
HAL Id: hal-01710266
https://hal.science/hal-01710266v6

Submitted on 17 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact Sampling of Determinantal Point Processes
without Eigendecomposition

Claire Launay, Bruno Galerne, Agnès Desolneux

To cite this version:
Claire Launay, Bruno Galerne, Agnès Desolneux. Exact Sampling of Determinantal Point Pro-
cesses without Eigendecomposition. Journal of Applied Probability, 2020, 57 (4), pp.1198-1221.
�10.1017/jpr.2020.56�. �hal-01710266v6�

https://hal.science/hal-01710266v6
https://hal.archives-ouvertes.fr

Applied Probability Trust (18 April 2020)

EXACT SAMPLING OFDETERMINANTAL POINT PROCESSES

WITHOUT EIGENDECOMPOSITION

CLAIRE LAUNAY,∗ Université de Paris

BRUNO GALERNE,∗∗ Université d’Orléans

AGNÈS DESOLNEUX,∗∗∗ CNRS and ENS Paris-Saclay

Abstract

Determinantal point processes (DPPs) enable the modeling of repulsion: they

provide diverse sets of points. The repulsion is encoded in a kernel K that can

be seen, in a discrete setting, as a matrix storing the similarity between points.

The main exact algorithm to sample DPPs uses the spectral decomposition of

K, a computation that becomes costly when dealing with a high number of

points. Here, we present an alternative exact algorithm to sample in discrete

spaces that avoids the eigenvalues and the eigenvectors computation. The

method used here is innovative and numerical experiments show competitive

results with respect to the initial algorithm.

Keywords: Determinantal point processes; Exact Sampling; Thinning; Cholesky

decomposition; General marginal

2010 Mathematics Subject Classification: Primary 68U20

Secondary 60G55

Determinantal point processes (DPPs) are processes that capture negative corre-

∗ Postal address: Laboratoire MAP5

Université de Paris, CNRS

Paris, 75006, FRANCE
∗∗ Postal address: Institut Denis Poisson,

Université d’Orléans, Université de Tours, CNRS

Orléans, 45100, FRANCE
∗∗∗ Postal address: Centre Borelli, CNRS

ENS Paris Saclay

Gif-sur-Yvette, 91190, FRANCE

1

2 Claire Launay, Bruno Galerne, Agnès Desolneux

lations. The more similar two points are, the less likely they are to be sampled

simultaneously. Then DPPs tend to create sets of diverse points. They naturally arise

in random matrix theory [22] or in the modelling of a natural repulsive phenomenon

like the repartition of trees in a forest [31]. Ever since the work of Kulesza and Taskar

[27], these processes have become more and more popular in machine learning, because

of their ability to draw subsamples that account for the inner diversity of data sets.

This property is useful for many applications, such as summarizing documents [14],

improving a stochastic gradient descent by drawing diverse subsamples at each step

[45] or extracting a meaningful subset of a large data set to estimate a cost function

or some parameters [44, 6, 3]. Several issues are under study, as learning DPPs, for

instance through maximum likelihood estimation [28, 10], or sampling these processes.

Here we will focus on the sampling question and we will only deal with a discrete and

finite determinantal point process Y , defined by its kernel matrix K, a configuration

particularly adapted to machine learning data sets.

The main algorithm to sample DPPs is a spectral algorithm [24]: it uses the

eigendecomposition of K to sample Y . It is exact and in general quite fast. Yet,

the computation of the eigenvalues of K may be very costly when dealing with large-

scale data. That is why numerous algorithms have been conceived to bypass this

issue. Some authors tried to design a sampling algorithm adapted to specific DPPs.

For instance, it is possible to speed up the initial algorithm by assuming that K has

a bounded rank [26, 15]. These authors use a dual representation of the kernel so

that almost all the computations in the spectral algorithm are reduced. One can also

deal with another class of DPPs associated to kernels K that can be decomposed in

a sum of tractable matrices [14]. In this case, the sampling is much faster and the

authors study the inference on these classes of DPPs. At last, Propp and Wilson

[37] use Markov chains and the theory of coupling from the past to sample exactly

particular DPPs: uniform spanning trees. Adapting Wilson’s algorithm, Avena and

Gaudillière [5] provide another algorithm to efficiently sample a parametrized DPP

kernel associated to random spanning forests.

Another type of sampling algorithms is the class of approximate methods. Some

authors approach the original DPP with a low rank matrix, either by random projec-

tions [27, 21] or using the Nystrom approximation [1]. The Monte Carlo Markov Chain

Exact Sampling of DPPs without Eigendecomposition 3

methods offer also nice approximate sampling algorithms for DPPs. It is possible to

obtain satisfying convergence guarantees for particular DPPs; for instance, k-DPPs

with fixed cardinality [4, 32] or projection DPPs [17]. Li et al. [33] even proposed a

polynomial-time sampling algorithm for general DPPs, thus correcting the initial work

of Kang [25]. These algorithms are commonly used as they save significant time but

the price to pay is the lack of precision of the result.

As one can see, except the initial spectral algorithm, no algorithm allows for the

exact sampling of a general DPP. The main contribution of this paper is to introduce

such a general and exact algorithm, that does not involve the kernel eigendecomposition,

to sample discrete DPPs. The proposed algorithm is a sequential thinning procedure

that relies on two new results: (i) the explicit formulation of the marginals of any de-

terminantal point process and (ii) the derivation of an adapted Bernoulli point process

containing a given DPP. This algorithm was first presented in [29] and was, to our

knowledge, the first exact sampling strategy without spectral decomposition. Matlab

and Python implementations of this algorithm (using the PyTorch library in the Python

code) are available online (https://www.math-info.univ-paris5.fr/~claunay/exact_sampling.html)

and hopefully soon in the repository created by Guillaume Gautier [18] gathering exact

and approximate DPP sampling algorithms. Let us mention that three very recent

preprints [36, 20, 13] also propose new algorithms to sample general DPPs without

spectral decomposition. Poulson [36] presents factorization strategies of Hermitian

and non-Hermitian DPP kernels to sample general determinantal point processes. As

our algorithm, it heavily relies on Cholesky decomposition. Gillenwater and al. [20]

use the dual representation of L-ensembles presented in [27] to construct a binary

tree containing enough information on the kernel to sample DPPs in sublinear time.

Dereziński et al. [13] apply a preprocessing step that preselects a portion of the points

using a regularized DPP. Then, a usual DPP sampling is done on the selection. This

is related to our thinning procedure of the initial set by a Bernoulli point process.

However note that the authors report that the overall complexity of their sampling

scheme is sublinear while ours is cubic due to Cholesky decomposition. Finally, in [8],

Blaszczyszyn and Keeler present a similar procedure based on a continuous space: they

use discrete determinantal point processes to thin a Poisson point process defined on

that continuous space. The point process generated offers theoretical guarantees on

https://www.math-info.univ-paris5.fr/~claunay/exact_sampling.html

4 Claire Launay, Bruno Galerne, Agnès Desolneux

repulsion and is applied to fit network patterns.

The rest of the paper is organized as follows: in the next section, we present the

general framework of determinantal point processes and the classic spectral algorithm.

In Section 2, we provide an explicit formulation of the general marginals and pointwise

conditional probabilities of any determinantal point process, from its kernel K. Using

these formulations, we first introduce a “naive”, exact but slow, sequential algorithm

that relies on the Cholesky decomposition of the kernel K. In Section 3, using the

thinning theory, we accelerate the previous algorithm and introduce a new exact

sampling algorithm for DPPs that we call the sequential thinning algorithm. Its

computational complexity is compared with that of the two previous algorithms. In

Section 4, we display the results of some experiments comparing these three sampling

algorithms and we describe the conditions under which the sequential thinning algo-

rithm is more efficient than the spectral algorithm. Finally, we discuss and conclude

on this algorithm.

