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I. INTRODUCTION

Gamma-ray spectroscopy is one of the most important experimental techniques allowing to characterize the quantum structure of atomic nuclei. Gamma-ray spectra produced under selection criteria that impose coincidence relations between the photon emissions are of particular importance. First, setting different coincidence conditions and observing the resulting presence or absence of gamma-rays allows to construct the level scheme of the nucleus. Furthermore, coincidence conditions have a selective role that is crucial if the studied nucleus is only one of the possible exit channels of the production reaction (e.g. fusion-evaporation, fission...), and if we want to observe low-intensity gamma-rays.

With increasing amount and complexity of experimental data, efforts have been dedicated to establish automated procedures to construct level schemes on the basis of coincidence data (see e.g. [1][2][3][4][START_REF] Demand | Capture Gamma-Ray Spectroscopy and Related Topics[END_REF]). Although important steps have been taken, these works generally conclude that human intervention is still crucial to obtain valid level schemes when realistic data are employed. Among the cited papers, of specific importance for the present study is the work of Demand et al. [START_REF] Demand | Capture Gamma-Ray Spectroscopy and Related Topics[END_REF], where the relation between nuclear level scheme and graph theory is explored. Although our goal is different, since we are mainly focused on characterizing a new transition appearing in a previously known level scheme, the framework of graph theory has proven very useful in the treatment of our problem. Many textbooks exist on this mathematical formalism that has wide-spread applications; we only indicate here one of the classic references, by Bondy and Murty [START_REF] Bondy | Graph theory with applications[END_REF].

Besides level-scheme solving, many other works have been dedicated to the improvement of gamma-ray data analysis. The most practical ones concern software developments that offer to the user an optimized environment to obtain and analyze gated spectra, in relation with nucleus level scheme, such as the famous Radware toolkit [START_REF] Radford | [END_REF]. Concerning the intensity measurement issue, we can cite works on γ -γ coincidence matrices [8], a method focused on the effect of angular correlations [9], and studies to quantify coincidence-summing effects, especially the analytic approach presented in [10]. The work of Deloncle et al. [11] calls attention on the bias on intensity measurements in multi-gated spectra, which is particularly relevant for the present study; the work of Beausang et al. [12] also underlines some extreme consequences of this bias, such as the spiking effect. The present work is focused on relating gamma-ray intensities observed in multi-gated spectra to the corresponding emission probabilities. Figure 1 gives a very basic illustration of how gate conditions affect observed intensities. In the case of multi-gating, this issue is non-trivial, especially for gate conditions where different combinations of photons in coincidence are allowed to select an event. It is important to establish this relation in a rigorous way in order to obtain accurate values of the emission probabilities, which contain valuable information to characterize the nuclear structure and also to study reaction mechanism in the light of level feeding. Starting from the graph-theory-inspired framework established by Demand et al. [START_REF] Demand | Capture Gamma-Ray Spectroscopy and Related Topics[END_REF], we have developed a formalism and analytic expressions to establish this relation on a well-controlled basis. The present article is dedicated to the presentation of this formalism: for clarity, this is done using simplifying assumptions that place this study in an idealized framework (in substance, every transition yields a photon that is fully detected). However, this first version will be used as a sound basis for further developments, and we plan next to make this formalism applicable to the analysis of real experimental data.

The present article is organized as follows. Section II presents the level-space and transition-space treatment of nuclear structure, in the framework of graph theory. Next we give a detailed description of the formalism we have derived, including the demonstration of the analytical relations we have obtained to express the gated intensities in This represents a nuclear level scheme, with levels A, B, C and D linked by different transitions. The numbers on level C give the branching ratio for the two deexcitation paths. We want to measure the intensity of the transition tDC , but in order to select events where the photons are emitted by the nucleus of interest, we have to apply a gate condition. If the transition used as a gate is tCA, the resulting spectrum will show 40% of the total intensity of tDC . If tBA is used as a gate, the resulting spectrum will show 60% of the total intensity of tDC . In more complex level schemes, and when gate conditions involve several transitions, the relation between emitted and gated intensity is non-trivial.

terms of the emission probabilities and of the transition probability matrix deduced from branching ratios. Section III introduces the main definitions and terminology. The analytic formula for gated probabilities with gate conditions of type "and" is derived in Section IV. The more elaborate case of gate conditions of type "or" is treated in Section V. An example of application to a synthetic level scheme is presented in Section VI. A summary and plan for future developments are given in Section VII.

II. NUCLEUS DEEXCITATION AS AN APPLICATION OF GRAPH THEORY

The quantum states of an atomic nucleus are linked by a network of possible transitions, whose probabilities are determined by the physical interaction and the quantum numbers associated with the different states. This is one of the numerous situations that can be modeled by a mathematical object called "graph". A graph G is defined as a triple (V, E, Ψ), where V is a set of vertices, E a set of edges (links between vertices), and Ψ a relationship associating each edge with a pair of vertices. The usual representation of nuclear structure is a level scheme: it can be seen as the representation of a graph for which the elements of V are the quantum states, and the elements of E are the existing transitions. In addition to identifying the levels associated with a given transition, the relationship Ψ can carry some information about the probability of this transition: in this case, G is called a weighted graph. If transitions occur in response to an excitation, they can go towards either higher or lower energy states, and their probabilities depend on the properties of the excitation source. However, we will focus on the study of nuclear deexcitation cascades following the formation of an excited nucleus: in this case, transitions occur only towards lower energy levels and their probabilities are determined by the branching ratios. Nuclear branching ratios only depend on the structure of the nucleus under study, and they are abundantly documented in databases such as ENSDF [START_REF]Evaluated Nuclear Structure Data File) is one of the data bases of the NNDC (National Nuclear Data Center) that can be accessed via the website of Brookhaven National Laboratory[END_REF]. Each transition can happen only in one direction (from higher to lower energy), which means that we have a directed graph (also called digraph). To summarize, the level scheme that describes the different energy states of a nucleus and the transitions that can occur during its deexcitation is modeled mathematically by a weighted digraph.

