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SPECTRA OF LAPLACIANS ON FORMS ON AN INFINITE GRAPH

HÈLA AYADI

ABSTRACT. In the context of infinite weighted graphs, we consider the discrete Laplacians on 0-forms and
1-forms. Using Weyl’s criterion, we prove the relation between the nonzero spectrum of ∆0 and that of
∆1. Moreover, we give an extension of the work of John Lott to characterize the 0-spectrum of these two
Laplacians.
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1. INTRODUCTION

In recent years, much attention has been paid to the analysis of discrete Laplacians and elliptic differ-
ential operators acting on graphs [13], [5], [6] and [19]. More precisely, authors have intensively studied
the spectrum of the discrete Laplacian on an infinite graph in various areas, for example, harmonic analy-
sis on graphs (see [16], [20]), probability theory especially Markov chains (see [8], [12]), potential theory
such as electric networks (see [17], [12]), and so on. In this paper, we define two Laplacians, mentioned
in [1] and [3], one as an operator acting on functions on vertices denoted by ∆0 and the other one acting
on functions on edges denoted by ∆1. So, it is a natural question to characterize the relation between
their spectrum in terms of a certain geometric property of the graph and properties of the operators.
Especially we show that the nonzero spectrum of ∆0 and ∆1 are the same, by using Weyl’s criterion.
Moreover, with suitable weight conditions we prove that 0 is in the spectrum of ∆1, if the operator ∆0 is
invertible. This result is inspired from J. Lott’s work [11] (Proposition 9, p. 12 ) which proves in the case
of a simple graph that 0 is either in the spectrum of the Laplacian on 0-forms, or in the spectrum of the
Laplacian on 1-forms. In fact, the major interest of J. Lott concerns the zero-in-the-spectrum question
for the Laplace-de Rham operator acting on L2 differential forms of any degree on a complete connected
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2 HÈLA AYADI

oriented Riemannian manifold. The article [11] is rather expository and gives some positive answers,
in relation with topology, for small dimensions. We finish the paper with examples of constructions of
∆1-harmonic nonzero square-integrable functions.

2. PRELIMINARIES

2.1. Definition and notation.
• A graph G is a couple (V, E) where V is a set at most countable whose elements are called ver-

tices and E is a set of oriented edges, considered as a subset of V × V .

• If the graph G has a finite set of vertices, it is called a finite graph. Otherwise, G is called an
infinite graph.

• We assume that E has no self-loops and is symmetric:

v ∈ V ⇒ (v, v) /∈ E , (v1, v2) ∈ E ⇒ (v2, v1) ∈ E .

• Choosing an orientation of G consists of defining a partition of E : E+ t E− = E

(v1, v2) ∈ E+ ⇔ (v2, v1) ∈ E−.

• For e = (v1, v2), we denote

e− = v1, e
+ = v2 and − e = (v2, v1).

• We write v1 ∼ v2 for e = (v1, v2) ∈ E .

• The graph G is connected if any two vertices x, y in V can be joined by a path of edges γxy, that
means γxy = {ek}k=1,...,n such that

e−1 = x, e+n = y and, if n ≥ 2 , ∀j ; 1 ≤ j ≤ (n− 1)⇒ e+j = e−j+1.

• The degree (or valence) of a vertex x is the number of edges emanating from x. We denote

deg(x) := ]{e ∈ E ; e− = x}.

• If deg(x) <∞, ∀x ∈ V , we say that G is a locally finite graph.

2.2. Weighted graphs.

Definition 2.1. A weighted graph (G, c) is given by a graph G = (V, E) and weights on the edges
c : E → [0,∞[ such that

• c(x, x) = 0, ∀x ∈ V .
• c(x, y) > 0, ∀(x, y) ∈ E .
• c(x, y) = c(y, x), ∀(x, y) ∈ E .

If
∑

y∼x c(x, y) <∞ for each x ∈ V , we can define a weight on V by

c̃(x) =
∑
y∼x

c(x, y), x ∈ V.

Remark 2.1. If the graph G is locally finite, the weight c̃ on any vertex is well defined.

Examples: - An infinite electrical network is a weighted graph (G, c) where the weight c on the edges
are called conductances and their reciprocals are called resistances. This is the convention used in the
study of random walks on weighted graphs, see [12] and [16]. Then, c̃(x) =

∑
y∈V c(x, y) is the weight
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associated to the vertex x.
-A graph G is called a simple graph if the edge weights are equal to 1. In this case,

c̃(x) = deg(x), ∀x ∈ V.
All the graphs we shall consider in the sequel will be connected, locally finite and weights c given

in Definition 2.1.