1. DPPs and their Usual Sampling Method: the Spectral Algorithm

In the next sections, we will use the following notations. Let us consider a discrete

finite set Y = {1, . . . , N}. This set represents the space on which the point process is

defined. In point process theory, it can be called the carrier space or state space. In this

paper, we choose a machine learning term and refer to Y as the ground set. For M ∈

R
N×N a matrix, we will denote by MA×B, ∀A,B ⊂ Y, the matrix (M(i, j))(i,j)∈A×B

and the short notation MA = MA×A. Suppose that K is a Hermitian positive semi-

definite matrix of sizeN×N , indexed by the elements of Y, so that any of its eigenvalues

is in [0, 1]. A subset Y ⊂ Y is said to follow a DPP distribution of kernel K if,

P (A ⊂ Y) = det(KA), ∀A ⊂ Y.

The spectral algorithm is standard for drawing a determinantal point process. It

relies on the eigendecompostition of its kernel K. It was first introduced by Hough

et al. [24] and is also presented in a more detailed way by Scardicchio [40], Kulesza

and Taskar [27] or Lavancier et al. [31]. It proceeds in 3 steps: the first step is

the computation of the eigenvalues λj and the eigenvectors vj of the matrix K. The

second step consists in randomly selecting a set of eigenvectors according toN Bernoulli

Exact Sampling of DPPs without Eigendecomposition 5

variables of parameter λi, for i = 1, . . . , N . The third step is drawing sequentially the

associated points using a Gram-Schmidt process.

Algorithm 1 The spectral sampling algorithm

1. Compute the orthonormal eigendecomposition (λj , v
j) of the matrix K.

2. Select a random set of eigenvectors: Draw a Bernoulli process X ∈ {0, 1}N

with parameter (λj)j . Denote by n the number Bernoulli samples equal to one,

{X = 1} = {j1, . . . , jn}. Define the matrix V =
(
vj1 vj2 · · · vjn

)
∈ R

N×n and

denote by Vk ∈ R
n the k-th line of V , for k ∈ Y.

3. Return the sequence Y = {y1, y2, . . . , yn} sequentially drawn as follows:

For l = 1 to n

• Sample a point yl ∈ Y from the discrete distribution,

plk =
1

n− l + 1

(
‖Vk‖

2 −
l−1∑

m=1

|〈Vk, em〉|
2

)
, ∀k ∈ Y.

• If l < n, define el =
wl

‖wl‖
∈ R

n where wl = Vyl
−
∑l−1

m=1〈Vyl
, em〉em.

This algorithm is exact and relatively fast but it becomes slow when the size of the

ground set grows. For a ground set of size N and a sample of size n, the third step

costs O(Nn3) because of the Gram-Schmidt orthonormalisation. Tremblay et al. [43]

propose to speed it up using optimized computations and they achieve the complexity

O(Nn2) for this third step. Nevertheless, the eigendecomposition of the matrix K is

the heaviest part of the algorithm, as it runs in time O(N3), and we will see in the

numerical results that this first step represents in general more than 90% of the running

time of the spectral algorithm. As nowadays the amount of data explodes, in practice

the matrix K is very large so it seems relevant to try to avoid this costly operation.

We compare the time complexities of the different algorithms presented in this paper

at the end of Section 3. In the next section, we show that any DPP can be exactly

sampled by a sequential algorithm that does not require the eigendecomposition of K.

6 Claire Launay, Bruno Galerne, Agnès Desolneux

2. Sequential Sampling Algorithm

Our goal is to build a competitive algorithm to sample DPPs that does not involve

the eigendecomposition of the matrix K. To do so, we first develop a “naive” sequential

sampling algorithm and subsequently, we will accelerate it using a thinning procedure,

presented in Section 3.

2.1. Explicit General Marginal of a DPP

First, we need to specify the marginals and the conditional probabilities of any DPP.

When I − K is invertible, a formulation of the explicit marginals already exists [27],

it implies to deal with a L-ensemble matrix L instead of the matrix K. However, this

hypothesis is reductive: among others, it ignores the useful case of projection DPPs,

when the eigenvalues of K are either 0 or 1. We show below that general marginals can

easily be formulated from the associated kernel matrix K. For all A ⊂ Y, we denote

IA the N × N matrix with 1 on its diagonal coefficients indexed by the elements of

A, and 0 anywhere else. We also denote |A| the cardinality of any subset A ⊂ Y and

A ∈ Y the complementary set of A in Y.

Proposition 1. (Distribution of a DPP.) For any A ⊂ Y, we have

P(Y = A) = (−1)|A| det(IA −K).

Proof. We have that P(A ⊂ Y) =
∑

B⊃A

P(Y = B). Using the Möbius inversion

formula (see Appendix A), for all A ⊂ Y,

P(Y = A) =
∑

B⊃A

(−1)|B\A|
P(B ⊂ Y) = (−1)|A|

∑

B⊃A

(−1)|B| det(KB)

= (−1)|A|
∑

B⊃A

det((−K)B)

Furthermore, Kulesza and Taskar [27] state in Theorem 2.1 that for all L ∈ R
N×N , for

all A ⊂ Y,
∑

A⊂B⊂Y

det(LB) = det(IA + L). Then we obtain

P(Y = A) = (−1)|A| det(IA −K).

�

Exact Sampling of DPPs without Eigendecomposition 7

We have by definition P(A ⊂ Y) = det(KA) for all A, and as a consequence

P(B ∩ Y = ∅) = det((I −K)B) for all B. The next proposition gives for any DPP the

expression of the general marginal P(A ⊂ Y,B∩Y = ∅), for any A,B disjoint subsets of

Y, using K. In what follows, HB denotes the symmetric positive semi-definite matrix

HB = K +KY×B((I −K)B)
−1KB×Y .

Theorem 1. (General Marginal of a DPP.) Let A,B ⊂ Y be disjoint. If P(B ∩ Y =

∅) = det((I − K)B) = 0, then P(A ⊂ Y,B ∩ Y = ∅) = 0. Otherwise, the matrix (I −

K)B is invertible and

P(A ⊂ Y,B ∩ Y = ∅) = det((I −K)B) det(H
B
A).

Proof. Let A,B ⊂ Y disjoint such that P(B ∩ Y = ∅) 6= 0. Using the previous

proposition,

P(A ⊂ Y,B ∩ Y = ∅) =
∑

A⊂C⊂B

P(Y = C) =
∑

A⊂C⊂B

(−1)|C| det(IC −K).

For any C such that A ⊂ C ⊂ B, one has B ⊂ C. Hence, by reordering the matrix

coefficients, and using the Schur’s determinant formula [23],

det(IC −K) = det

 (IC −K)B (IC −K)B×B

(IC −K)B×B (IC −K)B

= det

(I −K)B −KB×B

−KB×B (IC −K)B

= det((I −K)B) det((I
C −HB)B).

Thus, P(A ⊂ Y,B ∩ Y = ∅) = det((I −K)B)
∑

A⊂C⊂B

(−1)|C| det((IC −HB)B).

According to Theorem 2.1 in Kulesza and Taskar [27], for all A ⊂ B,

∑

A⊂C⊂B

det(−HB
C) = det((IA −HB)B).

Then, Möbius inversion formula ensures that, ∀A ⊂ B,

∑

A⊂C⊂B

(−1)|C\A| det((IC −HB)B) = det(−HB
A) = (−1)|A| det(HB

A).

Hence, P(A ⊂ Y,B ∩ Y = ∅) = det((I −K)B) det(H
B
A). �

8 Claire Launay, Bruno Galerne, Agnès Desolneux

With this formula, we can explicitly formulate the pointwise conditional probabilities

of any DPP.

Corollary 1. (Pointwise conditional probabilities of a DPP.) Let A,B ⊂ Y be two

disjoint sets such that P(A ⊂ Y, B ∩ Y = ∅) 6= 0, and let k /∈ A ∪B. Then,

P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) =
det(HB

A∪{k})

det(HB
A)

= HB(k, k)−HB
{k}×A(H

B
A)−1HB

A×{k}.

(1)

This is a straightforward application of the previous expression and the Schur de-

terminant formula [23]. Note that these pointwise conditional probabilities are related

to the Palm distribution of a point process [12] which characterizes the distribution

of the point process under the condition that there is a point at some location x ∈ Y.

Shirai and Takahashi proved in [41] that DPPs on general spaces are closed under

Palm distributions, in the sense that there exists a DPP kernel Kx such that the Palm

measure associated to DPP(K) and x is a DPP defined on Y with kernel Kx. Borodin

and Rains [9] also provide similar results on discrete spaces, using L-ensembles, that

Kulesza and Taskar adapt in [27]. They condition the DPP not only on a subset

included in the point process but also, similarly as Corollary 1, on a subset not

included in the point process. As Shirai and Takahashi, they derive a formulation

of the generated marginal kernel L.

