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Carleman commutator approach in
logarithmic convexity for parabolic equations

Kim Dang Phung*

Abstract

In this paper we investigate on a new strategy combining the logarithmic
convexity (or frequency function) and the Carleman commutator to obtain an
observation estimate at one time for the heat equation in a bounded domain.
We also consider the heat equation with an inverse square potential. Moreover,
spectral inequality for the associated eigenvalue problem is derived.

1 Introduction and main results

When we mention the logarithmic convexity method for the heat equation in a bounded
domain 2 C R" :

Ou—Au=0, in Qx(0,7) ,

u=20, on 092 x (0,7 ,
u (- 0) =ug € L2()\{0} ,

we have in mind that ¢ —lnlu (-, t)”ig(g) is a convex function by evaluating the sign
2
Jo [Vu (2, t)|" da

Jo lu (z, t)[? da
consequence, the following well-known estimate holds. For any 0 <t < T,

of the derivative of t — (see [AN], [Pal p.11], [IL p.43], [Ve]). As a

e 0] oy < [le™ 2oty ol 205

In a series of articles (see [PW1], [PW2], [PWZ], [BP] for parabolic equations) in-
spired by [Po] and [EFV], we were interested on the function t — [, u (z, t)|? e®@dg
Jo IVu(z,t) ? 2@

ol () #da

|z —wq|?
P(z,t) _ 1 —AT=
when e®®t) — 1 o7 AT—t+h)
(T—t+h)"/?

and its frequency function ¢t —
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with o € Q, h > 0. It provides us with an observation estimate at one point in time:
For any T" > 0 and any w nonempty open subset of {2,

g
e o] o) < (Ce% HeTAUOHLZ(w)) oo -

Here ¢, K > 0 and § € (0,1). From the above observation at one time, many ap-
plications were derived as bang-bang control [PW2] and impulse control [PWX], fast
stabilization [PWX] or local backward reconstruction [Vo]. In particular, we can also
deduce the observability estimate for parabolic equations on a positive measurable set
in time [PW2]. Recall that observability for parabolic equations have a long history now
from the works of [LR] and [FI] based on Carleman inequalities. Furthermore, it was
remarked in [AEWZ] that the observation estimate at one point in time is equivalent
to the Lebeau-Robbiano spectral inequality on the sum of eigenfunctions of the Dirich-
let Laplacian. Recall that the Lebeau-Robbiano spectral inequality, originally derived
from Carleman inequalities for elliptic equations (see [JL|, [LRL], [Lu]), was used in
different contexts as in thermoelasticity (see |[LZ], [BN]), for the Stokes operator [CL],
in transmission problem and coupled systems (see [Le|, [LLR]), for the Bilaplacian (see
|Gal, [EMZ], [LRR3]), in Kolmogorov equation (see [LRM], [Z]). We also refer to [M].

In this paper, we study the equation solved by f(x,t) = wu(z,t) e22@) for a
larger set of weight functions ® (x,t) and establish a kind of convexity property for
t —lnl f (-,t)HiQ(Q). By such approach we make appear the Carleman commutator.
The link between logarithmic convexity (or frequency function) and Carleman inequal-
ity has already appeared in [EKPVI] (see also [EKPV2|, [EKPV3]).

Choosing suitable weight functions ® (not necessary linked to the heat kernel) we
obtain the following new results:

Theorem 1.1. Suppose that Q0 C R™ is a convex domain or a star-shaped domain with
respect to o € Q such that {x;|x —xo| <1} € Q for some r € (0,1). Then for any
up € L*(Q),T >0, (aj).., €ER, A >0, € € (0,1), one has

J=1

£

T
HeTAUOHL2(Q) < Keer_s%/o HetAUOHL2(Ir—$0\<") dt

and
2

Z la,)* < e EVA Z aje; (x)| dx

A< |x—xo|<r A<

where K. > 0 is a constant only depending on (¢, max {|z — zo| ;x € Q}). Here ()}, ;)
denotes the eigenbasis of the Laplace operator with Dirichlet boundary condition.

Theorem [T thus states both the observability for the heat equation and the spectral
inequality for the Dirichlet Laplacian in a simple geometry. One can see how fast the
constant cost blows up when the observation region w becomes smaller. Notice that
the constant K. does not depend on the dimension n (see [BP, Theorem 4.2]).



Theorem 1.2. Let n > 3 and consider a C? bounded domain Q C R™ such that 0 € ).
Let w C Q) be a nonempty open set. Suppose that

o ifn=3,
tn=1)(n=3), ifn>4.

w
W)
~

Then, there exist constants ¢ > 0, K >0 such that for any (a;);», € R and any A >0,

we have
Z la;|” < ceKVA Z a;e; (z)| dz
A <A “IN<A

where (\;, e;) denotes the eigenbasis of the Schridinger operator —A—# with Dirichlet
boundary condition

z|

—Aej—‘%ej :)\jej, ZTLQ,
e; =0, on 0 .

Theorem [L.2 gives a spectral inequality for the Schrodinger operator —A — % under

|z
a quite strong assumption on pu < p* where the critical coefficient is p* = i (n— 2)2.
Our first motivation was to be able to choose 0 ¢ @ by performing localization with
annulus. We believe that a similar analysis can be handle with more suitable weight
function ® than those considered here and may considerably improve the results pre-
sented here.

We have organized our paper as follows. Section 2 is the important part of this
article. We present the strategy to get the observation at one point by studying the
equation solved by f = ue®/? for a larger set of weight functions ® adapting the energy
estimates style of computations in [BT] (see also [BP, Section 4]). The Carleman
commutator appears naturally here. Section 3 is devoted to check different possibilities
for the weight function ®, and in particular for the localization with annulus. In Section
4, we prove Theorem [[LTl The proof of Theorem [[.2is given in Section 5. In Appendix,
we recall the useful link between the observation at one point and the spectral inequality.

I am happy to dedicate this paper to my friend and colleague Jiongmin Yong on
the occasion of his 60th birthday. I am also grateful for his book [LY] in where I often
found the answer on my questions.

2 The strategy of logarithmic convexity with the
Carleman commutator

We present an approach to get the observation estimate at one point in time for a model
heat equation in a bounded domain {2 C R" with Dirichlet boundary condition. We shall
present this strategy step-by-step. Two different geometric cases are discussed: When
() is convex or star-shaped, we can used a global weight function; For the more general
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C? domain Q, we will use localized weight functions exploiting a covering argument and
propagation of interpolation inequalities along a chain of balls (also called propagation
of smallness).

2.1 Convex domain

Throughout this subsection, we assume that  C R” is a convex domain or a star-
shaped domain with respect to zo € Q. Let (-,-) denote the usual scalar product in
L% () and let ||-]| be its corresponding norm. Here, recall that u (z,t) = e®uq (7) €
C([0,T];L? ()N C((0,T]; H} (Q)) and we aim to check that

Ju (T < (e Dl pagy) O

The strategy to establish the above observation at one time is as follows. We decompose
the proof into six steps.

Step 2.1.1. Symmetric part and antisymmetric part.

Let ® be a sufficiently smooth function of (z,t) € R" x R, and define
f(z,t) =u(x,t)e®@0/2

We look for the equation solved by f by computing e®@0/% (9, — A) (e= @72 f (2, 1)).
We find that

(%f—Af—%f (atq>+ V| ) +V<I>-Vf+%A<I>f:O in Qx(0,7) ,

and furthermore, fjpo = 0. Introduce

Af = —V® - Vf— 1ADf
Sf=Af+nf where n=1 (8,9 + 5 |VP| )

We can check that

(S, > (59, f) or amy g € H; (Q) .

Furthermore, we have

of—-Sf—-—Af=0.
Step 2.1.2. Energy estimates.

Multiplying by f the above equation, integrating over (), we obtain that

LTI+ (=55,0) =0



Introduce the frequency function ¢ +— N (¢) defined by

_=Shh
I£11°
Thus, ]
1 ) -
S IFP+ NP = 0.
Now, we compute the derivative of N and claim that:
d 1 1
NS T (SIS AN - o, fAfdo .
NS CE S AN~ | SAT
Indeed,
d
ENl d d
R (a (=SE DN+ (ST £ = ||f||2)
- o =Sy 2087 0]+ H;g (1.1
B ;”2 (=87.) =281 AN+ o [FISHIP I +48F. 1)
- . 5 [<_ (S +I[S,AD 1, f) —/ ayfAde':| + 2 . [_ ||Sf||2 HfH2 + (ST, f)Q}
7 o 7
= Hf||2 [<_ (8/ + (S, AN f) - /69 ayfAde':|

In the third line, we used 14 IfII” + (=Sf, f) = 0; In the fourth line, multiplying the
equation of f by Sf, and integrating over Q, give (Sf, f') = ||Sf||> + (Sf, Af); In the
fifth line, J, denotes the normal derivative to the boundary, and we used

2(SF,Af) = (SAF.f) — (ASF. ) + /8 0upAfdo
—(SALN+ [ o fAfdo

o9
In the sixth line, we used Cauchy-Schwarz inequality.
Here we have followed the energy estimates style of computations in [BT] (see also

[Phl p.535]) The interested reader may wish here to compare with [EKPVI, Theorem
3].

