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INTRODUCTION

In recent years, much attention has been paid to the analysis of discrete Laplacians and elliptic differential operators acting on graphs [START_REF] Mohar | A survey on spectra of infinite graphs Bull[END_REF], [START_REF] Dodziuk | Elliptic operators on infinite graphs, Analysis, geometry and topology of elliptic operators[END_REF], [START_REF] Dutkay | Spectral theory for discrete Laplacians[END_REF] and [START_REF] Torki-Hamza | Laplaciens de graphes infinis I-Graphes métriquement complets[END_REF]. More precisely, authors have intensively studied the spectrum of the discrete Laplacian on an infinite graph in various areas, for example, harmonic analysis on graphs (see [START_REF] Soardi | Potential Theory on Infinite Networks[END_REF], [START_REF] Woess | Random walks on infinite graphs and groups[END_REF]), probability theory especially Markov chains (see [START_REF] Grigor'yan | Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds[END_REF], [START_REF] Lyons | Probability on Trees and Networks[END_REF]), potential theory such as electric networks (see [START_REF] Soardi | Uniqueness of currents in infinite resistive networks[END_REF], [START_REF] Lyons | Probability on Trees and Networks[END_REF]), and so on. In this paper, we define two Laplacians, mentioned in [START_REF] Anné | The Gauss-Bonnet Operator of an Infinite Graph[END_REF] and [START_REF] Baloudi | The Adjacency Matrix and the Discrete Laplacian Acting on Forms[END_REF], one as an operator acting on functions on vertices denoted by ∆ 0 and the other one acting on functions on edges denoted by ∆ 1 . So, it is a natural question to characterize the relation between their spectrum in terms of a certain geometric property of the graph and properties of the operators. Especially we show that the nonzero spectrum of ∆ 0 and ∆ 1 are the same, by using Weyl's criterion. Moreover, with suitable weight conditions we prove that 0 is in the spectrum of ∆ 1 , if the operator ∆ 0 is invertible. This result is inspired from J. Lott's work [START_REF] Lott | The zero-in-the spectrum question[END_REF] (Proposition 9, p. 12 ) which proves in the case of a simple graph that 0 is either in the spectrum of the Laplacian on 0-forms, or in the spectrum of the Laplacian on 1-forms. In fact, the major interest of J. Lott concerns the zero-in-the-spectrum question for the Laplace-de Rham operator acting on L 2 differential forms of any degree on a complete connected oriented Riemannian manifold. The article [START_REF] Lott | The zero-in-the spectrum question[END_REF] is rather expository and gives some positive answers, in relation with topology, for small dimensions. We finish the paper with examples of constructions of ∆ 1 -harmonic nonzero square-integrable functions.

2. PRELIMINARIES 2.1. Definition and notation.

• A graph G is a couple (V, E) where V is a set at most countable whose elements are called vertices and E is a set of oriented edges, considered as a subset of V × V.

• If the graph G has a finite set of vertices, it is called a finite graph. Otherwise, G is called an infinite graph.

• We assume that E has no self-loops and is symmetric:

v ∈ V ⇒ (v, v) / ∈ E, (v 1 , v 2 ) ∈ E ⇒ (v 2 , v 1 ) ∈ E.
• Choosing an orientation of G consists of defining a partition of E:

E + E -= E (v 1 , v 2 ) ∈ E + ⇔ (v 2 , v 1 ) ∈ E -.
• For e = (v 1 , v 2 ), we denote

e -= v 1 , e + = v 2 and -e = (v 2 , v 1 ). • We write v 1 ∼ v 2 for e = (v 1 , v 2 ) ∈ E.
• The graph G is connected if any two vertices x, y in V can be joined by a path of edges γ xy , that means γ xy = {e k } k=1,...,n such that e - 1 = x, e + n = y and, if n ≥ 2 , ∀j ; 1 ≤ j ≤ (n -1) ⇒ e + j = e - j+1 . • The degree (or valence) of a vertex x is the number of edges emanating from x. We denote deg(x) := {e ∈ E; e -= x}.

• If deg(x) < ∞, ∀x ∈ V, we say that G is a locally finite graph.

Weighted graphs.