Now, we have all the necessary expressions for the sequential sampling of a DPP.

2.2. Sequential Sampling Algorithm of a DPP

This sequential sampling algorithm simply consists in using Formula (1) and updat-

ing at each step the pointwise conditional probability, knowing the previous selected

points. It is presented in Algorithm 2. We recall that this sequential algorithm is the

first step toward developing a competitive sampling algorithm for DPPs: with this

method, one doesn’t need eigendecomposition anymore. The second step (Section 3)

will be to reduce its computational cost.

Exact Sampling of DPPs without Eigendecomposition 9

Algorithm 2 Sequential sampling of a DPP with kernel K

• Initialization: A← ∅, B ← ∅.

• For k = 1 to N :

1. Compute HB
A∪{k} = KA∪{k} +KA∪{k}×B((I −K)B)

−1KB×A∪{k}.

2. Compute the probability pk given by

pk = P ({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) = HB(k, k)−HB
{k}×A(H

B
A)−1HB

A×{k}.

3. With probability pk, k is included, A← A ∪ {k}, otherwise B ← B ∪ {k}.

• Return A.

The main operations of Algorithm 2 involve solving linear systems related to (I −

K)−1
B . Fortunately, here we can use the Cholesky factorization, which alleviates the

computational cost. Suppose that TB is the Cholesky factorization of (I −K)B, that

is, TB is a lower triangular matrix such that (I − K)B = TB(TB)∗ (where (TB)∗ is

the conjugate transpose of TB). Then, denoting JB = (TB)−1KB×A∪{k}, one simply

has HB
A∪{k} = KA∪{k} + (JB)∗JB.

Furthermore, at each iteration where B grows, the Cholesky decomposition TB∪{k}

of (I−K)B∪{k} can be computed from TB using standard Cholesky update operations,

involving the resolution of only one linear system of size |B|. See Appendix B for the

details of a typical Cholesky decomposition update.

In comparison with the spectral sampling algorithm of Hough et al. [24], one requires

computations for each site of Y, and not just one for each sampled point of Y . We will

see at the end of Section 3 and in the experiments that it is not competitive.

3. Sequential Thinning Algorithm

In this section, we show that we can significantly decrease the number of steps

and the running time of Algorithm 2: we propose to first sample a point process X

containing Y , the desired DPP, and then make a sequential selection of the points of

X to obtain Y . This procedure can be called a sequential thinning.

10 Claire Launay, Bruno Galerne, Agnès Desolneux

3.1. General Framework of Sequential Thinning

We first describe a general sufficient condition for which a target point process Y -

it will be a determinantal point process in our case - can be obtained as a sequential

thinning of a point process X . This is a discrete adaptation of the thinning procedure

on the continuous line of Rolski and Szekli [38]. To do this, we will consider a coupling

(X,Z) such that Z ⊂ X will be a random selection of the points of X and that will have

the same distribution as Y . From this point onward, we identify the set X with the

vector of size N with 1 in the place of the elements of X and 0 elsewhere, and we use

the notations X1:k to denote the vector (X1, . . . , Xk) and 01:k to denote the null vector

of size k. We want to define the random vector (X1, Z1, X2, Z2, . . . , XN , ZN) ∈ R
2N

with the following conditional distributions for Xk and Zk:

P(Xk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) = P(Xk = 1|X1:k−1 = x1:k−1)

P(Zk = 1|Z1:k−1 = z1:k−1, X1:k = x1:k) = 1{xk=1}
P(Yk = 1|Y1:k−1 = z1:k−1)

P(Xk = 1|X1:k−1 = x1:k−1)
.

(2)

Proposition 2. (Sequential thinning.) Assume that X,Y, Z are discrete point pro-

cesses on Y that satisfy for all k ∈ {1, . . . , N}, and all z, x ∈ {0, 1}N,

P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0

implies

P(Yk = 1|Y1:k−1 = z1:k−1) ≤ P(Xk = 1|X1:k−1 = x1:k−1).

(3)

Then, it is possible to choose (X,Z) in such a way that (2) is satisfied. In that case,

we have that Z is a thinning of X, that is Z ⊂ X, and Z has the same distribution as

Y .

Proof. Let us first discuss the definition of the coupling (X,Z). With the condi-

tions (3), the ratios defining the conditional probabilities of Equation (2) are ensured

to be between 0 and 1 (if the conditional events have non zero probabilities). Hence

the conditional probabilities allows us to construct sequentially the distribution of the

random vector (X1, Z1, X2, Z2, . . . , XN , ZN) of length 2N , and thus the coupling is

well-defined. Furthermore, as Equation (2) is satisfied, Zk = 1 only if Xk = 1, so one

has Z ⊂ X .

Exact Sampling of DPPs without Eigendecomposition 11

Let us now show that Z has the same distribution as Y . By complementarity of the

events {Zk = 0} and {Zk = 1}, it is enough to show that for all k ∈ {1, . . . , N}, and

z1, . . . , zk−1 such that P(Z1:k−1 = z1:k−1) > 0,

P(Zk = 1|Z1:k−1 = z1:k−1) = P(Yk = 1|Y1:k−1 = z1:k−1). (4)

Let k ∈ {1, . . . , N}, (z1:k−1, x1:k−1) ∈ {0, 1}2(k−1), such that P(Z1:k−1 = z1:k−1, X1:k−1 =

x1:k−1) > 0. Since Z ⊂ X , {Zk = 1} = {Zk = 1, Xk = 1}. Suppose first that

P(Xk = 1|X1 = x1, . . . , Xk−1 = xk−1) 6= 0. Then

P(Zk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)

=P(Zk = 1, Xk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)

=
P(Zk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1, Xk = 1)

×P(Xk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)

= P(Yk = 1|Y1:k−1 = z1:k−1), by Equations (2).

If P(Xk = 1|X1:k−1 = x1:k−1) = 0, then P(Zk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) =

0 and using (3), P(Yk = 1|Y1:k = z1:k) = 0. Hence the identity

P(Zk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) = P(Yk = 1|Y1:k−1 = z1:k−1)

is always valid. Since the values x1, . . . , xk−1 do not influence this conditional proba-

bility, one can conclude that given (Z1, . . . , Zk−1), Zk is independent of X1, . . . , Xk−1,

and thus (4) is true. �

The characterization of the thinning defined here allows both extreme cases: there

can be no pre-selection of points by X , meaning that X = Y and that the DPP Y

is sampled by Algorithm 2, or there can be no thinning at all, meaning that the final

process Y can be equal to the dominating process X . Regarding sampling acceleration,

a good dominating process X must be sampled quickly and with a cardinality as close

as possible to |Y |.

3.2. Sequential Thinning Algorithm for DPPs

In this section, we use the sequential thinning approach, where Y is a DPP of kernel

K on the ground set Y, and X is a Bernoulli point process (BPP). BPPs are the fastest

and easiest point processes to sample. X is a Bernoulli process if the components

12 Claire Launay, Bruno Galerne, Agnès Desolneux

of the vector (X1, . . . , XN) are independent. Its distribution is determined by the

probability of occurrence of each point k, that we denote by qk = P(Xk = 1). Due to

the independence property, the conditions (3) simplifies to

P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0

implies

P(Yk = 1|Y1:k−1 = z1:k−1) ≤ qk.

The second inequality does not depend on x, hence it must be valid as soon as there

exists a vector x such that P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0, that is, as soon

as P(Z1:k−1 = z1:k−1) > 0. Since we want Z to have the same distribution as Y , we

finally obtain the conditions

∀y ∈ {0, 1}N , P(Y1:k−1 = y1:k−1) > 0 implies P(Yk = 1|Y1:k−1 = y1:k−1) ≤ qk.

Ideally, we want the qk to be as small as possible to ensure that the cardinality of

X is as small as possible. So we look for the optimal values q∗k, that is,

q∗k = max

(y1:k−1) ∈ {0,1}k−1 s.t.