Step 2.1.3. Assumption on Carleman commutator.

Assume that O, fAfdo > 0on (0,T) by convexity or star-shaped property of €2,
o0
and suppose that

(~ (S 418, A) £, ) < (~55.1)



n (0,7) where T (t) = T'—t + h and i > 0. Therefore the following differential
inequalities hold.

LN N @I O =0,

g/
dtN() T—(t)N(t)'

By solving such system of differential inequalities, we obtain (see [BP, p.655]): For any
0<t1<t2<t3§T,

(1F G D)™ < (1 Gl 1F Gt

where

M:—ll’l(T—tg—i‘h)‘i‘i

—ll’l(T—tz+h>+

l’l(T—tQ—'—h)
l’l(T—tl—'—h) ’

In other words, we have

14+M M
</ [u (, t2)|° ‘B@(x’md‘r) < (/ Ju (2, 1) 6¢(x’t1)d95) / u (z,t3)]” e* @) dz .
Q o 0

Step 2.1.4.

Let w be a nonempty open subset of 2. We take off the weight function ® from the
integrals:

(/Q |u(x,t2)|2d9§) o < exp { (1+ M) m1n<1> (z,ts) + Mmax® (, tl)]

z€Q

(/ u (2, 1) dx) /\u . t5)|? @) dy

/|U(!L">t3)|2€¢(x’t3)dz :/|U(a:,t3)|26‘1’(x’t3)d:):+/ u (2, 83)|* e®@) dz
Q w Q\w

< exp [max® (1. 15) / (2 1) do

max & (z,t3) /|uxt3|dzv
€ QN\w

and

+exp

Therefore, we obtain that

(/ |u (,t5)]? dx) o

< exp [— (1+ M) min® (z,t2) + Mmax® (z,t,) + max<1> (x, tg):|

z€Q z€Q

X (/Q u (z, 1) dx) /w|u(:r,t3)| dx

+exp [— (14+ M)min® (z,t3) + Mmax® (z,t;) + max ® (x, tg)]
€N e z€ Q\w

x (/Q |u(x,t1)|2dx)M/Q\u(:c,tg)\2dx.



Using the fact that ||u (-, 7)|| < ||u (-, )| < ||u(-,0)]| YO < t < T, the above inequality
becomes

(Jlu (.,T)||2)1+M < exp [ (1+ M)min® (z,ts) + Mmax® (z,t1) + maxq) (z, t3)}

zeQ =)

xmu@mu)t/wuw9|m

w

+exp |— (1 + M) min® (z,t3) + Mmax® (z,t;) + max ¢ (z, t3)]
€N €N € Q\w

14+M
x ([lu (- 0)[1%)
Step 2.1.5. Special weight function.

¢ (7)

Assume that ® (z,t) = Tt

we get that
(TP < exph |2 (o) + gy () + phopmae (o)
x [l (-, 0)|[™ IIU( )l L2 ()

+expi Tlt]‘ifmm@( )+ 7 ]ﬁhmaxw( ) + 7oy MAx (93)]

€ QN\w
X [lu (-, 0)]| 7
Choose t3 =T, ty =T — lh, t; =T — 2¢h with 0 < 2¢h < T and ¢ > 1, and denote
In(¢+1)

n (35)

M, =
Therefore, we have

lu (D) < expy | — 7t ming (x)

s (a)-+ max (o)

xe) rTEW

Xl G O™ Nl (T e

texpt | = Meming (x My + max ¢ (x
Pan 140 IEQSO() 2 (x) IEW‘P()
14+ M,
x Jlu (-, 0)[ 7

Step 2.1.6. Assumption on weight function.

We construct ¢ () and choose ¢ > 1 sufficiently large in order that

LM g (o) + (2) + (2)| <0
— m 7max €T max €T .
1 + 14 :(:EQSO 1 + 20 z€Q v xe Q\wgp

Consequently, there are C; > 0 and C5 > 0 such that for any A > 0 with 0 < 2¢h < T,

u (-, T)|| M < O

M _o,l 1+M,
w (O M (T gy + €7 Jlu (- 0

7



Notice that ||u (-, T)|| < |[u(-,0)|| and for any 20k > T, 1 < ¢“27 e, We deduce
that for any h > 0,

Ju G DY < @ (4 O flu (4 T o + €27 e ffu (-, 0)

Finally, we choose A > 0 such that

O F O u ()P = 2

>l ()

that is,

1+ M,
602% — 266’2% (HU(,O)H) i
Ju (-, T)|

in order that

s g
LTV M < 9 [ 9pC2% lu (0)1 ) 2 VM (- T
[ (T <2 26727 )| [l G O Nl (5 )l Loy

that is,

[l (D)l 2y -

51

@z (Jul o)\ e
Ju (- T)|| < 2+ (7
Ju D]

This ends to the desired inequality.

2.2 (C? bounded domain

For C? bounded domain €2, we will use localized weight functions exploiting a covering
argument and propagation of smallness.

Let 0 <7 < R, zp € Q and § € (0,1]. Denote Ry := (1+2) R and B, , :=
{z; ]z — 0| < r}. Assume that B,,, €  and Q N By, g, is star-shaped with respect
to . Let (-,-), denote the usual scalar product in L? (Q N By, g,) and let |||, be its
corresponding norm.

It suffices to prove the following result to get the desired observation inequality
at one point in time for the heat equation with Dirichlet boundary condition in a C?
bounded domain 2 (see [PWZ, Lemma 4 and Lemma 5 at p.493]).

Lemma 2.1. There is wy a nonempty open subset of By, and constants ¢, K > 0 and
B € (0,1) such that for any T > 0 and uy € L* (Q),

B _
™0l a e, ) = (€ €™ 0]y ) Mol



The strategy to establish the above Lemma 2.1]is as follows. It will be divided into
seven steps.

Step 2.2.1. Localization, symmetric and antisymmetric parts.

Let x € C§° (Byy.ry): 0 < x <1, x =1on {z;|r — 20| <(1+30/2) R}. Introduce
z = yu. It solves
Oz — Az =¢g:=—2Vx - -Vu— Axu ,

and furthermore, ?)a( ) = 0. Let @ be a sufficiently smooth function of (z,t) €

QanOvRO
R"™ x R; depending on xy. Set

f(z,t) =z (x,t)e2@D/2
We look for the equation solved by f by computing e®@0/2 (9, — A) (e=*@D/2 f (2, 1)).
It gives

1 1 1
8tf—Af— §f (@‘P + 5 |Vq)|2) +V<I>Vf+ §A®f = 6(13/29 in (Q N BIO7RO) X (0, T) s

and furthermore, f| o( ) = 0. Introduce

QmeOvRO
Af ==Vo.Vf—iAdf,
Sf=Af+nf where n = § (8t(I>—|—%|V<I>|2) .

