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Carleman commutator approach in

logarithmic convexity for parabolic equations

Kim Dang Phung∗

Abstract

In this paper we investigate on a new strategy combining the logarithmic
convexity (or frequency function) and the Carleman commutator to obtain an
observation estimate at one time for the heat equation in a bounded domain.
We also consider the heat equation with an inverse square potential. Moreover,
spectral inequality for the associated eigenvalue problem is derived.

1 Introduction and main results

When we mention the logarithmic convexity method for the heat equation in a bounded
domain Ω ⊂ R

n :





∂tu−∆u = 0 , in Ω× (0, T ) ,
u = 0 , on ∂Ω× (0, T ) ,
u (·, 0) = u0 ∈ L2(Ω) \{0} ,

we have in mind that t 7→ln‖u (·, t)‖2L2(Ω) is a convex function by evaluating the sign

of the derivative of t 7→

∫
Ω
|∇u (x, t)|2 dx
∫
Ω
|u (x, t)|2 dx

(see [AN], [Pa, p.11], [I, p.43], [Ve]). As a

consequence, the following well-known estimate holds. For any 0 ≤ t ≤ T ,

∥∥et∆u0

∥∥
L2(Ω)

≤
∥∥eT∆u0

∥∥t/T
L2(Ω)

‖u0‖
1−t/T
L2(Ω) .

In a series of articles (see [PW1], [PW2], [PWZ], [BP] for parabolic equations) in-
spired by [Po] and [EFV], we were interested on the function t 7→

∫
Ω
|u (x, t)|2 eΦ(x,t)dx

and its frequency function t 7→

∫
Ω
|∇u (x, t)|2 eΦ(x,t)dx
∫
Ω
|u (x, t)|2 eΦ(x,t)dx

when eΦ(x,t) = 1

(T−t+~)n/2 e
− |x−x0|

2

4(T−t+~)
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with x0 ∈ Ω, ~ > 0. It provides us with an observation estimate at one point in time:
For any T > 0 and any ω nonempty open subset of Ω,

∥∥eT∆u0

∥∥
L2(Ω)

≤
(
ce

K
T

∥∥eT∆u0

∥∥
L2(ω)

)β
‖u0‖

1−β
L2(Ω) .

Here c,K > 0 and β ∈ (0, 1). From the above observation at one time, many ap-
plications were derived as bang-bang control [PW2] and impulse control [PWX], fast
stabilization [PWX] or local backward reconstruction [Vo]. In particular, we can also
deduce the observability estimate for parabolic equations on a positive measurable set
in time [PW2]. Recall that observability for parabolic equations have a long history now
from the works of [LR] and [FI] based on Carleman inequalities. Furthermore, it was
remarked in [AEWZ] that the observation estimate at one point in time is equivalent
to the Lebeau-Robbiano spectral inequality on the sum of eigenfunctions of the Dirich-
let Laplacian. Recall that the Lebeau-Robbiano spectral inequality, originally derived
from Carleman inequalities for elliptic equations (see [JL], [LRL], [Lu]), was used in
different contexts as in thermoelasticity (see [LZ], [BN]), for the Stokes operator [CL],
in transmission problem and coupled systems (see [Le], [LLR]), for the Bilaplacian (see
[Ga], [EMZ], [LRR3]), in Kolmogorov equation (see [LRM], [Z]). We also refer to [M].

In this paper, we study the equation solved by f (x, t) = u (x, t) e
1
2
Φ(x,t) for a

larger set of weight functions Φ (x, t) and establish a kind of convexity property for
t 7→ln‖f (·, t)‖2L2(Ω). By such approach we make appear the Carleman commutator.
The link between logarithmic convexity (or frequency function) and Carleman inequal-
ity has already appeared in [EKPV1] (see also [EKPV2], [EKPV3]).

Choosing suitable weight functions Φ (not necessary linked to the heat kernel) we
obtain the following new results:

Theorem 1.1. Suppose that Ω ⊂ R
n is a convex domain or a star-shaped domain with

respect to x0 ∈ Ω such that {x; |x− x0| < r} ⋐ Ω for some r ∈ (0, 1). Then for any

u0 ∈ L2 (Ω),T > 0, (aj)j≥1 ∈ R, λ > 0, ε ∈ (0, 1), one has

∥∥eT∆u0

∥∥
L2(Ω)

≤ Kεe
Kε
rε

1
T

∫ T

0

∥∥et∆u0

∥∥
L2(|x−x0|<r)

dt

and

∑

λj≤λ

|aj |
2 ≤ 4e

Kε
rε

√
λ

∫

|x−x0|<r

∣∣∣∣∣∣

∑

λj≤λ

ajej (x)

∣∣∣∣∣∣

2

dx

where Kε > 0 is a constant only depending on
(
ε,max

{
|x− x0| ; x ∈ Ω

})
. Here (λj , ej)

denotes the eigenbasis of the Laplace operator with Dirichlet boundary condition.

Theorem 1.1 thus states both the observability for the heat equation and the spectral
inequality for the Dirichlet Laplacian in a simple geometry. One can see how fast the
constant cost blows up when the observation region ω becomes smaller. Notice that
the constant Kε does not depend on the dimension n (see [BP, Theorem 4.2]).

2



Theorem 1.2. Let n ≥ 3 and consider a C2 bounded domain Ω ⊂ R
n such that 0 ∈ Ω.

Let ω ⊂ Ω be a nonempty open set. Suppose that

µ ≤

∣∣∣∣
7

2·33 , if n = 3 ,
1
4
(n− 1) (n− 3) , if n ≥ 4 .

Then, there exist constants c > 0, K > 0 such that for any (aj)j≥1 ∈ R and any λ > 0,
we have

√∑

λj≤λ

|aj |
2 ≤ ceK

√
λ

∫

ω

∣∣∣∣∣∣

∑

λj≤λ

ajej (x)

∣∣∣∣∣∣
dx

where (λj, ej) denotes the eigenbasis of the Schrödinger operator −∆− µ

|x|2 with Dirichlet

boundary condition {
−∆ej −

µ

|x|2 ej = λjej , in Ω ,

ej = 0 , on ∂Ω .

Theorem 1.2 gives a spectral inequality for the Schrödinger operator −∆− µ

|x|2 under

a quite strong assumption on µ < µ∗ where the critical coefficient is µ∗ = 1
4
(n− 2)2.

Our first motivation was to be able to choose 0 /∈ ω by performing localization with
annulus. We believe that a similar analysis can be handle with more suitable weight
function Φ than those considered here and may considerably improve the results pre-
sented here.

We have organized our paper as follows. Section 2 is the important part of this
article. We present the strategy to get the observation at one point by studying the
equation solved by f = ueΦ/2 for a larger set of weight functions Φ adapting the energy
estimates style of computations in [BT] (see also [BP, Section 4]). The Carleman
commutator appears naturally here. Section 3 is devoted to check different possibilities
for the weight function Φ, and in particular for the localization with annulus. In Section
4, we prove Theorem 1.1. The proof of Theorem 1.2 is given in Section 5. In Appendix,
we recall the useful link between the observation at one point and the spectral inequality.

I am happy to dedicate this paper to my friend and colleague Jiongmin Yong on
the occasion of his 60th birthday. I am also grateful for his book [LY] in where I often
found the answer on my questions.

2 The strategy of logarithmic convexity with the

Carleman commutator

We present an approach to get the observation estimate at one point in time for a model
heat equation in a bounded domain Ω ⊂ R

n with Dirichlet boundary condition. We shall
present this strategy step-by-step. Two different geometric cases are discussed: When
Ω is convex or star-shaped, we can used a global weight function; For the more general

3



C2 domain Ω, we will use localized weight functions exploiting a covering argument and
propagation of interpolation inequalities along a chain of balls (also called propagation
of smallness).

2.1 Convex domain

Throughout this subsection, we assume that Ω ⊂ R
n is a convex domain or a star-

shaped domain with respect to x0 ∈ Ω. Let 〈·, ·〉 denote the usual scalar product in
L2 (Ω) and let ‖·‖ be its corresponding norm. Here, recall that u (x, t) = et∆u0 (x) ∈
C ([0, T ] ;L2 (Ω)) ∩ C ((0, T ] ;H1

0 (Ω)) and we aim to check that

‖u (·, T )‖ ≤
(
ce

K
T ‖u (·, T )‖L2(ω)

)β
‖u (·, 0)‖1−β .

The strategy to establish the above observation at one time is as follows. We decompose
the proof into six steps.

Step 2.1.1. Symmetric part and antisymmetric part.

Let Φ be a sufficiently smooth function of (x, t) ∈ R
n × Rt and define

f (x, t) = u (x, t) eΦ(x,t)/2 .

We look for the equation solved by f by computing eΦ(x,t)/2 (∂t −∆)
(
e−Φ(x,t)/2f (x, t)

)
.

We find that

∂tf −∆f −
1

2
f

(
∂tΦ +

1

2
|∇Φ|2

)
+∇Φ · ∇f +

1

2
∆Φf = 0 in Ω× (0, T ) ,

and furthermore, f|∂Ω = 0. Introduce

{
Af = −∇Φ · ∇f − 1

2
∆Φf ,

Sf = ∆f + ηf where η = 1
2

(
∂tΦ + 1

2
|∇Φ|2

)
.

We can check that
{

〈Af, g〉 = −〈Ag, f〉 ,
〈Sf, g〉 = 〈Sg, f〉 for any g ∈ H1

0 (Ω) .

Furthermore, we have
∂tf − Sf −Af = 0 .

Step 2.1.2. Energy estimates.

Multiplying by f the above equation, integrating over Ω, we obtain that

1

2

d

dt
‖f‖2 + 〈−Sf, f〉 = 0 .
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Introduce the frequency function t 7→ N (t) defined by

N =
〈−Sf, f〉

‖f‖2
.

Thus,
1

2

d

dt
‖f‖2 +N ‖f‖2 = 0 .

Now, we compute the derivative of N and claim that:

d

dt
N ≤

1

‖f‖2
〈− (S ′ + [S,A]) f, f〉 −

1

‖f‖2

∫

∂Ω

∂νfAfdσ .

Indeed,

d

dt
N

=
1

‖f‖4

(
d

dt
〈−Sf, f〉 ‖f‖2 + 〈Sf, f〉

d

dt
‖f‖2

)

=
1

‖f‖2
[〈−S ′f, f〉 − 2 〈Sf, f ′〉] +

2

‖f‖4
〈Sf, f〉2

=
1

‖f‖2
[〈−S ′f, f〉 − 2 〈Sf,Af〉] +

2

‖f‖4
[
−‖Sf‖2 ‖f‖2 + 〈Sf, f〉2

]

=
1

‖f‖2

[
〈− (S ′ + [S,A]) f, f〉 −

∫

∂Ω

∂νfAfdσ

]
+

2

‖f‖4
[
−‖Sf‖2 ‖f‖2 + 〈Sf, f〉2

]

≤
1

‖f‖2

[
〈− (S ′ + [S,A]) f, f〉 −

∫

∂Ω

∂νfAfdσ

]
.

In the third line, we used 1
2

d
dt
‖f‖2 + 〈−Sf, f〉 = 0; In the fourth line, multiplying the

equation of f by Sf , and integrating over Ω, give 〈Sf, f ′〉 = ‖Sf‖2 + 〈Sf,Af〉; In the
fifth line, ∂ν denotes the normal derivative to the boundary, and we used

2 〈Sf,Af〉 = 〈SAf, f〉 − 〈ASf, f〉+

∫

∂Ω

∂νfAfdσ

:= 〈[S,A] f, f〉+

∫

∂Ω

∂νfAfdσ ;

In the sixth line, we used Cauchy-Schwarz inequality.
Here we have followed the energy estimates style of computations in [BT] (see also

[Ph, p.535]) The interested reader may wish here to compare with [EKPV1, Theorem
3].

Step 2.1.3. Assumption on Carleman commutator.

Assume that

∫

∂Ω

∂νfAfdσ ≥ 0 on (0, T ) by convexity or star-shaped property of Ω,

and suppose that

〈− (S ′ + [S,A]) f, f〉 ≤
1

Υ
〈−Sf, f〉
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on (0, T ) where Υ (t) = T − t + ~ and ~ > 0. Therefore the following differential
inequalities hold. 




1

2

d

dt
‖f (·, t)‖2 +N (t) ‖f (·, t)‖2 = 0 ,

d

dt
N (t) ≤

1

Υ (t)
N (t) .

By solving such system of differential inequalities, we obtain (see [BP, p.655]): For any
0 < t1 < t2 < t3 ≤ T ,

(
‖f (·, t2)‖

2)1+M
≤
(
‖f (·, t1)‖

2)M ‖f (·, t3)‖
2

where

M =
−ln (T − t3 + ~) + ln (T − t2 + ~)

−ln (T − t2 + ~) + ln (T − t1 + ~)
.