Definition 2.1. A weighted graph (G, c) is given by a graph G = (V, E) and weights on the edges

c : E → [0, ∞[ such that • c(x, x) = 0, ∀x ∈ V. • c(x, y) > 0, ∀(x, y) ∈ E. • c(x, y) = c(y, x), ∀(x, y) ∈ E. If y∼x c(x, y) < ∞ for each x ∈ V, we can define a weight on V by c(x) = y∼x c(x, y), x ∈ V. Remark 2.1.
If the graph G is locally finite, the weight c on any vertex is well defined.

Examples: -An infinite electrical network is a weighted graph (G, c) where the weight c on the edges are called conductances and their reciprocals are called resistances. This is the convention used in the study of random walks on weighted graphs, see [START_REF] Lyons | Probability on Trees and Networks[END_REF] and [START_REF] Soardi | Potential Theory on Infinite Networks[END_REF]. Then, c(x) = y∈V c(x, y) is the weight associated to the vertex x.

-A graph G is called a simple graph if the edge weights are equal to 1. In this case,

c(x) = deg(x), ∀x ∈ V.
All the graphs we shall consider in the sequel will be connected, locally finite and weights c given in Definition 2.1.

2.3.

Functional spaces. We denote the set of real functions on V by:

C(V) = {f : V → R}
and the set of functions of finite support by C 0 (V).

Moreover, we denote the set of real skew-symmetric functions on E by:

C a (E) = {ϕ : E → R ; ϕ(-e) = -ϕ(e)}
and the set of functions of finite support by C a 0 (E).

We define on the weighted graph (G, c) the following function spaces endowed with the scalar products.

a):

l 2 (V) := f ∈ C(V); x∈V c(x)f 2 (x) < ∞ ,
with the inner product

f, g V = x∈V c(x)f (x)g(x)
and the norm

f V = f, f V . b): l 2 (E) := ϕ ∈ C a (E); 1 2 e∈E c(e)ϕ 2 (e) < ∞ ,
with the inner product

ϕ, ψ E = 1 2 e∈E c(e)ϕ(e)ψ(e)
and the norm ϕ E = ϕ, ϕ E . Then, l 2 (V) and l 2 (E) are separable Hilbert spaces (since V is countable).

Operators and properties. The difference operator

d : l 2 (V) -→ l 2 (E), is given by d(f )(e) = f (e + ) -f (e -).
The coboundary operator is δ, the formal adjoint of d. Thus it satisfies (2.1) df, ϕ E = f, δϕ V for all f ∈ l 2 (V) and for all ϕ ∈ l 2 (E).

As consequence, we have the following formula characterizing δ :

Lemma 2.1. The coboundary operator δ is characterized by the formula

δϕ(x) = 1 c(x)
e,e + =x c(e)ϕ(e), for all ϕ ∈ l 2 (E).

Proof

For f ∈ l 2 (V) and ϕ ∈ l 2 (E), using (2.1), we get Then,

df, ϕ E = 1 2 e∈E c ( 
df, ϕ E = x∈V c(x)f (x)   1 c(x)
e,e + =x c(e)ϕ(e)

  = f, δϕ V
and the formula for δϕ follows.

Definition 2.2. The Laplacian on 0-forms ∆ 0 defined by δd on l 2 (V) is given by

∆ 0 f (x) = 1 c(x) y∼x c(x, y) (f (x) -f (y)) .
In fact, we have

∆ 0 f (x) = δ(df )(x) = 1 c(x) e,e + =x c(e)df (e) = 1 c(x) e,e + =x c(e) f (e + ) -f (e -) = 1 c(x) y∼x c(x, y) (f (x) -f (y)) .
Definition 2.3. The Laplacian on 1-forms ∆ 1 defined by dδ on l 2 (E) is given by Proposition 2.1. The operator ∆ 0 is bounded and self-adjoint.