Concerning the deexcitation cascades, each one defines a directed path, which is a sequence of distinct vertices linked by specific directed edges. In the present work, we will consider only simple graphs: namely, there is no more than one edge between two vertices. In physical terms, this means that we only consider the existence of a transition from one energy level to another, and we do not distinguish different kinds of transitions between these two levels. If we include different kinds of transitions in order to distinguish for instance between gamma-ray transitions and internal conversions, several edges can link two vertices and the graph is no longer a simple graph.

A. Level space

Level schemes are the usual representation of the structure of a nucleus, and they are focused on the description of nuclear state properties. This point of view is called the level-space representation [START_REF] Demand | Capture Gamma-Ray Spectroscopy and Related Topics[END_REF]. As stated above, in terms of graph theory, nuclear levels are vertices and transitions are edges: this is illustrated by Figure 2. We can notice that usually, an excited nucleus is able to follow a deexcitation cascade down to the ground state (GS), although nucleus disintegration may also occur before reaching the GS. Assuming that there is always a deexcitation path that reaches the GS, we obtain a connected graph: it cannot be separated in two non-communicating sets of vertices.

Let us specify that, in the present work, the level space is limited to the discrete part of the spectrum: the continuum is not explicitly treated. In this approach, in order to describe the deexcitation of a nucleus formed in a given reaction, the following information is needed:

• List of possibly involved nuclear levels: vector l = {l 1 , ..., l D l }. The number of levels D l gives the dimension of the level space. Note that this list can vary depending on the way the excited nucleus is produced.

• Primary feeding: vector

F (1) = {F (1) 1 , ..., F (1) 
D l }. Each component F (1) i 
gives the probability that level l i is the first discrete level to be populated in the deexcitation cascade. This quantity, again, highly depends on the way the nucleus is produced. It corresponds to either a direct feeding at the time of nucleus formation, or a deexcitation from the continuum part of the spectrum.

• Branching ratios: matrix B of dimension D l × D l . One element B ij gives the probability that level l i is followed directly by level l j in the deexcitation process. Since B ij does not depend on the way level l i was formed, these elements only depend on the nucleus itself, and can be found in nuclear databases. Note that, in terms of graph theory, the branching matrix is the so-called adjacency matrix describing the connexions between the vertices of a graph.

In this approach, the probability of a given transition t x = l i → l j is given by: P x = F i B ij , where F i is the total feeding of level l i , i.e. the probability that level l i is populated during the deexcitation. This can be expressed as a function of the primary feeding vector F (1) and the branching matrix B. Indeed, the branching matrix B can be used to determine a secondary feeding matrix F, where the element F ij gives the probability that level l j is populated if level l i has been populated before, with an arbitrary number of steps in-between. This corresponds to the following relation, adapted from the derivation presented by Demand et al. [START_REF] Demand | Capture Gamma-Ray Spectroscopy and Related Topics[END_REF]:

F ij = ∞ n=1 B n ij = [I -B] -1 -I ij F = ∞ n=1 B n = [I -B] -1 -I
where I is the identity matrix, and the final expression results from the well-known Taylor development of [I -B] -1 . For the element F ij , each term of the summation over n expresses the probability that l j is reached n steps after l i . For instance, B 2 ij = k B ik B kj is the probability that l j is reached two steps after l i , and so on. From the secondary feeding matrix F, we obtain the secondary feeding vector F (2) , which gives the probability for each level to be populated after any other discrete level. For each level l i , we have:

F (2) i = k F (1)
k F ki and the total feeding is simply given by

F i = F (1) i + F (2)
i . We can thus obtain the occurrence probability P x of each transition t x using input on level-space quantities F (1) (primary feeding) and B (branching-ratio matrix). However, for our purpose, we also need to express the probability of a transition under the condition that other specific transitions (gates) occur in the same deexcitation cascade. To treat this problem, it is more straightforward to adopt a different point of view, the transition-centered description of the deexcitation.

B. Transition space

As pointed out in the work of Demand et al. [START_REF] Demand | Capture Gamma-Ray Spectroscopy and Related Topics[END_REF], although level space offers the most natural representation of nuclear properties, it can be more useful in the framework of experimental data analysis to switch to a transitioncentered representation. Indeed, transitions are the experimental observables from which the level scheme has to be deduced. The set of observed transitions is then the natural starting point in the search for an automated level scheme construction procedure. Our purpose is different, since it aims at adding further knowledge to a partially known level scheme. However, also in our case, quantities associated with the transition space are the relevant input needed to determine what we want: an expression of the gamma-ray intensities measured in multi-gated spectra.

In the transition-space approach, in terms of graph theory, transitions are vertices, as illustrated by Figure 2c. The edges are links between transitions, namely, nuclear levels. Note however that the situation is not symmetrical to the one in the level space. Indeed, in the level space, every transition corresponds to one edge, and only one. In the transition space instead, this one-to-one correspondence is not verified: some levels do not belong to the set of edges because they are located at extremities of the level scheme (case of levels l 1 , l 4 and l 5 in Figure 2), other levels correspond to several edges because they are involved in several cascades (case of l 2 and l 3 ). We can also notice on the figure that the transition-space graph is not necessarily connected, since different cascades do not always have a common transition (see the isolated transition t 3 ). In order to describe the deexcitation process, the following information is needed:

• List of possibly involved transitions (dependent on the nucleus formation mechanism): transition vector t = {t 1 , ..., t Dt }, where D t is the dimension of the considered transition space.

• Transition probabilities: vector P = {P 1 , ..., P Dt }, giving the probability of each transition to occur during the deexcitation process.

• Adjacency matrix A, where the element A ij gives the probability that the transition t i is immediately followed by the transition t j .

Note that the above transition-space quantities can be easily deduced from level-space input (level vector l, primary feeding vector F (1) , branching matrix B):

• t is obtained by listing all possible transitions from one level to the other, using l and B;

• as shown in the previous subsection, P is deduced from F (1) and B;

• A is closely related to B. Let us call l x,1 the initial level of a transition t x and l x,2 its final level: an element A ij is non-zero only if l i,2 = l j,1 , and in this case it is equal the branching ratio of the deexcitation mode from l j,1 to l j,2 .