It holds
{ <Af>'U>0 = _<Ava.f>0 >
(Sf,v)y = (Sv, f), for any v € H} (2N By g,y) -

Furthermore, one has

of —Sf—Af =e*?g .
Step 2.2.2. Energy estimates.
Multiplying by f the above equation and integrating over 2 N B, gr,, we find that

1d

5 116+ (=81 o = (f.e"2g), -

Introduce the frequency function ¢ — N (¢) defined by

:<_Sf7f>0
Tk
Thus,
L 12 4 NFIE = (2, £)
24 10 0TS ST

Now, we compute the derivative of N and claim that:

d 1 1

1
IN< L (S HIS A S )y — —— 0,1 Afdo +
™ =g []”f%|m&&m%%>ff”

2| £1lg

®/2

2]l -

9



Indeed,

d
dtNl d d
= (5 (S P91 + (85, o <112
iy \ @
= 2 [<S/f7 f>0+2<8f7 f/>o] [(‘Sf f) (Sf, f>o <f7 6¢/29>0]
Hf||o Hf“o ) )
5 (S'f, [o +2(Sf, £l + U( fi P +1<f,6¢/29>0 —F<f>6q>/29>0 ]
Hf||o Hf||o 2
5SS £ +2(Sf, Af)o] + [HSfHo + <5f e*?g).]
- 17 NI
T <Sf+ Leo g,f> - )—<f, gy |
H{Ho ol 12
< —US'f, o+ 2(Sf, AN+ —5 [IISfllg + (Sf.e*g),]
=T RN
2 8f+— *2g
W 2
2 1
S’ Sf,A + —e®/?
- T S D+ 2SF AN+ g 567,
In the third line, we used 1 53 ||f||0 (Sf, ) <f 63‘1’/2g>07 In the fifth line, multiplying

the equation of f by Sf, and integrating over QN By Ry, give

(Sf, M =(Sf, (Sf+Af+e‘I>/2 1o
= |Sfll5 + (Sf, Af)o + (ST, e*?g), ;

In the sixth line, we used Cauchy-Schwarz inequality. Finally, recall that
2(Sf,Af) = (S, Al f, f)o +/ o, fAfdo .
0 QﬂBzO Rg

Step 2.2.3. Assumption on Carleman commutator.

Assume that / O,fAfdo > 0 on (0,7) by the star-shaped property of
8(Q'F‘Bﬂco»l?o)
QN By, r,, and suppose that

(8" +[8.A) [ )y < 5 (=65, ),

n (0,7) where Y (t) = T'—t + h and h > 0. Therefore, the following differential
inequalities hold.

L4 >H3+N<t>r|f<-t>||§}sue‘1’/2 Ol 17 D)l
d 1 [e®/2g (1),
O TENO I

10



By solving such system of differential inequalities, we have: For any 0 < t; < t5 < t3 <

T,
1+M M

(I Cotlle) " < (L Clig) ™ IF Cots)llg e*”
where

t3 1

——dt
M:/t? T—t+h :—ln(T—t3+h)+ln(T—t2+h)

/tz 1 " —In (T —ta+h)+In(T —t; +h)

w T'—t+h
and

_ - le*2g .0l ,, . 2 le*a (1),
P _M<(t2 tl)/tl If (- >||0 H/tl If )IIO .

S 1O S T
+ dt/ 0dt+/
/tz T—t+h J, Hf(,t)Hﬁ ty 1f )Ho

Odt .

Indeed, we shall distinguish two cases: ¢ € [tl,tg] t € [to,t3]. For ty <t < ty, we

integrate (T —t+h)N (t)) < (T —t+ h) [l T t)” 290, over (t,ts) to get

T—ty+h /29 (-, 9)],
(T—t+h)N<t2)_/h Teop N

Then we solve

1d.
§E||f||ojL

and integrate it over (¢1,%3) to obtain

“T—ty+h
2N (t.) / T _ Il

. ., T—t+h
S I CRIE )
o e®2g (1), = e
e t1 ||f(7 )HO t
e®/2g(
For t, <t < t3, we integrate (T —t+h)N(t)) < (T —t+h) ”ufW

to get

T—ty+h [e*2g (- 5)],
N <7 (N(t2)+L st) .

Then we solve

1 d
< 52+

11

2/2

ty + /tf" %729 (-, 5)] 2 [[e*g]l,
2 IN()+ —————ds | +
T_t+h< ) e IFGsR ¥ 1710

)||o

T—1t+h b2 H6¢/2g (>S)H§ H qh/ngO 2
— LI L

0l

I1f

L over (ta,t)

] 1£115



and integrate it over (9, t3) to obtain

BT —t+h
IN (1) [
(2) t T_t‘l'h

2

I Ct)lls < IF Cot)llge . 2 0|
BTty h g (1) “|e*%g

o [ =l [ ST g —Od
/@ T—t+h tL T / SO

Finally, combining the case t; <t <ty and the case to <t <3, we have

||f(',t2)||(2) < ||f(',t3)||(2) (Hf( tl)”o)

xXe

If (o ta)lll
f2 || e®2g (- Ho 2 ||e®g (1)
OM (ty —t 2M 4 2 CN0gt
M T e IS
ts T—tyo+h <1>/2 E Ho s H6¢/2g (,t)H
2 — = dt —dt 2 & Jr 7oy
‘e [ =i / FGol . |, e

which implies the desired inequality.
Step 2.2.4. The rest term.
1]l

1£115

have introduced 0 < r < R, 2y € Q and 0 € (0, 1]).

We estimate . We begin by giving the following result. (Recall that we

Lemma 2.2. ForanyT — 0 <t <T, one has

2
oGO e

2
||u ('7 t) ||L2(Q0Bm0,(1+5)12>

where

L2 (gure(ed) G0

0 (6R) Ju(,T

)

2
) ||L2 (2NBzy.r)

with 0 < 0 < min (1,7/2) .

Indeed, denote u(x,t) = e®ug (z) with ug € L?(2) non-null initial data. Recall
that for any locally Lipschitz function & (x,t) such that 0, + % V&> < 0, the following

integral / lu (z,1)|* €@V dz is a decreasing function in ¢ by integral maximun principle
Q

(see [G1]). Choose £ (x,t) = — l—zol” , then

2(T—t+€)

[ e

‘ —
_/|u(a:,t)| e 2T- t+€>d1’
0



It implies that

R2

2 RZ 9 _lz—ug)?
o Dsqans, gy << [ D
’ QNBqyy, R

2 |lz—x \2
< 61;_6/ |U(x,t)|26_2(T*t0+e> dz
Q

R2 R2(1+6)2

R2 _R7(+6)"
< e e2c e 2T—t+e)

[u (-, 0)]* .

2
u (~7 t) HL2 (Qﬂon,(1+6)R) +
Choose T/2 < T —ed <t <T with 0 < e <T/2and § € (0,1}, then we get that

_sR?
2e

Ju (O

2 B2 2
|lw (-, T) HLQ(QﬂBxO,R) < ez ||u(-t) ||L2(QOB10,(1+6)R) +e

Choose SR
e — < min(1,7/2) ,
R2(1+4) (0]
2In <2e e )
L (Qmeo,R)

that is,

_3R2 21 _pe(iya 2

e 2e |u(.’0)|| g 56 ( T) ||’u, (',T)||L2(QmeO,R)

in order that

1 —_R2(14+1 2 R?2
(1 — 56 ( +T)) ||u(-,T)||L2(Qan0,R) S e 2e

2
u (‘a t) H L2 (QOBIO,(H(S)R)

and

-1
- 1 1 e 1 R 2
(i) (1_56 R(HT)) ol IR0

This above inequality implies

2
lw (-, 0] < L0 (100t

_ )
||u ('7 t) ||L2(QF‘|BIO,(1+6)R)

that is,

1+

SOl

oGO e [ 200

2 — 2
HU (.7 t) ||L2(QﬂBxO,(1+6)R) ||u ('7 T> ||L2(QOBZO’R)

aslong as T/2 < T — 0 <t <T with

2
. = 51n 2/ (1+7) e (27 ol
0 (5R) 1w G D22 (an,, 2)

Notice that # <min(1,7/2). This completes the proof of Lemma The interested
reader may wish here to compare this lemma’s proof with [BP) p.660] or [EFV] p.216].

13



o®/2
@ , by regularizing effect, as follows.

1£115

Now we can estimate

le®2g (-, 1|,

1F Gl
|—2Vx - Vu (2, 1) — Ayu (2, t)]? e*@Ddx

QNBy, (1+26)R

Ixu (z, 1) e®@Vdy
QNBy,(1+26)R

/ |—2Vx - Vu (2, 1) — Ayu (z,t)]? e*@Ddx
QN{(1+36/2) R<|z—z0|<Ro}

<
lu (z,t)|* e®@Dda
QNBy (1+6)R ) )
C(1+3)||lu(-,0
< exp {— min D (z,t) + max o (:z,t)} ( 2t) lu G, 0l
|z—z0|<(1+6)R (1438/2) R<|z—=x0|<Ro ||u (.’ t)||L2(mB (1+6)R)
CL‘O7
< exp [— min ¢ (z,t) + max ® (z, t)] C (1 + %) p(148)3 55
|lz—20|<(140)R (1436/2) R<|z—x0|<Ro

aslongas T/2<T -0 <t<T.

Step 2.2.5. First assumption on the weight function.