2.3. Functional spaces. We denote the set of real functions on V by:

C(V) = {f : V → R}
and the set of functions of finite support by C0(V).

Moreover, we denote the set of real skew-symmetric functions on E by:

Ca(E) = {ϕ : E → R ;ϕ(−e) = −ϕ(e)}
and the set of functions of finite support by Ca0 (E).

We define on the weighted graph (G, c) the following function spaces endowed with the scalar prod-
ucts.

a):

l2(V) :=

{
f ∈ C(V);

∑
x∈V

c̃(x)f2(x) <∞

}
,

with the inner product

〈f, g〉V =
∑
x∈V

c̃(x)f(x)g(x)

and the norm
‖f‖V =

√
〈f, f〉V .

b):

l2(E) :=

{
ϕ ∈ Ca(E);

1

2

∑
e∈E

c(e)ϕ2(e) <∞

}
,

with the inner product

〈ϕ,ψ〉E =
1

2

∑
e∈E

c(e)ϕ(e)ψ(e)

and the norm
‖ϕ‖E =

√
〈ϕ,ϕ〉E .

Then, l2(V) and l2(E) are separable Hilbert spaces (since V is countable).

2.4. Operators and properties. The difference operator

d : l2(V) −→ l2(E),

is given by
d(f)(e) = f(e+)− f(e−).

The coboundary operator is δ, the formal adjoint of d. Thus it satisfies

(2.1) 〈df, ϕ〉E = 〈f, δϕ〉V
for all f ∈ l2(V) and for all ϕ ∈ l2(E).
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As consequence, we have the following formula characterizing δ :

Lemma 2.1. The coboundary operator δ is characterized by the formula

δϕ(x) =
1

c̃(x)

∑
e,e+=x

c(e)ϕ(e),

for all ϕ ∈ l2(E).

Proof
For f ∈ l2(V) and ϕ ∈ l2(E), using (2.1), we get

〈df, ϕ〉E =
1

2

∑
e∈E

c(e)df(e)ϕ(e)

=
1

2

∑
e∈E

c(e)
(
f(e+)− f(e−)

)
ϕ(e)

=
1

2

∑
x∈V

f(x)

 ∑
e,e+=x

c(e)ϕ(e)−
∑

e,e−=x

c(e)ϕ(e)

 .

But c(−e) = c(e) and ϕ is skew-symmetric, so we have
∑

e,e+=x

c(e)ϕ(e) = −
∑

e,e−=x

c(e)ϕ(e).

Then,

〈df, ϕ〉E =
∑
x∈V

c̃(x)f(x)

 1

c̃(x)

∑
e,e+=x

c(e)ϕ(e)


= 〈f, δϕ〉V

and the formula for δϕ follows. �

Definition 2.2. The Laplacian on 0-forms ∆0 defined by δd on l2(V) is given by

∆0f(x) =
1

c̃(x)

∑
y∼x

c(x, y) (f(x)− f(y)) .

In fact, we have

∆0f(x) = δ(df)(x)

=
1

c̃(x)

∑
e,e+=x

c(e)df(e)

=
1

c̃(x)

∑
e,e+=x

c(e)
(
f(e+)− f(e−)

)
=

1

c̃(x)

∑
y∼x

c(x, y) (f(x)− f(y)) .

Definition 2.3. The Laplacian on 1-forms ∆1 defined by dδ on l2(E) is given by

∆1ϕ(e) =
1

c̃(e+)

∑
e1,e

+
1 =e+

c(e1)ϕ(e1)−
1

c̃(e−)

∑
e2,e

+
2 =e−

c(e2)ϕ(e2).
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In fact, we have

∆1ϕ(e) = d(δϕ)(e)

= δϕ(e+)− δϕ(e−)

=
1

c̃(e+)

∑
e1,e

+
1 =e+

c(e1)ϕ(e1)−
1

c̃(e−)

∑
e2,e

+
2 =e−

c(e2)ϕ(e2).

Proposition 2.1. The operator ∆0 is bounded and self-adjoint.

Proof
For f, g ∈ l2(V), we have

|〈∆0f, g〉V | =

∣∣∣∣∣∑
x

c̃(x)
1

c̃(x)

∑
y∼x

c(x, y) (f(x)− f(y)) g(x)

∣∣∣∣∣
≤

∑
x

∑
y∼x

c(x, y) |(f(x)− f(y))| |g(x)|

≤
∑
x

∑
y∼x

c(x, y) |f(x)| |g(x)|+
∑
x

∑
y∼x

c(x, y) |f(y)| |g(x)|

=
∑
x

c̃(x) |f(x)| |g(x)|+
∑
x

∑
y∼x

c(x, y) |f(y)| |g(x)|

≤ ‖f‖V ‖g‖V + I(2.2)

where I :=
∑

x

∑
y∼x c(x, y) |f(y)| |g(x)|.

