IC −K)B

)
= det

(
(I −K)B −KB×B
−KB×B (IC −K)B

)
= det((I −K)B) det((IC −HB)B).

Thus, P(A ⊂ Y,B ∩ Y = ∅) = det((I −K)B)
∑

A⊂C⊂B

(−1)|C| det((IC −HB)B).

According to Kulesza and Taskar (2012a), for all A ⊂ B,∑
A⊂C⊂B

det(−HB
C ) = det((IA −HB)B).

Then, Möbius inversion formula ensures that, ∀A ⊂ B,∑
A⊂C⊂B

(−1)|C\A| det((IC −HB)B) = det(−HB
A ) = (−1)|A| det(HB

A ).

Hence, P(A ⊂ Y,B ∩ Y = ∅) = det((I −K)B) det(HB
A ).

Thanks to this formula, we can explicitly formulate the pointwise conditional probabilities
of any DPP.

Corollary 3 (Pointwise conditional probabilities of a DPP) Let A,B ⊂ Y be two
disjoint sets such that P(A ⊂ Y, B ∩ Y = ∅) 6= 0, and let k /∈ A ∪B. Then,

P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) =
det(HB

A∪{k})

det(HB
A )

= HB(k, k)−HB
{k}×A(HB

A )−1HB
A×{k}. (1)

This is a straightforward application of the previous expression and the Schur determinant
formula. Now, we have all the necessary expressions for the sequential sampling of a DPP.
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3.2 Sequential Sampling Algorithm of a DPP

This sequential sampling algorithm simply consists in using Formula (1) and updating at
each step the pointwise conditional probability, knowing the previous selected points. It
is presented in Algorithm 2. We recall that this sequential algorithm is a first step to
develop a competitive sampling algorithm for DPPs : with this method, one doesn’t need
eigendecomposition anymore. The second step (Section 4) will be to reduce its computational
cost.

Algorithm 2 Sequential sampling of a DPP with kernel K

• Initialization: A← ∅, B ← ∅.
• For k = 1 to N :

1. Compute HB
A∪{k} = KA∪{k} +KA∪{k}×B((I −K)B)−1KB×A∪{k}.

2. Compute the probability pk given by

pk = P ({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) = HB(k, k)−HB
{k}×A(HB

A )−1HB
A×{k}.

3. With probability pk, k is included, A← A ∪ {k}, otherwise B ← B ∪ {k}.

• Return A.

The main operations of Algorithm 2 involve solving linear systems related to (I −K)−1
B .

Fortunately, here we can use the Cholesky factorization, which alleviates the computational
cost. Suppose that LB is the Cholesky factorization of (I − K)B, that is, LB is a lower
triangular matrix such that (I−K)B = LB(LB)∗ (where (LB)∗ is the conjugate transpose of
LB). Then, denoting JB = (LB)−1KB×A∪{k}, one simply has HB

A∪{k} = KA∪{k}+ (JB)∗JB.

Besides, at each iteration where B grows, the Cholesky decomposition LB∪{k} of (I −
K)B∪{k} can be computed from LB using standard Cholesky update operations, involving
the resolution of only one linear system of size |B|. See Appendix B for the details of a
typical Cholesky decomposition update.

In comparison with the spectral sampling algorithm of Hough et al. (2006), one requires
computations for each site of Y, and not just one for each sampled point of Y . We will see
at the end of Section 4 and in the experiments that it is not competitive.