P(Y1:k−1 = y1:k−1) > 0

P(Yk = 1|Y1:k−1 = y1:k−1).

A priori, computing q∗k would raise combinatorial issues. However, due to the repulsive

nature of DPPs, we have the following proposition.

Proposition 3. Let A,B ⊂ Y be two disjoint sets such that P(A ⊂ Y, B∩Y = ∅) 6= 0,

and let k 6= l ∈ A ∪B. If P(A ∪ {l} ⊂ Y, B ∩ Y = ∅) > 0, then

P({k} ⊂ Y |A ∪ {l} ⊂ Y, B ∩ Y = ∅) ≤ P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅).

If P(A ⊂ Y, (B ∪ {l}) ∩ Y = ∅) > 0, then

P({k} ⊂ Y |A ⊂ Y, (B ∪ {l}) ∩ Y = ∅) ≥ P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅).

Consequently, for all k ∈ Y, if y1:k−1 ≤ z1:k−1 (where ≤ stands for the inclusion partial

order) are two states for Y1:k−1, then

P(Yk = 1|Y1:k−1 = y1:k−1) ≥ P(Yk = 1|Y1:k−1 = z1:k−1).

Exact Sampling of DPPs without Eigendecomposition 13

In particular, ∀k ∈ {1, . . . , N}, if P(Y1:k−1 = 01:k−1) > 0 then

q∗k = P(Yk = 1|Y1:k−1 = 01:k−1)

= K(k, k) +Kk×{1:k−1}((I −K){1:k−1})
−1K{1:k−1}×k.

Proof. Recall that by Proposition 1, P ({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) = HB(k, k) −

HB
{k}×A(H

B
A)−1HB

A×{k}. Let l /∈ A∪B∪{k}. Consider TB the Cholesky decomposition

of the matrix HB obtained with the following ordering the coefficients: A, l, the

remaining coefficients of Y \ (A ∪ {l}). Then, the restriction TB
A is the Cholesky

decomposition (of the reordered) HB
A and thus

HB
{k}×A(H

B
A)−1HB

A×{k} = HB
{k}×A(T

B
A (TB

A)∗)−1HB
A×{k}

= ‖(TB
A)−1HB

A×{k}‖
2
2.

Similarly,

HB
{k}×A∪{l}(H

B
A∪{l})

−1HB
A∪{l}×{k} = ‖(TB

A∪{l})
−1HB

A∪{l}×{k}‖
2
2.

Now note that solving the triangular system with b = (TB
A∪{l})

−1HB
A∪{l}×{k} amounts

solving the triangular system with (TB
A)−1HB

A×{k} and an additional line at the bottom.

Hence, one has ‖b‖22 ≥ ‖(T
B
A)−1HB

A×{k}‖
2
2.

Consequently, provided that P(A ∪ {l} ⊂ Y, B ∩ Y = ∅) > 0,

P({k} ⊂ Y |A ∪ {l} ⊂ Y, B ∩ Y = ∅) ≤ P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅).

The second inequality is obtained by complementarity in applying the above inequality

to the DPP Y with B ∪ {l} ⊂ Y and A ∩ Y = ∅. �

As a consequence, an admissible choice for the distribution of the Bernoulli process

is

qk =

P(Yk = 1|Y1:k−1 = 01:k−1) if P(Y1:k−1 = 01:k−1) > 0,

1 otherwise.

(5)

Note that if for some index k, P(Y1:k−1 = 01:k−1) > 0 is not satisfied, then for all

the subsequent indexes l ≥ k, ql = 1, that is the Bernoulli process becomes degenerate

and contains all the points after k. In the remaining of this section, X will denote a

Bernoulli process with probabilities (qk) given by (5).

14 Claire Launay, Bruno Galerne, Agnès Desolneux

As discussed in the previous section, in addition to being easily simulated, one

would like the cardinality of X to be close to the one of Y , the final sample. The next

proposition shows that this is verified if all the eigenvalues of K are strictly less than

1.

Proposition 4. (|X | is proportional to |Y |.) Suppose that P (Y = ∅) = det(I−K) > 0

and denote by λmax(K) ∈ [0, 1) the maximal eigenvalue of K. Then,

E(|X |) ≤

(
1 +

λmax(K)

2 (1− λmax(K))

)
E(|Y |). (6)

Proof. We know that qk = K(k, k) +K{k}×{1:k−1}((I −K){1:k−1})
−1K{1:k−1}×{k},

by Proposition 1. Since

‖((I −K){1:k−1})
−1‖Mk−1(C) =

1
1−λmax(K{1:k−1})

and λmax(K{1:k−1}) ≤ λmax(K), one has

K{k}×{1:k−1}((I −K){1:k−1})
−1K{1:k−1}×{k} ≤

1
1−λmax(K)‖K{1:k−1}×{k}‖

2
2.

Summing all these inequalities gives

E(|X |) ≤ Tr(K) + 1
1−λmax(K)

N∑

k=1

‖K{1:k−1}×{k}‖
2
2.

The last term is the Frobenius norm of the upper triangular part of K, hence in can be

bounded by 1
2‖K‖

2
F = 1

2

∑N

j=1 λj(K)2. Since λj(K)2 ≤ λj(K)λmax(K),
∑N

j=1 λj(K)2 ≤

λmax(K)Tr(K) = λmax(K)E(|Y |). �

We can now introduce the final sampling algorithm that we call sequential thinning

algorithm (Algorithm 3). It presents the different steps of our sequential thinning

algorithm to sample a DPP of kernel K. The first step is a preprocess that must

be done only once for a given matrix K. Step 2 is trivial and fast. The critical

point is to sequentially compute the conditional probabilities pk = P({k} ⊂ Y |A ⊂

Y, B ∩ Y = ∅) for each point of X . Recall that in Algorithm 2 we use a Cholesky

decomposition of the matrix (I − K)B which is updated by adding a line each time

a point is added in B. Here, the inverse of the matrix (I − K)B is only needed

when visiting a point k ∈ X , so one updates the Cholesky decomposition by a single

block, where the new block corresponds to all indices added to B in one iteration (see

Exact Sampling of DPPs without Eigendecomposition 15

Algorithm 3 Sequential thinning algorithm of a DPP with kernel K

1. Compute sequentially the probabilities P(Xk = 1) = qk of the Bernoulli process

X :

• Compute the Cholesky decomposition T of the matrix I −K.

• For k = 1 to N :

– If qk−1 < 1 (with the convention q0 = 0),

qk = K(k, k) + ‖T−1
{1,...,k−1}K{1,...,k−1}×{k}‖

2
2.

– Else, qk = 1.

2. Draw the Bernoulli process X . Let m = |X | and k1 < k2 < · · · < km be the

points of X .

3. Apply the sequential thinning to the points of X :

• Attempt to add sequentially each point of X to Y :

Initialize A← ∅ and B ← {1, . . . , k1 − 1}.

For j = 1 to m

– If j > 1, B ← B ∪ {kj−1 + 1, . . . , kj − 1}.

– Compute the conditional probability pkj
= P({kj} ⊂ Y |A ⊂ Y, B ∩ Y = ∅)

(see Formula (1)):

∗ Update TB the Cholesky decomposition of (I −K)B (see Appendix B).

∗ Compute JB = (TB)−1KB×A∪{kj}.

∗ Compute HB
A∪{k} = KA∪{kj} + (JB)tJB.

∗ Compute pkj
= HB(kj , kj)−HB

{kj}×A(H
B
A)−1HB

A×{kj}
.

– Add kj to A with probability
pkj

qkj
or to B otherwise.

• Return A.

Appendix B). The Matlab implementation used for the experiments is available online

(https://www.math-info.univ-paris5.fr/~claunay/exact_sampling.html), together

with a Python version of this code, using the PyTorch library. Note that, very

https://www.math-info.univ-paris5.fr/~claunay/exact_sampling.html

16 Claire Launay, Bruno Galerne, Agnès Desolneux

recently, Guillaume Gautier [16] proposed an alternative computation of the Bernoulli

probabilities, that generate the dominating point process in the first step of Algorithm

3, so that it only requires the diagonal coefficients of the Cholesky decomposition T of

I −K.

3.3. Computational Complexity

Recall that the size of the ground set Y isN and the size of the final sample is |Y | = n.