∆ 1 ϕ(e) = 1 c(e + )

Proof

For f, g ∈ l 2 (V), we have

| ∆ 0 f, g V | = x c(x) 1 c(x) y∼x c(x, y) (f (x) -f (y)) g(x) ≤ x y∼x c(x, y) |(f (x) -f (y))| |g(x)| ≤ x y∼x c(x, y) |f (x)| |g(x)| + x y∼x c(x, y) |f (y)| |g(x)| = x c(x) |f (x)| |g(x)| + x y∼x c(x, y) |f (y)| |g(x)| ≤ f V g V + I (2.2)
where

I := x y∼x c(x, y) |f (y)| |g(x)|.
Using the Cauchy-Schwarz inequality, we obtain

I ≤ x y∼x c(x, y) |f (y)| 2 1 2 y∼x c(x, y) 1 2 |g(x)| = x y∼x c(x, y)f 2 (y) 1 2 
(c(x))

1 2 |g(x)| ≤ x y∼x c(x, y)f 2 (y) 1 2 x c(x)g 2 (x) 1 2 = y c(y)f 2 (y) 1 2 x c(x)g 2 (x) 1 2 = f V g V . (2.3) Therefore, (2.2) and (2.3) gives | ∆ 0 f, g V | ≤ 2 f V g V .
But by the definition of the norm of operator, we have

∆ 0 = sup f =1 ∆ 0 f V = sup f =1 sup g =1 ∆ 0 f, g V So ∆ 0 ≤ 2, which shows that ∆ 0 is a bounded operator .
Now, we want to prove the selfadjointess of the operator ∆ 0 defined on l 2 (V). As ∆ 0 is a bounded operator on l 2 (V), it remains to show that ∆ 0 is symmetric. As we have ∆ 0 = δd and δ is the adjoint operator of d, we obtain for f and g ∈ l 2 (V)

∆ 0 f, g V = δdf, g V = df, dg E = f, δdg V = f, ∆ 0 g V .
Remark 2.2.

• The operators d and δ are bounded. Indeed, using the inequality (a -b) 2 ≤ 2(a 2 + b 2 ) and the definition of the weights on vertices: c(x) = y∼x c(x, y), we obtain

df 2 E = 1 2 (x,y)∈E c(x, y)(df (x, y)) 2 = 1 2 (x,y)∈E c(x, y)(f (y) -f (x)) 2 ≤ (x,y)∈E c(x, y)(f 2 (y) + f 2 (x)) = 2 x∈V f 2 (x) y∼x c(x, y) = 2 x∈V f 2 (x)c(x) = 2 f 2 V .
So d is bounded, and the same is true for the adjoint δ.

Notice that since ∆ 0 is the composite operator of δ and d; this gives another proof that ∆ 0 is bounded.

• It is easy to see that ∆ 0 is also positive, since ∆ 0 f, f V = df, df E ≥ 0.
Corollary 2.1. As the operator ∆ 0 is self-adjoint and positive, its spectrum is real and lies in [0, 2].

2.5.

Weyl's criterion. As our operator is bounded and self-adjoint on a Hilbert space, we can use Weyl's criterion [START_REF] Reed | Methods of Modern Mathematical Physics I[END_REF] to characterize its spectrum.

Weyl's criterion : Let H be a separable Hilbert space, and let ∆ be a bounded self-adjoint operator on H. Then λ is in the spectrum of ∆ if and only if there exists a sequence (f n ) n∈N so that f n = 1 and lim

n→∞ (∆ -λ)f n = 0.
We denote σ(∆) the spectrum of ∆ and we set

• σ d (∆) is the set of λ ∈ σ(∆)
which is an isolated point and an eigenvalue with finite multiplicity.

• σ ess (∆) := σ(∆) \ σ d (∆).
3. THE RELATION BETWEEN THE SPECTRUM OF ∆ 0 AND ∆ 1 3.1. The nonzero spectrum of ∆ 0 and ∆ 1 . In this section we will prove the relation between the spectrum of ∆ 0 and that of ∆ 1 , by using Weyl's criterion.

Following [START_REF] Shirai | The spectrum of infinite regular line graphs[END_REF] and [START_REF] Strichartz | Transformation of spectra of graph laplacians[END_REF] we have the next lemma. (

) δ∆ 1 = ∆ 0 δ. Lemma 3.2. 2 
(1) ker ∆ 0 = ker d.

(2) ker ∆ 1 = ker δ.

Proof

(1) Clearly, we have ker d ⊂ ker ∆ 0 .

On the other hand, if ∆ 0 f = 0 for f ∈ l 2 (V) and f = 0, we have

0 = ∆ 0 f, f V = df, df E .
Then df = 0 for f ∈ l 2 (V).