4. Sequential Thinning Algorithm

In this section, we show that we can significantly decrease the number of steps and the
running time of Algorithm 2 : we propose to first sample a point process X containing Y ,
the desired DPP, and then make a sequential selection of the points of X to obtain Y . This
procedure can be called a sequential thinning.
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4.1 General Framework of Sequential Thinning

We first describe a general sufficient condition for which a target point process Y - it will be a
determinantal point process in our case - can be obtained as a sequential thinning of a point
process X. This is a discrete adaptation of the thinning procedure on the continuous line
of Rolski and Szekli (1991). To do this, we will consider a coupling (X,Z) such that Z ⊂ X
will be a random selection of the points of X and that will have the same distribution as Y .
From this point onward, we identify the set X with the vector of size N with 1 in the place
of the elements of X and 0 elsewhere, and we use the notations X1:k to denote the vector
(X1, . . . , Xk) and 01:k to denote the null vector of size k. We want to define the random
vector (X1, Z1, X2, Z2, . . . , XN , ZN ) ∈ R2N with the following conditional distributions for
Xk and Zk:

P(Xk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) = P(Xk = 1|X1:k−1 = x1:k−1)

P(Zk = 1|Z1:k−1 = z1:k−1, X1:k = x1:k) = 1{xk=1}
P(Yk = 1|Y1:k−1 = z1:k−1)

P(Xk = 1|X1:k−1 = x1:k−1)
.

(2)

Proposition 4 (Sequential thinning) Assume that X,Y, Z are discrete point processes
on Y that satisfy for all k ∈ {1, . . . , N}, and all z, x ∈ {0, 1}N ,

P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0
implies

P(Yk = 1|Y1:k−1 = z1:k−1) ≤ P(Xk = 1|X1:k−1 = x1:k−1).
(3)

Then, it is possible to choose (X,Z) in such a way that (2) is satisfied. In that case, we
have that Z is a thinning of X, that is Z ⊂ X, and Z has the same distribution as Y .

Proof Let us first discuss the definition of the coupling (X,Z). Thanks to the condi-
tions (3), the ratios defining the conditional probabilities of Equation (2) are ensured to
be between 0 and 1 (if the conditional events have non zero probabilities). Hence the
conditional probabilities permits to construct sequentially the distribution of the random
vector (X1, Z1, X2, Z2, . . . , XN , ZN ) of length 2N , and thus the coupling is well-defined.
Besides, as Equation 2 is satisfied, Zk = 1 only if Xk = 1, so one has Z ⊂ X.

Let us now show that Z has the same distribution as Y . By complementarity of the
events {Zk = 0} and {Zk = 1}, it is enough to show that for all k ∈ {1, . . . , N}, and
z1, . . . , zk−1 such that P(Z1:k−1 = z1:k−1) > 0,

P(Zk = 1|Z1:k−1 = z1:k−1) = P(Yk = 1|Y1:k−1 = z1:k−1). (4)

Let k ∈ {1, . . . , N}, (z1:k−1, x1:k−1) ∈ {0, 1}2(k−1), such that P(Z1:k−1 = z1:k−1, X1:k−1 =
x1:k−1) > 0. Since Z ⊂ X, {Zk = 1} = {Zk = 1, Xk = 1}. Suppose first that P(Xk = 1|X1 =
x1, . . . , Xk−1 = xk−1) 6= 0. Then

P(Zk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)

=P(Zk = 1, Xk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)

=
P(Zk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1, Xk = 1)
×P(Xk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)

= P(Yk = 1|Y1:k−1 = z1:k−1), by Equations (2).
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If P(Xk = 1|X1:k−1 = x1:k−1) = 0, then P(Zk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) = 0 and
thanks to (3), P(Yk = 1|Y1:k = z1:k) = 0. Hence the identity

P(Zk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) = P(Yk = 1|Y1:k−1 = z1:k−1)

is always valid. Since the values x1, . . . , xk−1 do not influence this conditional probability,
one can conclude that given (Z1, . . . , Zk−1), Zk is independent of X1, . . . , Xk−1, and thus
(4) is true.

The characterization of the thinning defined here allows both extreme cases: there can
be no pre-selection of points by X, meaning that X = Y and that the DPP Y is sampled by
Algorithm 2, or there can be no thinning at all, meaning that the final process Y can be
equal to the dominating process X. Regarding sampling acceleration, a good dominating
process X must be sampled quickly and with a cardinal as close as possible to |Y |.