Both algorithms introduced in this paper have running complexities of order O(N3),

as the spectral algorithm. Yet, if we get into the details, the most expensive task

in the spectral algorithm is the computation of the eigenvalues and the eigenvectors

of the kernel K. As this matrix is Hermitian, the common routine to do so is the

reduction of K to some tridiagonal matrix to which the QR decomposition is applied,

meaning that it is decomposed into the product of an orthogonal matrix and an upper

triangular matrix. When N is large, the total number of operations is approximately

4
3N

3 [42]. In Algorithms 2 and 3, one of the most expensive operations is the Cholesky

decomposition of several matrices. We recall that the Cholesky decomposition of a

matrix of size N × N costs approximately 1
3N

3 computations, when N is large [34].

Concerning the sequential algorithm 2, at each iteration k, the number of operations

needed is of order |B|2|A|+ |B||A|2 + |A|3, where |A| is the number of selected points

at step k so it’s lower than n, and |B| the number of unselected points, bounded by k.

Then, when N tends to infinity, the total number of operations in Algorithm 2 is lower

than n
3N

3 + n2

2 N2 + n3N or O(nN3), as in general n ≪ N . Concerning Algorithm

3, the sequential thinning from X , coming from Algorithm 2, costs O(n|X |3). Recall

that |X | is proportional to |Y | = n when the eigenvalues of K are smaller than 1 (see

Equation (6)) so this step costs O(n4). Then, the Cholesky decomposition of I −K is

the most expensive operation in Algorithm 3 as it costs approximately 1
3N

3. In this

case, the overall running complexity of the sequential thinning algorithm is of order

1
3N

3, which is 4 times less than the spectral algorithm. When some eigenvalues of

K are equal to 1, Equation (6) does not hold anymore so, in that case, the running

complexity of Algorithm 3 is only bounded by O(nN3).

We will retrieve this experimentally as, depending on the application or on the

kernel K, this Algorithm 3 is able to speed up the sampling of DPPs. Note that in

Exact Sampling of DPPs without Eigendecomposition 17

the previous computations, we have not taken into account the possible parallelization

of the sequential thinning algorithm. As a matter of fact, the Cholesky decomposition

is parallelizable [19]. Incorporating this parallel computations would probably speed

up the sequential thinning algorithm, since the Cholesky decomposition of I − K is

the most expensive operation when the expected cardinality |Y | is low. The last part

of the algorithm, the thinning procedure, operates sequentially, so it is not paralleliz-

able. These comments on the complexity and running times highly depends on the

implementation, on the choice of the programming language and speed up strategies,

so they mainly serve as an illustration.

4. Experiments

4.1. DPP models for runtime tests

In the following section, we use the common notation of L-ensembles, with matrix

L = K(I −K)−1. We present the results using four different kernels:

(a) A random kernel: K = Q−1DQ, where D is a diagonal matrix with uniformly

distributed random values in (0, 1) and Q an unitary matrix created from the

QR decomposition of a random matrix.

(b) A discrete analog to the Ginibre kernel: K = L(I + L)−1 with for all x1, x2 ∈

Y = {1, . . . , N},

L(x1, x2) =
1

π
e−

1

2
(|x1|

2+|x2|
2)+x1x2 ,

(c) A patch-based kernel: Let u be a discrete image and Y = P a subset of all its

patches, i.e. square sub-images of size w×w in u. Define K = L(I +L)−1 where

for all P1, P2 ∈ P ,

L(P1, P2) = exp

(
−
‖P1 − P2‖22

s2

)

where s > 0 is called the bandwidth or scale parameter. We will detail the

definition and the use of this kernel in Section 4.3.

(d) A projection kernel: K = Q−1DQ, where D is a diagonal matrix with the n first

coefficients equal to 1, the others, equal to 0, and Q is a random unitary matrix

18 Claire Launay, Bruno Galerne, Agnès Desolneux

as for model (a).

It is often essential to control the expected cardinality of the point process. For

case (d) the cardinality is fixed to n. For the three other cases, we use a procedure

similar to the one developed in [7]. Recall that if Y ∼ DPP(K) and K = L(I + L)−1,

E(|Y |) = tr(K) =
∑

i∈Y

λi =
∑

i∈Y

µi

1 + µi

, where (λi)i∈Y are the eigenvalues of K and

(µi)i∈Y are the eigenvalues of L [24, 27]. Given an initial matrix L = K(I − K)−1

and a desired expected cardinality E(|Y |) = n, we run a binary search algorithm to

find α > 0 such that
∑

i∈Y

αµi

1 + αµi

= n. Then, we use the kernels Lα = αL and

Kα = Lα(I + Lα)
−1.

4.2. Runtimes

For the following experiments, we ran the algorithms on a laptop HP Intel(R)

Core(TM) i7-6600U CPU and we use the software Matlab R2018b. Note that the

computational time results depend on the programming language and the use of

optimized functions by the software. Thus, the following numerical results are mainly

indicative.

First, let us compare the sequential thinning algorithm (Algorithm 3) presented here

with the two main sampling algorithms: the classic spectral algorithm (Algorithm 1)

and the “naive” sequential algorithm (Algorithm 2). Figure 1 presents the running

times of the three algorithms as a function of the total number of points of the ground

set. Here, we have chosen a patch-based kernel (c). The expected cardinality E(|Y |) is

constant, equal to 20. As foreseen, the sequential algorithm (Algorithm 2) is far slower

than the two others. Whatever the chosen kernel and the expected cardinality of the

DPP, this algorithm is not competitive. Note that the sequential thinning algorithm

uses this sequential method after sampling the particular Bernoulli process. But we

will see that this first dominating step can be very efficient and lead to a relatively fast

algorithm.

From now on, we restrict the comparison to the spectral and the sequential thinning

algorithms (Algorithms 1 and 3). We present in Figure 2 the running times of these

algorithms as a function of the size of |Y| in various situations. The first row shows the

Exact Sampling of DPPs without Eigendecomposition 19

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

10-1

100

101

102

103

T
im

e
 (

s
e
c
)

seq. algo.

spec. algo.

seq. thin. algo.

Size of the ground set

Figure 1: Running times of the 3 studied algorithms in function of the size of the

ground set, using a patch-based kernel.

running times when the expectation of the number of sampled point E(|Y |) is equal

to 4% of the size of Y: it increases as the total number of points increases. In this

case, we can see that whatever the chosen kernel, the spectral algorithm is faster as the

complexity of sequential part of Algorithm 3 depends on the size |X | that also grows.

On the second row, as |Y| grows, E(|Y |) is fixed to 20. Except for the right-hand-

side kernel, we are in the configuration where |X | stays proportional to |Y |, then the

Bernoulli step of Algorithm 3 is very efficient and this sequential thinning algorithm

becomes competitive with the spectral algorithm. For these general kernels, we observe

that the sequential thinning algorithm can be as fast as the spectral algorithm, and

even faster, when the expected cardinality of the sample is small compared to the size

of the ground set. The question is: when and up to which expected cardinality is

Algorithm 3 faster?

Figure 3 displays the running times of both algorithms in function of the expected

cardinality of the sample when the size of the ground set is constant, equal to 5000

points. Notice that, concerning the three left-hand-side general kernels with no eigen-

value equal to one, the sequential thinning algorithm is faster under a certain expected

number of points -which depends on the kernel. For instance, when the kernel is

randomly defined and the range of desired points to sample is below 25, it is relevant

to use this algorithm. To conclude, when the eigenvalues of the kernel are below one,

Algorithm 3 seems relevant for large data sets but small samples. This case is quite

20 Claire Launay, Bruno Galerne, Agnès Desolneux

102 103 104

10-1

100

101

102

103

T
im

e
 (

s
e
c
)

spec. algo.

seq. thin. algo.

Size of the ground set
102 103 104

10-1

100

101

102

103

T
im

e
 (

s
e
c
)

spec. algo.

seq. thin. algo.

Size of the ground set
102 103 104

10-1

100

101

102

103

T
im

e
 (

s
e
c
)

spec. algo.

seq. thin. algo.

Size of the ground set
102 103 104

10-1

100

101

102

103

104

T
im

e
 (

s
e
c
)

spec. algo.

seq. thin. algo.