We can remark that conversely, the level-space fundamental quantities (l, F (1) , and B) could be deduced from the transition-space ones (t, P, and A), if each transition t x is associated with identified initial and final levels; if not, we have to face the difficulties of level-scheme reconstruction. We will not address this subject.

Let us now introduce a transition-space quantity that occupies a central place in the formalism we are developing: the transition probability matrix P. The relation between A and P is analogous to the one obtained in level space between B (branching matrix) and F (secondary feeding matrix). Namely, an element P ij gives the probability that transition t j occurs if transition t i has occurred before, with an arbitrary number of steps in-between. This corresponds to the relation presented in Ref. [START_REF] Demand | Capture Gamma-Ray Spectroscopy and Related Topics[END_REF]:

P = ∞ n=1 A n = [I -A] -1 -I (1) 
A gate condition selects events for which a given set of gamma-rays are emitted in coincidence. The chosen gate condition has a direct impact on the presence and intensity of each gamma-ray in the resulting spectrum. In the following sections, we develop a formalism that allows one to calculate the apparent intensity of any gamma-ray emitted during a deexcitation cascade, depending on the kind of gate condition that has been applied.

III. FRAMEWORK AND MAIN DEFINITIONS FOR THE PRESENT FORMALISM

In this section, we will present specific definitions and terminology that we had to settle down in order to formalise the description of multi-gated gamma-ray spectra. These concern the gate conditions, the corresponding sets of events, their associated spectra and the gamma-ray intensities.

Let us first explicit the framework of the present formalim. As stated in the introduction, in order to concentrate on the founding principles of our approach, we assume in this work some simplifying hypotheses:

• The nucleus emits pure gamma-ray cascades down to the ground state • The gamma-ray detection is ideally performed, with 100% absolute photopeak efficiency (every emitted gammaray is fully detected).

• We ignore the problem of degeneracy, which has to be considered if transitions taking place in different parts of the level scheme lead to similar gamma-ray emissions Furthermore, the feeding of the entry states (primary feeding, which depends on the reaction mechanism) is given as an input.

A. Gate conditions

A gate condition is based on the detection of specific gamma-rays, called gates. For each event, a gate is said to be open when the corresponding gamma-ray is detected, and closed if it is not. The list of N gates involved in the expression of a given condition will be written: L = {g 1 , ..., g N }, where g k identifies an individual gamma-ray used as a gate. Depending on the way these gates are involved, we can distinguish different kinds of conditions. In the present study, we will treat two kinds of gate conditions:

• Positive explicit gate conditions (type "and"): all the gates of the list L have to be open. Such condition will be denoted by G = {g 1 • ... • g N }, called a positive explicit condition of order N . This case will be treated in Section IV.

• Optional gate conditions (type "or"): a minimal number of gates from the list L have to be open. If m is this minimal number, any event for which at least m gates of L are open is selected (whatever the status of the remaining gates). Such condition is denoted by G = {g 1 + ... + g N } m . This case will be treated in Section V.

The treatment of optional conditions calls for additional definitions. The main result in that case, presented in Section V B, involves a decomposition in spectra corresponding to the following kind of gate condition:

• G α (n, L) denotes a positive explicit condition of order n ≤ N : it involves a list

L (α) = {g (α) 1 , ..., g (α) 
n } that is a sublist of L. For a given order n, the number of possible combinations of n gates picked from the list L is given by the well-known binomial coefficient

C N n = N !/[n!(N -n)!].
The α index, which identifies the different combinations, then takes the values 1 ≤ α ≤ C N n . For intermediary steps of the demonstration, detailed in B, we will also need to define gate conditions that impose closed gates, namely, exclusive explicit gate conditions.

B. Associated sets of events

Experimentally, an event corresponds to the formation of an excited nucleus and the following deexcitation cascade, recorded in the dataset according to the detection system response. In our scheme, each event is simply characterized by the list of transitions that occurred in the corresponding deexcitation cascade. A gate condition yields a set of selected events.

Conventional symbols and properties of set algebra are reminded in A. We now present the main kinds of event sets we will deal with.

• A single set e is associated with a single-gate condition G = {g}.

• A positive elementary set E(G) of order N is associated with a positive explicit gate condition

G = {g 1 • ... • g N }:
in short-hand notation, it is denoted by E g1...g N . It corresponds to the intersection of single sets e i = E({g i }): • A combined set E(G) is associated with an optional gate condition G = {g 1 + ... + g N } m . It corresponds to the union of several elementary sets. This case will be detailed later.

E g1...g N = e 1 ∩ ... ∩ e N
Basic examples of elementary and combined sets are illustrated by Figures 3 and4.

C. Associated spectra

For each gate condition G, there is a set-spectrum S(E(G)) representing the associated event set E(G): it gives the actual counting of photons emitted during the selected events. For simplicity, S(E(G)) can be directly denoted by S(G).

Note however that a spectrum does not necessarily provide a one-to-one representation of an event set: other kinds of spectra can be obtained by combining set-spectra. Let us consider for instance several set-spectra S(E i ) representing event sets E i . A new spectrum S can be obtained by performing a linear combination of S(E i ) such as:

S = i c i S(E i )
where the photon numbers of S(E i ) are counted c i times (or subtracted |c i | times if c i < 0). As a result, spectra can be constructed in such a way that some events are affected by multi-counting, see Refs. [11,12]. We will call sum-spectrum a spectrum of this kind.

For the present work, we use two main kinds of set-spectra:

• Positive elementary spectrum S(G) of order N , representing the event set E(G) associated with a positive explicit condition

G = {g 1 • ... • g N }.
In short-hand notation, it is denoted by S g1...g N .

• Combined spectrum S(G), representing a combined set E(G) associated with the optional condition

G = {g 1 + ... + g N } m .
It is also useful to introduce a dedicated notation for specific sum-spectra, that will appear in later expressions:

• Positive sum-spectrum of order n, denoted by σ(n, L), defined as the sum of spectra associated with all positive explicit conditions of order n that can be defined by picking n gates in a given list L = {g 1 , ..., g N }. It reads :

σ(n, L) = C N n α=1 S(G α (n, L))
In B, we also define exclusive elementary spectra and exclusive sum-spectra, that are used as an intermediary step in the treatment of optional gate conditions.