We choose a weight function ® (z,t) = ﬂ such that

T—t+h
- 1 <0
(s X P )7 in e (@)
in order that
R2
- i P (z,t O (2,t)+ (1+6)6—
\x—xolng(l%Jré)R (x, ) + (1+36/2)11§l§a]§_x0|330 (x’ ) T ( T ) 20
_1 R2
=T _i1n i - 14+6)6—
T—t+h Ix—:colng(rllJré)R(p (x) (1+35/2)r1?§a\§_x0|330(’0 (:1:) T ( T ) 20
R 1
1+0)0— — — i — hen T — 2¢h < t
<0
by taking
h<@ ! i max (7) 0C
min ) — — .
=@ 20) (14 0) 0R2 [jo-mnl2ti+e)r” (1435/2) REle—zol<Fo ()

Here ¢ > 1. Combining with the previous Step 2.2.4] one conclude that for any A <
fmin (Clep), 1/ (20)) and any T — 2¢h < ¢,

HT;( >||0H0— <1+?)‘

14



Next, we choose t3 = T, to =T — lh, t; = T — 2¢h, with A < Hmin(C’(w), 1/ (26)).
Therefore, the inequality of Step

(1 )l < (1 Gl 1 ()] €22

becomes

1+M 1 M
(IF T = em)llg) " < 91 (If (T = 2em)llg) ™ I1F ¢ Dl

as long as h < fmin(Cyy), 1/ (20)). Here C; > 0 is a constant depending on ¢ and
recall that
_In(£+1)

(%)

=

Step 2.2.6.
Let wy be a nonempty open subset of B, ,. Now by taking off the weight function

WW:%

lu (T = L) 2y

L2 (QﬂBwa(1+5)R>

from the integrals, we have that for any 0 < i < #min(C(c,), 1/ (2£)),

1 | 1+M,
< eXPg; 140

. MZ
_min @ () + 54
SCEQQBQCO’(1+5)R

1 M,
e [lu (4 0)I™ [l (- Tl 2 )

max ¢ (x) + maxyp (93)]

x€QNByg, Ry €Wy

1 | 14+M,
+expyy 140

_min p()+ 1% max p(r)+ max  p(x)
T€QNBy (14+8)R 2€QN By, Ry 2€ (Biag,ry ) \wo

x e [l (-, 0)[ M
But, by Lemma 2.2], observe that
2
[u (-, 0

< e(H‘;)‘S%
L2 (9NBLg (146)R)

which gives, with Cs gy := (14 9) 5%2 and 2¢h < 0,
lu (-, O < 2% lu (-, T — E)]| o

QﬁBxO,(1+6)R) )

Since ||u (-, T)|| < ||u(+,0)||, we can see that

1
e~ 5C6.R) |luw (-, T <|u(-,T - Eh)HH(QﬂBzO,(Ha)R)

and conclude that
1+ M
(e¥Cem flu(,))

o 1+Mg
1+¢

< exps- min ¢ (2) + % max @ (z)+ maxe (:c)]

m€§ﬂ§107(1+5)R weﬁano,Ro TEWQ
1 M
x e [lu (4 0) ™ [lu (- Tl 2 )

1 | 14+M,
+expy; w;

_min @)+ 7% max ¢(z)+  max  ¢(z)
mGQﬂBzoy(H(g)R xEQﬂBxO,RO TE (ﬁn?roﬁo)\wo

X || (-, 0)[ M

15



Step 2.2.7. Second assumption on the weight function.
We construct ¢ (z) and choose ¢ > 1 sufficiently large in order that

1+ M, . M,
— - min p(z)+—— max ¢(z)+ max p () <0.
L+ 1 2€0nB,, q1o)r 1+ 200eanB, r, 2€ (Barg,ry ) \wo

Consequently, there are C; > 0 and C; > 0 such that for any A > 0 with A <
fmin(Cy), 1/ (20)) = 6Cs,

1+M5

(730 () < e (O™ Y (T + €~ (0

u (-0

—C

%\»—A

On the other hand, for any h > 0C3, 1 <e 72 #. Therefore for any h > 0,

1
(e ¥m flu (1)) < e

Finally, we choose A > 0 such that

M = P PN 14 M,
u(,O)H ZHU('vT)HL2(w0)+€ ‘e C2h||u('70)|| e

:-I»—'
w

Q|m

1
el flu (o) =

1+ M,
(emb%em Ju,m)))

1+Me
o g2 (0]
3% u (1)
C

. 1+M;\ C2
) <2 (26 dueon
: < e TCGR) [[u(-1)|

ot (- O fa (-, T) gy

N —

e

that is,

in order that

that is,

o (0] Mg+(1+Mz)C—1
&1 Ca1 u\-,
CMW@TW§2”%ww< ) e (1) ey

e 0C0 ||u (-, T)|
As a consequence, we obtain that for some ¢ > 0,

e (- Y < e Jfu (5 0 flu (4 T 2y -

But recall the definition of § in Lemma 2.2 saying that

L2 3 [per0eh)  luGOF
0 (6R) 1w G D22 (an,, 2)
Therefore,
l+c R2(14+4) ||U(a0)||2 c
[u (T < |2e™ V7T ; ¢l (5 Ol (- Tl £2ug) -

< | ("T)HLZ(QOBZO,R)
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which gives for some K > 0, the following inequality

K L K
e G DN s, ) < €O e GO et () ey

and yields to the desired conclusion of Lemma 211

3 The weight function

In the previous section, the observation estimate at one time was derived by using
appropriate assumptions on the weight function ® and by solving a system of differential
inequalities. Now, our goal is to explore different explicit choices of weight function ®.

The weight function ®; used in a series of results for the doubling property or
frequency function for heat equations was based on the backward heat kernel (we also
refer to [BP] for parabolic equations where the Euclidian distance is replaced by the
geodesic distance). Precisely,

—|z—=zq|2
(T —t+h)"
or simply )
Oy (a,t) = 2Tl My

4T —-t+h) 2

It leads to the following differential inequalities (see [PWZ], Lemma 2 at p.487]):
Define for z € H' (0,T; L?(Q N Bay.r,)) N L? (0, T; H* N H} (2N Byy.g,)) and t €

(0,77,

/ IVz (x,t)]> Gy (2, 1) dz
QOBIO»RO

Ny (t) = , whenever / |z (x,t)Pdz # 0 .
QmeOvRO

[ ol G ds
QﬂBzOvRO

The following two properties hold.

i)

1d

2 dt QOB:EO JRg

2 (z,1)|> G, (, t) dx+/ \Vz (x,t)]° G (2, 1) dz

QOBRO

= / 2 (x,t) (0 — A) z (x,t) Gy (x,t) d .
QﬁBwoyRo

i1) When QN By, g, is star-shaped with respect to zo,

d 1
—N, () < ———
AU s

/ (0 — A) 2 (2 8)[2 G (2,1) da
Ny (t) + #NBro:

/ = (2. ) G () e
QﬁBwoyRo

17



The differential inequalities obtained with the Carleman commutator are given in
Step 2.1.21 and Step [Z2.2] of the previous Section 2:
Define for f € H' (0,T; L*> (2N Byy.r,)) N L2 (0, T; H*N H (2N B,y .r,)) and t €
(0,77,
Af ==Vo.Vf—iAdf,
Sf=Af+nf where n=1 (0, + 1 |V<I>|2) ,
and
(=81 fo
1£115

The following two properties hold.
i)
||fHo +NIf[lo = (Ouf = Sf = Af. f)g

2 dt
i)
PN S (S S AL s 0, Afd
N < —_ (- ’ o
dt ||f||o 1115 Jo(en.g.z,)
|o.f —Sf—Afll; -
||f||2 "
We will assume that / 0,fAfdo > 0 by the star-shaped property of 2N
0(Q2NBag Ry )

By, r,- Now we focus our attention on the term (— (S’ + [S, A]) f, f),- We decompose
our presentation into three parts.

Part 3.1. Key formula.
We claim that:

(— (S +[S, AN . )y =2 /Q VeV

1
L / A2 | du — / (O + VO - V)| £ da
QOBJTORO

2 QOBJU(),R()
which is, with the computation of d;n + V® - Vn,
(= (S"+[S.ADF, o

=9 Vf V2OV fdx
1 QﬂBwo,Ro
4= (A*® — 929 — 2V - V0,0 — VO - V2OV | f|* dw .
2 QﬂBmO Ry

Proof of the claim .- First, §’'f = dynf. Next, we compute [S, A] f :=SAf — ASf.
Precisely, with standard summation notations,

SAf =A(-V®-Vf—L1A®f) +n (VP -Vf—L1ADf)
= —AV®-Vf-20V®-9;Vf—- VI AVf—LAQf - VA - Vf - LAQAf
—nVéD-Vf—%nACI)f,
ASf =-Vo-V(Af+nf) = 340 (Af +nf)
=-VO -VAf—V® Vnf —nVe - Vf—IAGAf — LAdpf .