Size of the ground set

102 103 104

10-2

10-1

100

101

102

T
im

e
 (

s
e
c
)

spec. algo.

seq. thin. algo.

Size of the ground set
102 103 104

10-1

100

101

102

T
im

e
 (

s
e
c
)

spec. algo.

seq. thin. algo.

Size of the ground set
102 103 104

10-1

100

101

102

T
im

e
 (

s
e
c
)

spec. algo.

seq. thin. algo.

Size of the ground set
102 103 104

10-2

100

102

104

T
im

e
 (

s
e
c
)

spec. algo.

seq. thin. algo.

Size of the ground set

Figure 2: Running times in log-scale of the spectral and the sequential thinning

algorithms as a function of the size of the ground set |Y|, using “classic” DPP kernels.

From left to right: a random kernel, a Ginibre-like kernel, a patch-based kernel and a

projection kernel. On the first row, the expectation of the number of sampled points

is set to 4% of |Y| and on the second row, E(|Y |) is constant, equal to 20.

common, for instance to summarize a text, to work only with representative points in

clusters or to denoise an image with a patch-based method.

The projection kernel (when the eigenvalues of K are either 0 or 1) is, as expected, a

complicated case. Figure 2 (bottom, right) shows that our algorithm is not competitive

when using this kernel. Indeed, the cardinality of the dominating Bernoulli process X

can be very large. In this case, the bound in Equation (6) isn’t valid (and even tends

10 20 30 40 50 60 70

5

10

15

20

25

30

35

40

45

T
im

e
 (

s
e
c
)

spec. algo.

seq. thin. algo.

Expected cardinality of the DPP
10 20 30 40 50 60 70

10

15

20

25

30

35

T
im

e
 (

s
e
c
)

spec. algo.

seq. thin. algo.

Expected cardinality of the DPP
10 20 30 40 50 60 70

10

20

30

40

50

60

70

T
im

e
 (

s
e
c
)

spec. algo.

seq. thin. algo.

Expected cardinality of the DPP
30 40 50 60 70

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

T
im

e
 (

s
e
c
)

spec. algo.

seq. thin. algo.

Expected cardinality of the DPP

Figure 3: Running times of the spectral and sequential thinning algorithms in function

of the expected cardinality of the process. From left to right, using a random kernel,

a Ginibre-like kernel, the patch-based kernel and a projection kernel. The size of the

ground set is fixed to 5000 in all examples.

Exact Sampling of DPPs without Eigendecomposition 21

0 1000 2000 3000 4000 5000
10-3

10-2

10-1

100

G����������e
P��	�ction

Random

Pa
����a��

(a) E(|Y |) = 15

0 1000 2000 3000 4000 5000
10-3

10-2

10-1

100

(b) E(|Y |) = 100

0 1000 2000 3000 4000 5000

10-1

100

(c) E(|Y |) = 1000

Figure 4: Behavior of the Bernoulli probabilities qk, k ∈ {1, . . . , N}, for the kernels

presented in Section 4.1, considering a ground set of N = 5000 elements and varying

the expected cardinality of the DPP, E(|Y |) = 15, 100, 1000.

to infinity) as λmax = 1, and we necessarily reach the degenerated case when, after

some index k, all the Bernoulli probabilities ql, l ≥ k, are equal to 1. Then the second

part of the sequential thinning algorithm -the sequential sampling part- is done on a

larger set which significantly increases the running time of our algorithm. Figure 3

confirms this observation as in that configuration, the sequential thinning algorithm is

never the fastest.

Figure 4 illustrates how efficient the first step of Algorithm 3 can be to reduce the

size of the initial set Y. It displays Bernoulli probabilities qk, k ∈ {1, . . . , N} (Equation

5) associated to the previous kernels, for different expected cardinality E(|Y |). Observe

that the probabilities are overall higher for a projection kernel. For such a kernel, we

know that they necessarily reach the value 1, at the latest from the item k = E(|Y |).

Indeed projection DPPs have a fixed cardinality (equal to E(|Y |)) and qk computes

the probability to select the item k given that no other item has been selected yet.

Notice that in general, considering the other kernels, the degenerated value qk = 1 is

rarely reached, even though in our experiments, the Bernoulli probabilities associated

to the patch kernel (c) are sometimes close to one, when the expected size of the

sample is E(|Y |) = 1000. On the opposite, the Bernoulli probabilities associated to the

Ginibre-like kernel remain rather close to a uniform distribution.

In order to understand more precisely to what extent high eigenvalues penalize the

efficiency of the sequential thinning algorithm (Algorithm 3), Figure 5 compares its

running times with that of the spectral algorithm (Algorithm 1) in function of the

22 Claire Launay, Bruno Galerne, Agnès Desolneux

0.3 0.4 0.5 0.6 0�� 0.8 0��

10
1

10
2

10
3

T
im

e
 (

s
)

0

20

40

60

80

100

N
�
�
�
�
�

o
f
p
o
in

ts

S�����al algorithm

S����ntial thinning algorithm

S��e of

10

(a) m eigenvalues equal to λmax and N−m

zero eigenvalues.

0.3 0.4 0.5 0.6 !"# 0.8 !"$
10

0

10
1

10
2

10
%

T
im

e
 (

s
)

0

5

10

15

20

25

&
'
(
)
*
+

o
f
p
o
in

ts

,-./46al algorithm

,.78.ntial thinning algorithm

,9:e o; <

10

(b) N random eigenvalues between 0 and

λmax.

Figure 5: Running times of the spectral and sequential thinning algorithms (Algorithm

1 and 3) in function of λmax. The size of the Bernoulli process X is also displayed in

light grey (right axis). Here, |Y| = 5000 and E(|Y |) = 15.

eigenvalues of the kernel K. For these experiments, we consider a ground set of size

|Y| = 5000 items and an expected cardinality equal to 15. In the first case (a), the

eigenvalues are either equal to 0 or to λmax, whith m non-zero eigenvalues so that

mλmax = 15. It shows that above a certain λmax (≃ 0.65), the sequential thinning

algorithm is not the fastest anymore. In particular, when λmax = 1, the running time

takes off. In the second case (b), the eigenvalues (λk) are randomly distributed between

0 and λmax so that
∑

k λk = 15. In practice, (N − 1) eigenvalues are exponentially

distributed, with expectation 15−λmax

N−1 , and the last eigenvalue is set to λmax. In this

case, the sequential thinning algorithm remains faster than the spectral algorithm,

even with high values of λmax, except when λmax = 1. This can be explained by the

fact that, by construction of this kernel, most of the eigenvalues are very small. The

average size of the Bernoulli process generated (light grey, right axes) also illustrates

the influence of the eigenvalues.

Table 1 presents the individual weight of the main steps of the three algorithms.

Concerning the sequential algorithm, logically, the matrix inversion is the heaviest

part taking 74.25% of the global running time. These proportions remain the same

when the expected number of points n grows. The main operation of the spectral

algorithm is by far the eigendecomposition of the matrix K, counting for 83% of the

Exact Sampling of DPPs without Eigendecomposition 23

Algorithms Steps Expected cardinality

4% of |Y| Constant (20)

Sequential Matrix inversion 74.25% 72.71%

Cholesky computation 22.96% 17.82%

Spectral Eigendecomposition 83.34% 94.24%

Sequential sampling 14.77% 4.95%

Sequential thinning Preprocess to define q 10.07% 13.43%

Sequential sampling 89.39% 86.53%

Table 1: Detailed running times of the sequential, spectral and sequential thinning

algorithms for varying ground sets Y with |Y| ∈ [100, 5000] using a patch-based kernel.

global running time, when the expectation of the number of points to sample evolves

with the size of Y. Finally, the sequential sampling is the heaviest step of the sequential

thinning algorithm. We have already mentioned that the thinning is very fast and that

it produces a point process with a cardinality as close as possible to the final DPP.

When the expected cardinality is low, the number of selected points by the thinning

process is low too, so the sequential sampling part remains bounded (86.53% when

the expected cardinality E(|Y |) is constant). On the contrary, when E(|Y |) grows, the

number of points selected by the dominated process rises as well so the running time

of this step is growing (with a mean of 89.39%). As seen before, the global running

time of the sequential thinning algorithm really depends on how good the domination

is.