Using the Cauchy-Schwarz inequality, we obtain

I ≤
∑
x

(∑
y∼x

c(x, y) |f(y)|2
) 1

2
(∑
y∼x

c(x, y)

) 1
2

|g(x)|

=
∑
x

(∑
y∼x

c(x, y)f2(y)

) 1
2

(c̃(x))
1
2 |g(x)|

≤

(∑
x

∑
y∼x

c(x, y)f2(y)

) 1
2
(∑

x

c̃(x)g2(x)

) 1
2

=

(∑
y

c̃(y)f2(y)

) 1
2
(∑

x

c̃(x)g2(x)

) 1
2

= ‖f‖V ‖g‖V .(2.3)

Therefore, (2.2) and (2.3) gives
|〈∆0f, g〉V | ≤ 2 ‖f‖V ‖g‖V .

But by the definition of the norm of operator, we have

‖∆0‖ = sup
‖f‖=1

‖∆0f‖V = sup
‖f‖=1

sup
‖g‖=1

〈∆0f, g〉V

So ‖∆0‖ ≤ 2, which shows that ∆0 is a bounded operator .
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Now, we want to prove the selfadjointess of the operator ∆0 defined on l2(V). As ∆0 is a bounded
operator on l2(V), it remains to show that ∆0 is symmetric.
As we have ∆0 = δd and δ is the adjoint operator of d, we obtain for f and g ∈ l2(V)

〈∆0f, g〉V = 〈δdf, g〉V
= 〈df,dg〉E
= 〈f, δdg〉V
= 〈f,∆0g〉V .

�

Remark 2.2. • The operators d and δ are bounded. Indeed, using the inequality (a − b)2 ≤
2(a2 + b2) and the definition of the weights on vertices: c̃(x) =

∑
y∼x c(x, y), we obtain

‖df‖2E =
1

2

∑
(x,y)∈E

c(x, y)(df(x, y))2

=
1

2

∑
(x,y)∈E

c(x, y)(f(y)− f(x))2

≤
∑

(x,y)∈E

c(x, y)(f2(y) + f2(x))

= 2
∑
x∈V

f2(x)
∑
y∼x

c(x, y)

= 2
∑
x∈V

f2(x)c̃(x)

= 2 ‖f‖2V .

So d is bounded, and the same is true for the adjoint δ.
Notice that since ∆0 is the composite operator of δ and d; this gives another proof that ∆0 is
bounded.
• It is easy to see that ∆0 is also positive, since 〈∆0f, f〉V = 〈df, df〉E ≥ 0.

Corollary 2.1. As the operator ∆0 is self-adjoint and positive, its spectrum is real and lies in [0, 2].

2.5. Weyl’s criterion. As our operator is bounded and self-adjoint on a Hilbert space, we can use Weyl’s
criterion [14] to characterize its spectrum.

Weyl’s criterion : LetH be a separable Hilbert space, and let ∆ be a bounded self-adjoint operator on
H. Then λ is in the spectrum of ∆ if and only if there exists a sequence (fn)n∈N so that ‖fn‖ = 1 and
lim
n→∞

‖(∆− λ)fn‖ = 0.

We denote σ(∆) the spectrum of ∆ and we set

• σd(∆) is the set of λ ∈ σ(∆) which is an isolated point and an eigenvalue with finite multiplicity.

• σess(∆) := σ(∆) \ σd(∆).



SPECTRA OF LAPLACIANS ON FORMS ON AN INFINITE GRAPH 7

3. THE RELATION BETWEEN THE SPECTRUM OF ∆0 AND ∆1

3.1. The nonzero spectrum of ∆0 and ∆1. In this section we will prove the relation between the spec-
trum of ∆0 and that of ∆1, by using Weyl’s criterion.

Following [15] and [18] we have the next lemma.

Lemma 3.1. Let ∆0 = δd and ∆1 = dδ. Then we have
(1) d∆0 = ∆1d.

(2) δ∆1 = ∆0δ.

Lemma 3.2.

(1) ker ∆0 = ker d.

(2) ker ∆1 = ker δ.

Proof

(1) Clearly, we have ker d ⊂ ker ∆0.