(2) If ϕ ∈ ker δ, then ϕ ∈ l 2 (E) and δϕ = 0. Thus, dδϕ = 0 and we obtain ϕ ∈ ker ∆ 1 .

For the other inclusion, let ϕ ∈ l 2 (V), ϕ = 0 such that ∆ 1 ϕ = 0. Then

0 = ∆ 1 ϕ, ϕ E = δϕ, δϕ E .
We get δϕ = 0 and as a result ker ∆ 1 ⊂ ker δ.

We arrive at our main result.

Theorem 1. σ(∆ 1 ) \ {0} = σ(∆ 0 ) \ {0}.

Proof

• Let λ = 0 be in the spectrum of ∆ 0 . By Weyl's criterion, there exists a sequence

(f n ) n of l 2 (V) such that f n V = 1 and lim n→∞ (∆ 0 -λ)f n V = 0.
We want to find a sequence (ϕ n ) n of l 2 (E) such that

ϕ n E = 1 and lim n→∞ (∆ 1 -λ)ϕ n E = 0.
We set

ϕ n := df n df n E .
First, let us check that df n E = 0. We have

df n 2 E = ∆ 0 f n , f n V = (∆ 0 -λ)f n , f n V + λf n , f n V = (∆ 0 -λ)f n , f n V converges to 0 +λ. Then, lim n→∞ df n 2 E = λ.
Thus, by positivity of ∆ 0 , there exists A > 0 and an integer n 0 such that for all n ≥ n 0 , we have df n E > A. This implies that the sequence (ϕ n ) n is well defined. Now, we verify that lim n→∞ (∆ 1 -λ)ϕ n E = 0. By the first assertion of Lemma 3.1 and the fact that the operator d is bounded, we obtain for all n sufficiently large

(∆ 1 -λ)ϕ n E = (∆ 1 -λ) df n df n E E = (∆ 1 -λ)df n E df n E = d(∆ 0 -λ)f n E df n E ≤ d A (∆ 0 -λ)f n V . But lim n→∞ (∆ 0 -λ)f n V = 0. Therefore, lim n→∞ (∆ 1 -λ)ϕ n E = 0 and we can conclude that λ is in the spectrum of ∆ 1 \ {0}.
• The second part of the proof follows in the same fashion, with the roles of d and δ swapped.

There is a second method to prove Theorem 1 when 0 is not in the spectrum of ∆ 0 .

Lemma 3.3. If 0 is not in the spectrum of ∆ 0 , then the operator d defined in l 2 (V) has a closed range.

Proof

Let ϕ ∈ Im d, let us check that ϕ ∈ Im d, that means we look for a function f ∈ l 2 (V) such that ϕ = df . We have ϕ ∈ Im d, so there exists a sequence (ϕ n ) n of Im d such that ϕ n = df n , for f n ∈ l 2 (V). Moreover, the sequence (ϕ n ) n converges to ϕ in l 2 (E). On the other hand, by assumption 0 is not in the spectrum of ∆ 0 which implies the existence of a positive constant C such that

f V ≤ C ∆ 0 f V , ∀f ∈ l 2 (V).
But by the definition of the operator norm and Remark 2.2, we obtain

∆ 0 f = sup g, g V =1 ∆ 0 f, g V ≤ df E sup g, g V =1 dg E ≤ √ 2 df E . Then f V ≤ √ 2C df E , ∀f ∈ l 2 (V). Thus f n -f m V ≤ √ 2C df n -df m E , f n , f m ∈ l 2 (V).
And

f n -f m V ≤ √ 2C ϕ n -ϕ m E , f n , f m ∈ l 2 (V).
As the sequence (ϕ n ) n converges, so it is a Cauchy sequence and also (f n ) n is a Cauchy sequence in l 2 (V) which is complete. Then, (f n ) n converges to f . By the boundedness of the operator d, we obtain df n = ϕ n converges to df and by uniqueness of the limit, we have df = ϕ. So ϕ is in Im d.

Corollary 3.1. If 0 is not in the spectrum of ∆ 0 , then

σ(∆ 1 | Im d ) = σ(∆ 0 ).