18



This implies that
S.A]f = 20,V OV + V& Vnf — SA*Bf —2AVE -V
Therefore, we obtain that
(S 4 S, Al f = 20,V - OV [ — (O + VD - Vi) f + %N@Hmv(@ VS

Furthermore, by one integration by parts we have

(VD - OV, [y = l/ A% |f|? dx —/ Vf V2V fdx
QﬁBwoyRo

2 QﬁBwoyRo

and

1
(AVD -V, f), = —5/ A2 | f? da .
Qano,Ro

Combining the above equalities yields the desired formula. Then the claim follows.

Example linked with the heat kernel .- If

2
w2l iy

@ =TT i 2

then we have )
(— (S H[S A Sl =5 (=S flo -
and

1

/ O, fAfdo = — 0, f (x — 20) - Pdo >0
9(QNBag Ry 2T 0(Q2NBag Ry )

by the star-shaped property of QN By, g,. Here and from now, Y (¢) := T —t + h and

7 is the outward unit normal vector to & (N By, g, )-

Part 3.2. A particular form of the weight function.

¢ (7)

Assume that ® (,’L’, t) = m

Then, we can see that
, 1
(~ (8" +[S, A £, Py = 5 (=S1. )y
1 1
S —— V-2V + 1) Vide + — Ao |fI? da
T QﬂBzO,RO 27 QﬁB»"voﬂo

1 1
—— 0+ Vo> + Ve (2V20+ 1) Vo | | f* do .
273 Jorp, 2

o,

Indeed,
9 1
(& +IS AN Ly =7 VI ViV idn oy Aelfl e
QﬁBzOvRO QﬁBzo,R
1

1
—%3 <¢+|V¢\2+§V¢~V2¢V¢5 ViR
QOBZO»RO
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and

1 1 ) 1 S BN
= (~Sf.f :—/ Vi de - <—<p+—V<p)f dz .
T < >O T QmBmO,RO | | ’I‘?, QanO,RO 2 4 | | | |

Example of a weight function for localization with balls .- If

— |z — x|? 1

) = = "0 that ] = —Z |z — x|
(x7t) 4(T_t+h) t a‘t ls7 (p(x) 4|a’: x0| Y

then we have )
(— (S +[S AN o= 5 (=5 o
and

/ O, f Afdo — — 0, ( — o) - Tdor > 0
a(Qmbo Ro)

2T Jo(ansq,n,)

by the star-shaped property of QN B, r,. One conclude that, with such weight function
®, the assumptions of Step 2.2.3] of the previous Section 2 are satisfied and therefore

hﬁW()%+N@Mﬂﬁmaékw2 Olly 1 1)l
d 1 le*2g (1)l

—N (t — N{)+ ——— .

™ = T N O R

Now we check the assumptions on ¢ (z) = —1 |z — xo|* at Step 2225 and Step 2.7 of

the previous Section 2. We observe that
max x) — min T
(1+35/2)RS\90—960|SR0S0( ) |z—z0|<(1+8) R ( )
=-1(1+35/2° R+ 1(1+6)°R* <0

and
_ 1+Me

~min p(r)+ 7 max p(r)+  max  p(x)
xEQﬂBZO (1+8)R EGQﬂBxO,RO TE (ﬁﬂng,RO)\WO

In(¢
(1 - ((ﬂ?ﬁ)) i1 +6)°R2 -4 <0

by choosing wy = By, » € Q with 0 < r < R and by taking ¢ > 1 sufficiently large.
Part 3.3. The weight function for localization with annulus.

Assume that ¢ (2) = —a |z — zo|*+b|z — x0|* — ¢ for some a,b,¢ > 0and 1 < s < 2.
We would like to check the assumptions of the previous Section 2 and find the adequate
parameters a, b, ¢, s. First, we observe that the formula in the previous Part

1
(= (S"+ IS AN fho = 5 (=SF. flo
_ 1 V-2V + 1) Vide + — ! A2 |f]? dx
T QﬁBwoyRo QT QﬁBwoyRo
1

1
573 (<p + \Vg0|2 + §Vg0 . (2V2<p + Id) Vgo) |f\2 dx
QﬂBzOvRO
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gives

(~ (S + (S AN F. Py 5 (=SF. ),

:-%(-4%1)/9 IV £ da

NBaz,Rg

/ o — w2 |V f [ da
QﬁBwoyRo

—(2—3)/ |x—a:0|s_4|(:v—x0)-Vf|2d:E]
QnB”O’RO

1
——bs(2—8)(n+s—2)(n+s—4)/ & — o|" " | fI* d
2T QmeO,RO
1 / 2
+orsC |fI" de
2?)’ QNBay,
+—3a(1—2a)(1—4a)/ [ — ao|* || de
27 QNByq, Ry
1
+—36(—1+6a5—4a23—4a282) & — xo|* | f|* dw
27 QNByg, Ry
1 3 -
— = (bs)* | =+ 2a — das / [ — o7 | fI da
2T3 2 QﬂBxO,RO

1 -
s 0 =D [ o e
QﬁBwoyRo

We start to choose a = i. Next we treat the third line of the above formula by using
Cauchy-Schwarz inequality, we find that

(8 + 18 A STy — 5 (=811}
§—%63(2—3)(n+8—2)(n+8—4)/ |z — zo* | dx

QﬂBzO R

1 / 9
+-c |f|” dx
2T3 QnB”O’RO

1 5 1
— b —-1+-s—-§° —xol* 1 Fd
+2T3 ( * 48 48 ) /QmBzO,RO [z = 2ol /1" de

1 o
L ORI P
1 QnB”O’RO
573 (bs)’ (s — 1) | — wo| ¥ £ da .
QnB”O’RO

1
In order that (— (8" +[S, A]) f, f)g — T (—=Sf. f)g <0, we can take n > 3 and s = 1
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with ¢ < (bs)® (2 — s) = b2 Another choice is n > 3 and s = 3 which gives

(8418, A f. Ty — 5 (=871}

< s 17 da
T32/S;OB$O,RO| |
1 b/ 43 11/4)\° 2/3 | £(2
b & — 2ol £ de ———-—b(/ & — 2o | de
139 Jons,, n, ° 353\3°) Jans,,n, °
11(%Qi/ P
—_— J— x’
T36 3 QmeO’RO

and finally, we can choose § < é (%b)3 and SRS/B < é (%b)Q.

Now, set <p r)=—%|r— zo|* + Ile— zo|*® — (l) and R=1, Ry = (5 )3/2 ~ 1.53
and § = o=t ~ 0.26. Here 1< (1 +35/2) ~ 140 < Ry = (1 +25)R We can see that

forn >3, (= (8" +[S, Al f. flo — f (=Sf,flo<0

We write ¢ () = W (J& — @o|) with W (p) = —2p> + 1p43 — (1)*. We have W (0) =
Wi(l)=- (%)4, w’ ((2/3)3/2> =0 and p+— W (p) is strictly decreasing for p > 1.

Finally, we check the assumptions on ¢ at Step 2.2.5 and Step 2.2.7] of the previous
Section 2: We observe that

max T) — min T
(1+35/2)RS\90—960|SROS0( ) |z—zo|<(1+) R ( )

<W((1430/2)R)—W ((1+9)R) <0
(because p — W (p) is strictly decreasing for p > 1 = R) and

o l—I—M(
144

_min o)+ 2% max p(x)+ _max  ¢(2)
z€QNBy, (1+6)R z€QNBy Ry re (QQB”O’RO)\“}O

In(¢ In(¢ 3/2
<1+ (2;3)) W (140 R) + 1(<£é>)ﬁw((2/3>/)+wvo)<o

by choosing wy = {z;70 < |z — 2| <r} € Qwith 0 <rg <7 <1, W (ry) =W (r) €
(— (%)4 , 0) and by taking ¢ > 1 sufficiently large.