Thus, the main case when this sequential thinning algorithm (Algorithm 3) fails

to compete with the spectral algorithm (Algorithm 1) is when the eigenvalues of the

kernel are equal or very close to 1. This algorithm improves the sampling running

times when the target size of the sample is very low (below 25 in our experiments).

In cases when multiple samples of the same DPP have to be drawn, the eigende-

composition of K can be stored and the spectral algorithm is more efficient than ours.

Indeed, in our case the computation of the Bernoulli probabilities can also be saved

but the sequential sampling is the heaviest task and needs to be done for each sample.

24 Claire Launay, Bruno Galerne, Agnès Desolneux

4.3. Sampling the patches of an image

A random and diverse subselection of the set of patches of an image can be useful

for numerous image processing applications. A first obvious one is image compression.

Indeed, it is possible to obtain a good reconstruction of the image from a very small

portion of its patches. It is sometimes necessary to keep only the most informative

patches of the image, if possible a small amount, and reconstruct the image, store it,

only using these few patches. Moreover, most of patch-based algorithms could use

such a subselection of patches to improve or at least speed up its procedures, e.g. for

denoising [11]. To do this, the selected patches must be representative of the patches

diversity and this is what DPPs offer. Launay and Leclaire [30] explore this strategy

to speed up a texture synthesis algorithm.

Given an image u and a set P of 10 000 randomly picked patches of u, we compare

here the selection strategies using either a DPP or a random uniform selection. Let us

recall the patch-based kernel (c) defined as the L-ensemble associated with

∀P1, P2 ∈ P , L(P1, P2) = exp

(
−
‖P1 − P2‖22

s2

)
,

that is, L is a Gaussian kernel applied to the Euclidean distance between the patches of

P . This function is commonly chosen to define a similarity measure between patches.

It is relevant since in general the reconstruction error is computed in function of the

Euclidean distance between the original image and the reconstructed image. We set the

bandwidth or scale parameter s to be proportional to the median of the interdistances

between the patches, as advised by Aggarwal [2] and Tremblay et al. [44].

Figure 6 presents several reconstructions of two images, obtained by uniform selec-

tion or by the DPP defined above, with various expected sample sizes. Notice that

while we can control the exact cardinality of the uniform selections, the number of

patches in the DPP selections varies as we can only control the expected cardinality

during the sampling process. This figure shows how a selection from a DPP provides

better reconstructions than a uniform selection, especially when the number of patches

is low. Indeed, as the DPP sampling favors diverse set of patches, it is less likely to

miss an essential information of the image. On the contrary, nothing prevents the

uniform selection from selecting very similar patches. The Pool image on the bottom

of Figure 6, for a cradinality equal to 5, clearly illustrates this. The number of patches

Exact Sampling of DPPs without Eigendecomposition 25

in an image depends on the size of the image and is often higher than 10000 while

the selection needs to be small (between 5 and 100): here the use of our sequential

thinning algorithm is pertinent.

5. Discussion

In this paper, we proposed a new sampling algorithm (Algorithm 3) adapted to

general determinantal point processes, which doesn’t use the spectral decomposition

of the kernel and which is exact. It proceeds in two phases. The first one samples

a Bernoulli process whose distribution is adapted to the targeted DPP. It is a fast

and efficient step that reduces the initial number of points of the ground set. We

know that if I − K is invertible, the expectation of the cardinality of the Bernoulli

process is proportional to the expectation of the cardinality of the DPP. The second

phase is a sequential sampling from the points selected in the first step. This phase is

made possible by the explicit formulations of the general marginals and the pointwise

conditional probabilities of any DPP from its kernel K. The sampling is sped up using

updated Cholesky decompositions to compute the conditional probabilities. Matlab

and Python implementations of the sequential thinning algorithm can be found online

(https://www.math-info.univ-paris5.fr/~claunay/exact_sampling.html).

In terms of running times, we have detailed the cases for which this algorithm is

competitive with the spectral algorithm, in particular when the size of the ground set is

high and the expected cardinality of the DPP is modest. This framework is common in

machine learning applications. Indeed, DPPs are an interesting solution to subsample

a data set, initialize a segmentation algorithm or summarize an image, examples where

the number of datapoints needs to be significantly reduced.

Appendix A. Möbius Inversion formula

Proposition 5. (Möbius inversion formula.) Let V be a finite subset and f and g be

two functions defined on the power set P(V) of subsets of V . Then,

∀A ⊂ V, f(A) =
∑

B⊂A

(−1)|A\B|g(B) ⇐⇒ ∀A ⊂ V, g(A) =
∑

B⊂A

f(B),

https://www.math-info.univ-paris5.fr/~claunay/exact_sampling.html

26 Claire Launay, Bruno Galerne, Agnès Desolneux

Original Card=5 Card=25 Card=100

Figure 6: Image reconstruction: for each image, first two rows: original and

reconstructions with uniformly sampled patches and below, the corresponding selected

patches; second two rows: reconstructions with patches sampled according to a DPP

and below, the corresponding selected patches.

Exact Sampling of DPPs without Eigendecomposition 27

and

∀A ⊂ V, f(A) =
∑

B⊃A

(−1)|B\A|g(B) ⇐⇒ ∀A ⊂ V, g(A) =
∑

B⊃A

f(B).

Proof. The first equivalence is proved e.g. in [35]. The second equivalence corre-

sponds to the first applied to f̃(A) = f(A) and g̃(A) = g(A). You will find more details

on this matter in the book of Rota [39]. �

Appendix B. Cholesky Decomposition Update

To be efficient, the sequential algorithm relies on Cholesky decompositions that are

updated step by step to save computations. Let M be a symmetric semi-definite matrix

of the form M =

A B

Bt C

 where A and C are square matrices. We suppose that the

Cholesky decomposition TA of the matrix A has already been computed and we want

to compute the Cholesky decomposition TM of M . Then, set

V = T−1
A B and X = C − V tV = C −BtA−1B

the Schur complement of the block A of the matrix M . Denote by TX the Cholesky

decomposition of X . Then, the Cholesky decomposition of M is given by

TM =

TA 0

V t TX

 .

Indeed,

TMT t
M =

TA 0

V t TX

T t

A V

0 T t
X

 =

TAT

t
A TAV

V tT t
A V tV + TXT t

X

 =

A B

Bt C

 .

Acknowledgement

Accepted for publication by the Applied Probability Trust (http://www.appliedprobability.org)

in the Journal of Applied Probability JAP 57.4 (December 2020). This work was

supported by grants from Région Ile-de-France. We thank the reviewers for their

valuable comments and suggestions that helped us to improve the paper.

28 Claire Launay, Bruno Galerne, Agnès Desolneux

References

[1] Affandi, R. H., Kulesza, A., Fox, E. B. and Taskar, B. (2013). Nystrom

approximation for large-scale determinantal processes. In AISTATS. vol. 31 of

JMLR Workshop and Conference Proceedings. JMLR.org. pp. 85–98.

[2] Aggarwal, C. C. (2016). Outlier Analysis 2nd ed. Springer Publishing Company,

Incorporated.

[3] Amblard, P.-O., Barthelme, S. and Tremblay, N. (2018). Subsampling

with k determinantal point processes for estimating statistics in large data sets.

In 2018 IEEE workshop on Statistical Signal Processing (SSP 2018). Freiburg,

Germany.

[4] Anari, N., Gharan, S. O. and Rezaei, A. (2016). Monte Carlo Markov chain

algorithms for sampling strongly rayleigh distributions and determinantal point

processes. In COLT. vol. 49 of JMLR Workshop and Conference Proceedings.

JMLR.org. pp. 103–115.

[5] Avena, L. and Gaudillière, A. (2018). Two Applications of Random Spanning

Forests. Journal of Theoretical Probability 31, 1975–2004.

[6] Bardenet, R., Lavancier, F., Mary, X. and Vasseur, A. (2017). On a

few statistical applications of determinantal point processes. ESAIM: Procs 60,

180–202.

[7] Barthelmé, S., Amblard, P.-O. and Tremblay, N. (2019). Asymptotic

equivalence of fixed-size and varying-size determinantal point processes. Bernoulli

25, 3555–3589.