Proof

By the first assertion of Lemma 3.1, we obtain

∆ 1 d = d∆ 0 .
But by assumption 0 is not in the spectrum of ∆ 0 . Then by the first assertion of Lemma 3.1, the operator d is invertible. So we obtain

∆ 1 | Im d = d∆ 0 d -1 . Thus, σ(∆ 1 | Im d ) = σ(∆ 0 ).

3.2.

The 0-spectrum of ∆ 0 and ∆ 1 . As the nonzero spectrum of ∆ 0 and ∆ 1 are the same, we are interested in characterizing the 0-spectrum. We give in the following an extension of a result of John Lott's [START_REF] Lott | The zero-in-the spectrum question[END_REF] (Proposition 9, p. 12 ).

Theorem 2. Let (G, c) be a connected, locally finite and weighted infinite graph such that the weight on edges c is bounded, i.e., there exists a constant α > 0 such that 1 α ≤ c(x, y) ≤ α, for all (x, y) ∈ E. Then 0 ∈ σ(∆ 1 ) or 0 ∈ σ(∆ 0 ).

First, we start with preliminary results.

By [START_REF] Soardi | Uniqueness of currents in infinite resistive networks[END_REF] (page 44) and [START_REF] Grigor'yan | Analysis on graphs[END_REF] (chapter 4) we have the next definition. By assumption 0 is not in the spectrum of ∆ 0 . Then by the first assertion of Lemma 3.1, the operator d is invertible, so there exists a positive constant λ so that

g V ≤ λ dg E , ∀g ∈ l 2 (V).
Thus, it follows that

|∂E U | ≥ C |U | , with C = 1 λ 2 .
Definition 3.2.

• A branch B is a finite sequence of vertices x 0 , x 1 , .., x m+1 such that for all j; 1 ≤ j ≤ m, we have deg(x j ) = 2.

• The length of a branch B, denoted long(B), is the number of vertices in this branch, here, long(B) = m + 2. • The interior of the branch B is the set of vertices x j of B satisfying the following conditions:

i) deg(x j ) = 2. ii) ∀y ∈ V; y ∼ x j ⇒ y ∈ B.
See [START_REF] Dodziuk | Elliptic operators on infinite graphs, Analysis, geometry and topology of elliptic operators[END_REF] and [START_REF] Torki-Hamza | Laplaciens de graphes infinis I-Graphes métriquement complets[END_REF] for the definition of the interior set of vertices.

0 0 1 1 0 0 1 1 0 0 1 1 00 00 11 11 0 0 1 1 0 0 1 1 0 0 1 1 0 1 m m+1 FIGURE 1. A branch of length m + 2
Instead of the argument of Lott [START_REF] Lott | The zero-in-the spectrum question[END_REF] inspired by Gromov [START_REF] Gromov | Asymptotic Invariants of Infinite Groups, Geometric Group Theory[END_REF] (p. 236-237), we use the following lemma: Lemma 3.5. We suppose that the following conditions are satisfied:

• The weight on edges c is bounded, i.e., there exists a constant α > 0 such that 1 α ≤ c(x, y) ≤ α, ∀(x, y) ∈ E.

• The operator ∆ 0 is invertible.

• The operator ∆ 1 is injective. Then the graph (G, c) is a tree which contains branches with uniformly bounded lengths, that means ∃M > 0, ∀B branch of G, long(B) ≤ M .

Proof

On the one hand, the operator ∆ 1 is injective which leads to the absence of cycles in the graph, so that G is a tree. On the other hand, the operator ∆ 0 is invertible, then the isoperimetric inequality is checked, by Lemma 3.4 there is a positive constant C such that for all finite sub-graphs U , we have

|∂E U | ≥ C |U | .
Let B be a branch with vertices x 0 , x 1 , ..., x m , x m+1 . We set U = {x 1 , ..., x m } the interior of the branch B, then

(3.4) c(x 0 , x 1 ) + c(x m , x m+1 ) ≥ C m j=1 c(x j ).
For the sake of simplicity, we first prove the lemma for the case of the constant weight c = 1, before handling the case of general weights.

• If c = 1, then we have c(x) = y∼x c(x, y) = y∼x 1 = deg(x), ∀x ∈ V (this is J. Lott's case [START_REF] Lott | The zero-in-the spectrum question[END_REF]). Therefore, the inequality (3.4) and Definition 3.2 gives

2 ≥ C m j=1 deg(x j ) = C m j=1 2 = 2Cm.
We set M := 1 C + 2 (independent of B), then long(B) ≤ M . Thus the lengths of branches of G are uniformly bounded.