On the other hand, if ∆0f = 0 for f ∈ l2(V) and f 6= 0, we have

0 = 〈∆0f, f〉V = 〈df, df〉E .
Then df = 0 for f ∈ l2(V).

(2) If ϕ ∈ ker δ, then ϕ ∈ l2(E) and δϕ = 0. Thus, dδϕ = 0 and we obtain ϕ ∈ ker ∆1.

For the other inclusion, let ϕ ∈ l2(V), ϕ 6= 0 such that ∆1ϕ = 0. Then

0 = 〈∆1ϕ,ϕ〉E = 〈δϕ, δϕ〉E .
We get δϕ = 0 and as a result ker ∆1 ⊂ ker δ.

�

We arrive at our main result.

Theorem 1.
σ(∆1) \ {0} = σ(∆0) \ {0}.

Proof

• Let λ 6= 0 be in the spectrum of ∆0. By Weyl’s criterion, there exists a sequence (fn)n of l2(V)
such that

‖fn‖V = 1 and lim
n→∞

‖(∆0 − λ)fn‖V = 0.

We want to find a sequence (ϕn)n of l2(E) such that

‖ϕn‖E = 1 and lim
n→∞

‖(∆1 − λ)ϕn‖E = 0.

We set

ϕn :=
dfn
‖dfn‖E

.
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First, let us check that ‖dfn‖E 6= 0. We have

‖dfn‖2E = 〈∆0fn, fn〉V
= 〈(∆0 − λ)fn, fn〉V + 〈λfn, fn〉V
= 〈(∆0 − λ)fn, fn〉V︸ ︷︷ ︸

converges to 0

+λ.

Then, lim
n→∞

‖dfn‖2E = λ. Thus, by positivity of ∆0, there exists A > 0 and an integer n0 such

that for all n ≥ n0, we have ‖dfn‖E > A. This implies that the sequence (ϕn)n is well defined.

Now, we verify that lim
n→∞

‖(∆1 − λ)ϕn‖E = 0. By the first assertion of Lemma 3.1 and the
fact that the operator d is bounded, we obtain for all n sufficiently large

‖(∆1 − λ)ϕn‖E =

∥∥∥∥(∆1 − λ)
dfn
‖dfn‖E

∥∥∥∥
E

=
‖(∆1 − λ)dfn‖E
‖dfn‖E

=
‖d(∆0 − λ)fn‖E
‖dfn‖E

≤ ‖d‖
A
‖(∆0 − λ)fn‖V .

But lim
n→∞

‖(∆0 − λ)fn‖V = 0. Therefore, lim
n→∞

‖(∆1 − λ)ϕn‖E = 0 and we can conclude that

λ is in the spectrum of ∆1 \ {0}.

• The second part of the proof follows in the same fashion, with the roles of d and δ swapped.
�

There is a second method to prove Theorem 1 when 0 is not in the spectrum of ∆0.

Lemma 3.3. If 0 is not in the spectrum of ∆0, then the operator d defined in l2(V) has a closed range.

Proof
Let ϕ ∈ Im d, let us check that ϕ ∈ Im d, that means we look for a function f ∈ l2(V) such

that ϕ = df . We have ϕ ∈ Im d, so there exists a sequence (ϕn)n of Im d such that ϕn = dfn, for
fn ∈ l2(V). Moreover, the sequence (ϕn)n converges to ϕ in l2(E). On the other hand, by assumption 0
is not in the spectrum of ∆0 which implies the existence of a positive constant C such that

‖f‖V ≤ C ‖∆0f‖V , ∀f ∈ l
2(V).

But by the definition of the operator norm and Remark 2.2, we obtain

‖∆0f‖ = sup
g,‖g‖V=1

〈∆0f, g〉V ≤ ‖df‖E sup
g,‖g‖V=1

‖dg‖E ≤
√

2 ‖df‖E .

Then
‖f‖V ≤

√
2C ‖df‖E , ∀f ∈ l

2(V).

Thus
‖fn − fm‖V ≤

√
2C ‖dfn − dfm‖E , fn, fm ∈ l

2(V).

And
‖fn − fm‖V ≤

√
2C ‖ϕn − ϕm‖E , fn, fm ∈ l

2(V).
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As the sequence (ϕn)n converges, so it is a Cauchy sequence and also (fn)n is a Cauchy sequence in
l2(V) which is complete. Then, (fn)n converges to f . By the boundedness of the operator d, we obtain
dfn = ϕn converges to df and by uniqueness of the limit, we have df = ϕ. So ϕ is in Im d. �

Corollary 3.1. If 0 is not in the spectrum of ∆0, then

σ(∆1|Imd) = σ(∆0).