D. Gamma-ray relative intensity

Let us consider a given gamma-ray emitted during the transition t i , occurring with the probability P i in the deexcitation cascade following nucleus formation:

P i = N i N tot ,
where N tot is the total number of events (i.e. the number of nucleus formations followed by deexcitation) and N i is the number of transitions t i that occur. Experimentally, a typical goal when a new transition t i is observed is to quantify the probability P i by measuring the corresponding peak size in a gamma-ray emission spectrum. Usually, the studied spectra are subject to gate conditions that make this peak more visible by reducing the background and the number of alternative cascades. The purpose here is then to relate the peak size associated with t i in a gated spectrum to the emission probability P i . Let us define the following quantities, for a given set of events E associated with a gate condition G:

• Gated transition probability P {G,i} : probability for an event to verify condition G and to contain transition t i . It corresponds to the ratio:

P {G,i} = N {G,i} N tot
where N {G,i} is the number of events of E(G) that involve t i . This quantity will be expressed later as a function of the transition probability vector P and matrix P.

• Relative gated intensity I

i (G): ratio between the peak sizes associated with t i and with a reference transition t ref . It corresponds to:

I (r) i (G) = N {G,i} N {G,ref } = P {G,i} P {G,ref }
where N {G,i} and N {G,ref } can be directly measured in the gated spectrum while P {G,i} and P {G,ref } can be expressed in terms of the transition probabilities involved in vector P and matrix P.

Let us finally define the relative intensity

I (r)
i , which compares the occurrence of t i and t ref in the total set of events:

I (r) i = N i N ref = P i P ref
This quantity is often given in the literature to characterize the strength of a transition t i observed in an experiment.

Let us note that it is in principle different from any gated relative intensity, although the measurement of

I (r)
i (G) is usually assumed to give an approximation of I (r) i . Since the validity of such an approximation depends on the details of the gate condition and on the cascade structure, it is important to establish a quantitative relation between gated and ungated relative intensities, which is the aim of this work.

IV. FORMALISM FOR A POSITIVE EXPLICIT GATE CONDITION ("AND")

As defined above, a positive explicit gate condition consists of a list of gates that are all required to be open. It is denoted by G = {g 1 • ... • g N }, and gives rise to a positive elementary spectrum S(G) that represents the set of selected events E(G). We also specify that the gate list is ordered in such a way that the gates of lower indices correspond to transitions occurring earlier in the cascade, i.e. emitted by a higher energy level. This will be symbolized by the relation: g 1 > ... > g N . Our purpose is now to express the gated probability P {G,i} of a transition t i as a function of the transition probability vector P and matrix P. We remind that each element P k of the transition probability vector gives the probability that transition t k occurs during the deexcitation process while each element P ij = P ti→tj of the transition probability matrix P gives the probability that, once transition t i has occurred, it is followed by transition t j after an arbitrary number of steps. For the homogeneity of some expressions, we will also use the notation

P t k = P k .
Let us start with examples for restricted numbers of gates N . The shortest list is of course the single gate: G = {g 1 }. A transition t i that occurs in coincidence with g 1 can take place either "above" or "below" g 1 in the deexcitation cascade. Namely, "above g 1 " means earlier in the cascade, and is denoted by t i > g 1 ; "below g 1 " means later in the cascade, and is denoted by t i < g 1 . Depending on each case, the gated probability P {G,i} is expressed differently as a function of the transition probability vector P and matrix P:

• If t i > g 1 : P {G,i} = P ti × P ti→g1 • If g 1 > t i : P {G,i} = P g1 × P g1→ti
Globally, whatever the gate position, we can write: P {G,i} = P ti × P ti→g1 + P g1 × P g1→ti since if g 1 > t i we have P ti→g1 = 0, and if t i > g 1 we have P g1→ti = 0.

Let us now consider a double gate G = {g 1 • g 2 } (ordered as g 1 > g 2 ):

• If t i > g 1 > g 2 : P {G,i} = P ti × P ti→g1 × P g1→g2 • If g 1 > t i > g 2 : P {G,i} = P g1 × P g1→ti × P ti→g2 • If g 1 > g 2 > t i : P {G,i} = P g1 × P g1→g2 × P g2→ti
which corresponds to the global expression, where only one term is non-zero: P {G,i} = P ti × P ti→g1 × P g1→g2 + P g1 × P g1→ti × P ti→g2 + P g1 × P g1→g2 × P g2→ti

In order to generalize the expression of P {G,i} , let us introduce the transition cascade vector T h (G, t i ): its elements are the list of gates and the studied transition t i , h indicating the position of t i among the gates g x . The dimension of T h is then N + 1 (3 in the present example). In the following, the dependence of T h on G and t i will be implicit. For G = {g 1 • g 2 }, there are three possible cascade vectors:

• If t i > g 1 > g 2 : T 0 = (t i , g 1 , g 2 ) • If g 1 > t i > g 2 : T 1 = (g 1 , t i , g 2 ) • If g 1 > g 2 > t i : T 2 = (g 1 , g 2 , t i )
We will denote by T h k the transition associated with the component k of the cascade vector T h (with the convention that k starts from zero). Now we can use T h to write P {G,i} :

P {G,i} = P T 0 0 × P T 0 0 →T 0 1 × P T 0 1 →T 0 2 + P T 1 0 × P T 1 0 →T 1 1 × P T 1 1 →T 1 2 + P T 2 0 × P T 2 0 →T 2 1 × P T 2 1 →T 2 2 = 2 h=0 P T h 0 × 2 j=1 P T h j-1 →T h j
This last expression can be easily generalized to a positive explicit gate condition G = {g 1 • g 2 • ... • g N } implying any number N of gates:

P {G,i} = N h=0 P T h 0 × N j=1 P T h j-1 →T h j (2)
Note that, although the h summation offers an elegant mathematical expression that is independent from the transition location in the cascade, it will be more efficient in numerical calculation to determine for each considered transition t i the corresponding position h(t i ) before performing the product (since all other h terms are zero).