• If c = 1 but c is bounded, that means there exists α > 0 such that 1 α ≤ c(x, y) ≤ α, for all (x, y) ∈ E. And as we have the weight on the vertices is c(x) = y∼x c(x, y), we obtain that c is also bounded from below by 1 α . By the inequality (3.4) we have

2α ≥ c(x 0 , x 1 ) + c(x m , x m+1 ) ≥ C m j=1 c(x j ) ≥ Cm 1 α .
Hence,

2α 2 C ≥ m.
We set M = 2α 2 C + 2 (independent of B), then long(B) ≤ M . Thus, the lengths of the branches of G are uniformly bounded. Now, we arrive to the proof of Theorem 2.

Proof

Taking the arguments from [START_REF] Lott | The zero-in-the spectrum question[END_REF], we argue by contradiction. Suppose that both operators ∆ 0 and ∆ 1 are invertible. Then, by Lemma 3.5, the graph G is a tree which contains branches with uniformly bounded lengths; see Figure 2 for an example. But the existence of such tree gives a δ-harmonic nonzero square-integral function ϕ. Indeed: we consider a part of the branch tree in Figure 2 as an example to simplify the understanding of the construction. For the sake of simplicity, we first prove the theorem for the case of the constant weight c = 1, before handling the case of general weights. First case: c = 1, we fix a vertex 0 as the origin of the tree and we set 0 -and 1 its different neighbors. Let us take ϕ(0, 0 -) = ϕ(0, 1) = 1. Then, we obtain δϕ(0) = 0 (the tree is oriented). Afterwards on the branch B 1 , ϕ is constant, in other words, ϕ(j, j + 1) = 1, for all j, such that 1 ≤ j ≤ 3. And at the point 4, we have ϕ(4, 5) = ϕ(4, 5 -) = 1 2 . It is claimed that δϕ(4) = 0. 
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Another example of a branch tree

In a general way, G is a tree which contains branches with uniformly bounded lengths and we construct a functions ϕ in a part of G by selecting always two branches at bifurcation points and at all edges that occur on other branches, ϕ is set to zero, as in Figure 4. In the Figure 3, the construction of ϕ is done in the following way: on B 0 the function ϕ is constant and equals to 1. Then we add a generation, we get two branches B 1,1 and B 1,2 such that the function ϕ takes the value 1 2 . And to the generation m, we have B m,k branches, where 1 ≤ k ≤ 2 m , then the function ϕ is equal to 1 2 m . As a result, we show that this construction of ϕ is in l 2 (E). Using the fact that the lengths of the branches of the tree are uniformly bounded by a constant M > 0, we obtain

ϕ 2 E = 1 2 m≥0 2 m k=1 e∈B m,k (ϕ(e)) 2 = 1 2 m≥0 2 m k=1 e∈B m,k 1 2 m 2 ≤ 1 2 m≥0 2 m M 1 2 m 2 = M 2 m≥0 1 2 m < ∞.
Second case: c = 1 but c bounded by a positive constant. That means there exists α > 0 such that

1 α ≤ c(x, y) ≤ α, ∀(x, y) in E.
As in Figure 2, on the branch B 1 , the vertex 0 has two neighbors denoted 0 -and 1. We want δϕ(0) = 0, so we choose the function ϕ in the following way ϕ(0, 1) = c(0,0 -) c(0,1) ϕ(0, 0 -). And in the interior of B 1 , we set ϕ(j, j + 1) = c(0,0 -) c(j,j+1) ϕ(0, 0 -) ∀j, 1 ≤ j ≤ 3. Next, we look at the point 4 which has two neighbors 5 and 5 -, to obtain δϕ(4) = 0 and as we have ϕ(3, 4) = c(0,0 -) c(3,4) ϕ(0, 0 -). We choose ϕ(4, 5) = c(0,0 -) 2c(4,5) ϕ(0, 0 -) and ϕ(4, 5 -) = c(0,0 -) 2c(4,5 -) ϕ(0, 0 -). Therefore, in the interior of the branch B 2 , ϕ(j, j + 1) = c(0, 0 -) 2c(j, j + 1) ϕ(0, 0 -) ∀j, 5 ≤ j ≤ 7.