In other words, we have
(∫

Ω

|u (x, t2)|
2 eΦ(x,t2)dx

)1+M

≤

(∫

Ω

|u (x, t1)|
2 eΦ(x,t1)dx

)M ∫

Ω

|u (x, t3)|
2 eΦ(x,t3)dx .

Step 2.1.4.

Let ω be a nonempty open subset of Ω. We take off the weight function Φ from the
integrals:

(∫

Ω

|u (x, t2)|
2 dx

)1+M

≤ exp

[
− (1 +M) min

x∈Ω
Φ (x, t2) +Mmax

x∈Ω
Φ (x, t1)

]

×

(∫

Ω

|u (x, t1)|
2 dx

)M ∫

Ω

|u (x, t3)|
2 eΦ(x,t3)dx

and ∫

Ω

|u (x, t3)|
2 eΦ(x,t3)dx =

∫

ω

|u (x, t3)|
2 eΦ(x,t3)dx+

∫

Ω\ω
|u (x, t3)|

2 eΦ(x,t3)dx

≤ exp
[
max
x∈ω

Φ (x, t3)
] ∫

ω

|u (x, t3)|
2 dx

+exp

[
max
x∈Ω\ω

Φ (x, t3)

]∫

Ω

|u (x, t3)|
2 dx .

Therefore, we obtain that
(∫

Ω

|u (x, t2)|
2 dx

)1+M

≤ exp

[
− (1 +M) min

x∈Ω
Φ (x, t2) +Mmax

x∈Ω
Φ (x, t1) + max

x∈ω
Φ (x, t3)

]

×

(∫

Ω

|u (x, t1)|
2 dx

)M ∫

ω

|u (x, t3)|
2 dx

+exp

[
− (1 +M)min

x∈Ω
Φ (x, t2) +Mmax

x∈Ω
Φ (x, t1) + max

x∈Ω\ω
Φ (x, t3)

]

×

(∫

Ω

|u (x, t1)|
2 dx

)M ∫

Ω

|u (x, t3)|
2 dx .
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Using the fact that ‖u (·, T )‖ ≤ ‖u (·, t)‖ ≤ ‖u (·, 0)‖ ∀0 < t < T , the above inequality
becomes

(
‖u (·, T )‖2

)1+M
≤ exp

[
− (1 +M)min

x∈Ω
Φ (x, t2) +Mmax

x∈Ω
Φ (x, t1) + max

x∈ω
Φ (x, t3)

]

×
(
‖u (·, 0)‖2

)M ∫

ω

|u (x, t3)|
2 dx

+exp

[
− (1 +M) min

x∈Ω
Φ (x, t2) +Mmax

x∈Ω
Φ (x, t1) + max

x∈Ω\ω
Φ (x, t3)

]

×
(
‖u (·, 0)‖2

)1+M
.

Step 2.1.5. Special weight function.

Assume that Φ (x, t) =
ϕ (x)

T − t + ~
, we get that

‖u (·, T )‖1+M ≤ exp 1
2

[
− 1+M

T−t2+~
min
x∈Ω

ϕ (x) + M
T−t1+~

max
x∈Ω

ϕ (x) + 1
T−t3+~

max
x∈ω

ϕ (x)

]

×‖u (·, 0)‖M ‖u (·, t3)‖L2(ω)

+exp 1
2

[
− 1+M

T−t2+~
min
x∈Ω

ϕ (x) + M
T−t1+~

max
x∈Ω

ϕ (x) + 1
T−t3+~

max
x∈Ω\ω

ϕ (x)

]

×‖u (·, 0)‖1+M .

Choose t3 = T , t2 = T − ℓ~, t1 = T − 2ℓ~ with 0 < 2ℓ~ < T and ℓ > 1, and denote

Mℓ =
ln (ℓ+ 1)

ln
(
2ℓ+1
ℓ+1

) .

Therefore, we have

‖u (·, T )‖1+Mℓ ≤ exp 1
2~

[
−1+Mℓ

1+ℓ
min
x∈Ω

ϕ (x) + Mℓ

1+2ℓ
max
x∈Ω

ϕ (x) + max
x∈ω

ϕ (x)

]

×‖u (·, 0)‖Mℓ ‖u (·, T )‖L2(ω)

+exp 1
2~

[
−1+Mℓ

1+ℓ
min
x∈Ω

ϕ (x) + Mℓ

1+2ℓ
max
x∈Ω

ϕ (x) + max
x∈Ω\ω

ϕ (x)

]

×‖u (·, 0)‖1+Mℓ .

Step 2.1.6. Assumption on weight function.

We construct ϕ (x) and choose ℓ > 1 sufficiently large in order that

[
−
1 +Mℓ

1 + ℓ
min
x∈Ω

ϕ (x) +
Mℓ

1 + 2ℓ
max
x∈Ω

ϕ (x) + max
x∈Ω\ω

ϕ (x)

]
< 0 .

Consequently, there are C1 > 0 and C2 > 0 such that for any ~ > 0 with 0 < 2ℓ~ < T ,

‖u (·, T )‖1+Mℓ ≤ eC1
1
~ ‖u (·, 0)‖Mℓ ‖u (·, T )‖L2(ω) + e−C2

1
~ ‖u (·, 0)‖1+Mℓ .
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Notice that ‖u (·, T )‖ ≤ ‖u (·, 0)‖ and for any 2ℓ~ ≥ T , 1 ≤ eC2
2ℓ
T e−C2

1
~ . We deduce

that for any ~ > 0,

‖u (·, T )‖1+Mℓ ≤ eC1
1
~ ‖u (·, 0)‖Mℓ ‖u (·, T )‖L2(ω) + eC2

2ℓ
T e−C2

1
~ ‖u (·, 0)‖1+Mℓ .

Finally, we choose ~ > 0 such that

eC2
2ℓ
T e−C2

1
~ ‖u (·, 0)‖1+Mℓ =

1

2
‖u (·, T )‖1+Mℓ ,

that is,

eC2
1
~ := 2eC2

2ℓ
T

(
‖u (·, 0)‖

‖u (·, T )‖

)1+Mℓ

in order that

‖u (·, T )‖1+Mℓ ≤ 2

(
2eC2

2ℓ
T

(
‖u (·, 0)‖

‖u (·, T )‖

)1+Mℓ

)C1
C2

‖u (·, 0)‖Mℓ ‖u (·, T )‖L2(ω) ,

that is,

‖u (·, T )‖ ≤ 2
1+

C1
C2 eC1

2ℓ
T

(
‖u (·, 0)‖

‖u (·, T )‖

)Mℓ+(1+Mℓ)
C1
C2

‖u (·, T )‖L2(ω) .

This ends to the desired inequality.

2.2 C2 bounded domain

For C2 bounded domain Ω, we will use localized weight functions exploiting a covering
argument and propagation of smallness.

Let 0 < r < R, x0 ∈ Ω and δ ∈ (0, 1]. Denote R0 := (1 + 2δ)R and Bx0,r :=
{x; |x− x0| < r}. Assume that Bx0,r ⋐ Ω and Ω ∩ Bx0,R0 is star-shaped with respect
to x0. Let 〈·, ·〉0 denote the usual scalar product in L2 (Ω ∩Bx0,R0) and let ‖·‖0 be its
corresponding norm.

It suffices to prove the following result to get the desired observation inequality
at one point in time for the heat equation with Dirichlet boundary condition in a C2

bounded domain Ω (see [PWZ, Lemma 4 and Lemma 5 at p.493]).

Lemma 2.1. There is ω0 a nonempty open subset of Bx0,r and constants c, K > 0 and

β ∈ (0, 1) such that for any T > 0 and u0 ∈ L2 (Ω),

∥∥eT∆u0

∥∥
L2(Ω∩Bx0,R)

≤
(
ce

K
T

∥∥eT∆u0

∥∥
L2(ω0)

)β
‖u0‖

1−β
.
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The strategy to establish the above Lemma 2.1 is as follows. It will be divided into
seven steps.

Step 2.2.1. Localization, symmetric and antisymmetric parts.

Let χ ∈ C∞
0 (Bx0,R0), 0 ≤ χ ≤ 1, χ = 1 on {x; |x− x0| ≤ (1 + 3δ/2)R}. Introduce

z = χu. It solves
∂tz −∆z = g := −2∇χ · ∇u−∆χu ,

and furthermore, z|∂(Ω∩Bx0,R0)
= 0. Let Φ be a sufficiently smooth function of (x, t) ∈

R
n × Rt depending on x0. Set

f (x, t) = z (x, t) eΦ(x,t)/2 .

We look for the equation solved by f by computing eΦ(x,t)/2 (∂t −∆)
(
e−Φ(x,t)/2f (x, t)

)
.

It gives

∂tf−∆f−
1

2
f

(
∂tΦ +

1

2
|∇Φ|2

)
+∇Φ ·∇f+

1

2
∆Φf = eΦ/2g in (Ω ∩Bx0,R0)×(0, T ) ,

and furthermore, f|∂(Ω∩Bx0,R0)
= 0. Introduce

{
Af = −∇Φ · ∇f − 1

2
∆Φf ,

Sf = ∆f + ηf where η = 1
2

(
∂tΦ + 1

2
|∇Φ|2

)
.

It holds {
〈Af, v〉0 = −〈Av, f〉0 ,
〈Sf, v〉0 = 〈Sv, f〉0 for any v ∈ H1

0 (Ω ∩ Bx0,R0) .

Furthermore, one has
∂tf − Sf −Af = eΦ/2g .

Step 2.2.2. Energy estimates.

Multiplying by f the above equation and integrating over Ω ∩Bx0,R0, we find that

1

2

d

dt
‖f‖20 + 〈−Sf, f〉0 =

〈
f, eΦ/2g

〉
0
.

Introduce the frequency function t 7→ N (t) defined by

N =
〈−Sf, f〉0

‖f‖20
.

Thus,
1

2

d

dt
‖f‖20 +N ‖f‖20 =

〈
eΦ/2g, f

〉
0
.

Now, we compute the derivative of N and claim that:

d

dt
N ≤

1

‖f‖20
〈− (S ′ + [S,A]) f, f〉0 −

1

‖f‖20

∫

∂(Ω∩Bx0,R0)
∂νfAfdσ +

1

2 ‖f‖20

∥∥eΦ/2g
∥∥2
0
.
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Indeed,

d

dt
N

=
1

‖f‖40

(
−

d

dt
〈Sf, f〉0 ‖f‖

2
0 + 〈Sf, f〉0

d

dt
‖f‖20

)

=
−1

‖f‖20
[〈S ′f, f〉0 + 2 〈Sf, f ′〉0] +

2

‖f‖40

[
〈Sf, f〉20 + 〈Sf, f〉0

〈
f, eΦ/2g

〉
0

]

=
−1

‖f‖20
[〈S ′f, f〉0 + 2 〈Sf, f ′〉0] +

2

‖f‖40

[∣∣∣∣〈Sf, f〉0 +
1

2

〈
f, eΦ/2g

〉
0

∣∣∣∣
2

−

∣∣∣∣
1

2

〈
f, eΦ/2g

〉
0

∣∣∣∣
2
]

=
−1

‖f‖20
[〈S ′f, f〉0 + 2 〈Sf,Af〉0] +

−2

‖f‖20

[
‖Sf‖20 +

〈
Sf, eΦ/2g

〉
0

]

+
2

‖f‖40

[∣∣∣∣
〈
Sf +

1

2
eΦ/2g, f

〉

0

∣∣∣∣
2

−

∣∣∣∣
1

2

〈
f, eΦ/2g

〉
0

∣∣∣∣
2
]

≤
−1

‖f‖20
[〈S ′f, f〉0 + 2 〈Sf,Af〉0] +

−2

‖f‖20

[
‖Sf‖20 +

〈
Sf, eΦ/2g

〉
0

]

+
2

‖f‖40

∥∥∥∥Sf +
1

2
eΦ/2g

∥∥∥∥
2

0

‖f‖20

=
−1

‖f‖20
[〈S ′f, f〉0 + 2 〈Sf,Af〉0] +

2

‖f‖20

∥∥∥∥
1

2
eΦ/2g

∥∥∥∥
2

0

.

In the third line, we used 1
2

d
dt
‖f‖20−〈Sf, f〉0 =

〈
f, eΦ/2g

〉
0
; In the fifth line, multiplying

the equation of f by Sf , and integrating over Ω ∩ Bx0,R0 , give

〈Sf, f ′〉0 =
〈
Sf,

(
Sf +Af + eΦ/2g

)〉
0

= ‖Sf‖20 + 〈Sf,Af〉0 +
〈
Sf, eΦ/2g

〉
0
;

In the sixth line, we used Cauchy-Schwarz inequality. Finally, recall that

2 〈Sf,Af〉0 := 〈[S,A] f, f〉0 +

∫

∂(Ω∩Bx0,R0)
∂νfAfdσ .