V. FORMALISM FOR AN OPTIONAL GATE CONDITION ("OR")

We now turn to the case where at least m gates are required to be open, among a list L = {g 1 , ..., g N }. Such a condition is denoted by G = {g 1 + ... + g N } m = L m/N . The set of events E(G) that are selected by this condition includes different elementary sets. Indeed, for any list L = {g 1 , ..., g n } that is a sublist of L with n ≥ m, the elementary set E({g 1 • ... • g n }) is included in E(G). Several such elementary sets have to be combined in order to obtain E(G), hence the denomination of combined set. The full treatment of this case requires a long development. We give here the main principles of our approach, whose demonstration is exposed in B.

Let us consider as an illustration the combined gate condition G = {g 1 + g 2 + g 3 } 2 : an event is selected if at least 2 gates are open, among a list of 3. Namely, it has to fulfill at least one of the explicit gate conditions

{g 1 •g 2 }, or {g 1 •g 3 }, or {g 2 • g 3 }, which define the elementary sets E({g 1 • g 2 }) = E g1g2 , E({g 1 • g 3 }) = E g1g3 and E({g 2 • g 3 }) = E g2g3 ,
respectively. We can easily realize that these sets are overlapping: indeed, every event for which the three optional gates are open belongs to all elementary sets E g1g2 , E g1g3 and E g2g3 . As a result, such events are counted three times in the sum-spectrum S g1g2 + S g1g3 + S g2g3 .

Turning now to the general case, the most simple way to obtain E(G) is to unite all the elementary sets corresponding to the minimal requirement of m open gates. Each such set is associated with a positive explicit gate condition of order m, G α (m, L) = {g

(α) 1 • ... • g (α)
m }, where {g

(α) 1 , ..., g (α) 
m } = L (α) is a sublist of L. However the spectrum S(G) that represents the combined set E(G) does not correspond to the sum of elementary spectra α S(G α ). Indeed, the sets E(G α ) are overlapping, giving rise to an artificial enhancement of peak sizes. The case of such spiked spectra is discussed in C.

A. Tiling of the combined set

The objective is to express the combined set E(G) as the union of elementary sets E(G β ), where :

• an elementary set E(G β ) corresponds to an explicit condition (type "and")

• the different elementary sets E(G β ) are non-overlapping; in other words, the elementary sets E(G β ) that are considered have to constitute a tiling of the combined set E(G).

In such a way, the combined spectrum S(G) can be obtained as the sum of elementary spectra S(G β ), avoiding multiple counting. The non-overlapping criterion means that the gate conditions G β have to exclude each other: this is possible only if every condition G β specifies the status of each gate of L (open or closed).

Let us consider again the optional condition G = {g 1 + g 2 + g 3 } 2 . Denoting ḡ a gate that is required to be closed, the tiling relation reads in this case:

E(G) = g 1 g 2 ḡ3 ∪ g 1 g 3 ḡ2 ∪ g 2 g 3 ḡ1 ∪ g 1 g 2 g 3
The combined spectrum is then given by:

S(G) = S g1g2 ḡ3 + S g1g3 ḡ2 + S g2g3 ḡ1 + S g1g2g3
where each event of E(G) is counted once and only once. The tiling principle is illustrated by Figure 5. For a formal presentation of the tiling operation, see B 1.

B. Development in positive elementary spectra

The tiling of a combined set allows to obtain a combined spectrum S(G) as a sum of elementary spectra: however this summation involves exclusive elementary spectra, associated with conditions that impose gate closures. In order to apply directly Eq. ( 2) to establish the gamma-ray intensities in S(G), we need to express the combined spectrum as a combination of positive elementary spectra. Let us also note that building experimentally an exclusive spectrum can be done combining gating and anti-gating methods as developed in Ref. [START_REF] Stézowski | [END_REF]; however, one often prefers to construct spectra based on positive gate conditions. Thus, the present approach will allow a more classic correspondence between modeling and construction from an experimental dataset.

The applied principle to express exclusive elementary sets in terms of positive elementary sets is illustrated by Figure 6, where we consider the set intersection e 1 ∩ e 2 ∩ ē3 . We note ē3 the complementary set of e 3 , namely ē3 = U \ e 3 , U being the universe of events (see A for symbols and properties of set algebra). We have: The corresponding spectrum is expressed as a subtraction:

e 1 ∩ e 2 ∩ ē3 = e 1 ∩ e 2 ∩ [U \ e 3 ] = [e 1 ∩ e 2 ] \ [e 1 ∩ e 2 ∩ e 3 ]
S(E = e 1 ∩ e 2 ∩ ē3 ) = S(e 1 ∩ e 2 ) -S(e 1 ∩ e 2 ∩ e 3 )
This relation can be applied to express every exclusive elementary spectrum involved in the tiling relation in terms of positive elementary spectra.

Let us now consider a combined spectrum S(L m/N ), representing the set of events selected by the optional condition G = L m/N = {g 1 + ... + g N } m . We demonstrate in B 2 how to obtain the coefficients of the resulting development in positive elementary spectra. The process involves many technical details, and leads to the final expression: ) can be easily obtained in practice by representing the coefficients a n,p = (-1) p-n C p n in a universal table, where n refers to the line number In order to illustrate concretely the whole process, simple examples of optional conditions are fully treated in D.