And for the vertex 8, which has two neighbors 9 and 9 -. To have δϕ(8) = 0 and by using that ϕ(7, 8) = c(0,0 -) 2c [START_REF] Fujiwara | The Laplacian on rapidly branching trees[END_REF][START_REF] Grigor'yan | Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds[END_REF] ϕ(0, 0 -). We choose ϕ(8, 9) = c(0,0 -) 4c [START_REF] Grigor'yan | Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds[END_REF][START_REF] Grigor'yan | Analysis on graphs[END_REF] ϕ(0, 0 -) and ϕ(8, 9 -) = c(0,0 -) 4c(8,9 -) ϕ(0, 0 -). And in the interior of the branch B 3 , ϕ(j, j + 1) = c(0, 0 -) 4c(j, j + 1) ϕ(0, 0 -) for j = 10.

And so on... In a general way, see Figure 3, on B 0 the function ϕ(e 0 ) = c(0,0 -) c(e 0 ) ϕ(0, 0 -), where e 0 is an edge of B 0 . Then we add a generation, we get two branches B 1,1 and B 1,2 such that the function ϕ has a value ϕ(e k 1 ) = c(0,0 -) 2c(e k 1 ) ϕ(0, 0 -), where e k 1 denotes the edges of B 1,k for 1 ≤ k ≤ 2. And at generation m, we have B m,k branches, where 1 ≤ k ≤ 2 m , then the function ϕ equals to ϕ(e k m ) = c(0,0 -) 2 m c(e k m ) ϕ(0, 0 -), where e k m denotes the edges of B m,k . And to simplify the formulas, we can suppose that ϕ(0, 0 -) = 1 c(0, 0 -) .

Then, we obtain

ϕ(e k m ) = 1 2 m c(e k m )
, ∀m ≥ 0 and

1 ≤ k ≤ 2 m .
Therefore, this construction gives ϕ ∈ l 2 (E). Using the fact that the lengths of the branches of the tree are uniformly bounded by a constant M > 0 and the weight c on the edges is bounded by a positive constant, we obtain Finally, we have ϕ in l 2 (E) and δ-harmonic. So, 0 ∈ σ(∆ 1 ), which contradicts the assumption that 0 is not in the spectrum of ∆ 1 .

ϕ 2 E = 1 2 e c ( 
Remark 3.1. Any point of the graph can play the role of the first vertex 0 in the previous construction. It is then clear that we can construct an infinite family of independent functions ϕ which are in l 2 (E) and δ-harmonic. Then 0 is an eigenvalue of ∆ 1 with infinite multiplicity, so 0 ∈ σ ess (∆ 1 ).

EXAMPLES:

In this section, we will construct a δ-harmonic function ϕ in different examples of trees.

1) Symmetric tree: Following [START_REF] Fujiwara | The Laplacian on rapidly branching trees[END_REF] we introduce the next definition: Definition 4.1. A tree T s is symmetric around o with branching numbers {m i } ∞ i=0 if the degree of each vertex depends only on its distance from o, namely, for each

x ∈ T s , deg(x) = m i if d(o, x) = i.

Example of a symmetric tree:

We fix a vertex o as an origin of the tree. We set S n = {x ∈ T s ; d(o, x) = n}. T s is symmetric around o with branching numbers {m n } ∞ n=0 . In Figure 4, we choose m n = 3 + n for all n ∈ N which is an increasing sequence. So, we have m 0 = 3 that means deg(o) = 3. And for x ∈ S 1 , we obtain deg(x) = m 1 = 4. In the same way, if x ∈ S 2 we have m 2 = 5 and so on. If the symmetric tree T s is simple ( the edge weights are equal to 1) with deg(x) > 2 for all x ∈ T s , then there is a δ-harmonic function ϕ ∈ l 2 (E).