Proof
By the first assertion of Lemma 3.1, we obtain

∆1d = d∆0.

But by assumption 0 is not in the spectrum of ∆0. Then by the first assertion of Lemma 3.1, the operator
d is invertible. So we obtain

∆1|Imd = d∆0d
−1.

Thus,
σ(∆1|Imd) = σ(∆0).

�

3.2. The 0-spectrum of ∆0 and ∆1. As the nonzero spectrum of ∆0 and ∆1 are the same, we are
interested in characterizing the 0-spectrum. We give in the following an extension of a result of John
Lott’s [11] (Proposition 9, p. 12 ).

Theorem 2. Let (G, c) be a connected, locally finite and weighted infinite graph such that the weight on
edges c is bounded, i.e., there exists a constant α > 0 such that 1

α ≤ c(x, y) ≤ α, for all (x, y) ∈ E .
Then

0 ∈ σ(∆1) or 0 ∈ σ(∆0).

First, we start with preliminary results.

By [17] (page 44) and [9] (chapter 4) we have the next definition.

Definition 3.1. The graph G verifies the isoperimetric inequality if there exists a constant C > 0 such
that for all finite sub-graphs GU = (U, EU ) of G, we have

|∂EU | ≥ C |U | ,
where

|∂EU | =
∑
x∈U

∑
y/∈U

c(x, y) and |U | =
∑
x∈U

c̃(x).

Lemma 3.4. If ∆0 is invertible then the isoperimetric inequality holds.

Proof
Let U a finite sub-graph of G. Let us set g = 1U , meaning that g(x) = 1 if x ∈ U and g(x) = 0 if

x /∈ U . Then we obtain
|U | =

∑
x∈U

c̃(x) = ‖g‖2V

and
|∂EU | =

∑
x∈U

∑
y/∈U

c(x, y) = ‖dg‖2E .
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By assumption 0 is not in the spectrum of ∆0. Then by the first assertion of Lemma 3.1, the operator d
is invertible, so there exists a positive constant λ so that

‖g‖V ≤ λ ‖dg‖E , ∀g ∈ l
2(V).

Thus, it follows that

|∂EU | ≥ C |U | , with C =
1

λ2
.

�

Definition 3.2. • A branch B is a finite sequence of vertices x0, x1, .., xm+1 such that for all
j; 1 ≤ j ≤ m, we have deg(xj) = 2.
• The length of a branch B, denoted long(B), is the number of vertices in this branch, here,

long(B) = m+ 2.
• The interior of the branch B is the set of vertices xj of B satisfying the following conditions:

i) deg(xj) = 2.
ii) ∀y ∈ V; y ∼ xj ⇒ y ∈ B.
See [5] and [19] for the definition of the interior set of vertices.

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

0 1 m m+1

FIGURE 1. A branch of length m+ 2

Instead of the argument of Lott [11] inspired by Gromov [10] (p. 236-237), we use the following
lemma:

Lemma 3.5. We suppose that the following conditions are satisfied:
• The weight on edges c is bounded, i.e., there exists a constant α > 0 such that 1

α ≤ c(x, y) ≤ α,
∀(x, y) ∈ E .
• The operator ∆0 is invertible.
• The operator ∆1 is injective.

Then the graph (G, c) is a tree which contains branches with uniformly bounded lengths, that means
∃M > 0, ∀B branch of G, long(B) ≤M .

Proof
On the one hand, the operator ∆1 is injective which leads to the absence of cycles in the graph, so

that G is a tree.
On the other hand, the operator ∆0 is invertible, then the isoperimetric inequality is checked, by Lemma
3.4 there is a positive constant C such that for all finite sub-graphs U , we have

|∂EU | ≥ C |U | .
Let B be a branch with vertices x0, x1, ..., xm, xm+1. We set U = {x1, ..., xm} the interior of the branch
B, then

(3.4) c(x0, x1) + c(xm, xm+1) ≥ C
m∑
j=1

c̃(xj).

For the sake of simplicity, we first prove the lemma for the case of the constant weight c = 1, before
handling the case of general weights.
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• If c = 1, then we have c̃(x) =
∑

y∼x c(x, y) =
∑

y∼x 1 = deg(x), ∀x ∈ V (this is J. Lott’s case
[11]). Therefore, the inequality (3.4) and Definition 3.2 gives

2 ≥ C
m∑
j=1

deg(xj) = C
m∑
j=1

2 = 2Cm.