Step 2.2.3. Assumption on Carleman commutator.

Assume that

∫

∂(Ω∩Bx0,R0)
∂νfAfdσ ≥ 0 on (0, T ) by the star-shaped property of

Ω ∩Bx0,R0, and suppose that

〈− (S ′ + [S,A]) f, f〉0 ≤
1

Υ
〈−Sf, f〉0

on (0, T ) where Υ (t) = T − t + ~ and ~ > 0. Therefore, the following differential
inequalities hold.





∣∣∣∣
1

2

d

dt
‖f (·, t)‖20 +N (t) ‖f (·, t)‖20

∣∣∣∣ ≤
∥∥eΦ/2g (·, t)

∥∥
0
‖f (·, t)‖0 ,

d

dt
N (t) ≤

1

Υ (t)
N (t) +

∥∥eΦ/2g (·, t)
∥∥2
0

‖f (·, t)‖20
.
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By solving such system of differential inequalities, we have: For any 0 < t1 < t2 < t3 ≤
T , (

‖f (·, t2)‖
2
0

)1+M
≤
(
‖f (·, t1)‖

2
0

)M
‖f (·, t3)‖

2
0 e

2D

where

M =

∫ t3

t2

1

T − t+ ~
dt

∫ t2

t1

1

T − t+ ~
dt

=
−ln (T − t3 + ~) + ln (T − t2 + ~)

−ln (T − t2 + ~) + ln (T − t1 + ~)

and

D = M

(
(t2 − t1)

∫ t2

t1

∥∥eΦ/2g (·, t)
∥∥2
0

‖f (·, t)‖20
dt+

∫ t2

t1

∥∥eΦ/2g (·, t)
∥∥
0

‖f (·, t)‖0
dt

)

+

∫ t3

t2

1

T − t+ ~
dt

∫ t3

t2

∥∥eΦ/2g (·, t)
∥∥2
0

‖f (·, t)‖20
dt+

∫ t3

t2

∥∥eΦ/2g (·, t)
∥∥
0

‖f (·, t)‖0
dt .

Indeed, we shall distinguish two cases: t ∈ [t1, t2]; t ∈ [t2, t3]. For t1 ≤ t ≤ t2, we

integrate ((T − t+ ~)N (t))′ ≤ (T − t + ~)
‖eΦ/2g(·,t)‖

2

0

‖f(·,t)‖20
over (t, t2) to get

(
T − t2 + ~

T − t + ~

)
N (t2)−

∫ t2

t1

∥∥eΦ/2g (·, s)
∥∥2
0

‖f (·, s)‖20
ds ≤ N (t) .

Then we solve

1

2

d

dt
‖f‖20 +

[(
T − t2 + ~

T − t+ ~

)
N (t2)−

∫ t2

t1

∥∥eΦ/2g (·, s)
∥∥2
0

‖f (·, s)‖20
ds−

∥∥eΦ/2g
∥∥
0

‖f‖0

]
‖f‖20 ≤ 0

and integrate it over (t1, t2) to obtain

e
2N (t2)

∫ t2

t1

T − t2 + ~

T − t+ ~
dt

≤
‖f (·, t1)‖

2
0

‖f (·, t2)‖
2
0

×e

2(t2−t1)




∫ t2

t1

∥∥eΦ/2g (·, t)
∥∥2
0

‖f (·, t)‖20
dt


+ 2

∫ t2

t1

∥∥eΦ/2g (·, t)
∥∥
0

‖f (·, t)‖0
dt

.

For t2 ≤ t ≤ t3, we integrate ((T − t+ ~)N (t))′ ≤ (T − t+ ~)
‖eΦ/2g(·,t)‖

2

0

‖f(·,t)‖20
over (t2, t)

to get

N (t) ≤
T − t2 + ~

T − t+ ~

(
N (t2) +

∫ t3

t2

∥∥eΦ/2g (·, s)
∥∥2
0

‖f (·, s)‖20
ds

)
.

Then we solve

0 ≤
1

2

d

dt
‖f‖20 +

[
T − t2 + ~

T − t+ ~

(
N (t2) +

∫ t3

t2

∥∥eΦ/2g (·, s)
∥∥2
0

‖f (·, s)‖20
ds

)
+

∥∥eΦ/2g
∥∥
0

‖f‖0

]
‖f‖20
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and integrate it over (t2, t3) to obtain

‖f (·, t2)‖
2
0 ≤ ‖f (·, t3)‖

2
0 e

2N (t2)

∫ t3

t2

T − t2 + ~

T − t + ~
dt

×e
2

∫ t3

t2

T − t2 + ~

T − t + ~
dt

∫ t3

t2

∥∥eΦ/2g (·, t)
∥∥2
0

‖f (·, t)‖20
dt+ 2

∫ t3

t2

∥∥eΦ/2g (·, t)
∥∥
0

‖f (·, t)‖0
dt

.

Finally, combining the case t1 ≤ t ≤ t2 and the case t2 ≤ t ≤ t3, we have

‖f (·, t2)‖
2
0 ≤ ‖f (·, t3)‖

2
0

(
‖f (·, t1)‖

2
0

‖f (·, t2)‖
2
0

)M

×e
2M (t2 − t1)

∫ t2

t1

∥∥eΦ/2g (·, t)
∥∥2
0

‖f (·, t)‖20
dt
e
2M

∫ t2

t1

∥∥eΦ/2g (·, t)
∥∥
0

‖f (·, t)‖0
dt

×e
2

∫ t3

t2

T − t2 + ~

T − t+ ~
dt

∫ t3

t2

∥∥eΦ/2g (·, t)
∥∥2
0

‖f (·, t)‖20
dt
e
2

∫ t3

t2

∥∥eΦ/2g (·, t)
∥∥
0

‖f (·, t)‖0
dt

which implies the desired inequality.

Step 2.2.4. The rest term.

We estimate

∥∥eΦ/2g
∥∥2
0

‖f‖20
. We begin by giving the following result. (Recall that we

have introduced 0 < r < R, x0 ∈ Ω and δ ∈ (0, 1]).

Lemma 2.2. For any T − θ ≤ t ≤ T , one has

‖u (·, 0)‖2

‖u (·, t)‖2
L2(Ω∩Bx0,(1+δ)R)

≤ e(1+δ)δR2

2θ

where

1

θ
=

2

(δR)2
ln


2eR

2(1+ 1
T ) ‖u (·, 0)‖2

‖u (·, T )‖2
L2(Ω∩Bx0,R)


 ,

with 0 < θ ≤ min (1, T/2) .

Indeed, denote u (x, t) = et∆u0 (x) with u0 ∈ L2(Ω) non-null initial data. Recall
that for any locally Lipschitz function ξ (x, t) such that ∂tξ+

1
2
|∇ξ|2 ≤ 0, the following

integral

∫

Ω

|u (x, t)|2 eξ(x,t)dx is a decreasing function in t by integral maximun principle

(see [Gr]). Choose ξ (x, t) = − |x−x0|2
2(T−t+ǫ)

, then

∫

Ω

|u (x, T )|2 e−
|x−x0|

2

2ǫ dx ≤

∫

Ω

|u (x, t)|2 e
− |x−x0|

2

2(T−t+ǫ)dx .
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It implies that

‖u (·, T )‖2
L2(Ω∩Bx0,R)

≤ e
R2

2ǫ

∫

Ω∩Bx0,R

|u (x, T )|2 e−
|x−x0|

2

2ǫ dx

≤ e
R2

2ǫ

∫

Ω

|u (x, t)|2 e
− |x−x0|

2

2(T−t+ǫ)dx

≤ e
R2

2ǫ ‖u (·, t)‖2
L2(Ω∩Bx0,(1+δ)R) + e

R2

2ǫ e−
R2(1+δ)2

2(T−t+ǫ) ‖u (·, 0)‖2 .

Choose T/2 ≤ T − ǫδ ≤ t ≤ T with 0 < ǫ ≤ T/2 and δ ∈ (0, 1], then we get that

‖u (·, T )‖2
L2(Ω∩Bx0,R)

≤ e
R2

2ǫ ‖u (·, t)‖2
L2(Ω∩Bx0,(1+δ)R) + e−

δR2

2ǫ ‖u (·, 0)‖2 .

Choose

ǫ =
δR2

2ln

(
2eR

2(1+ 1
T ) ‖u(·,0)‖2

‖u(·,T )‖2
L2(Ω∩Bx0,R)

) ≤ min (1, T/2) ,

that is,

e−
δR2

2ǫ ‖u (·, 0)‖2 =
1

2
e−R2(1+ 1

T ) ‖u (·, T )‖2
L2(Ω∩Bx0,R)

in order that
(
1−

1

2
e−R2(1+ 1

T )
)
‖u (·, T )‖2

L2(Ω∩Bx0,R)
≤ e

R2

2ǫ ‖u (·, t)‖2
L2(Ω∩Bx0,(1+δ)R)

and

e−
δR2

2ǫ ‖u (·, 0)‖2 ≤
1

2
e−R2(1+ 1

T )
(
1−

1

2
e−R2(1+ 1

T )
)−1

e
R2

2ǫ ‖u (·, t)‖2
L2(Ω∩Bx0,(1+δ)R) .

This above inequality implies

‖u (·, 0)‖2

‖u (·, t)‖2
L2(Ω∩Bx0,(1+δ)R)

≤ e(1+δ)R
2

2ǫ = e(1+δ)δR2

2θ ,

that is,

‖u (·, 0)‖2

‖u (·, t)‖2
L2(Ω∩Bx0,(1+δ)R)

≤ e(1+
1
δ )R2(1+ 1

T )


 2 ‖u (·, 0)‖2

‖u (·, T )‖2
L2(Ω∩Bx0,R)




1+ 1
δ

as long as T/2 ≤ T − θ ≤ t ≤ T with

1

θ
=

2

(δR)2
ln


2eR

2(1+ 1
T ) ‖u (·, 0)‖2

‖u (·, T )‖2
L2(Ω∩Bx0,R)


 .

Notice that θ ≤min(1, T/2). This completes the proof of Lemma 2.2. The interested
reader may wish here to compare this lemma’s proof with [BP, p.660] or [EFV, p.216].
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Now we can estimate

∥∥eΦ/2g
∥∥2
0

‖f‖20
, by regularizing effect, as follows.

∥∥eΦ/2g (·, t)
∥∥2
0

‖f (·, t)‖20

=

∫

Ω∩Bx0,(1+2δ)R

|−2∇χ · ∇u (x, t)−∆χu (x, t)|2 eΦ(x,t)dx

∫

Ω∩Bx0,(1+2δ)R

|χu (x, t)|2 eΦ(x,t)dx

≤

∫

Ω∩{(1+3δ/2)R≤|x−x0|≤R0}
|−2∇χ · ∇u (x, t)−∆χu (x, t)|2 eΦ(x,t)dx

∫

Ω∩Bx0,(1+δ)R

|u (x, t)|2 eΦ(x,t)dx

≤ exp

[
− min

|x−x0|≤(1+δ)R
Φ (x, t) + max

(1+3δ/2)R≤|x−x0|≤R0

Φ (x, t)

]
C
(
1 + 1

t

)
‖u (·, 0)‖2

‖u (·, t)‖2
L2(Ω∩Bx0,(1+δ)R)

≤ exp

[
− min

|x−x0|≤(1+δ)R
Φ (x, t) + max

(1+3δ/2)R≤|x−x0|≤R0

Φ (x, t)

]
C
(
1 + 1

t

)
e(1+δ)δR2

2θ

as long as T/2 ≤ T − θ ≤ t ≤ T .

Step 2.2.5. First assumption on the weight function.

We choose a weight function Φ (x, t) =
ϕ (x)

T − t+ ~
such that

max
(1+3δ/2)R≤|x−x0|≤R0

ϕ (x)− min
|x−x0|≤(1+δ)R

ϕ (x) < 0

in order that

− min
|x−x0|≤(1+δ)R

Φ (x, t) + max
(1+3δ/2)R≤|x−x0|≤R0

Φ (x, t) + (1 + δ) δ
R2

2θ

=
−1

T − t+ ~

∣∣∣∣ min
|x−x0|≤(1+δ)R

ϕ (x)− max
(1+3δ/2)R≤|x−x0|≤R0

ϕ (x)

∣∣∣∣ + (1 + δ) δ
R2

2θ

≤ (1 + δ) δ
R2

2θ
−

1

(1 + 2ℓ) ~

∣∣∣∣ min
|x−x0|≤(1+δ)R

ϕ (x)− max
(1+3δ/2)R≤|x−x0|≤R0

ϕ (x)

∣∣∣∣ when T − 2ℓ~ ≤ t

< 0

by taking

~ ≤ θ
1

(1 + 2ℓ) (1 + δ) δR2

∣∣∣∣ min
|x−x0|≤(1+δ)R

ϕ (x)− max
(1+3δ/2)R≤|x−x0|≤R0

ϕ (x)

∣∣∣∣ := θC(ℓ,ϕ) .