4 Proof of Theorem 1.1

The observability estimate in Theorem [[.Tlcan be deduced from the observation inequal-
ity at one time (see [PW2] or the following Lemma[T]). It was noticed in [AEWZ] that
the spectral inequality in Theorem [Tl is a consequence of the observation inequality
at one time (see Lemma A in Appendix (see page B3))).
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Lemma 4.1. Let w be a nonempty open subset of Q. Let p € [1,2], v >0, g € (0,1)
= 1+5 T and c, K > 0. Suppose that for any ug € L? (Q) and any T > 0,

CB—W

B
HeTAUOHB(Q) < (CeTVK HeTAUOHLT’(w)> HUOHILg(ﬁQ)

Then for any ug € L* () and anyT > 0, one has

e (1+1/7)KCp /T H€mu0HLP(w) dt .
0

HSTAUOHL%Q) S KA

The above lemma is somehow standard, but we still give the proof here to make a
self-contained discussion.

Proof of Lemma [4.1] .- First, by Young inequality, the following interpolation esti-

mate
K _
ot T gy < (e (o Dllaey ) Ml G502y

implies that for any € > 0, we have
1
<

||u('7T)||L2(Q) = "1 g
g B

K
ce™ |lu (-, T)|| oy + € llu (5 0] 12q)

Next introduce a decreasing sequence (7},,),,-o of positive real numbers defined by

T
T, = — with 2 > 1.
Zm

< T and apply the observation estimate at one

Take 0 < Trpqo < Ty <t <1 < - -
time ¢ with initial time 7},,,5. We find that

1 o Kx
ce T2l flu ()| oy + € 1 (- Do)l 20

1-8
B

[ ()| 2y <

£
Since [|u (-, Ton)|| < |lu (-, t)||, we deduce that

1
+ellu, Tnso)ll f2q)

K
eIl () g
B

<

lw (-, Ton) |l 120
£

Now, integrate the above inequality over (T,,41,T,,), it yields that
1 c ﬁ Tm
€ T 1= T2 [ Gy )| Loy dite flu (- Tons2)ll L2

[u (-, Tl o) <
L@ 576 Tm - Tm—l—l

K

e(Tm+1*Tm+2)W
’

o gmt? <K1/7 (zm1+)2T>w
2 -1

which implies, since Tm—chH
C (1+1/7)sz(m+2) Tm
[ (T ) L2y < 5L [ G5 ) Loy dite llu (- Tons2) 2@




that is,

1-8 (1+1/w)K (m+2) 1 (A+1/VK ~(m+2)
e B e 17 ~ 2 7(m ||U(‘aTm)||L2(Q — gBe GE—DT7Y 2v(m ||u(-,Tm+2)||L2(Q)

C T’UL
< [ Dl e
2K Toir P(w)

Replacing m by 2m, we can see that

1-8

(A+1/7K Z'y(2m+2) 1 (A+1/NK  ~(2m+2)

gP e DT [w (-, Tom)| 2y — €€ G777 [w (s Tomt2) [ 20
TQm
c
<o L et
m+
(1+1/9)K
We write A,, = e G- Ty 27 and choose ¢ = A,,, in order to get

5 1+ c Lom
A [[u (- Tom) | 2y = Am " 1w (3 Tom2) || 20) < 7/ [ (5 O Loy Bt -

1
zK M Tom+1
Our task is to have
1+1 _ Q41N E 2ym 2y 1 _(A41/NK 2ym 4y 1
Ay ? Aﬁ@—l—l , that is, e G=D777 (1+5) = e G TE

1
in order to get, with X, = A [l (-, Tom) || 12(q)

C T2m
Xy = X1 < —5— / e (D)l

1/~
zKY Tom+1

To this end, we take 2% B = 1+ . It remains to sum the telescoping series from m = 0
to +00 to complete the proof of Lemma (4.1 and to find that

T
C (A+1/1)K
T <= e -t dt
(s Tl ) < e | el

with Cp = ——B+1
B[(BH)TV—l}

With the help of Lemma [£.T] and the analysis done in Section 2 for a convex domain
) C R” or a star-shaped domain with respect to g € €2, we are ready to show Theorem
[LIl Tt suffices to prove the observation at one point of Lemma [ Ilwith v = 1 and p = 2.

Let i > 0. Set
|£E—£L’0|2
4(T—t+h)"

The differential inequalities are (see Part of Section 3 and its example):

O (z,t) = —

2dt/|umt2¢(“d:c+N /|uxt2q’(“dx—0
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Since €2 is convex or star-shaped w.r.t. xg,

a = 7N

By solving such differential inequalities, we have: For any 0 < t; <ty <t3 < T,

1+M M
(L) < [ ke ([ o)
Q Q Q

where
—ln(T—tg—l-h) +1H(T—t2+h)

—IH(T—t2+h)+1H(T—t1+h) .
Choose t3 =T, to =T — th, t; =T — 20h with 0 < 2¢h < T and ¢ > 1, and denote

In(¢+1)

n (755)

M=

M, =

then

2 1+M, T ac\
</ lu (2, T — th)|*e 4(e+1)ﬁdaj) (/ u (z,0)]? dx) /|u z,T)? e~ dp

which implies

5 1+Ml R2(1+A{l 2 |- x()\
(/ lu (z,T)] dx) < e AHFDR </ lu (z,0)] dx) /|u x,T)|"e” dz .
Q

Here and throughout the proof of Theorem [T, R := max|z — xo|. Next, we split

z€Q

z—zg)?
/ lu(z,T)|* e~ dz into two parts: With By, := {z;|z — zo| <r} € Q where
Q

r < R, we can see that

z—x0|? r2
/|u(:):,T)| e _/ |u(:£,T)|2d:E+e_4ﬁ/|u(:£,0)|2d:)3.
Q Bag.r Q
Therefore, taking the above estimates into consideration yields that
1+Me
(/ lu (2, T)|? dx)
M,

R2 (14Mp) R%(1+4My)
X | e A@DR / lu (z,T)|? do 4 ¢ 3e+0n WHVL e 4h/|u z,0)*dz | .
B(L‘OT

(1+M,) 1 In(e41) 1 In(20)
But for £ > 1, 4(z+1e) < 200+1) In( 221 < Mn(3/2) ¢ < 2&1n(3/2) el = Ve € (0,1). Our

R2 1/(1—¢) 22-1—5 1/(1—¢)
[m (_) (78ln . /2>) Ve € (0,1)
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gives
R+ M) _r*
4(+1)h — 8h
One the one hand, it implies that for any 2¢h < T

</Q |u(x,T)|2dx)1+Mz (/ lu (z,0))? d:):)MZ
><<68h/B (2, T do + e sh/|ux0\ dx) .

(g,

7‘2 7‘2
On the other hand, ||u (-, T)|| < ||« (-,0)| and for any 2¢h > T, 1 < e'ir e~ . Therefore
we conclude that for any A > 0,

1+ M, M,
</ \u(:c,T)\zdx) (/ (2, 0)| d:c)
Q
x(esh/ lu (z, T)|? dx+e4Te 8h/|ux0|d:£) .
Bug.r

Finally, we choose A > 0 such that

1+M5
, P /|u z,0)|* dz
T 4
es8h 1= 26 4T
JACCRIRE
Q

in order that

1+2M,

2 1+MZ .
/|u (I,T)|2dl' < (467:1_7?/ lu(z,T)| dx) (/ lu (2, 0)| d:L’) +My) |
Q Bugr

that is,

1+2M,

r2e 2(1+M 2(1+M,)
o, D)y < (2657 N & D)o y) 7 (I @0l o)) 7

Now, we can apply Lemma [Tl with v = 1, p = 2 and Lemma A in Appendix (see page

B3) with c =2, K = %, = 50 j A Consequently, we obtain that
7l < e [l
L2(Q) = 2y o L2(Bag.r)
and )
Z |a'z < 4etVAIH2M) = e/ ae; (x)| dx .
<A Bzg.r [n;<A
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We can see that Cs <constant(M,)*. By the definition of M, and of ¢, we have M, <

% Sconstantrig. Therefore, we conclude that

£

T
HeTAUOHL2(Q) < Kser_s%/o ‘}EtAUOHLQ(BZO’T) at

and
2 Ke
g |a;|* < 4e7F V>
A< Bazg,r

This completes the proof of Theorem [l

5 Proof of Theorem 1.2

Let n > 3 and consider a C? bounded domain © C R™ such that 0 € €, and let w C
be a nonempty open set. To simplify the presentation, we assume that 0 ¢ @, that

can always be done, taking if necessary a smaller set. Let Ry = (%)3/ ? ~ 1.53. We
also assume that the unit ball EO, R, 1s included in €2 and EQ R, Nw is empty. This can

always be done by a scaling argument.