Proof

We fix a vertex x 0 as an origin of the tree T s , we can find an increasing sequence of finite subgraph {S n } n such that S n = {x ∈ T s ; d(x 0 , x) = n} and T s = ∪ n S n . By the definition of the symmetric tree, we have for all n deg(x n ) = m n , ∀x n ∈ S n . First, we construct a function ϕ so that δϕ = 0 as follows: Let e 0 and b 0 denote two distinct outward edges connecting to the vertex x 0 . We define ϕ to be 0 excepted on these edges where ϕ(e 0 ) = 1 and ϕ(b 0 ) = -1 which gives δϕ(x 0 ) = 0. And denote

e k n , n ≥ 1, 1 ≤ k ≤ n j=1 (m j -1), resp. b k n , n ≥ 1, 1 ≤ k ≤ n j=1 (m j -1)
, the outward edges emanating from e 0 , resp. b 0 , of generation n. We define

ϕ(e k n ) = 1 n j=1 (m j -1)
ϕ(e 0 ),

ϕ(b k n ) = 1 n j=1 (m j -1) ϕ(b 0 )
and ϕ takes value 0 on all edges other than e k n and b k n . Second, through this construction, we look for ϕ ∈ l 2 (E). Using the fact that deg(x n ) = m n ≥ 3, ∀x n ∈ S n , ∀n, we obtain

ϕ 2 E = 1 2 e∈E ϕ 2 (e) = 1 2   2 + n≥1 n j=1 (m j -1) k=1 ϕ 2 (e k n ) + ϕ 2 (b k n )   = 1 + n≥1 n j=1 (m j -1) k=1 1 (m 1 -1)(m 2 -1)...(m n -1) 2 = 1 + n≥1 1 (m 1 -1)(m 2 -1)...(m n -1) ≤ 1 + n≥1 1 2 n < ∞.
2) Triadic tree with weights bounded from below: As [START_REF] Ayadi | Semi-Fredholmness of the discrete Gauss-Bonnet operator[END_REF] (p. [START_REF] Torki-Hamza | Laplaciens de graphes infinis I-Graphes métriquement complets[END_REF], we have the following definition of a triadic tree. Definition 4.2. A tree is a connected graph containing no cycles. The triadic tree is a tree such that all the vertices have degree 3. With this construction, we obtain for each x n ∈ S n , δϕ(x n ) = 0, ∀n ≥ 1. Moreover, ϕ ∈ l 2 (E). Indeed: by using the assumption that the weights on the edges are bounded from below by a positive constant λ, we obtain Remark 4.1.

ϕ 2 E = 1 
• The construction of a δ-harmonic nonzero square-integral function depends on the edge weights. • In the simple triadic tree, 0 is both in the spectrum of ∆ 0 [START_REF] De Verdière | Spectre de Graphes, Cours spécialisés[END_REF] and in the spectrum of ∆ 1 [START_REF] Ayadi | Semi-Fredholmness of the discrete Gauss-Bonnet operator[END_REF]. number 13G1501 " Graphes, Géométrie et théorie Spectrale". Finally, I thank my PhD's referee: Pofessors Sylvain Golénia, Luc Hillairet and Aref Jeribi for their fruitful discussions, remarks and corrections to improve my PhD thesis from which this work is extracted. I would like to thank also the anonymous referee for the careful reading of my paper and the valuable comments and suggestions.
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 3134 The graph G verifies the isoperimetric inequality if there exists a constant C > 0 such that for all finite sub-graphs G U = (U, E U ) of G, we have|∂E U | ≥ C |U | ,where |∂E U | = x∈U y / ∈U c(x, y) and |U | = x∈U c(x). If ∆ 0 is invertible then the isoperimetric inequality holds. Proof Let U a finite sub-graph of G. Let us set g = 1 U , meaning that g(x) = 1 if x ∈ U and g(x) = 0 if x / ∈ U . Then we obtain |U | = x∈U c(x) = g 2 V and |∂E U | = x∈U y / ∈U c(x, y) = dg 2 E .
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 42 If the triadic tree has weights on the edges bounded from below by a positive constant λ, then there is a δ-harmonic function ϕ ∈ l 2 (E).
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And for the points which are in the branch B 2 , the function ϕ is constant and takes the value 1 2 . And so on to the point 8, we have ϕ(8, 9) = ϕ(8, 9 -) = 1 4 , to obtain δϕ(8) = 0. And for the points which are in the branch B 3 , the function ϕ is constant and takes the value 1 4 . And we continue in this way...