Here ℓ > 1. Combining with the previous Step 2.2.4, one conclude that for any ~ ≤
θmin

(
C(ℓ,ϕ), 1/ (2ℓ)

)
and any T − 2ℓ~ ≤ t,

∥∥eΦ/2g (·, t)
∥∥2
0

‖f (·, t)‖20
≤ C

(
1 +

1

t

)
.
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Next, we choose t3 = T , t2 = T − ℓ~, t1 = T − 2ℓ~, with ~ ≤ θmin
(
C(ℓ,ϕ), 1/ (2ℓ)

)
.

Therefore, the inequality of Step 2.2.3
(
‖f (·, t2)‖

2
0

)1+M
≤
(
‖f (·, t1)‖

2
0

)M
‖f (·, t3)‖

2
0 e

2D

becomes
(
‖f (·, T − ℓ~)‖20

)1+Mℓ
≤ e2Cℓ

1
T

(
‖f (·, T − 2ℓ~)‖20

)Mℓ
‖f (·, T )‖20

as long as ~ ≤ θmin
(
C(ℓ,ϕ), 1/ (2ℓ)

)
. Here Cℓ > 0 is a constant depending on ℓ and

recall that

Mℓ =
ln (ℓ+ 1)

ln
(
2ℓ+1
ℓ+1

) .

Step 2.2.6.

Let ω0 be a nonempty open subset of Bx0,r. Now by taking off the weight function

Φ (x, t) =
ϕ (x)

T − t+ ~
from the integrals, we have that for any 0 < ~ ≤ θmin

(
C(ℓ,ϕ), 1/ (2ℓ)

)
,

‖u (·, T − ℓ~)‖1+Mℓ

L2(Ω∩Bx0,(1+δ)R)

≤ exp 1
2~

[
−1+Mℓ

1+ℓ
min

x∈Ω∩Bx0,(1+δ)R

ϕ (x) + Mℓ

1+2ℓ
max

x∈Ω∩Bx0,R0

ϕ (x) + max
x∈ω0

ϕ (x)

]

×eCℓ
1
T ‖u (·, 0)‖Mℓ ‖u (·, T )‖L2(ω0)

+exp 1
2~

[
−1+Mℓ

1+ℓ
min

x∈Ω∩Bx0,(1+δ)R

ϕ (x) + Mℓ

1+2ℓ
max

x∈Ω∩Bx0,R0

ϕ (x) + max
x∈(Ω∩Bx0,R0)\ω0

ϕ (x)

]

×eCℓ
1
T ‖u (·, 0)‖1+Mℓ .

But, by Lemma 2.2, observe that

‖u (·, 0)‖2

‖u (·, t)‖2
L2(Ω∩Bx0,(1+δ)R)

≤ e(1+δ)δR2

2θ

which gives, with C(δ,R) := (1 + δ) δR2

4
and 2ℓ~ ≤ θ,

‖u (·, 0)‖ ≤ e
1
θ
C(δ,R) ‖u (·, T − ℓ~)‖L2(Ω∩Bx0,(1+δ)R) .

Since ‖u (·, T )‖ ≤ ‖u (·, 0)‖, we can see that

e−
1
θ
C(δ,R) ‖u (·, T )‖ ≤ ‖u (·, T − ℓ~)‖L2(Ω∩Bx0,(1+δ)R)

and conclude that
(
e−

1
θ
C(δ,R) ‖u (·, T )‖

)1+Mℓ

≤ exp 1
2~

[
−1+Mℓ

1+ℓ
min

x∈Ω∩Bx0,(1+δ)R

ϕ (x) + Mℓ

1+2ℓ
max

x∈Ω∩Bx0,R0

ϕ (x) + max
x∈ω0

ϕ (x)

]

×eCℓ
1
T ‖u (·, 0)‖Mℓ ‖u (·, T )‖L2(ω0)

+exp 1
2~

[
−1+Mℓ

1+ℓ
min

x∈Ω∩Bx0,(1+δ)R

ϕ (x) + Mℓ

1+2ℓ
max

x∈Ω∩Bx0,R0

ϕ (x) + max
x∈(Ω∩Bx0,R0)\ω0

ϕ (x)

]

×eCℓ
1
T ‖u (·, 0)‖1+Mℓ .
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Step 2.2.7. Second assumption on the weight function.

We construct ϕ (x) and choose ℓ > 1 sufficiently large in order that

−
1 +Mℓ

1 + ℓ
min

x∈Ω∩Bx0,(1+δ)R

ϕ (x) +
Mℓ

1 + 2ℓ
max

x∈Ω∩Bx0,R0

ϕ (x) + max
x∈(Ω∩Bx0,R0)\ω0

ϕ (x) < 0 .

Consequently, there are C1 > 0 and C2 > 0 such that for any ~ > 0 with ~ ≤
θmin

(
C(ℓ,ϕ), 1/ (2ℓ)

)
:= θC3,

(
e−

1
θ
C(δ,R) ‖u (·, T )‖

)1+Mℓ

≤ eC1
1
~ ‖u (·, 0)‖Mℓ ‖u (·, T )‖L2(ω0)

+ e−C2
1
~ ‖u (·, 0)‖1+Mℓ .

On the other hand, for any ~ ≥ θC3, 1 ≤ e
C2
C3

1
θ e−C2

1
~ . Therefore for any ~ > 0,

(
e−

1
θ
C(δ,R) ‖u (·, T )‖

)1+Mℓ

≤ eC1
1
~ ‖u (·, 0)‖Mℓ ‖u (·, T )‖L2(ω0)

+e
C2
C3

1
θ e−C2

1
~ ‖u (·, 0)‖1+Mℓ .

Finally, we choose ~ > 0 such that

e
C2
C3

1
θ e−C2

1
~ ‖u (·, 0)‖1+Mℓ =

1

2

(
e−

1
θ
C(δ,R) ‖u (·, T )‖

)1+Mℓ

,

that is,

eC2
1
~ := 2e

C2
C3

1
θ

(
‖u (·, 0)‖

e−
1
θ
C(δ,R) ‖u (·, T )‖

)1+Mℓ

in order that

(
e−C 1

θ ‖u (·, T )‖
)1+Mℓ

≤ 2

(
2e

C2
C3

1
θ

(
‖u(·,0)‖

e
− 1

θ
C(δ,R)‖u(·,T )‖

)1+Mℓ

)C1
C2

×‖u (·, 0)‖Mℓ ‖u (·, T )‖L2(ω0)
,

that is,

e−C 1
θ ‖u (·, T )‖ ≤ 2

1+
C1
C2 e

C2
C3

1
θ

(
‖u (·, 0)‖

e−
1
θ
C(δ,R) ‖u (·, T )‖

)Mℓ+(1+Mℓ)
C1
C2

‖u (·, T )‖L2(ω0)
.

As a consequence, we obtain that for some c > 0,

‖u (·, T )‖1+c ≤ cec
1
θ ‖u (·, 0)‖c ‖u (·, T )‖L2(ω0)

.

But recall the definition of θ in Lemma 2.2 saying that

1

θ
=

2

(δR)2
ln



2eR
2(1+ 1

T )
‖u (·, 0)‖2

‖u (·, T )‖2
L2(Ω∩Bx0,R)



 .

Therefore,

‖u (·, T )‖1+c ≤


2eR2(1+ 1

T ) ‖u (·, 0)‖2

‖u (·, T )‖2
L2(Ω∩Bx0,R)




c

c ‖u (·, 0)‖c ‖u (·, T )‖L2(ω0)
.
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which gives for some K > 0, the following inequality

‖u (·, T )‖1+K

L2(Ω∩Bx0,R)
≤ eK(1+

1
T ) ‖u (·, 0)‖K ‖u (·, T )‖L2(ω0)

and yields to the desired conclusion of Lemma 2.1.

3 The weight function

In the previous section, the observation estimate at one time was derived by using
appropriate assumptions on the weight function Φ and by solving a system of differential
inequalities. Now, our goal is to explore different explicit choices of weight function Φ.

The weight function Φ~ used in a series of results for the doubling property or
frequency function for heat equations was based on the backward heat kernel (we also
refer to [BP] for parabolic equations where the Euclidian distance is replaced by the
geodesic distance). Precisely,

eΦ~(x,t) = G~ (x, t) =
1

(T − t + ~)n/2
e

−|x−x0|
2

4(T−t+~)

or simply

Φ~ (x, t) =
− |x− x0|

2

4 (T − t + ~)
−

n

2
ln (T − t+ ~) .

It leads to the following differential inequalities (see [PWZ, Lemma 2 at p.487]):
Define for z ∈ H1 (0, T ;L2 (Ω ∩Bx0,R0)) ∩ L2 (0, T ;H2 ∩H1

0 (Ω ∩ Bx0,R0)) and t ∈
(0, T ],

N~ (t) =

∫

Ω∩Bx0,R0

|∇z (x, t)|2G~ (x, t) dx

∫

Ω∩Bx0,R0

|z (x, t)|2G~ (x, t) dx

, whenever

∫

Ω∩Bx0,R0

|z (x, t)|2 dx 6= 0 .

The following two properties hold.

i)
1

2

d

dt

∫

Ω∩Bx0,R0

|z (x, t)|2G~ (x, t) dx+

∫

Ω∩BR0

|∇z (x, t)|2G~ (x, t) dx

=

∫

Ω∩Bx0,R0

z (x, t) (∂t −∆) z (x, t)G~ (x, t) dx .

ii) When Ω ∩ Bx0,R0 is star-shaped with respect to x0,

d

dt
N~ (t) ≤

1

T − t+ ~
N~ (t) +

∫

Ω∩Bx0,R0

|(∂t −∆) z (x, t)|2G~ (x, t) dx

∫

Ω∩Bx0,R0

|z (x, t)|2G~ (x, t) dx
.
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The differential inequalities obtained with the Carleman commutator are given in
Step 2.1.2 and Step 2.2.2 of the previous Section 2:

Define for f ∈ H1 (0, T ;L2 (Ω ∩ Bx0,R0)) ∩ L2 (0, T ;H2 ∩H1
0 (Ω ∩Bx0,R0)) and t ∈

(0, T ], {
Af = −∇Φ · ∇f − 1

2
∆Φf ,

Sf = ∆f + ηf where η = 1
2

(
∂tΦ + 1

2
|∇Φ|2

)
,

and

N =
〈−Sf, f〉0

‖f‖20
.

The following two properties hold.

i)
1

2

d

dt
‖f‖20 +N ‖f‖20 = 〈∂tf − Sf −Af, f〉0 .

ii)
d

dt
N ≤

1

‖f‖20
〈− (S ′ + [S,A]) f, f〉0 −

1

‖f‖20

∫

∂(Ω∩Bx0,R0)
∂νfAfdσ

+
1

‖f‖20
‖∂tf − Sf −Af‖20 .

We will assume that

∫

∂(Ω∩Bx0,R0)
∂νfAfdσ ≥ 0 by the star-shaped property of Ω ∩

Bx0,R0. Now we focus our attention on the term 〈− (S ′ + [S,A]) f, f〉0. We decompose
our presentation into three parts.

Part 3.1. Key formula.

We claim that:

〈− (S ′ + [S,A]) f, f〉0 = −2

∫

Ω∩Bx0,R0

∇f · ∇2Φ∇fdx

+
1

2

∫

Ω∩Bx0,R0

∆2Φ |f |2 dx−

∫

Ω∩Bx0,R0

(∂tη +∇Φ · ∇η) |f |2 dx

which is, with the computation of ∂tη +∇Φ · ∇η,

〈− (S ′ + [S,A]) f, f〉0

= −2

∫

Ω∩Bx0,R0

∇f · ∇2Φ∇fdx

+
1

2

∫

Ω∩Bx0,R0

(
∆2Φ− ∂2

tΦ− 2∇Φ · ∇∂tΦ−∇Φ · ∇2Φ∇Φ
)
|f |2 dx .

Proof of the claim .- First, S ′f = ∂tηf . Next, we compute [S,A] f := SAf −ASf .
Precisely, with standard summation notations,

SAf = ∆
(
−∇Φ · ∇f − 1

2
∆Φf

)
+ η

(
−∇Φ · ∇f − 1

2
∆Φf

)

= −∆∇Φ · ∇f − 2∂i∇Φ · ∂i∇f −∇Φ ·∆∇f − 1
2
∆2Φf −∇∆Φ · ∇f − 1

2
∆Φ∆f

−η∇Φ · ∇f − 1
2
η∆Φf ,

ASf = −∇Φ · ∇ (∆f + ηf)− 1
2
∆Φ(∆f + ηf)

= −∇Φ · ∇∆f −∇Φ · ∇ηf − η∇Φ · ∇f − 1
2
∆Φ∆f − 1

2
∆Φηf .
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This implies that

[S,A] f = −2∂i∇Φ · ∂i∇f +∇Φ · ∇ηf −
1

2
∆2Φf − 2∆∇Φ · ∇f .