We set M := 1
C + 2 (independent of B), then long(B) ≤M . Thus the lengths of branches of G

are uniformly bounded.
• If c 6= 1 but c is bounded, that means there exists α > 0 such that 1

α ≤ c(x, y) ≤ α, for all
(x, y) ∈ E . And as we have the weight on the vertices is c̃(x) =

∑
y∼x c(x, y), we obtain that c̃

is also bounded from below by 1
α .

By the inequality (3.4) we have

2α ≥ c(x0, x1) + c(xm, xm+1) ≥ C
m∑
j=1

c̃(xj) ≥ Cm
1

α
.

Hence,
2α2

C
≥ m.

We set M = 2α2

C + 2 (independent of B), then long(B) ≤M . Thus, the lengths of the branches
of G are uniformly bounded.

�

Now, we arrive to the proof of Theorem 2.

Proof
Taking the arguments from [11], we argue by contradiction. Suppose that both operators ∆0 and

∆1 are invertible. Then, by Lemma 3.5, the graph G is a tree which contains branches with uniformly
bounded lengths; see Figure 2 for an example.
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FIGURE 2. A branch tree

But the existence of such tree gives a δ-harmonic nonzero square-integral function ϕ. Indeed: we con-
sider a part of the branch tree in Figure 2 as an example to simplify the understanding of the construction.
For the sake of simplicity, we first prove the theorem for the case of the constant weight c = 1, before
handling the case of general weights.
First case: c = 1, we fix a vertex 0 as the origin of the tree and we set 0− and 1 its different neighbors.
Let us take

ϕ(0, 0−) = ϕ(0, 1) = 1.

Then, we obtain δϕ(0) = 0 (the tree is oriented).
Afterwards on the branch B1, ϕ is constant, in other words, ϕ(j, j + 1) = 1, for all j, such that
1 ≤ j ≤ 3. And at the point 4, we have ϕ(4, 5) = ϕ(4, 5−) = 1

2 . It is claimed that δϕ(4) = 0.



12 HÈLA AYADI

And for the points which are in the branch B2, the function ϕ is constant and takes the value 1
2 . And so

on to the point 8, we have ϕ(8, 9) = ϕ(8, 9−) = 1
4 , to obtain δϕ(8) = 0. And for the points which are

in the branch B3, the function ϕ is constant and takes the value 1
4 . And we continue in this way...
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FIGURE 3. An example of a branch tree
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FIGURE 4. Another example of a branch tree

In a general way,G is a tree which contains branches with uniformly bounded lengths and we construct
a functions ϕ in a part of G by selecting always two branches at bifurcation points and at all edges that
occur on other branches, ϕ is set to zero, as in Figure 4. In the Figure 3, the construction of ϕ is done
in the following way: on B0 the function ϕ is constant and equals to 1. Then we add a generation, we
get two branches B1,1 and B1,2 such that the function ϕ takes the value 1

2 . And to the generation m, we
have Bm,k branches, where 1 ≤ k ≤ 2m, then the function ϕ is equal to 1

2m . As a result, we show that
this construction of ϕ is in l2(E). Using the fact that the lengths of the branches of the tree are uniformly
bounded by a constant M > 0, we obtain

‖ϕ‖2E =
1

2

∑
m≥0

2m∑
k=1

∑
e∈Bm,k

(ϕ(e))2

=
1

2

∑
m≥0

2m∑
k=1

∑
e∈Bm,k

(
1

2m

)2

≤ 1

2

∑
m≥0

2mM

(
1

2m

)2

=
M

2

∑
m≥0

1

2m
<∞.

Second case: c 6= 1 but c bounded by a positive constant. That means there exists α > 0 such that
1
α ≤ c(x, y) ≤ α, ∀(x, y) in E . As in Figure 2, on the branch B1, the vertex 0 has two neighbors
denoted 0− and 1. We want δϕ(0) = 0, so we choose the function ϕ in the following way ϕ(0, 1) =
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c(0,0−)
c(0,1) ϕ(0, 0−). And in the interior of B1, we set ϕ(j, j + 1) = c(0,0−)

c(j,j+1)ϕ(0, 0−) ∀j, 1 ≤ j ≤ 3.
Next, we look at the point 4 which has two neighbors 5 and 5−, to obtain δϕ(4) = 0 and as we have
ϕ(3, 4) = c(0,0−)

c(3,4) ϕ(0, 0−). We choose ϕ(4, 5) = c(0,0−)
2c(4,5) ϕ(0, 0−) and ϕ(4, 5−) = c(0,0−)

2c(4,5−)ϕ(0, 0−).
Therefore, in the interior of the branch B2,

ϕ(j, j + 1) =
c(0, 0−)

2c(j, j + 1)
ϕ(0, 0−) ∀j, 5 ≤ j ≤ 7.