4.2 Sequential Thinning Algorithm for DPPs

In this section, we use the sequential thinning approach, where Y is a DPP of kernel K
on the groundset Y, and X is a Bernoulli point process (BPP). BPPs are the fastest and
easiest point processes to sample. X is a Bernoulli process if the components of the vector
(X1, . . . , XN ) are independent. Its distribution is determined by the probability of occurrence
of each point k, that we denote by qk = P(Xk = 1). Thanks to the independence property,
the conditions (3) simplifies to

P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0 implies P(Yk = 1|Y1:k−1 = z1:k−1) ≤ qk.

The second inequality does not depend on x, hence it must be valid as soon as there
exists a vector x such that P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0, that is, as soon as
P(Z1:k−1 = z1:k−1) > 0. Since we want Z to have the same distribution as Y , we finally
obtain the conditions

∀y ∈ {0, 1}N , P(Y1:k−1 = y1:k−1) > 0 implies P(Yk = 1|Y1:k−1 = y1:k−1) ≤ qk.

Ideally, we want the qk to be as small as possible to ensure that the cardinal of X is as
small as possible. So we look for the optimal values q∗k, that is,

q∗k = max
(y1:k−1) ∈ {0,1}k−1 s.t.

P(Y1:k−1 = y1:k−1) > 0

P(Yk = 1|Y1:k−1 = y1:k−1).

A priori, computing q∗k would raise combinatorial issues. However, thanks to the repulsive
nature of DPPs, we have the following proposition.

Proposition 5 Let A,B ⊂ Y be two disjoint sets such that P(A ⊂ Y, B ∩ Y = ∅) 6= 0, and
let k 6= l ∈ A ∪B. If P(A ∪ {l} ⊂ Y, B ∩ Y = ∅) > 0, then

P({k} ⊂ Y |A ∪ {l} ⊂ Y, B ∩ Y = ∅) ≤ P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅).
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If P(A ⊂ Y, (B ∪ {l}) ∩ Y = ∅) > 0, then

P({k} ⊂ Y |A ⊂ Y, (B ∪ {l}) ∩ Y = ∅) ≥ P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅).

Consequently, for all k ∈ Y, if y1:k−1 ≤ z1:k−1 (where ≤ stands for the inclusion partial
order) are two states for Y1:k−1, then

P(Yk = 1|Y1:k−1 = y1:k−1) ≥ P(Yk = 1|Y1:k−1 = z1:k−1).

In particular, ∀k ∈ {1, . . . , N}, if P(Y1:k−1 = 01:k−1) > 0 then

q∗k = P(Yk = 1|Y1:k−1 = 01:k−1) = K(k, k) +Kk×{1:k−1}((I −K){1:k−1})
−1K{1:k−1}×k.

Proof Recall that by Proposition 3, P ({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) = HB(k, k) −
HB
{k}×A(HB

A )−1HB
A×{k}. Let l /∈ A ∪B ∪ {k}. Consider LB the Cholesky decomposition of

the matrix HB obtained with the following ordering the coefficients: A, l, the remaining
coefficients of Y \ (A ∪ {l}). Then, the restriction LBA is the Cholesky decomposition (of the
reordered) HB

A and thus

HB
{k}×A(HB

A )−1HB
A×{k} = HB

{k}×A(LBA(LBA)∗)−1HB
A×{k} = ‖(LBA)−1HB

A×{k}‖
2
2.

Similarly,

HB
{k}×A∪{l}(H

B
A∪{l})

−1HB
A∪{l}×{k} = ‖(LBA∪{l})

−1HB
A∪{l}×{k}‖

2
2.

Now remark that solving the triangular system with b = (LBA∪{l})
−1HB

A∪{l}×{k} amounts

solving the triangular system with (LBA)−1HB
A×{k} and an additional line at the bottom.