Therefore, we obtain that

− (S ′ + [S,A]) f = 2∂i∇Φ · ∂i∇f − (∂tη +∇Φ · ∇η) f +
1

2
∆2Φf + 2∆∇Φ · ∇f .

Furthermore, by one integration by parts we have

〈∂i∇Φ · ∂i∇f, f〉0 =
1

2

∫

Ω∩Bx0,R0

∆2Φ |f |2 dx−

∫

Ω∩Bx0,R0

∇f · ∇2Φ∇fdx

and

〈∆∇Φ · ∇f, f〉0 = −
1

2

∫

Ω∩Bx0,R0

∆2Φ |f |2 dx .

Combining the above equalities yields the desired formula. Then the claim follows.

Example linked with the heat kernel .- If

Φ (x, t) =
− |x− x0|

2

4 (T − t + ~)
−

n

2
ln (T − t+ ~) ,

then we have

〈− (S ′ + [S,A]) f, f〉0 =
1

Υ
〈−Sf, f〉0 ,

and ∫

∂(Ω∩Bx0,R0)
∂νfAfdσ =

1

2Υ

∫

∂(Ω∩Bx0,R0)
|∂νf |

2 (x− x0) ·
−→ν dσ ≥ 0

by the star-shaped property of Ω ∩ Bx0,R0 . Here and from now, Υ (t) := T − t+ ~ and
−→ν is the outward unit normal vector to ∂ (Ω ∩ Bx0,R0).

Part 3.2. A particular form of the weight function.

Assume that Φ (x, t) =
ϕ (x)

T − t + ~
. Then, we can see that

〈− (S ′ + [S,A]) f, f〉0 −
1

Υ
〈−Sf, f〉0

= −
1

Υ

∫

Ω∩Bx0,R0

∇f ·
(
2∇2ϕ+ Id

)
∇fdx+

1

2Υ

∫

Ω∩Bx0,R0

∆2ϕ |f |2 dx

−
1

2Υ3

∫

Ω∩Bx0,R0

(
ϕ+ |∇ϕ|2 +

1

2
∇ϕ ·

(
2∇2ϕ+ Id

)
∇ϕ

)
|f |2 dx .

Indeed,

〈− (S ′ + [S,A]) f, f〉0 = −
2

Υ

∫

Ω∩Bx0,R0

∇f · ∇2ϕ∇fdx+
1

2Υ

∫

Ω∩Bx0,R0

∆2ϕ |f |2 dx

−
1

Υ3

∫

Ω∩Bx0,R0

(
ϕ+ |∇ϕ|2 +

1

2
∇ϕ · ∇2ϕ∇ϕ

)
|f |2 dx ,
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and

1

Υ
〈−Sf, f〉0 =

1

Υ

∫

Ω∩Bx0,R0

|∇f |2 dx−
1

Υ3

∫

Ω∩Bx0,R0

(
1

2
ϕ+

1

4
|∇ϕ|2

)
|f |2 dx .

Example of a weight function for localization with balls .- If

Φ (x, t) =
− |x− x0|

2

4 (T − t + ~)
that is, ϕ (x) = −

1

4
|x− x0|

2 ,

then we have

〈− (S ′ + [S,A]) f, f〉0 =
1

Υ
〈−Sf, f〉0 ,

and ∫

∂(Ω∩Bx0,R0)
∂νfAfdσ =

1

2Υ

∫

∂(Ω∩Bx0,R0)
|∂νf |

2 (x− x0) ·
−→ν dσ ≥ 0

by the star-shaped property of Ω∩Bx0,R0 . One conclude that, with such weight function
Φ, the assumptions of Step 2.2.3 of the previous Section 2 are satisfied and therefore





∣∣∣∣
1

2

d

dt
‖f (·, t)‖20 +N (t) ‖f (·, t)‖20

∣∣∣∣ ≤
∥∥eΦ/2g (·, t)

∥∥
0
‖f (·, t)‖0 ,

d

dt
N (t) ≤

1

T − t+ ~
N (t) +

∥∥eΦ/2g (·, t)
∥∥2
0

‖f (·, t)‖20
.

Now we check the assumptions on ϕ (x) = −1
4
|x− x0|

2 at Step 2.2.5 and Step 2.2.7 of
the previous Section 2. We observe that

max
(1+3δ/2)R≤|x−x0|≤R0

ϕ (x)− min
|x−x0|≤(1+δ)R

ϕ (x)

= −1
4
(1 + 3δ/2)2R2 + 1

4
(1 + δ)2R2 < 0

and

−1+Mℓ

1+ℓ
min

x∈Ω∩Bx0,(1+δ)R

ϕ (x) + Mℓ

1+2ℓ
max

x∈Ω∩Bx0,R0

ϕ (x) + max
x∈(Ω∩Bx0,R0)\ω0

ϕ (x)

≤

(
1 + ln(ℓ+1)

ln( 2ℓ+1
ℓ+1 )

)
1

1+ℓ
1
4
(1 + δ)2R2 − 1

4
r2 < 0

by choosing ω0 = Bx0,r ⋐ Ω with 0 < r < R and by taking ℓ > 1 sufficiently large.

Part 3.3. The weight function for localization with annulus.

Assume that ϕ (x) = −a |x− x0|
2+b |x− x0|

s−c for some a, b, c > 0 and 1 ≤ s < 2.
We would like to check the assumptions of the previous Section 2 and find the adequate
parameters a, b, c, s. First, we observe that the formula in the previous Part 3.2

〈− (S ′ + [S,A]) f, f〉0 −
1

Υ
〈−Sf, f〉0

= −
1

Υ

∫

Ω∩Bx0,R0

∇f ·
(
2∇2ϕ+ Id

)
∇fdx+

1

2Υ

∫

Ω∩Bx0,R0

∆2ϕ |f |2 dx

−
1

2Υ3

∫

Ω∩Bx0,R0

(
ϕ+ |∇ϕ|2 +

1

2
∇ϕ ·

(
2∇2ϕ+ Id

)
∇ϕ

)
|f |2 dx
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gives

〈− (S ′ + [S,A]) f, f〉0 −
1

Υ
〈−Sf, f〉0

= −
1

Υ
(−4a + 1)

∫

Ω∩Bx0,R0

|∇f |2 dx

−
2bs

Υ

[∫

Ω∩Bx0,R0

|x− x0|
s−2 |∇f |2 dx

]

− (2− s)

∫

Ω∩Bx0,R0

|x− x0|
s−4 |(x− x0) · ∇f |2 dx

]

−
1

2Υ
bs (2− s) (n + s− 2) (n+ s− 4)

∫

Ω∩Bx0,R0

|x− x0|
s−4 |f |2 dx

+
1

2Υ3
c

∫

Ω∩Bx0,R0

|f |2 dx

+
1

2Υ3
a (1− 2a) (1− 4a)

∫

Ω∩Bx0,R0

|x− x0|
2 |f |2 dx

+
1

2Υ3
b
(
−1 + 6as− 4a2s− 4a2s2

) ∫

Ω∩Bx0,R0

|x− x0|
s |f |2 dx

−
1

2Υ3
(bs)2

(
3

2
+ 2a− 4as

)∫

Ω∩Bx0,R0

|x− x0|
2s−2 |f |2 dx

−
1

2Υ3
(bs)3 (s− 1)

∫

Ω∩Bx0,R0

|x− x0|
3s−4 |f |2 dx .

We start to choose a = 1
4
. Next we treat the third line of the above formula by using

Cauchy-Schwarz inequality, we find that

〈− (S ′ + [S,A]) f, f〉0 −
1

Υ
〈−Sf, f〉0

≤ −
1

2Υ
bs (2− s) (n+ s− 2) (n + s− 4)

∫

Ω∩Bx0,R0

|x− x0|
s−4 |f |2 dx

+
1

2Υ3
c

∫

Ω∩Bx0,R0

|f |2 dx

+
1

2Υ3
b

(
−1 +

5

4
s−

1

4
s2
)∫

Ω∩Bx0,R0

|x− x0|
s |f |2 dx

−
1

2Υ3
(bs)2 (2− s)

∫

Ω∩Bx0,R0

|x− x0|
2s−2 |f |2 dx

−
1

2Υ3
(bs)3 (s− 1)

∫

Ω∩Bx0,R0

|x− x0|
3s−4 |f |2 dx .

In order that 〈− (S ′ + [S,A]) f, f〉0 −
1

Υ
〈−Sf, f〉0 ≤ 0, we can take n ≥ 3 and s = 1
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with c ≤ (bs)2 (2− s) = b2. Another choice is n ≥ 3 and s = 4
3
which gives

〈− (S ′ + [S,A]) f, f〉0 −
1

Υ
〈−Sf, f〉0

≤
1

Υ3

c

2

∫

Ω∩Bx0,R0

|f |2 dx

+
1

Υ3

b

9

∫

Ω∩Bx0,R0

|x− x0|
4/3 |f |2 dx−

1

Υ3

1

3

(
4

3
b

)2 ∫

Ω∩Bx0,R0

|x− x0|
2/3 |f |2 dx

−
1

Υ3

1

6

(
4

3
b

)3 ∫

Ω∩Bx0,R0

|f |2 dx ,

and finally, we can choose c
2
≤ 1

6

(
4
3
b
)3

and b
9
R

2/3
0 ≤ 1

3

(
4
3
b
)2
.

Now, set ϕ (x) = −1
4
|x− x0|

2 + 1
4
|x− x0|

4/3 −
(
1
3

)4
and R = 1, R0 =

(
4
3

)3/2
≈ 1.53

and δ = R0−1
2

≈ 0.26. Here 1 < (1+ 3δ/2)R ≈ 1.40 < R0 = (1+ 2δ)R. We can see that

for n ≥ 3, 〈− (S ′ + [S,A]) f, f〉0 −
1

Υ
〈−Sf, f〉0 ≤ 0.

We write ϕ (x) = W (|x− x0|) with W (ρ) = −1
4
ρ2+ 1

4
ρ4/3−

(
1
3

)4
. We have W (0) =

W (1) = −
(
1
3

)4
, W ′

(
(2/3)3/2

)
= 0 and ρ 7→ W (ρ) is strictly decreasing for ρ ≥ 1.

Finally, we check the assumptions on ϕ at Step 2.2.5 and Step 2.2.7 of the previous
Section 2: We observe that

max
(1+3δ/2)R≤|x−x0|≤R0

ϕ (x)− min
|x−x0|≤(1+δ)R

ϕ (x)

≤ W ((1 + 3δ/2)R)−W ((1 + δ)R) < 0

(because ρ 7→ W (ρ) is strictly decreasing for ρ ≥ 1 = R) and

−1+Mℓ

1+ℓ
min

x∈Ω∩Bx0,(1+δ)R

ϕ (x) + Mℓ

1+2ℓ
max

x∈Ω∩Bx0,R0

ϕ (x) + max
x∈(Ω∩Bx0,R0)\ω0

ϕ (x)

≤ −

(
1 + ln(ℓ+1)

ln( 2ℓ+1
ℓ+1 )

)
1

1+ℓ
W ((1 + δ)R) + ln(ℓ+1)

ln( 2ℓ+1
ℓ+1 )

1
1+2ℓ

W
(
(2/3)3/2

)
+W (r0) < 0

by choosing ω0 = {x; r0 < |x− x0| < r} ⋐ Ω with 0 < r0 < r < 1, W (r0) = W (r) ∈(
−
(
1
3

)4
, 0
)
and by taking ℓ > 1 sufficiently large.

4 Proof of Theorem 1.1

The observability estimate in Theorem 1.1 can be deduced from the observation inequal-
ity at one time (see [PW2] or the following Lemma 4.1). It was noticed in [AEWZ] that
the spectral inequality in Theorem 1.1 is a consequence of the observation inequality
at one time (see Lemma A in Appendix (see page 33)).
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Lemma 4.1. Let ω be a nonempty open subset of Ω. Let p ∈ [1, 2], γ > 0, β ∈ (0, 1),
Cβ = 1+β

β[(1+β)1/(2γ)−1]
γ and c, K > 0. Suppose that for any u0 ∈ L2 (Ω) and any T > 0,

∥∥eT∆u0

∥∥
L2(Ω)

≤
(
ce

1
Tγ K

∥∥eT∆u0

∥∥
Lp(ω)

)β
‖u0‖

1−β
L2(Ω) .