[8] B laszczyszyn, B. and Keeler, H. P. (2019). Determinantal thinning of

point processes with network learning applications. In 2019 IEEE Wireless

Communications and Networking Conference (WCNC). pp. 1–8.

[9] Borodin, A. and Rains, E. M. (2005). Eynard–Mehta theorem, Schur process,

and their Pfaffian analogs. Journal of Statistical Physics 3, 291–317.

Exact Sampling of DPPs without Eigendecomposition 29

[10] Brunel, V., Moitra, A., Rigollet, P. and Urschel, J. (2017). Rates of

estimation for determinantal point processes. In COLT. vol. 65 of Proceedings of

Machine Learning Research. PMLR. pp. 343–345.

[11] Buades, A., Coll, B. and Morel, J. (2005). A non-local algorithm for

image denoising. In Proceedings of the 2005 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition - Volume 02. CVPR ’05. IEEE

Computer Society. pp. 60–65.

[12] Chiu, S., Stoyan, D., Kendall, W. and Mecke, J. (2013). Stochastic

Geometry and Its Applications. Wiley Series in Probability and Statistics. Wiley.

[13] Dereziński, M., Calandriello, D. and Valko, M. (2019). Exact sampling

of determinantal point processes with sublinear time preprocessing. arXiv e-prints

arXiv:1905.13476.

[14] Dupuy, C. and Bach, F. (2016). Learning determinantal point processes in

sublinear time. Accepted to AISTATS 2018.

[15] Gartrell, M., Paquet, U. and Koenigstein, N. (2017). Low-rank

factorization of determinantal point processes. In Proceedings of the Thirty-First

AAAI Conference on Artificial Intelligence. AAAI’17. AAAI Press. pp. 1912–1918.

[16] Gautier, G. (2020). On sampling determinantal point processes. PhD thesis.

Ecole Centrale de Lille.

[17] Gautier, G., Bardenet, R. and Valko, M. (2017). Zonotope hit-and-run for

efficient sampling from projection DPPs. In Proceedings of the 34th International

Conference on Machine Learning. ed. D. Precup and Y. W. Teh. vol. 70 of

Proceedings of Machine Learning Research. PMLR. pp. 1223–1232.

[18] Gautier, G., Bardenet, R. and Valko, M. (2018). DPPy: Sampling

determinantal point processes with Python. CoRR abs/1809.07258,.

[19] George, A., Heath, M. T. and Liu, J. (1986). Parallel Cholesky factorization

on a shared-memory multiprocessor. Linear Algebra and its Applications 77, 165–

187.

30 Claire Launay, Bruno Galerne, Agnès Desolneux

[20] Gillenwater, J., Kulesza, A., Mariet, Z. and Vassilvtiskii, S. (2019).

A tree-based method for fast repeated sampling of determinantal point processes.

In Proceedings of the 36th International Conference on Machine Learning. ed.

K. Chaudhuri and R. Salakhutdinov. vol. 97 of Proceedings of Machine Learning

Research. PMLR, Long Beach, California, USA. pp. 2260–2268.

[21] Gillenwater, J., Kulesza, A. and Taskar, B. (2012). Discovering diverse

and salient threads in document collections. In EMNLP-CoNLL. ACL. pp. 710–

720.

[22] Ginibre, J. (1965). Statistical ensembles of complex: Quaternion, and real

matrices. Journal of Mathematical Physics Vol: 6,.

[23] Horn, R. A. and Johnson, C. R. (1990). Matrix Analysis. Cambridge

University Press.

[24] Hough, J. B., Krishnapur, M., Peres, Y. and Virág, B. (2006). Determi-

nantal processes and independence. Probability Surveys 206–229.

[25] Kang, B. (2013). Fast determinantal point process sampling with application to

clustering. In Advances in Neural Information Processing Systems 26. ed. C. J. C.

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger. Curran

Associates, Inc. pp. 2319–2327.

[26] Kulesza, A. and Taskar, B. (2010). Structured determinantal point processes.

In NIPS. Curran Associates, Inc. pp. 1171–1179.

[27] Kulesza, A. and Taskar, B. (2012). Determinantal point processes for machine

learning. Foundations and Trends in Machine Learning 5, 123–286.

[28] Kulesza, A. and Taskar, B. (2012). Learning determinantal point processes.

CoRR abs/1202.3738,.

[29] Launay, C., Galerne, B. and Desolneux, A. (2018). Exact Sampling

of Determinantal Point Processes without Eigendecomposition. arXiv e-prints

arXiv:1802.08429.

Exact Sampling of DPPs without Eigendecomposition 31

[30] Launay, C. and Leclaire, A. (2019). Determinantal patch processes for texture

synthesis. In GRETSI 2019. Lille, France.

[31] Lavancier, F., Møller, J. and Rubak, E. (2015). Determinantal point

process models and statistical inference. Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 77, 853–877.

[32] Li, C., Jegelka, S. and Sra, S. (2016). Efficient sampling for k-determinantal

point processes. In Proceedings of the 19th International Conference on Artificial

Intelligence and Statistics. ed. A. Gretton and C. C. Robert. vol. 51 of Proceedings

of Machine Learning Research. PMLR, Cadiz, Spain. pp. 1328–1337.

[33] Li, C., Sra, S. and Jegelka, S. (2016). Fast mixing Markov chains for

strongly Rayleigh measures, dpps, and constrained sampling. In Advances in

Neural Information Processing Systems 29. ed. D. D. Lee, M. Sugiyama, U. V.

Luxburg, I. Guyon, and R. Garnett. Curran Associates, Inc. pp. 4188–4196.

[34] Mayers, D. and Süli, E. (2003). An introduction to numerical analysis.

Cambridge Univ. Press, Cambridge.

[35] Mumford, D. and Desolneux, A. (2010). Pattern Theory: The Stochastic

Analysis of Real-World Signals. Ak Peters Series. Taylor & Francis.

[36] Poulson, J. (2019). High-performance sampling of generic Determinantal Point

Processes. arXiv e-prints arXiv:1905.00165.

[37] Propp, J. G. and Wilson, D. B. (1998). How to get a perfectly random sample

from a generic Markov chain and generate a random spanning tree of a directed

graph. J. Algorithms 27, 170–217.

[38] Rolski, T. and Szekli, R. (1991). Stochastic ordering and thinning of point

processes. Stochastic Processes and their Applications 37, 299–312.

[39] Rota, G.-C. (1964). On the foundations of combinatorial theory I. Theory of

Möbius functions. Z. Wahrscheinlichkeitstheorie und verw 2, 340–368.

32 Claire Launay, Bruno Galerne, Agnès Desolneux

[40] Scardicchio, A., Zachary, C. E. and Torquato, S. (2009). Statistical

properties of determinantal point processes in high dimensional euclidean spaces.

Phys. Rev. E 79,.

[41] Shirai, T. and Takahashi, Y. (2003). Random point fields associated with

certain Fredholm determinants. I. Fermion, Poisson and boson point processes.

Journal of Functional Analysis 205, 414–463.

[42] Trefethen, L. N. and Bau, D. (1997). Numerical Linear Algebra. SIAM:

Society for Industrial and Applied Mathematics.

[43] Tremblay, N., Barthelmé, S. and Amblard, P.-O. (2018). Optimized

algorithms to sample determinantal point processes. CoRR abs/1802.08471,.

[44] Tremblay, N., Barthelmé, S. and Amblard, P.-O. (2019). Determinantal

Point Processes for Coresets. Journal of Machine Learning Research.

[45] Zhang, C., Kjellström, H. and Mandt, S. (2017). Balanced mini-batch

sampling for SGD using determinantal point processes. In Proceedings of the

Thirty-Third Conference on Uncertainty in Artificial Intelligence.

	DPPs and their Usual Sampling Method: the Spectral Algorithm
	Sequential Sampling Algorithm
	Explicit General Marginal of a DPP
	Sequential Sampling Algorithm of a DPP

	Sequential Thinning Algorithm
	General Framework of Sequential Thinning
	Sequential Thinning Algorithm for DPPs
	Computational Complexity

	Experiments
	DPP models for runtime tests
	Runtimes
	Sampling the patches of an image

	Discussion
	Möbius Inversion formula
	Cholesky Decomposition Update