Hence, one has ‖b‖22 ≥ ‖(LBA)−1HB
A×{k}‖

2
2. Consequently, provided that P(A ∪ {l} ⊂ Y, B ∩

Y = ∅) > 0,

P({k} ⊂ Y |A ∪ {l} ⊂ Y, B ∩ Y = ∅) ≤ P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅).

The second inequality is obtained by complementarity in applying the above inequality to
the DPP Y with B ∪ {l} ⊂ Y and A ∩ Y = ∅.

As a consequence, an admissible choice for the distribution of the Bernoulli process is

qk =

{
P(Yk = 1|Y1:k−1 = 01:k−1) if P(Y1:k−1 = 01:k−1) > 0,

1 otherwise.
(5)

Remark that if for some index k, P(Y1:k−1 = 01:k−1) > 0 is not satisfied, then for all
the subsequent indexes l ≥ k, ql = 1, that is the Bernoulli process becomes degenerate and
contains all the points after k. In the remaining of this section, X will denote a Bernoulli
process with probabilities (qk) given by (5).

As discussed in the previous section, in addition to being easily simulated, one would
like the cardinal of X to be close to the one of Y , the final sample. The next proposition
shows that this is verified if all the eigenvalues of K are strictly less than 1.

9
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Proposition 6 (|X| is proportional to |Y |) Suppose that P (Y = ∅) = det(I −K) > 0
and denote by λmax(K) ∈ [0, 1) the maximal eigenvalue of K. Then,

E(|X|) ≤
(

1 +
λmax(K)

2 (1− λmax(K))

)
E(|Y |). (6)

Proof By Proposition 3, qk = K(k, k) +K{k}×{1:k−1}((I−K){1:k−1})
−1K{1:k−1}×{k}. Since

‖((I −K){1:k−1})
−1‖Mk−1(C) = 1

1−λmax(K{1:k−1})

and λmax(K{1:k−1}) ≤ λmax(K) one has,

K{k}×{1:k−1}((I −K){1:k−1})
−1K{1:k−1}×{k} ≤ 1

1−λmax(K)‖K{1:k−1}×{k}‖22.

Summing all these inequalities gives E(|X|) ≤ Tr(K) + 1
1−λmax(K)

N∑
k=1

‖K{1:k−1}×{k}‖22.

The last term is the Frobenius norm of the upper triangular part of K, hence in can
be bounded by 1

2‖K‖
2
F = 1

2

∑N
j=1 λj(K)2. Since λj(K)2 ≤ λj(K)λmax(K),

∑N
j=1 λj(K)2 ≤

λmax(K) Tr(K) = λmax(K)E(|Y |).

We can now introduce the whole sampling algorithm that we call sequential thinning
algorithm (Algorithm 3). It presents the different steps of our sequential thinning algorithm
to sample a DPP of kernel K. The first step is a preprocess that must be done only once for
a given matrix K. Step 2 is trivial and fast. The critical point is to sequentially compute the
conditional probabilities pk = P({k} ⊂ Y |A ⊂ Y, B∩Y = ∅) for each point of X. Recall that
in Algorithm 2 we use a Cholesky decomposition of the matrix (I −K)B which is updated
by adding a line each time a point is added in B. Here, the inverse of the matrix (I −K)B
is only needed when visiting a point k ∈ X, so one updates the Cholesky decomposition
by block, where the new block corresponds to all indices added to B in one iteration (see
Appendix B).