And for the vertex 8, which has two neighbors 9 and 9−. To have δϕ(8) = 0 and by using that ϕ(7, 8) =
c(0,0−)
2c(7,8) ϕ(0, 0−). We choose ϕ(8, 9) = c(0,0−)

4c(8,9) ϕ(0, 0−) and ϕ(8, 9−) = c(0,0−)
4c(8,9−)ϕ(0, 0−). And in the

interior of the branch B3,

ϕ(j, j + 1) =
c(0, 0−)

4c(j, j + 1)
ϕ(0, 0−) for j = 10.

And so on... In a general way, see Figure 3, on B0 the function ϕ(e0) = c(0,0−)
c(e0)

ϕ(0, 0−), where e0 is an
edge of B0. Then we add a generation, we get two branches B1,1 and B1,2 such that the function ϕ has a
value ϕ(ek1) = c(0,0−)

2c(ek1)
ϕ(0, 0−), where ek1 denotes the edges ofB1,k for 1 ≤ k ≤ 2. And at generationm,

we have Bm,k branches, where 1 ≤ k ≤ 2m, then the function ϕ equals to ϕ(ekm) = c(0,0−)
2mc(ekm)

ϕ(0, 0−),

where ekm denotes the edges of Bm,k. And to simplify the formulas, we can suppose that

ϕ(0, 0−) =
1

c(0, 0−)
.

Then, we obtain

ϕ(ekm) =
1

2mc(ekm)
, ∀m ≥ 0 and 1 ≤ k ≤ 2m.

Therefore, this construction gives ϕ ∈ l2(E). Using the fact that the lengths of the branches of the
tree are uniformly bounded by a constant M > 0 and the weight c on the edges is bounded by a positive
constant, we obtain

‖ϕ‖2E =
1

2

∑
e

c(e)(ϕ(e))2

≤
∑
m≥0

2m∑
k=1

∑
e∈Bm,k

c(e)(ϕ(e))2

=
∑
m≥0

2m∑
k=1

∑
e∈Bm,k

c(e)

(
1

2mc(e)

)2

=
∑
m≥0

2m∑
k=1

∑
e∈Bm,k

1

22mc(e)

≤ αM
∑
m≥0

1

2m

= 2Mα <∞.
Finally, we have ϕ in l2(E) and δ-harmonic. So, 0 ∈ σ(∆1), which contradicts the assumption that 0 is
not in the spectrum of ∆1. �
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Remark 3.1. Any point of the graph can play the role of the first vertex 0 in the previous construction. It
is then clear that we can construct an infinite family of independent functions ϕ which are in l2(E) and
δ-harmonic. Then 0 is an eigenvalue of ∆1 with infinite multiplicity, so 0 ∈ σess(∆1).

4. EXAMPLES:

In this section, we will construct a δ-harmonic function ϕ in different examples of trees.

1) Symmetric tree: Following [7] we introduce the next definition:

Definition 4.1. A tree Ts is symmetric around o with branching numbers {mi}∞i=0 if the degree of each
vertex depends only on its distance from o, namely, for each x ∈ Ts, deg(x) = mi if d(o, x) = i.

Example of a symmetric tree:
We fix a vertex o as an origin of the tree. We set Sn = {x ∈ Ts; d(o, x) = n}. Ts is symmetric
around o with branching numbers {mn}∞n=0. In Figure 4, we choose mn = 3 + n for all n ∈ N which
is an increasing sequence. So, we have m0 = 3 that means deg(o) = 3. And for x ∈ S1, we obtain
deg(x) = m1 = 4. In the same way, if x ∈ S2 we have m2 = 5 and so on.

o

S1

S2

FIGURE 5. Symmetric tree

Proposition 4.1. If the symmetric tree Ts is simple ( the edge weights are equal to 1) with deg(x) > 2
for all x ∈ Ts, then there is a δ-harmonic function ϕ ∈ l2(E).