S(L m/N ) = N p=m c p (m) C N p α=1 S(G α (p, L)) = N p=m c p (m) σ(p, L) (3) 
[p=1] [p=2] [p=3] [p=4] [p=5] [p=6] [p=7] [p=8] [p=9] [p=10] 1 -2 3 - 4 
C. Gated intensity in a combined spectrum Equation (3) allows to express the gated probability of a transition on the basis of the probability vector P and probability matrix P as in Equation ( 2). Since the combined spectrum is given by a linear combination of positive elementary spectra, the number of events of E(G) for which the transition t i has occurred is given by a similar combination:

N {G,i} = N p=m c p (m) C N p α=1 N {Gα(p,L),i}
as well as the gated probability of transition t i :

P {G,i} = N {G,i} N tot = N p=m c p (m) C N p α=1 P {Gα(p,L),i}
Each gated probability P {Gα(p,L),i} associated with a positive explicit condition G α (p, L) can be expressed in terms of the transition probabilities according to Eq.( 2), where the cascade vectors T h are determined by the list L α of the corresponding gate combination. We remind that the h exponent gives the position of transition t i among the sequence of gate transitions. For G α = {g

(α) 1 • ... • g (α)
p }, we have for instance T 0 (G α ) = (t i , g

1 , ..., g

p ). Note that, for fixed values of p and h, the transition cascade vectors T h (G α ) corresponding to the different α combinations can be viewed as the different lines of a transition cascade matrix T h (p, L). An element T h α,j of this matrix corresponds to the component j of the cascade vector T h (G α ). The matrix T h (p, L) has C N p lines and p + 1 columns. In the following, the dependence of each matrix T h on p and L will be implicit. The gated probability P {G,i} is then given by:

P {G,i} = N p=m c p (m)   C N p α=1   p h=0 P T h α,0 × p j=1 P T h α,j-1 →T h α,j     (4) 
The same formula applies to express the gated probability of a reference transition t ref , so that the relative gated intensity I (r) i (G) given by the ratio:

I (r) i (G) = N {G,i} N {G,ref } = P {G,i} P {G,ref }
can be obtained either by measuring the peak areas N {G,i} and N {G,ref } in the combined spectrum S(G), or by implementing Eq. ( 4) to calculate the gated probabilities P {G,i} and P {G,ref } .

VI. APPLICATION TO A SYNTHETIC LEVEL SCHEME

In this section, we apply the presented formalism to the study of a synthetic level scheme. We have chosen this idealized approach for the sake of clarity to illustrate the basic principles of the formalism, in line with the objective of this article. The main objective here is to show how the analytic formulas that we have derived can be used to determine the intensity of newly observed gamma-rays. Before coming to that point, we will first present the chosen level scheme, and check the accuracy of the analytic formulas we have derived by comparing their results with those from a purely numerical approach.

A. Presentation of the synthetic level scheme Building a synthetic level scheme allows to avoid additional effects such as the presence of transitions of degenerate energy and non-radiative deexcitation modes. Furthermore, we can ignore the details of nucleus-formation mechanism and transition physical properties, thus ignoring constraints on the expected values of primary feeding and branching ratios (this simplifies the choice of the present input, but has no impact on the future applicability of the method to realistic cases). We then remain with the problem of determining gated intensities for a list of transitions organized in a level scheme, with given emission probability and adjacency matrix.

The synthetic level scheme and corresponding transition scheme that are studied in this section are shown in Figure 7. The level scheme is composed of two interacting structures, named "ground-state band" and "excited band". The transitions can link two successive levels in a given structure (intra-band transitions) or two neighboring levels of each structure (inter-band transitions). The situation is especially common in odd nuclei or when a symmetry is broken. However, let us remind that no hypothesis is made here on the nature of the bands and transitions. Most importantly for our purpose, with this kind of level scheme, inter-band transitions allow different possibilities to pass from one transition to the other. This feature allows to check the analytic formula derived for optional gate conditions. Indeed, let us consider for instance the optional gate condition {t 4 • t 8 • t 12 • t 20 } 3 . The tiling relation for the selected set reads:

S(G = {t 4 • t 8 • t 12 • t 20 } 3 ) = S t4t8t12 t20 + S t4t8 t12t20 + S t4 t8t12t20 + St 4 t8t12t20 + S t4t8t12t20
which transforms into Equation (3) once the exclusive elementary spectra (containing a gate exclusion ti ) are developed in terms of positive elementary spectra. In the absence of inter-band transitions, we can see that most terms of the tiling relation cancel, since the occurrence of one transition in band B 1 would necessarily imply the occurrence of all the transitions below:

S(G = {t 4 • t 8 • t 12 • t 20 } 3 ) = St 4t8 t12t20 + S t4t8t12t20 = S t8t12t20
In order to check the validity of Equation (3), it is then important that the different exclusive elementary spectra of the tiling relation are not empty. In the present level scheme, for instance, S t4t8t12 t20 is not empty since at the end of the cascade t 20 can be avoided by following an alternative path via inter-band transitions t 19 t 21 .

Let us remind the two possible approaches to describe the deexcitation process: characterization of the level space (list of levels with associated primary feeding and branching matrix), or characterization of the transition space (list of transitions with associated emission probabilities and adjacency matrix). As stated in Section II, transition-space information can be deduced from level-space information. For convenience, in our code, the original input concerns level-space information. The list of levels with respective feeding is given by Table II, and the branching matrix is presented in Table III.

The formalism that we use is based on a transition-space approach, where the useful input is the transition probability vector P and the adjacency matrix A. Both can be deduced from the level-space input specified in Tables II andIII. This is all the data needed to characterize the transition space and predict the profile of any kind of gated spectrum obtained from the corresponding set of events. Table IV gives basic transition properties, in addition to the probability vector P.

B. Comparison of analytical and numerical gated spectra

This subsection is intended to illustrate the accuracy of the presented formalism. To this purpose, we now implement it to generate different gated spectra. The first step is to obtain the probability matrix P by applying Eq. (1). Next, we have to specify a gate condition G and calculate the gated probability P {G,i} of each transition t i . In the case of a positive explicit gate condition G = {g 1 • ... • g N }, these numbers are given by a straightforward application of Eq. ( 2). II: Level-space characterization: list of levels with their denomination, energy, primary feeding and total feeding. The total feeding is deduced from two kinds of input: primary feeding, and branching matrix given by Table III. Note that transitions used as gates also have a gated probability attributed: it corresponds to the probability that an event belongs to the selected set, given by

P {G} = P g1 × N j=2 P gj-1→gj
We then obtain an elementary spectrum such as those represented on the two upper panels of Figure 8. In the case of an optional gate condition G = {g 1 + ... + g N } m = L m/N , we have to apply Eq. ( 4), which requires several steps.

Starting from an empty combined spectrum, for each given value of p such that m ≤ p ≤ N , we have to:

1. Determine the C N p combinations of gates that will define the positive explicit conditions G α (p, L) (where α identifies each combination). In practice, we calculate a combination matrix where each line α gives a sub-list of p gates, identified by their position in the list L.