4.3 Computational Complexity

Recall that the size of the groundset Y is N and the size of the final sample is |Y | = n.
Both algorithms introduced in this paper have running complexities of order O(N3), as the
spectral algorithm. Yet, if we get into the details, the most expensive task in the spectral
algorithm is the computation of the eigenvalues and the eigenvectors of the kernel K. As this
matrix is Hermitian, the common routine to do so is the reduction of K to some tridiagonal
matrix to which the QR decomposition is applied. When N is large, the total number of
operations is approximately 4

3N
3 (Trefethen and Bau, 1997). In Algorithms 2 and 3, one

of the most expensive operations is the Cholesky decomposition of several matrices. We
recall that the Cholesky decomposition of a matrix of size N ×N costs approximately 1

3N
3

computations, when N is large (Mayers and Süli, 2003). Concerning the sequential algorithm
2, at each iteration k, the number of operations needed is of order |B|2|A|+ |B||A|2 + |A|3,
where |A| is the number of selected points at step k so it’s lower than n, and |B| the number

10
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Algorithm 3 sampling of a DPP by sequential thinning of an adapted Bernoulli process

1. Compute sequentially the probabilities P(Xk = 1) = qk of the Bernoulli process X:

• Compute the Cholesky decomposition L of the matrix I −K.

• For k = 1 to N :

– If qk−1 < 1 (with the convention q0 = 0),

qk = K(k, k) + ‖L−1
{1,...,k−1}K{1,...,k−1}×{k}‖22

– Else, qk = 1.

2. Draw the Bernoulli process X. Let m = |X| and k1 < k2 < · · · < km be the points of
X.

3. Apply the sequential thinning to the points of X:

• Attempt to add sequentially each point of X to Y :
Initialize A← ∅ and B ← {1, . . . , k1 − 1}
For j = 1 to m

– If j > 1, B ← B ∪ {kj−1 + 1, . . . , kj − 1}
– Compute the conditional probability pkj = P({kj} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) (see

Formula 1).

– Add kj to A with probability
pkj
qkj

or to B otherwise.

• Return A.

of not-selected points, bounded by k. Then, when N tends to infinity, the total number
of operations in Algorithm 2 is lower than n

3N
3 + n2

2 N
2 + n3N or O(nN3), as in general

n� N . Concerning Algorithm 3, the sequential thinning from X, coming from Algorithm 2,
costs O(n|X|3). Recall that |X| is propositional to |Y | = n when the eigenvalues of K are
smaller than 1 (see Equation 6) so this step costs O(n4). Then, the Cholesky decomposition
of I −K is the most expensive operation in Algorithm 3 as it costs approximately 1

3N
3. In

this case, the overall running complexity of the sequential thinning algorithm is of order
1
3N

3, which is 4 times less than the spectral algorithm. When some eigenvalues of K are
equal to 1, Equation 6 doesn’t stand anymore so, in that case, the running complexity of
Algorithm 3 is only bounded by O(nN3).

We will retrieve this experimentally as, depending on the application or on the kernel K,
this Algorithm 3 is able to speed up the sampling of DPPs.

5. Experiments

For the following experiments, we ran the algorithms on a laptop HP Intel(R) Core(TM)
i7-6600U CPU and the software Matlab. First, let us compare the sequential thinning
Algorithm 3 presented here with the two main sampling algorithms: the classic spectral

11



Launay, Galerne and Desolneux

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

10-2

10-1

100

101

102

103

Ti
m

e
 (

se
c)

Figure 1: Running times of the 3 studied algorithms in function of the size of the groundset.