We are interested in the following heat equation with an inverse square potential

8tu—Au—#u:0, in Qx(0,7)

u=0, on 092 x (0,7 ,
w(-,0)=ug, in Q,

where ug € L*(Q), T > 0 and pu < p*(n) := (=2" 1t is well-known that this is a
well-posed problem [VZ]. In particular, v € C ([0,T];L*(Q)) N L*(0,T; H} () and
for any ¢t € (0,7, we have

W~

[ orar< [ju@r s,

and the regularizing effect

/|Vu(x,t)\2dx§€/|u0(aj)\2d$.
Q t Ja

Applying Lemma A in Appendix (see page B3]), we obtain the following result.
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Lemma 5.1. Let 3 € (0,1) and ¢, K > 0. Suppose that for any ug € L* () and any
T >0,

K 8 1-3
ot Ty < (€% N D) (ol o)

Then for any (aj)j21 € R and any X\ > 0, one has

2 2,/52 KA
g la;|” < ce”V P g aje; .
\/ Aj<A Aj<A L)

Here (), e;) denotes the eigenbasis of the Schriodinger operator —A — # with Dirichlet
boundary condition

z|

—Aej—‘%ej :>\j€j; ZTLQ,
e; =0, on 0 .

Now we are ready to prove Theorem [L2 It suffices to check the assumption of the
above Lemma [5.1] when

oez =1 (3) — 15 ifn=3,

2
=1 (n—=3)=p(n)—7, ifn>4.

Recall that Ry = (%)3/2 ~ 1.53 and let 0 = % ~ 0.26. We have assumed that
the unit ball By g, is included in Q. Let x € C5° (B g,) be a cut-off function satisfying
0<x<land x=1on {z;|z] <1+ 36/2}. Introduce z = xu. It solves

&gz—Az—#z:g::—QV)(Vu—Axu,
x

and furthermore, ?|0Bory = 8,,2" o8, ». — 0. Let @ be a sufficiently smooth function of
Eats} 110

(x,t) € R" x R; and set
fz,t) =z (x,t) @D/

We look for the equation solved by f by computing e®@0/2 (9, — A) (e=*@I/2 f (2, 1)).
It gives

1 1 2 1
Of —Af—5f (atcb +5 Vo[ - ﬁ) £VOVf+SABS =g in By, % (0.7) |
and furthermore, f|8B I 8,,f‘8B .. = 0. Introduce
zg,Rg z0,Rg

Af = -V -Vf - LAGS
Sf=Af+ (300 + LV + 1) £

Then, it holds

{ (Af,v)g=—(Av, f), ,
(Sf,v)y = (Sv, ), for any v € H} (Bo,r,) ,
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where (-,-), is the usual scalar product in L? (B g,) and |-||, will denote the corre-
sponding norm. Furthermore, we have

of —Sf—Af =2

Multiplying by f the above equation, integrating over By g,, it follows that

S NI+ (=87, 1Yo = (F.c*g),

Introduce the frequency function ¢ +— N (¢) defined by

— <_Sf7 f>0
HE

Then, we have
1d
5 I+ NIFIE = (2. £),

and the derivative of N satisfies (see Step [2.2.2]in Section 2):

d 1
—N< — (8" + S, A)) f,
dt Hfllﬁ< S+ ALt Hfll

Notice that the boundary terms have vanished since f|

2
gHo :

OBugrg a”f|8Bzo,Ro =0.

®/2 |2
e
The estimate of w can be obtained in a similar way than in Step 2.2.4] and

0

Step 2.2.5] of Section 2. Indeed, first, we check that
d 2 &) :
— | Ju(z,t)]"e""Yde <0 with £ (z,t) = —
dt Jo

as follows:

25
2dt/|u| dx

u@tuegdas+1/|u| Oiéetdx
QO 0

:/u(Au%—Lzu) efd:)s+—/ lul? O esda
Q || 2 Jo

1
——/ \Vu|2e§d:c—/uVu-V§esdx+/Lz‘ueS/zfdij—/ lul® 9,6t dx:
0 0 o |z 2 Jo

—/ |Vu|2efdx—/uVu-V§egdx+/ v (ue5/2)‘2d:)3+1/ lul? Op&esda
0 0 QO 2 9

—/ \vu|2e€dx—/uvu-vgefdx+/
Q Q

1 1
/ uf? [VeP efdr + & / (u* 6ebd = 0

1
Vuet’? + u§V£e§/2

1
dx+—/ |u|® 9,&efda
2 Ja
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where in the fifth line we used Hardy inequality. Therefore, we have

|lz—x \2
/\u(m,T)|2 - _/\u(m,t)fe_iwt0+e>da:,
Q Q

which implies that Lemma is still true for any u solution of the heat equation with
an inverse square potential.
1”2l

Next we can estimate as follows.

1£1lg
le*”9 ¢ )],

IF ¢l

|—2Vx - Vu (z,t) — Axu (z,t)]? e2@Vda
< JOn{(14+36/2) R<|z|<Ro}

lu (z, t)|2 @Dy
QNBy,(11+6)R

C(1+1 0|1
< exp [— min () + max ® a:,t)] (L+5) llu O

|e|<(1+6) R (1438/2) R<|z|<Ro lw (-, t) ||iz(m30 wiorn)

< exp [— min ¢ (z,t) + max ® (z, t)] C (1 + %) p(140)5 55
|z|<(1+)R (1+38/2) R<|z|<Ro

as long as T/2 < T — 0 < t < T, where in the third line we used the regularizing
effect of a gradient term for the solution u of the heat equation with an inverse square
potential. Therefore, the conclusion of Step 2.2.7] still holds: Under the assumptions of

Step 2.2.5] we have
Js0li ).
I1f (s )||o a t

The difficulty with the heat equation with an inverse square potential comes with
1
the estimate of (— (S +[S,A]) f, f)g — T (=Sf, f)o- Notice also that the treatment

far from the point 0 € §2 where the inverse square potential have its singularities can
be done in the same way than for the heat equation with a potential in L> (2 x (0,7))
(see [PWZ]). Our main task is to treat the assumptions of Step and Step 2.2.7 of
Section 2, carefully with a suitable choice of ® (see also Part of Section 3).

We claim that:
(= (S +[SA]) £, g

S| Vf~V2<I>Vfd:c+2u/ V- —If\ dx
QOBO,RO QﬁBO,F{O | |
1
4= (A*D — 920 — 2V - VO,® — VO - VOV | f|* dw .
2 QNBy ,Rg

Proof of the claim .- First, §'f = (%83@ + %V@ . V&JD) f. Next, we compute
S, Al f=SAf — ASf and get

[S,A]fz—Qaivq»aivqu»v( 00 4+ |v<1>| +W)f——A2®f IAVD-V f
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(which corresponds to the formula in the claim of Part B in Section 3 with n =
10,0 + 1 |VO[” + 4z). Therefore,

— (8" +[S,A)) f =20,VD-OVf+2AVE-Vf+ 1IA2Df
~ (L0 +4ve- Vo0 + VoV (00 + 1[VOP + 25)) f

— 20,V - OV f +2AV - Vf + 1A20f
— (120 + V0 - V9,0 + LVO - V2OVE + V-V () f .

Furthermore, by one integration by parts we have

20,V -0V f, f)y = / AP | f? da — 2/ Vf- V2V fdx
QNBy Rg

QmBO,RO

and
2(AV<I>-Vf,f)0:—/ A2 | f]? dx .
QNBy Ry

Combining the above equalities yields the desired claim.

Assume that @ (z,t) = % and recall that Y (t) := T — t + h. Then, we can

see that

(~(S 4 (S, A f, Py~ (~SF. ),

1
=—— V-2V + 1) Vfda
T QHBO,RO
1 1
+= (—Azgo +2uVyp - — ) |fI? dx
T Jong, R 2 |95| | |

1

1
o3 90+|VQ0|2+—VQ0' (2V2ap+ld) VQD) |f|2d£lf .
2T QOBO,RO 2

Indeed,
(= (& + IS AD S, o

2 1
= —= Vf- V2oV fdr+ —

T 27
QﬂBzO R QﬁBzo,Ro

1
+T 2uVp - — |f\ dz
QNBo, R, ‘ |

1 1
= ¢+|V¢\2+§V¢~V2¢V¢> |fP dw
QﬁBwoyRo

1 1
—_ (=S —— -0
T < fa f>0 T QOBO,RO <|vf| | | |f| )

1 1 )
- —<p+—ch)f dz .
T3 QﬂBoyRO (2 4| | | |

Assume that ¢ (z) = —a |z|>+b|z|* —c for some a,b,¢ > 0 and 1 < 5 < 2. We would
like to check the assumptions of Section 2 and find the adequat parameters a, b, ¢, s.