Then for any u0 ∈ L2 (Ω) and anyT > 0, one has

∥∥eT∆u0

∥∥
L2(Ω)

≤
c

K1/γ
e

1
Tγ (1+1/γ)KCβ

∫ T

0

∥∥et∆u0

∥∥
Lp(ω)

dt .

The above lemma is somehow standard, but we still give the proof here to make a
self-contained discussion.

Proof of Lemma 4.1 .- First, by Young inequality, the following interpolation esti-
mate

‖u (·, T )‖L2(Ω) ≤
(
ce

K
Tγ ‖u (·, T )‖Lp(ω)

)β
‖u (·, 0)‖1−β

L2(Ω)

implies that for any ε > 0, we have

‖u (·, T )‖L2(Ω) ≤
1

ε
1−β
β

ce
K
Tγ ‖u (·, T )‖Lp(ω) + ε ‖u (·, 0)‖L2(Ω) .

Next introduce a decreasing sequence (Tm)m≥0 of positive real numbers defined by

Tm =
T

zm
with z > 1 .

Take 0 < Tm+2 < Tm+1 ≤ t < Tm < · · · < T and apply the observation estimate at one
time t with initial time Tm+2. We find that

‖u (·, t)‖L2(Ω) ≤
1

ε
1−β
β

ce
K

(t−Tm+2)
γ
‖u (·, t)‖Lp(ω) + ε ‖u (·, Tm+2)‖L2(Ω) .

Since ‖u (·, Tm)‖ ≤ ‖u (·, t)‖, we deduce that

‖u (·, Tm)‖L2(Ω) ≤
1

ε
1−β
β

ce
K

(t−Tm+2)
γ
‖u (·, t)‖Lp(ω) + ε ‖u (·, Tm+2)‖L2(Ω) .

Now, integrate the above inequality over (Tm+1, Tm), it yields that

‖u (·, Tm)‖L2(Ω) ≤
1

ε
1−β
β

c

Tm − Tm+1
e

K

(Tm+1−Tm+2)
γ

∫ Tm

Tm+1

‖u (·, t)‖Lp(ω) dt+ε ‖u (·, Tm+2)‖L2(Ω)

which implies, since c
Tm−Tm+1

e
K

(Tm+1−Tm+2)
γ
= c

z
zm+2

(z−1)T
e

(
K1/γ zm+2

(z−1)T

)γ

,

‖u (·, Tm)‖L2(Ω) ≤
1

ε
1−β
β

c

zK1/γ
e

(1+1/γ)K
(z−1)γTγ zγ(m+2)

∫ Tm

Tm+1

‖u (·, t)‖Lp(ω) dt+ε ‖u (·, Tm+2)‖L2(Ω) ,
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that is,

ε
1−β
β e

− (1+1/γ)K
(z−1)γTγ zγ(m+2)

‖u (·, Tm)‖L2(Ω) − ε
1
β e

− (1+1/γ)K
(z−1)γTγ zγ(m+2)

‖u (·, Tm+2)‖L2(Ω)

≤
c

zK1/γ

∫ Tm

Tm+1

‖u (·, t)‖Lp(ω) dt .

Replacing m by 2m, we can see that

ε
1−β
β e

− (1+1/γ)K
(z−1)γTγ zγ(2m+2)

‖u (·, T2m)‖L2(Ω) − ε
1
β e

− (1+1/γ)K
(z−1)γTγ zγ(2m+2)

‖u (·, T2m+2)‖L2(Ω)

≤
c

zK1/γ

∫ T2m

T2m+1

‖u (·, t)‖Lp(ω) dt .

We write Am = e−
(1+1/γ)K
(z−1)γTγ zγ(2m+2)

and choose ε = Am, in order to get

A
1
β
m ‖u (·, T2m)‖L2(Ω) −A

1+ 1
β

m ‖u (·, T2m+2)‖L2(Ω) ≤
c

zK1/γ

∫ T2m

T2m+1

‖u (·, t)‖Lp(ω) dt .

Our task is to have

A
1+ 1

β
m = A

1
β

m+1 , that is, e
− (1+1/γ)K

(z−1)γTγ z2γmz2γ(1+ 1
β ) = e

− (1+1/γ)K
(z−1)γTγ z2γmz4γ 1

β ,

in order to get, with Xm = A
1
β
m ‖u (·, T2m)‖L2(Ω),

Xm −Xm+1 ≤
c

zK1/γ

∫ T2m

T2m+1

‖u (·, t)‖Lp(ω) dt .

To this end, we take z2γ 1
β
= 1+ 1

β
. It remains to sum the telescoping series from m = 0

to +∞ to complete the proof of Lemma 4.1 and to find that

‖u (·, T )‖L2(Ω) ≤
c

zK1/γ
e

(1+1/γ)K
Tγ Cβ

∫ T

0

‖u (·, t)‖Lp(ω) dt

with Cβ = β+1

β

[
(β+1)

1
2γ −1

]γ .

With the help of Lemma 4.1 and the analysis done in Section 2 for a convex domain
Ω ⊂ R

n or a star-shaped domain with respect to x0 ∈ Ω, we are ready to show Theorem
1.1. It suffices to prove the observation at one point of Lemma 4.1 with γ = 1 and p = 2.

Let ~ > 0. Set

Φ (x, t) = −
|x− x0|

2

4 (T − t + ~)
.

The differential inequalities are (see Part 3.2 of Section 3 and its example):

1

2

d

dt

∫

Ω

|u (x, t)|2 eΦ(x,t)dx+N (t)

∫

Ω

|u (x, t)|2 eΦ(x,t)dx = 0 ;
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Since Ω is convex or star-shaped w.r.t. x0,

d

dt
N (t) ≤

1

T − t+ ~
N (t) .

By solving such differential inequalities, we have: For any 0 < t1 < t2 < t3 ≤ T ,

(∫

Ω

|u (x, t2)|
2 eΦ(x,t2)dx

)1+M

≤

∫

Ω

|u (x, t3)|
2 eΦ(x,t3)dx

(∫

Ω

|u (x, t1)|
2 eΦ(x,t1)dx

)M

where

M =
−ln (T − t3 + ~) + ln (T − t2 + ~)

−ln (T − t2 + ~) + ln (T − t1 + ~)
.

Choose t3 = T , t2 = T − ℓ~, t1 = T − 2ℓ~ with 0 < 2ℓ~ < T and ℓ > 1, and denote

Mℓ =
ln (ℓ+ 1)

ln
(
2ℓ+1
ℓ+1

) ,

then
(∫

Ω

|u (x, T − ℓ~)|2 e−
|x−x0|

2

4(ℓ+1)~ dx

)1+Mℓ

≤

(∫

Ω

|u (x, 0)|2 dx

)Mℓ
∫

Ω

|u (x, T )|2 e−
|x−x0|

2

4~ dx

which implies

(∫

Ω

|u (x, T )|2 dx

)1+Mℓ

≤ e
R2(1+Mℓ)
4(ℓ+1)~

(∫

Ω

|u (x, 0)|2 dx

)Mℓ
∫

Ω

|u (x, T )|2 e−
|x−x0|

2

4~ dx .

Here and throughout the proof of Theorem 1.1, R := max
x∈Ω

|x− x0|. Next, we split
∫

Ω

|u (x, T )|2 e−
|x−x0|

2

4~ dx into two parts: With Bx0,r := {x; |x− x0| < r} ⋐ Ω where

r < R, we can see that
∫

Ω

|u (x, T )|2 e−
|x−x0|

2

4~ dx ≤

∫

Bx0,r

|u (x, T )|2 dx+ e−
r2

4~

∫

Ω

|u (x, 0)|2 dx .

Therefore, taking the above estimates into consideration yields that

(∫

Ω

|u (x, T )|2 dx

)1+Mℓ

≤

(∫

Ω

|u (x, 0)|2 dx

)Mℓ

×

(
e

R2(1+Mℓ)
4(ℓ+1)~

∫

Bx0,r

|u (x, T )|2 dx+ e
R2(1+Mℓ)
4(ℓ+1)~ e−

r2

4~

∫

Ω

|u (x, 0)|2 dx

)
.

But for ℓ > 1, (1+Mℓ)
4(ℓ+1)

≤ 1
2(ℓ+1)

ln(ℓ+1)

ln( 2ℓ+1
ℓ+1 )

≤ 1
2ln(3/2)

ln(2ℓ)
ℓ

≤ 2ε

2εln(3/2)
1

ℓ1−ε ∀ε ∈ (0, 1). Our

choice of ℓ:

ℓ :=

(
R2

r2

)1/(1−ε)(
22+ε

εln (3/2)

)1/(1−ε)

∀ε ∈ (0, 1)
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gives
R2 (1 +Mℓ)

4 (ℓ+ 1) ~
≤

r2

8~
.

One the one hand, it implies that for any 2ℓ~ < T

(∫

Ω

|u (x, T )|2 dx

)1+Mℓ

≤

(∫

Ω

|u (x, 0)|2 dx

)Mℓ

×

(
e

r2

8~

∫

Bx0,r

|u (x, T )|2 dx+ e−
r2

8~

∫

Ω

|u (x, 0)|2 dx

)
.

On the other hand, ‖u (·, T )‖ ≤ ‖u (·, 0)‖ and for any 2ℓ~ ≥ T , 1 ≤ e
r2ℓ
4T e−

r2

8~ . Therefore
we conclude that for any ~ > 0,

(∫

Ω

|u (x, T )|2 dx

)1+Mℓ

≤

(∫

Ω

|u (x, 0)|2 dx

)Mℓ

×

(
e

r2

8~

∫

Bx0,r

|u (x, T )|2 dx+ e
r2ℓ
4T e−

r2

8~

∫

Ω

|u (x, 0)|2 dx

)
.

Finally, we choose ~ > 0 such that

e
r2

8~ := 2e
r2ℓ
4T




∫

Ω

|u (x, 0)|2 dx
∫

Ω

|u (x, T )|2 dx




1+Mℓ

in order that

∫

Ω

|u (x, T )|2 dx ≤

(
4e

r2ℓ
4T

∫

Bx0,r

|u (x, T )|2 dx

) 1
2(1+Mℓ)

(∫

Ω

|u (x, 0)|2 dx

) 1+2Mℓ
2(1+Mℓ)

,

that is,

‖u (x, T )‖L2(Ω) ≤
(
2e

r2ℓ
8T ‖u (x, T )‖L2(Bx0,r)

) 1
2(1+Mℓ)

(
‖u (x, 0)‖L2(Ω)

) 1+2Mℓ
2(1+Mℓ) .

Now, we can apply Lemma 4.1 with γ = 1, p = 2 and Lemma A in Appendix (see page
33) with c = 2, K = r2ℓ

8
, β = 1

2(1+Mℓ)
. Consequently, we obtain that

∥∥eT∆u0

∥∥
L2(Ω)

≤
16

r2ℓ
e

r2ℓ
4T

Cβ

∫ T

0

∥∥et∆u0

∥∥
L2(Bx0,r)

dt

and
∑

λi≤λ

|ai|
2 ≤ 4e4

√
λ(1+2Mℓ)

r2ℓ
8

∫

Bx0,r

∣∣∣∣∣
∑

λi≤λ

aiei (x)

∣∣∣∣∣

2

dx .
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We can see that Cβ ≤constant(Mℓ)
2. By the definition of Mℓ and of ℓ, we have Mℓ ≤

ln(ℓ+1)
ln(3/2)

≤constant 1
rε
. Therefore, we conclude that

∥∥eT∆u0

∥∥
L2(Ω)

≤ Kεe
Kε
rε

1
T

∫ T

0

∥∥et∆u0

∥∥
L2(Bx0,r)

dt

and
∑

λi≤λ

|ai|
2 ≤ 4e

Kε
rε

√
λ

∫

Bx0,r

∣∣∣∣∣
∑

λi≤λ

aiei (x)

∣∣∣∣∣

2

dx .

This completes the proof of Theorem 1.1.

5 Proof of Theorem 1.2

Let n ≥ 3 and consider a C2 bounded domain Ω ⊂ R
n such that 0 ∈ Ω, and let ω ⊂ Ω

be a nonempty open set. To simplify the presentation, we assume that 0 /∈ ω, that

can always be done, taking if necessary a smaller set. Let R0 =
(
4
3

)3/2
≈ 1.53. We

also assume that the unit ball B0,R0 is included in Ω and B0,R0 ∩ ω is empty. This can
always be done by a scaling argument.