Proof
We fix a vertex x0 as an origin of the tree Ts, we can find an increasing sequence of finite subgraph

{Sn}n such that Sn = {x ∈ Ts; d(x0, x) = n} and Ts = ∪nSn. By the definition of the symmetric
tree, we have for all n deg(xn) = mn, ∀xn ∈ Sn. First, we construct a function ϕ so that δϕ = 0 as
follows: Let e0 and b0 denote two distinct outward edges connecting to the vertex x0. We define ϕ to
be 0 excepted on these edges where ϕ(e0) = 1 and ϕ(b0) = −1 which gives δϕ(x0) = 0. And denote
ekn, n ≥ 1, 1 ≤ k ≤

∏n
j=1(mj − 1), resp. bkn, n ≥ 1, 1 ≤ k ≤

∏n
j=1(mj − 1), the outward edges

emanating from e0, resp. b0, of generation n. We define

ϕ(ekn) =
1∏n

j=1(mj − 1)
ϕ(e0),

ϕ(bkn) =
1∏n

j=1(mj − 1)
ϕ(b0)
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and ϕ takes value 0 on all edges other than ekn and bkn.
Second, through this construction, we look for ϕ ∈ l2(E). Using the fact that deg(xn) = mn ≥ 3,

∀xn ∈ Sn, ∀n, we obtain

‖ϕ‖2E =
1

2

∑
e∈E

ϕ2(e)

=
1

2

2 +
∑
n≥1

∏n
j=1(mj−1)∑
k=1

ϕ2(ekn) + ϕ2(bkn)


= 1 +

∑
n≥1

∏n
j=1(mj−1)∑
k=1

(
1

(m1 − 1)(m2 − 1)...(mn − 1)

)2

= 1 +
∑
n≥1

1

(m1 − 1)(m2 − 1)...(mn − 1)

≤ 1 +
∑
n≥1

1

2n

< ∞.
�

2) Triadic tree with weights bounded from below: As [2] (p. 19), we have the following definition
of a triadic tree.

Definition 4.2. A tree is a connected graph containing no cycles. The triadic tree is a tree such that all
the vertices have degree 3.

Proposition 4.2. If the triadic tree has weights on the edges bounded from below by a positive constant
λ, then there is a δ-harmonic function ϕ ∈ l2(E).

o
B1

B2

e0

x1

b0

FIGURE 6. Triadic tree

Proof
We fix a vertex o as the origin of the tree T . Define the increasing sequence of finite subgraphs

{Gn}n, Gn = {x ∈ V; d(o, x) ≤ n} and let G =
⋃
nGn. Denote Sn = {x ∈ T ; d(o, x) = n}.

We set x11, x21 and x31 the different neighbors of o which are in S1. We suppose that ϕ(o, xi1) = 0 for all
i ∈ {1, 2, 3}, so we have δϕ(o) = 0.
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We fix one vertex of S1 for example x1 := x11, let e0 and b0 be the two outward edges of x1 and define
inductively ekm, m > 1, 1 6 k 6 2m, resp. bkm, m > 1, 1 6 k 6 2m, to be the outward edges emanating
from e0, resp. b0, of generation m (the edge are oriented outward). For m ≥ 0, we define ϕ to be 0
excepted on these edges where

ϕ(ekm) =
1

2m
1

c(ekm)
, ∀k; 1 6 k 6 2m

and
ϕ(bkm) =

−1

2m
1

c(bkm)
, ∀k; 1 6 k 6 2m.

With this construction, we obtain for each xn ∈ Sn, δϕ(xn) = 0, ∀n ≥ 1. Moreover, ϕ ∈ l2(E).
Indeed: by using the assumption that the weights on the edges are bounded from below by a positive
constant λ, we obtain

‖ϕ‖2E =
1

2

∑
e∈E

c(e)ϕ2(e)

=
1

2

∑
m≥0

2m∑
k=1

c(ekm)ϕ2(ekm) + c(bkm)ϕ2(bkm)


=

1

2

∑
m≥0

2m∑
k=1

c(ekm)
1

22m
1

c2(ekm)
+

1

2

∑
m≥0

2m∑
k=1

c(bkm)
1

22m
1

c2(bkm)

=
1

2

∑
m≥0

2m∑
k=1

1

22m
1

c(ekm)
+

1

2

∑
m≥0

2m∑
k=1

1

22m
1

c(bkm)

≤ λ′
∑
m≥0

2m∑
k=1

1

22m

= λ′
∑
m≥0

2m
1

22m

= λ′
∑
m≥0

1

2m

= 2λ′,

where λ′ = 1
λ .

�

Remark 4.1. • The construction of a δ-harmonic nonzero square-integral function depends on the
edge weights.
• In the simple triadic tree, 0 is both in the spectrum of ∆0 [4] and in the spectrum of ∆1 [2].
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