Algorithm 1 and the “naive” sequential Algorithm 2. Figure 1 presents the running times
of the three algorithms as a function of the total number of points of the groundset. Here,
we have chosen a common DPP kernel, a discrete adaptation of the Ginibre kernel. The
expected cardinal E(|Y |) is constant, equal to 20. As foreseen, the sequential algorithm
(Algorithm 2) is far slower than the two others. Whatever the chosen kernel and the expected
cardinal of the DPP, this algorithm is not competitive. Note that the sequential thinning
algorithm uses this sequential method after sampling the particular Bernoulli process. But
we will see that this first dominating step can be very efficient and lead to a relatively fast
algorithm.
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Figure 2: Running times in log-scale of the spectral and the sequential thinning algorithms
as a function of the size of the groundset |Y|, using “classic” DPP kernels. From
left to right: a random kernel, a Ginibre kernel, a kernel based on the similarity
between patches of an image and a projection kernel. On the first row, the
expectation of the number of points is set to 4% of the |Y| and on the second row,
E(|Y |) is constant, equal to 20.
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From now on, we restrict the comparison to the spectral and the sequential thinning
algorithms (Algorithms 1 and 3). We present in Figure 2 the running times of these
algorithms as a function of the size of |Y| in several situations. The first row shows the
running times when the expectation of the number of sampled point E(|Y |) is equal to 4% of
the size of Y : it increases as the total number of points increases. In this case, we can see that
whatever the chosen kernel, the spectral algorithm is faster as the complexity of sequential
part of Algorithm 3 depends on the size |X| that also grows since X ⊂ Y . On the second
row, as |Y| grows, E(|Y |) is fixed to 20. Except for the right-hand-side kernel, we are in the
configuration where |X| stays proportional to |Y |, then the Bernoulli step of Algorithm 3 is
very efficient and this sequential thinning algorithm becomes competitive with the spectral
algorithm. For these general kernels, we observe that the sequential thinning algorithm can
be faster than the spectral algorithm, when the expected cardinal of the sample is small
compared to the size of the groundset. The question is : up to which expected cardinal is
Algorithm 3 faster ?
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Figure 3: Running times of the spectral and sequential thinning algorithms in function of
the expectation of the cardinal of the process. From left to right, using a random
kernel, the Ginibre kernel, a kernel based on the similarity between patches of an
image and a projection kernel. The size of the groundset is fixed to 5000 in all
examples.

Figure 3 displays the running times of both algorithms in function of the expected
cardinal of the sample when the size of the groundset is constant, equal to 5000 points.
Notice that, concerning the three left-hand-side general kernels with no eigenvalue equal to 1,
the sequential thinning algorithm is faster under a certain expected number of points -which
depends on the kernel. For instance, when the kernel is randomly defined and the range of
desired points to sample is below 200, it is relevant to use this algorithm. To conclude, when
the eigenvalues of the kernel are below 1, Algorithm 3 seems relevant for large data sets but
small samples. This case is quite common, for instance to summarize a text, to work only
with representative points in clusters or to denoise an image with a patch-based method.

The projection kernel (when the eigenvalues of K are either 0 or 1) is, as expected, a
complicated case. Figure 2 (bottom, right) shows that our algorithm is not competitive
when using this kernel. Indeed, the cardinal of the dominating Bernoulli process X can be
very large. In this case, the bound in Equation 6 isn’t valid (and even tends to infinity)
as λmax = 1, and we can quickly reach the degenerated case when, after some index k, all
the Bernoulli probabilities ql, l ≥ k, are equal to 1. Then the second part of the sequential
thinning algorithm -the sequential sampling part- is done on a larger set which significantly
increases the running time of our algorithm. Figure 3 confirms this observation as in that
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Algorithms Steps Expected cardinal
4% of |Y| Constant (20)

Sequential Matrix inversion 85, 31% 85, 38%
Cholesky computation 13, 37% 12, 82 %

Spectral Eigendecomposition 91, 49% 98, 82%
Sequential sampling 8, 15% 0, 783%

Sequential thinning Preprocess to define q 5, 10% 18, 40%
Sequential sampling 94, 86% 81, 55%

Table 1: Mean of the detailed running times of the sequential, spectral and sequential
thinning algorithms with |Y| ∈ [100, 10000] and a Ginibre kernel.

configuration, the sequential thinning algorithm is never the fastest.