We are interested in the following heat equation with an inverse square potential






∂tu−∆u− µ

|x|2u = 0 , in Ω× (0, T ) ,

u = 0 , on ∂Ω× (0, T ) ,
u (·, 0) = u0 , in Ω ,

where u0 ∈ L2 (Ω), T > 0 and µ < µ∗ (n) := (n−2)2

4
. It is well-known that this is a

well-posed problem [VZ]. In particular, u ∈ C ([0, T ] ;L2 (Ω)) ∩ L2 (0, T ;H1
0 (Ω)) and

for any t ∈ (0, T ], we have

∫

Ω

|u (x, t)|2 dx ≤

∫

Ω

|u0 (x)|
2 dx ,

and the regularizing effect

∫

Ω

|∇u (x, t)|2 dx ≤
C

t

∫

Ω

|u0 (x)|
2 dx .

Applying Lemma A in Appendix (see page 33), we obtain the following result.
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Lemma 5.1. Let β ∈ (0, 1) and c, K > 0. Suppose that for any u0 ∈ L2 (Ω) and any

T > 0,

‖u (·, T )‖L2(Ω) ≤
(
ce

K
T ‖u (·, T )‖L1(ω)

)β (
‖u0‖L2(Ω)

)1−β

.

Then for any (aj)j≥1 ∈ R and any λ > 0, one has

√∑

λj≤λ

|aj |
2 ≤ ce

2
√

1−β
β

Kλ

∥∥∥∥∥∥

∑

λj≤λ

ajej

∥∥∥∥∥∥
L1(ω)

.

Here (λj , ej) denotes the eigenbasis of the Schrödinger operator −∆− µ

|x|2 with Dirichlet

boundary condition {
−∆ej −

µ

|x|2 ej = λjej , in Ω ,

ej = 0 , on ∂Ω .

Now we are ready to prove Theorem 1.2. It suffices to check the assumption of the
above Lemma 5.1 when

µ ≤

∣∣∣∣
7

2·33 := µ∗ (3)− 13
4·33 , if n = 3 ,

1
4
(n− 1) (n− 3) := µ∗ (n)− 1

4
, if n ≥ 4 .

Recall that R0 =
(
4
3

)3/2
≈ 1.53 and let δ = R0−1

2
≈ 0.26. We have assumed that

the unit ball B0,R0 is included in Ω. Let χ ∈ C∞
0 (B0,R0) be a cut-off function satisfying

0 ≤ χ ≤ 1 and χ = 1 on {x; |x| ≤ 1 + 3δ/2}. Introduce z = χu. It solves

∂tz −∆z −
µ

|x|2
z = g := −2∇χ · ∇u−∆χu ,

and furthermore, z|∂B0,R0
= ∂νz|∂B0,R0

= 0. Let Φ be a sufficiently smooth function of

(x, t) ∈ R
n × Rt and set

f (x, t) = z (x, t) eΦ(x,t)/2 .

We look for the equation solved by f by computing eΦ(x,t)/2 (∂t −∆)
(
e−Φ(x,t)/2f (x, t)

)
.

It gives

∂tf−∆f −
1

2
f

(
∂tΦ+

1

2
|∇Φ|2 −

2µ

|x|2

)
+∇Φ ·∇f +

1

2
∆Φf = eΦ/2g in B0,R0 ×(0, T ) ,

and furthermore, f|∂Bx0,R0
= ∂νf|∂Bx0,R0

= 0. Introduce

{
Af = −∇Φ · ∇f − 1

2
∆Φf ,

Sf = ∆f +
(

1
2
∂tΦ+ 1

4
|∇Φ|2 + µ

|x|2
)
f .

Then, it holds

{
〈Af, v〉0 = −〈Av, f〉0 ,
〈Sf, v〉0 = 〈Sv, f〉0 for any v ∈ H1

0 (B0,R0) ,
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where 〈·, ·〉0 is the usual scalar product in L2 (B0,R0) and ‖·‖0 will denote the corre-
sponding norm. Furthermore, we have

∂tf − Sf −Af = eΦ/2g .

Multiplying by f the above equation, integrating over B0,R0 , it follows that

1

2

d

dt
‖f‖20 + 〈−Sf, f〉0 =

〈
f, eΦ/2g

〉
0
.

Introduce the frequency function t 7→ N (t) defined by

N =
〈−Sf, f〉0

‖f‖20
.

Then, we have
1

2

d

dt
‖f‖20 +N ‖f‖20 =

〈
eΦ/2g, f

〉
0
,

and the derivative of N satisfies (see Step 2.2.2 in Section 2):

d

dt
N ≤

1

‖f‖20
〈− (S ′ + [S,A]) f, f〉0 +

1

‖f‖20

∥∥eΦ/2g
∥∥2
0
.

Notice that the boundary terms have vanished since f|∂Bx0,R0
= ∂νf|∂Bx0,R0

= 0.

The estimate of

∥∥eΦ/2g
∥∥2
0

‖f‖20
can be obtained in a similar way than in Step 2.2.4 and

Step 2.2.5 of Section 2. Indeed, first, we check that

d

dt

∫

Ω

|u (x, t)|2 eξ(x,t)dx ≤ 0 with ξ (x, t) = −
|x|2

2 (T − t+ ǫ)
,

as follows:

1

2

d

dt

∫

Ω

|u|2 eξdx

=

∫

Ω

u∂tue
ξdx+

1

2

∫

Ω

|u|2 ∂tξe
ξdx

=

∫

Ω

u

(
∆u+

µ

|x|2
u

)
eξdx+

1

2

∫

Ω

|u|2 ∂tξe
ξdx

= −

∫

Ω

|∇u|2 eξdx−

∫

Ω

u∇u · ∇ξeξdx+

∫

Ω

µ

|x|2
∣∣ueξ/2

∣∣2 dx+
1

2

∫

Ω

|u|2 ∂tξe
ξdx

≤ −

∫

Ω

|∇u|2 eξdx−

∫

Ω

u∇u · ∇ξeξdx+

∫

Ω

∣∣∇
(
ueξ/2

)∣∣2 dx+
1

2

∫

Ω

|u|2 ∂tξe
ξdx

= −

∫

Ω

|∇u|2 eξdx−

∫

Ω

u∇u · ∇ξeξdx+

∫

Ω

∣∣∣∣∇ueξ/2 + u
1

2
∇ξeξ/2

∣∣∣∣
2

dx+
1

2

∫

Ω

|u|2 ∂tξe
ξdx

=
1

4

∫

Ω

|u|2 |∇ξ|2 eξdx+
1

2

∫

Ω

|u|2 ∂tξe
ξdx = 0 ,
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where in the fifth line we used Hardy inequality. Therefore, we have
∫

Ω

|u (x, T )|2 e−
|x−x0|

2

2ǫ dx ≤

∫

Ω

|u (x, t)|2 e−
|x−x0|

2

2(T−t+ǫ)dx ,

which implies that Lemma 2.2 is still true for any u solution of the heat equation with
an inverse square potential.

Next we can estimate

∥∥eΦ/2g
∥∥2
0

‖f‖20
as follows.

∥∥eΦ/2g (·, t)
∥∥2
0

‖f (·, t)‖20

≤

∫

Ω∩{(1+3δ/2)R≤|x|≤R0}
|−2∇χ · ∇u (x, t)−∆χu (x, t)|2 eΦ(x,t)dx

∫

Ω∩B0,(1+δ)R

|u (x, t)|2 eΦ(x,t)dx

≤ exp

[
− min

|x|≤(1+δ)R
Φ (x, t) + max

(1+3δ/2)R≤|x|≤R0

Φ (x, t)

]
C
(
1 + 1

t

)
‖u (·, 0)‖2

‖u (·, t)‖2
L2(Ω∩B0,(1+δ)R)

≤ exp

[
− min

|x|≤(1+δ)R
Φ (x, t) + max

(1+3δ/2)R≤|x|≤R0

Φ (x, t)

]
C
(
1 + 1

t

)
e(1+δ)δR2

2θ

as long as T/2 ≤ T − θ ≤ t ≤ T , where in the third line we used the regularizing
effect of a gradient term for the solution u of the heat equation with an inverse square
potential. Therefore, the conclusion of Step 2.2.5 still holds: Under the assumptions of
Step 2.2.5, we have ∥∥eΦ/2g (·, t)

∥∥2
0

‖f (·, t)‖20
≤ C

(
1 +

1

t

)
.

The difficulty with the heat equation with an inverse square potential comes with

the estimate of 〈− (S ′ + [S,A]) f, f〉0 −
1

Υ
〈−Sf, f〉0. Notice also that the treatment

far from the point 0 ∈ Ω where the inverse square potential have its singularities can
be done in the same way than for the heat equation with a potential in L∞ (Ω× (0, T ))
(see [PWZ]). Our main task is to treat the assumptions of Step 2.2.5 and Step 2.2.7 of
Section 2, carefully with a suitable choice of Φ (see also Part 3.3 of Section 3).

We claim that:

〈− (S ′ + [S,A]) f, f〉0

= −2

∫

Ω∩B0,R0

∇f · ∇2Φ∇fdx+ 2µ

∫

Ω∩B0,R0

∇Φ ·
x

|x|4
|f |2 dx

+
1

2

∫

Ω∩B0,R0

(
∆2Φ− ∂2

tΦ− 2∇Φ · ∇∂tΦ−∇Φ · ∇2Φ∇Φ
)
|f |2 dx .

Proof of the claim .- First, S ′f =
(
1
2
∂2
tΦ + 1

2
∇Φ · ∇∂tΦ

)
f . Next, we compute

[S,A] f = SAf −ASf and get

[S,A] f = −2∂i∇Φ ·∂i∇f+∇Φ ·∇

(
1

2
∂tΦ+

1

4
|∇Φ|2 +

µ

|x|2

)
f−

1

2
∆2Φf−2∆∇Φ ·∇f
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(which corresponds to the formula in the claim of Part 3.1 in Section 3 with η =
1
2
∂tΦ + 1

4
|∇Φ|2 + µ

|x|2 ). Therefore,

− (S ′ + [S,A]) f = 2∂i∇Φ · ∂i∇f + 2∆∇Φ · ∇f + 1
2
∆2Φf

−
(

1
2
∂2
tΦ+ 1

2
∇Φ · ∇∂tΦ +∇Φ · ∇

(
1
2
∂tΦ+ 1

4
|∇Φ|2 + µ

|x|2
))

f

= 2∂i∇Φ · ∂i∇f + 2∆∇Φ · ∇f + 1
2
∆2Φf

−
(

1
2
∂2
tΦ+∇Φ · ∇∂tΦ+ 1

2
∇Φ · ∇2Φ∇Φ +∇Φ · ∇

(
µ

|x|2
))

f .

Furthermore, by one integration by parts we have

2 〈∂i∇Φ · ∂i∇f, f〉0 =

∫

Ω∩B0,R0

∆2Φ |f |2 dx− 2

∫

Ω∩B0,R0

∇f · ∇2Φ∇fdx

and

2 〈∆∇Φ · ∇f, f〉0 = −

∫

Ω∩B0,R0

∆2Φ |f |2 dx .

Combining the above equalities yields the desired claim.

Assume that Φ (x, t) =
ϕ (x)

T − t + ~
and recall that Υ (t) := T − t+ ~. Then, we can

see that

〈− (S ′ + [S,A]) f, f〉0 −
1

Υ
〈−Sf, f〉0

= −
1

Υ

∫

Ω∩B0,R0

∇f ·
(
2∇2ϕ+ Id

)
∇fdx

+
1

Υ

∫

Ω∩B0,R0

(
1

2
∆2ϕ + 2µ∇ϕ ·

x

|x|4
+

µ

|x|2

)
|f |2 dx

−
1

2Υ3

∫

Ω∩B0,R0

(
ϕ+ |∇ϕ|2 +

1

2
∇ϕ ·

(
2∇2ϕ+ Id

)
∇ϕ

)
|f |2 dx .

Indeed,
〈− (S ′ + [S,A]) f, f〉0

= −
2

Υ

∫

Ω∩Bx0,R0

∇f · ∇2ϕ∇fdx+
1

2Υ

∫

Ω∩Bx0,R0

∆2ϕ |f |2 dx

+
1

Υ

∫

Ω∩B0,R0

2µ∇ϕ ·
x

|x|4
|f |2 dx

−
1

Υ3

∫

Ω∩Bx0,R0

(
ϕ+ |∇ϕ|2 +

1

2
∇ϕ · ∇2ϕ∇ϕ

)
|f |2 dx ,

and
1

Υ
〈−Sf, f〉0 =

1

Υ

∫

Ω∩B0,R0

(
|∇f |2 −

µ

|x|2
|f |2
)
dx

−
1

Υ3

∫

Ω∩B0,R0

(
1

2
ϕ+

1

4
|∇ϕ|2

)
|f |2 dx .