N |f| dx

and
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First, we observe that the identity
, 1
(— (8 + 1S, A £ fho — = (=SF. Iy
1
= —— V-2V +1,) Vfde
T QOBO,RO

1 1 T

+T <—A2go—|—2,uV<p-—4+L2) |f|? da
QOBO,RO 2 |I| |I|

1

1
—W Y+ |V¢|2+§Vg0- (2V2ap+ld) VQD) |f|2d£lf
QmBO,RO

gives

(~ (8 + (S, A) F. Fly — 5 (SF. ),

1 P
=~ (~da+ 1)/ (|Vf|2 -— |f|2) dz
QN Bo,, ||

2bs o s—
SN[ st s [ e e fodx]
QmBO,RO QmBO,RO
1 _
+—bs[du—(2—3)(n+s—2)(n+s—4)] |:£|S4|f|2dat
QT QmBO,RO

1 / 9
+c |f|” dx
2T3 QmBO,RO

+La(1—2a) (1 —4a)/ l2|? | f|? da

2}“)’ QNBo,ry
+50 (—1 4 6as — 4a’s — 4a’s?) |z)° | f)? da
27 QNBo, R,
1 9 3 25—2 2
——— (bs) <— +2a — 4as> / || |f|”dx
2T3 2 QOBO,RO

1 3 / 3s—4 | £(2
———(bs)" (s —1 x fl7dx .
s P =D [ e

When n =3, a= i, b= i, c= (%)4 and s = %, since Ry = (%)3/2, we have
, 1
(— (8" + 1S, A] £. £y — = (~S£. s

2b$( 7 )/ —8/3 2
< ——u- x f|"dx
G

1

with our assumption on . Since ¢ (z) = W (|z|) with W (p) = —1p? + 1p%/% — (%)4, we
have W (0) =W (1) = — (%)4, w’ ((2/3)3/2> =0 and p — W (p) is strictly decreasing
for p > 1 and the assumptions on ¢ at Step and Step 2Z.2.7 of Section 2 hold by
choosing wy = {x;7ro < |z] <r} with 0 <rog <r <1, W(rg) = W(r) € (— (%)4,0)
and by taking ¢ > 1 sufficiently large.
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When n>4,a=1,b=1, c="b%and s = 1, we have

I,

1
—_— / _—— —_—
s _
< (-qoene-9) [ R
QOBO,RO
<0
with our assumption on p. Since p +—» —in + ip — % is a non positive function and

is strictly decreasing for p > 1, the assumptions on ¢ at Step 2.2.5] and Step 2.2.7 of
Section 2 hold by choosing wy = {z;7¢ < |z| <7} with 0 < ry < r < 1, and by taking
¢ > 1 sufficiently large.

One conclude that for any ug € L? () and any T > 0,

K B 1-3
O P (% A YO T PP I 0

Since 0 ¢ wy € 2, we can replace wy by any nonempty open subset w of €2 by propagation
of smallness. The treatment far from the point 0 € €2 where the inverse square potential

have its singularities can be done in the same way than for the heat equation with a
potential in L™ (© x (0,7")) (see [PWZ]) and we also have

K B 1-8
o T oo ey < (e e (T ey ol

Finally, we will replace [|u (-, )| 2z by [lu (-, T)||11(,, thanks to Nash inequality: Here
W € w. Let ¢ € C§° (w) be such that 0 < ¢ <1 and ¢ =1 on w. Then we have

oDl <ot Dl
24n ﬁ
< (elléu (. Dlle) ™ (75 lou (D)™

2

n

< (e Hu(',T>||L1(w ) o (2\% | pu (-,T)HHg(Q)) o
< C, ||U(',T)||2+" Ju (-, )||2+"

Lt (w

n

oy 24n
< Cullu (L (& Huoum) -

This completes the proof.

Appendix

Let H be a real Hilbert space endowed with an inner product (-, -), and A be a linear
self-adjoint operator from D(A) into H, where D(A) being the domain of A is a subspace
of H. We assume that A is an isomorphism from D(A) (equipped with the graph norm)
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onto H, that A~! is a linear compact operator in H and that (Av,v) > 0 Vv € D(A),
v # 0. Introduce the set {); };)11 for the family of all eigenvalues of A so that

O< A< A< < A <A1 <---and limAj = o0,

]—)OO

and let {e; };)11 be the family of the corresponding orthogonal normalized eigenfunctions:
Aej = >\j€j7 e; € D(A) and <€j7€i> = 6i,j-

By Lumer-Phillips theorem, —A generates on H a strongly continuous semigroup
S :t— S{t) =e ™ Foranyt > 0 and any ug € H, we have that S (t)uy =

> o1 (o, e5) eNte; = (-, t) and u € C([0,+00); H) N C* ((0,+00); D(A)) is the
unique solution of u + Au = 0 with u (-,0) = uy.

Below, H := L? () where © is a bounded open set of R™.

Lemma A. Let w be a nonempty open subset of Q. Let p € [1,2], 8 € (0,1) and ¢, K,
v > 0. Suppose that for any ug € L* (Q) and any T > 0,

N B -
Ju sy < (™ N (Dl ) ol

Then for any (a;),-, € R and any A > 0, one has

5
2 Ai%wg(ﬂ)mj{li_v
|a;]” < ce K a;e; .
A <A A <A Lo (w)

Indeed, we choose ug = > aje)‘fTej and apply
X <A

N 8 -
Ju sy < (e (Dl ) ol

to get
1-8
2 KL 2 2M\T
E la;[" < [ ee® || X0 age; E |aj|"e
A <A AjSA L7 (w) >\ <A
1-8
KA AT (1-
< | ce™T7 || > aje; ( E ja [
AjSA L7 (w) A<
Therefore,

Z la,* < KT (45%) Z aje;

A< A<

LP(w)

34



We conclude by choosing

SO

Remark .- Conversely, suppose that there are constants p € [1,2] and Dy, Dy, v > 0
such that any (a;),., € (% and any A > Ay,

~
/ 2 AT+ Dy E
E ‘CLJ" S D16 a;€; .
A <A A <A LP(w)

Then for any 8 € (0,1) and any T' > 0,

N ]
o)l gy < Dae™ (D)l (- 0) [y

with

1
Dy =2 (1 + max <1> |W|%_%) Dl) and Dy = (D)™ a—py
Indeed, let o := 1= and ug :=u (-,0) = 3 a;e;. First, we have
j=1
712 T2 Y
o Ty = D lase™ T = 3 fage™ T+ > fage™7|
j21 A <A Aj>A
and
- T2
lu D)l < [ D lage™TP+ [ lage™7]
A <A Aj>A

Next, we apply the estimate on the sum of eigenfunctions with a; replaced by a;e %7

in order to get

DoXe )T
||u('aT)||L2(Q) < Dye® E :a] Te; + E :‘aje ’ ‘
Aj<A Lo(w) Aj>A
< DieP? |3 ae e+ e e,
Aj<A Aj>A Lo ()
Ny T2
+D,eP2A" E a;e ’\JTej + E ‘aje ’\JT‘
)\j>)\ LP(w) )\j>>\

o 1_1 a _
< DieP? Ju (- Dl oy + (1+ w72 1) P76 3™ o
Aj>A

o 1_1 o _
< D (T gy + (1 10573 D1) €2 Ju (- 0)] 2o

Now, by Young inequality, for any ¢ > 0,

D, a Dy Nt
Do)\ = AT)™ < eAT .
o = gy " <07 + (75 )
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Therefore,

1

1_1 (&)1711
Hu('aT)Hm(Q) < (1 + max <1, |lw]|? 2) Dl) elena
X (66>\T ||u ('aT)HLP(w) + 6(6—1))\T ||u (-’O)HLQ(Q)) .

Choosing 0 < € < 1 and optimizing with respect to \T" by taking
u (-0
e (160w )
Ju ('7T>||Lp(w)

1
D —a
||U(-,T)||L2(Q) < (1—|—max (1 |w|%_%) D1> e(ﬁ)i_
llu(-,0)ll L2
< (2 [FemEe] e Do) -

Setting 8 = 1 — ¢, we finally have the desired observation estimate at one time.

yield
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