Sum the C N

p elementary spectra obtained by application of Eq. ( 2) with the sets of gates G α (p, L) given by each line of the combination matrix. This gives the sum-spectrum σ(p, L). We then obtain a combined spectrum such as those represented on the two lower panels of Figure 8.

The gated spectra obtained by applying the analytical formula ( 2) and ( 4) can be compared with the results obtained with a purely numerical approach, defined as follows: 1. List all possible cascades.

2. Determine the probability associated with each cascade.

3. The gated probability P {G,i} for each transition t i is obtained by summing the probabilities of all cascades that contain both t i and the gates needed to pass the selection.

The gated probability values we have obtained with the analytical and numerical approaches are strictly identical, for all kinds of gate conditions. This can be seen in Figure 8, where gated spectra are presented with four different gate conditions: markers correspond to the analytical method, and lines to the numerical one. The corresponding values of gated probabilities are listed in Table V.

C. Determination of the emission probability of a new transition

Finally, we show that our approach can be used to determine the emission probability of a newly observed transition that is added to the level scheme. This new transition is denoted by t x . We make the following suppositions:

• The final level of t x belongs to the previously known level scheme.

• The emission probability has been previously determined for all other transitions present in the level scheme.

Then, is it possible to determine the emission probability P x of the new transition.

Most usually, a newly observed transition t x is studied in gated spectra for which the list of gates is situated below t x . This is the case we are now presenting; for a discussion of the more general case, see E. In this situation, the unknown probability P x has no impact on the part of the probability matrix P that is used to determine the gated probability P {G,x} . P x can then be deduced from P {G,x} by a direct application of Eq. ( 4), which is reduced to: 8:

P {G,x} = N p=m c p (m)   C N p α=1   P x × P tx→g (α) 1 × p j=2 P g (α) j-1 →g (α) j     = P x × C x
G1 = {t12 • t20}, G2 = {t8 • t12 • t20}, G3 = {t4 + t8 + t12 + t20}3, G4 = {t4 + t8 + t12 + t20}2.
where C x can be directly calculated since it only depends on established data: the known part of the probability matrix, and the final level of t x .

Let us now turn to the study of the relative gated intensity I

x (G), that can be measured in a gated spectrum with respect to a reference transition t ref :

I (r) x (G) = N {G,x} N {G,ref } = P {G,x} P {G,ref }
Choosing as a reference transition t ref a transition that is also situated below t x , the gated probability P {G,ref } can be calculated independently using Eq. ( 4), where the involved part of the transition probability matrix is unaffected by the value of P x . In this case, we can determine P x directly once

I (r)
x (G) is measured in the gated spectrum:

P x = I (r) x (G) × P {G,ref } C x
We have applied this procedure to our example, using transition t 16 as the reference transition, and applying the different gate conditions shown in Figure 8. In practice, for the present study, we start from the nuclear structure described above (Figure 7), with the corresponding transition-space information contained in the emission probability vector P and adjacency matrix A, and we pick a transition that will play the role of t x . Information concerning t x is deleted from P and A. It has to be recovered by using the information remaining in P and A, together with the "observation" of a gated spectrum (here, this spectrum is previously calculated using the complete P and A). The correct value of P x was obtained for all the transitions situated above the sets of gates.

VII. SUMMARY AND OUTLOOK

In the present work, we have addressed the following issue: how to recover the probability of a transition through the measurement of intensities appearing in multi-gated spectra, using different kinds of gate conditions (explicit or optional). We have presented the basis of a formalism that allows to treat this problem following an analytic approach, and we have demonstrated formulas linking the gated probability of a gamma-ray with two objects that characterize the transition space of the excited nucleus: the transition probability vector P, and the transition probability matrix P. The former is linked to the primary feeding of the levels, and branching ratios; the latter, whose elements P ij give the probability that a transition t j occurs after a transition t i has taken place (whatever the number of steps in-between), is deduced from the transition adjacency matrix A by the analytic formula presented by Demand et al. [START_REF] Demand | Capture Gamma-Ray Spectroscopy and Related Topics[END_REF]. We have found the graph-theory framework used in this reference to be very fruitful and promising for the type of problems to be addressed in gamma-ray spectroscopy. Although the intensity problem we address can in principle be treated in a purely numerical way (by listing all possible cascades and their respective probabilities), the analytic approach allows to gain more control on the complexity of the analysis, and offers both a way to check the results and a powerful tool to extract emission probabilities in the case of new transitions on top of the set of gates.

Although the basic principles are soundly set down in the present article, some developments are needed before this formalism can be applied to extract emission probabilities from real experimental data. For this purpose, the priority points to be addressed in a future work are the following:

• More complete modeling of the deexcitation cascade, including non-radiative processes such as internal conversion. Indeed, the total transition probability (radiative and non-radiative) has to be used in the calculation of the transition probability matrix P, that describes the link between successive transitions in a cascade.

• Response of the detection system (detection efficiency, back-ground effects).

• Treatment of uncertainties, that concern the physics ingredient (feeding and branching for the known part of the level scheme) as well as the detector response.

These points deserve much attention and work, but no fundamental obstacle is expected to hinder these developments.

A dedicated software tool could then be elaborated to implement this formalism for the study of real data. Further developments can also be envisaged, such as the treatment of isomeric states, the possible presence of transitions with degenerate energy values, and the effect of angular correlations. As a final comment, the present approach stresses the importance to obtain accurate (rather than approximately estimated) values of the emission probabilities, even when they concern weak gamma-rays that can only be accessed via multi-gated spectra. Precise results can be used for instance as a criterion to check the tentative placement of a new transition in the level scheme: consistent values have to be obtained when using different gate conditions. Most importantly, the emission probabilities contain fundamental information that should be used to improve our knowledge of nuclear structure and reactions.