Assume that ϕ (x) = −a |x|2+b |x|s−c for some a, b, c > 0 and 1 ≤ s < 2. We would
like to check the assumptions of Section 2 and find the adequat parameters a, b, c, s.
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First, we observe that the identity

〈− (S ′ + [S,A]) f, f〉0 −
1

Υ
〈−Sf, f〉0

= −
1

Υ

∫

Ω∩B0,R0

∇f ·
(
2∇2ϕ+ Id

)
∇fdx

+
1

Υ

∫

Ω∩B0,R0

(
1

2
∆2ϕ+ 2µ∇ϕ ·

x

|x|4
+

µ

|x|2

)
|f |2 dx

−
1

2Υ3

∫

Ω∩B0,R0

(
ϕ+ |∇ϕ|2 +

1

2
∇ϕ ·

(
2∇2ϕ+ Id

)
∇ϕ

)
|f |2 dx

gives

〈− (S ′ + [S,A]) f, f〉0 −
1

Υ
〈−Sf, f〉0

= −
1

Υ
(−4a + 1)

∫

Ω∩B0,R0

(
|∇f |2 −

µ

|x|2
|f |2
)
dx

−
2bs

Υ

[∫

Ω∩B0,R0

|x|s−2 |∇f |2 dx− (2− s)

∫

Ω∩B0,R0

|x|s−4 |x · ∇f |2 dx

]

+
1

2Υ
bs [4µ− (2− s) (n + s− 2) (n+ s− 4)]

∫

Ω∩B0,R0

|x|s−4 |f |2 dx

+
1

2Υ3
c

∫

Ω∩B0,R0

|f |2 dx

+
1

2Υ3
a (1− 2a) (1− 4a)

∫

Ω∩B0,R0

|x|2 |f |2 dx

+
1

2Υ3
b
(
−1 + 6as− 4a2s− 4a2s2

) ∫

Ω∩B0,R0

|x|s |f |2 dx

−
1

2Υ3
(bs)2

(
3

2
+ 2a− 4as

)∫

Ω∩B0,R0

|x|2s−2 |f |2 dx

−
1

2Υ3
(bs)3 (s− 1)

∫

Ω∩B0,R0

|x|3s−4 |f |2 dx .

When n = 3, a = 1
4
, b = 1

4
, c =

(
1
3

)4
and s = 4

3
, since R0 =

(
4
3

)3/2
, we have

〈− (S ′ + [S,A]) f, f〉0 −
1

T − t+ ~
〈−Sf, f〉0

≤
2bs

Υ

(
µ−

7

2 · 33

)∫

Ω∩B0,R0

|x|−8/3 |f |2 dx

≤ 0

with our assumption on µ. Since ϕ (x) = W (|x|) with W (ρ) = −1
4
ρ2+ 1

4
ρ4/3−

(
1
3

)4
, we

have W (0) = W (1) = −
(
1
3

)4
, W ′

(
(2/3)3/2

)
= 0 and ρ 7→ W (ρ) is strictly decreasing

for ρ ≥ 1 and the assumptions on ϕ at Step 2.2.5 and Step 2.2.7 of Section 2 hold by

choosing ω0 = {x; r0 < |x| < r} with 0 < r0 < r < 1, W (r0) = W (r) ∈
(
−
(
1
3

)4
, 0
)

and by taking ℓ > 1 sufficiently large.
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When n ≥ 4, a = 1
4
, b = 1

4
, c = b2 and s = 1, we have

〈− (S ′ + [S,A]) f, f〉0 −
1

T − t+ ~
〈−Sf, f〉0

≤
2bs

Υ

(
µ−

1

4
(n− 1) (n− 3)

)∫

Ω∩B0,R0

|x|−3 |f |2 dx

≤ 0

with our assumption on µ. Since ρ 7→ −1
4
ρ2 + 1

4
ρ − 1

16
is a non positive function and

is strictly decreasing for ρ ≥ 1, the assumptions on ϕ at Step 2.2.5 and Step 2.2.7 of
Section 2 hold by choosing ω0 = {x; r0 < |x| < r} with 0 < r0 < r < 1, and by taking
ℓ > 1 sufficiently large.

One conclude that for any u0 ∈ L2 (Ω) and any T > 0,

‖u (·, T )‖L2(B0,R) ≤
(
ce

K
T ‖u (·, T )‖L2(ω0)

)β
‖u0‖

1−β
L2(Ω) .

Since 0 /∈ ω0 ⋐ Ω, we can replace ω0 by any nonempty open subset ω̃ of Ω by propagation
of smallness. The treatment far from the point 0 ∈ Ω where the inverse square potential
have its singularities can be done in the same way than for the heat equation with a
potential in L∞ (Ω× (0, T )) (see [PWZ]) and we also have

‖u (·, T )‖L2(Ω\B0,R ) ≤
(
ce

K
T ‖u (·, T )‖L2(ω̃)

)β
‖u0‖

1−β
L2(Ω) .

Finally, we will replace ‖u (·, T )‖L2(ω̃) by ‖u (·, T )‖L1(ω) thanks to Nash inequality: Here
ω̃ ⋐ ω. Let φ ∈ C∞

0 (ω) be such that 0 ≤ φ ≤ 1 and φ = 1 on ω̃. Then we have

‖u (·, T )‖L2(ω̃) ≤ ‖φu (·, T )‖L2(ω)

≤
(
e ‖φu (·, T )‖L1(ω)

) 2
2+n
(

1
2
√
π
‖φu (·, T )‖H1

0 (ω)

) n
2+n

≤
(
e ‖u (·, T )‖L1(ω)

) 2
2+n
(

1
2
√
π
‖φu (·, T )‖H1

0 (Ω)

) n
2+n

≤ Cn ‖u (·, T )‖
2

2+n

L1(ω) ‖u (·, T )‖
n

2+n

H1
0 (Ω)

≤ Cn ‖u (·, T )‖
2

2+n

L1(ω)

(
C√
T
‖u0‖L2(Ω)

) n
2+n

.

This completes the proof.

Appendix

Let H be a real Hilbert space endowed with an inner product 〈·, ·〉, and A be a linear
self-adjoint operator fromD(A) intoH , whereD(A) being the domain of A is a subspace
of H . We assume that A is an isomorphism from D(A) (equipped with the graph norm)
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onto H , that A−1 is a linear compact operator in H and that 〈Av, v〉 > 0 ∀v ∈ D(A),
v 6= 0. Introduce the set {λj}

∞
j=1 for the family of all eigenvalues of A so that

0 < λ1 ≤ λ2 ≤ ·· ≤ λm ≤ λm+1 ≤ · · · and lim
j→∞

λj = ∞ ,

and let {ej}
∞
j=1 be the family of the corresponding orthogonal normalized eigenfunctions:

Aej = λjej, ej ∈ D(A) and 〈ej , ei〉 = δi,j.

By Lumer-Phillips theorem, −A generates on H a strongly continuous semigroup
S : t 7→ S(t) = e−tA. For any t ≥ 0 and any u0 ∈ H , we have that S (t) u0 =∑

j≥1 〈u0, ej〉 e
−λjtej := u (·, t) and u ∈ C ([0,+∞) ;H) ∩ C1 ((0,+∞) ;D(A)) is the

unique solution of ∂tu+ Au = 0 with u (·, 0) = u0.

Below, H := L2 (Ω) where Ω is a bounded open set of Rn.

Lemma A. Let ω be a nonempty open subset of Ω. Let p ∈ [1, 2], β ∈ (0, 1) and c, K,

γ > 0. Suppose that for any u0 ∈ L2 (Ω) and any T > 0,

‖u (·, T )‖L2(Ω) ≤
(
ce

1
Tγ K ‖u (·, T )‖Lp(ω)

)β
‖u0‖

1−β
L2(Ω) .

Then for any (aj)j≥1 ∈ R and any λ > 0, one has

√∑

λj≤λ

|aj|
2 ≤ ceλ

γ
1+γ 2( 1−β

β )
γ

1+γ K
1

1+γ

∥∥∥∥∥∥

∑

λj≤λ

ajej

∥∥∥∥∥∥
Lp(ω)

.

Indeed, we choose u0 =
∑
λj≤λ

aje
λjT ej and apply

‖u (·, T )‖L2(Ω) ≤
(
ceK

1
Tγ ‖u (·, T )‖Lp(ω)

)β
‖u0‖

1−β
L2(Ω) ,

to get

√∑

λj≤λ

|aj |
2 ≤



ceK
1

Tγ

∥∥∥∥∥
∑
λj≤λ

ajej

∥∥∥∥∥
Lp(ω)




β


√∑

λj≤λ

|aj|
2 e2λjT




1−β

≤


ceK

1
Tγ

∥∥∥∥∥
∑
λj≤λ

ajej

∥∥∥∥∥
Lp(ω)




β

eλT (1−β)



√∑

λj≤λ

|aj|
2




1−β

.

Therefore,
√∑

λj≤λ

|aj |
2 ≤ ceK

1
Tγ +λT( 1−β

β )

∥∥∥∥∥∥

∑

λj≤λ

ajej

∥∥∥∥∥∥
Lp(ω)

.
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We conclude by choosing

T =

[(
β

1− β

)
K

λ

] 1
1+γ

.

Remark .- Conversely, suppose that there are constants p ∈ [1, 2] and D1, D2, γ > 0
such that any (aj)j≥0 ∈ ℓ2 and any λ > λ1,

√∑

λj≤λ

|aj |
2 ≤ D1e

λ
γ

1+γ D2

∥∥∥∥∥∥

∑

λj≤λ

ajej

∥∥∥∥∥∥
Lp(ω)

.

Then for any β ∈ (0, 1) and any T > 0,

‖u (·, T )‖L2(Ω) ≤ D3e
1

Tγ D4 ‖u (·, T )‖βLp(ω) ‖u (·, 0)‖
1−β
L2(Ω)

with

D3 = 2
(
1 + max

(
1, |ω|

1
p
− 1

2

)
D1

)
and D4 = (D2)

1+γ 1

(1− β)γ
.

Indeed, let α := γ
1+γ

and u0 := u (·, 0) =
∑
j≥1

ajej. First, we have

‖u (·, T )‖2L2(Ω) =
∑

j≥1

∣∣aje−λjT
∣∣2 =

∑

λj≤λ

∣∣aje−λjT
∣∣2 +

∑

λj>λ

∣∣aje−λjT
∣∣2

and

‖u (·, T )‖L2(Ω) ≤

√∑

λj≤λ

|aje−λjT |
2
+

√∑

λj>λ

|aje−λjT |
2
.

Next, we apply the estimate on the sum of eigenfunctions with aj replaced by aje
−λjT

in order to get

‖u (·, T )‖L2(Ω) ≤ D1e
D2λα

∥∥∥∥∥∥

∑

λj≤λ

aje
−λjT ej

∥∥∥∥∥∥
Lp(ω)

+

√∑

λj>λ

∣∣aje−λjT
∣∣2

≤ D1e
D2λα

∥∥∥∥∥∥

∑

λj≤λ

aje
−λjT ej +

∑

λj>λ

aje
−λjT ej

∥∥∥∥∥∥
Lp(ω)

+D1e
D2λα

∥∥∥∥∥∥

∑

λj>λ

aje
−λjT ej

∥∥∥∥∥∥
Lp(ω)

+

√∑

λj>λ

∣∣aje−λjT
∣∣2

≤ D1e
D2λα

‖u (·, T )‖Lp(ω) +
(
1 + |ω|

1
p
− 1

2 D1

)
eD2λα

e−λT

√∑

λj>λ

|aj |
2

≤ D1e
D2λα

‖u (·, T )‖Lp(ω) +
(
1 + |ω|

1
p
− 1

2 D1

)
eD2λα

e−λT ‖u (·, 0)‖L2(Ω) .

Now, by Young inequality, for any ǫ > 0,

D2λ
α =

D2

(ǫT )α
(ǫλT )α ≤ ǫλT +

(
D2

(ǫT )α

) 1
1−α

.
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Therefore,

‖u (·, T )‖L2(Ω) ≤
(
1 + max

(
1, |ω|

1
p
− 1

2

)
D1

)
e(

D2
(ǫT )α )

1
1−α

×
(
eǫλT ‖u (·, T )‖Lp(ω) + e(ǫ−1)λT ‖u (·, 0)‖L2(Ω)

)
.

Choosing 0 < ǫ < 1 and optimizing with respect to λT by taking

λT = ln

(
‖u (·, 0)‖L2(Ω)

‖u (·, T )‖Lp(ω)

)
,

yield

‖u (·, T )‖L2(Ω) ≤
(
1 + max

(
1, |ω|

1
p
− 1

2

)
D1

)
e(

D2
(ǫT )α )

1
1−α

×
(
2
[ ‖u(·,0)‖L2(Ω)

‖u(·,T )‖Lp(ω)

]ǫ
‖u (·, T )‖Lp(ω)

)
.

Setting β = 1− ǫ, we finally have the desired observation estimate at one time.
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