Table 1 presents the individual weight of the main steps of the three algorithms. Con-
cerning the sequential algorithm, logically, the matrix inversion is the heaviest part taking
85.31% of the global running time. These proportions remain the same when the num-
ber of datapoints N grows. The main operation of the spectral algorithm is by far the
eigendecomposition of the matrix K, counting for at least 90% of the global running time,
when the expectation of the number of points to sample evolves with the size of Y. Finally,
the sequential sampling is the heaviest step of the sequential thinning algorithm. We have
already mentioned that the thinning is very fast and that it produces a point process with
a cardinal as close as possible to the final DPP. When the expected cardinal is low, the
number of selected points by the thinning process is low too, so the sequential sampling part
remains bounded (81.55% when the expected cardinal E(|Y |) is constant). On the contrary,
when E(|Y |) grows, the number of points selected by the dominated process rises as well
so the running time of this step is growing (with a mean of 94.86%). As seen before, the
global running time of the sequential thinning algorithm really depends on how good the
domination is.

6. Discussion

In this paper, we proposed a new sampling algorithm adapted to general determinantal point
processes, which doesn’t use the spectral decomposition of the kernel and which is exact.
It proceeds in two phases. The first one samples a Bernoulli process whose distribution is
adapted to the targeted DPP. It is a fast and efficient step that reduces the initial number
of points of the groundset. We know that if (I −K) is invertible, the expectation of the
cardinal of the Bernoulli process is proportional to the expectation of the cardinal of the
DPP. Moreover, even if this first sampling procedure may become degenerate (as soon as
there is k such that P(Xk = 1) = 1, all the subsequent points are selected), one can always
change the visiting order to decrease the expected cardinal of the Bernoulli process. In
practice, even when (I−K) isn’t invertible, the cardinal of the Bernoulli process remains low
in comparison with the cardinal of the groundset. The second phase is a sequential sampling
from the points selected in the first step. This phase is made possible thanks to the explicit
formulations of the general marginals and the pointwise conditional probabilities of any
DPP from its kernel K. Using updated Cholesky decompositions to compute the conditional

14



Exact Sampling of DPPs without Eigendecomposition

probabilities, we fastened the sampling, even if its running time increases significantly with
the size of its starting set of points.

In terms of running times, we have detailed the cases for which this algorithm is
competitive with the spectral algorithm, in particular when the size of the groundset is high
and the expected cardinal of the DPP is modest. This framework is common in machine
learning applications. Indeed, DPPs are an interesting solution to subsample a data set,
initialize a segmentation algorithm or summarize an image, examples where the number of
datapoints needs to be significantly reduced.
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Appendix A. Möbius inversion formula

Proposition 7 (Möbius inversion formula) Let V be a finite subset and f and g be two
functions defined on the set P(V ) of subsets of V . Then,

∀A ⊂ V, f(A) =
∑
B⊂A

(−1)|A\B|g(B) ⇐⇒ ∀A ⊂ V, g(A) =
∑
B⊂A

f(B),

and

∀A ⊂ V, f(A) =
∑
B⊃A

(−1)|B\A|g(B) ⇐⇒ ∀A ⊂ V, g(A) =
∑
B⊃A

f(B).

Proof The first equivalence is proved e.g. in Mumford and Desolneux (2010). The second
equivalence corresponds to the first applied to f̃(A) = f(A) and g̃(A) = g(A). You will find
more details on this matter in the book of Rota (1964).

Appendix B. Cholesky Decomposition Update

To be efficient, the sequential algorithm relies on Cholesky decompositions that are updated
step by step to save computations. Let M be a symmetric semi-definite matrix of the

form M =

(
A B
BT C

)
where A and C are square matrices. We suppose that the Cholesky

decomposition LA of the matrix A has already been computed and we want to compute the
Cholesky decomposition LM of M . Then, set

V = L−1
A B and X = C − V TV = C −BTA−1B

the Schur complement of the block A of the matrix M . Denote by LX the Cholesky
decomposition of X. Then, the Cholesky decomposition of M is given by

LM =

(
LA 0
V T LX

)
.

Indeed,

LML
T
M =

(
LA 0
V T LX

)(
LTA V
0 LTX

)
=

(
LAL

T
A LAV

V TLTA V TV + LXL
T
X

)
=

(
A B
BT C

)
.
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