Appendix A: Conventional symbols and properties of set algebra

• Set union: E = E 1 ∪ E 2 contains all events that belong to E 1 and all events that belong to E 2 . The union of a series of sets reads:

E 1 ∪ ... ∪ E n = n i=1 E i • Set intersection: E = E 1 ∩ E 2 contains
all events that belong to both E 1 and E 2 . The intersection of a series of sets reads:

E 1 ∩ ... ∩ E n = n i=1 E i • Set difference: E 1 \ E 2 contains
all events that belong to E 1 but not to E 2 .

• Set complement: Ē contains all events that do not belong to E; it can be written Ē = U \ E, where U is the universe of events (i.e. the set that contains all of them).

• Intersection of a set E 1 with a set complement Ē2 :

E 1 ∩ Ē2 = E 1 ∩ [U \ E 2 ] = [E 1 ∩ U ] \ [E 1 ∩ E 2 ] = E 1 \ [E 1 ∩ E 2 ]
This relation is particularly useful for the treatment of optional gate conditions. 

E(G β (n, n, L)) = E g (β,o) 1 ...g (β,o) n ḡ(β,c) 1 ...ḡ (β,c) n = e (β,o) 1 ∩ ... ∩ e (β,o) n ∩ ē(β,c) 1 ∩ ... ∩ ē(β,c) n-1 ∩ ē(β,c) n
In this expression, each single-set complement ēi can be developed as U \ e i . In a first step, developing ē(β,c) n yields: ,c) n so that the exclusive elementary spectrum S(G β (n, n, L)) can be decomposed as:

E(G β (n, n, L)) = e (β,o) 1 ∩ ... ∩ e (β,o) n ∩ ē(β,c) 1 ∩ ... ∩ ē(β,c) n-1 ∩ U \ e (β,c) n = e (β,o) 1 ∩ ... ∩ e (β,o) n ∩ ē(β,c) 1 ∩ ... ∩ ē(β,c) n-1 \ e (β,o) 1 ∩ ... ∩ e (β,o) n ∩ ē(β,c) 1 ∩ ... ∩ ē(β,c) n-1 ∩ e (β
S g (β,o) 1 ...g (β,o) n ḡ(β,c) 1 ...ḡ (β,c) n = S g (β,o) 1 ...g (β,o) n ḡ(β,c) 1 ...ḡ (β,c) n-1 -S g (β,o) 1 ...g (β,o) n ḡ(β,c) 1 ...ḡ (β,c) n-1 g (β,c) n (B3)
We notice here a specificity of the notation: g

(β,c) i
identifies a gate that is required to be closed in the condition G β (n, n, L). However, it is not always closed for the exclusive elementary spectra appearing along the steps of the development: see the case of gate g (β,c) n in Eq. (B3), which is closed in the left member and open in the second member. For this reason, in the notation we use here for exclusive elementary spectra, closed gates are noted ḡ(β,c) i , where the bar is not redundant with the label c.

Equation (B3) implies that any exclusive elementary spectrum of order (n, n) can be expressed as the combination of exclusive elementary spectra of order (n, n -1) and (n + 1, n -1). Applying this relation recursively, we find that S(G β ) can be developed as a combination of positive elementary spectra of order p, with n ≤ p ≤ n + n. To represent the process, it is convenient to use for an elementary spectrum the notation S(G β ) = g

(β,o) 1 ...g (β,o) n ḡ(β,c) 1 ...ḡ (β,c) n
, and to symbolize the relation (B3) by a factorisation:

S(G β (n, n, L)) = g (β,o) 1 ...g (β,o) n ḡ(β,c) 1 ...ḡ (β,c) n-1 (1 -g (β,c) n )
Along the recursive steps, each closed gate factor ḡx is eventually replaced by the factor (1 -g x ), leading to the following expression of S(G β ) in terms of positive elementary spectra:

S(G β (n, n, L)) = g (β,o) 1 ...g (β,o) n (1 -g (β,c) 1 )...(1 -g (β,c) n ) (B4)
Such a product can be developed as a sum of alternatively positive and negative terms involving combinations of p gates, with p varying from n to n + n. It can be expressed by a generic expression involving all positive explicit conditions of p gates among the list L, affected by a coefficient k α,β that will be specified later:

S(G β (n, n, L)) = n+n p=n (-1) p-n C N p α=1 k α,β S(G α (p, L)) (B5)
where the α index identifies the different gate combinations L (α) defining the positive explicit conditions G α (p, L).

We have introduced the coefficient k α,β , which is 1 if the α combination appears in the development of S(G β ), and 0 otherwise. The condition to have k α,β = 1 is then:

• L (α) ⊆ (L (β,o) + L (β,c) ) (all gates open in G α are specified in G β ) • L (β,o) ⊆ L (α) (all gates open in G β are open in G α )
A given term S(G α (p, L)) appears in the development of several spectra S(G β (n, n, L)). Indeed, to determine a condition G β such that k α,β = 0:

• There are C p n choices to pick the n gates of L (α) that belong to L (β,o) • The remaining p -n gates of L (α) necessarily belong to L (β,c) • The list L (β,c) contains n gates, of which p -n belong to L (α) . The remaining n -(n -p) closed gates of G β have to be picked from the N -p gates of L that are not specified by G α : there are C N -p n-(p-n) = C N -p n+n-p possible combinations.

Thus, for fixed values of n, n, p and α, there are C p n × C N -p n+n-p values of β such that k α,β = 1. As a result, by performing a summation of Eq. (B5) over the β index (for fixed values of n and n), we obtain:

β S(G β (n, n, L)) = β n+n p=n (-1) p-n α k α,β S(G α (p, L)) = n+n p=n (-1) p-n α S(G α (p, L)) β k α,β β S(G β (n, n, L)) = n+n p=n (-1) p-n (C p n × C N -p n+n-p ) α S(G α (p, L))
where the β summation runs over the C N n+n ×C n+n n possible combinations to define G β (n, n, L); the α summation runs over the C N p possible combinations to define G α (p, L); and for given values of p and α, we have β k α,β = C p n ×C N -p n+n-p . Replacing the β and α summations by sum-spectra σ, this expression reads:

σ(n, n, L) = n+n p=n (-1) p-n (C p n × C N -p n+n-p ) σ(p, L) (B6)
Namely, for a given gate list L = {g 1 , ..., g N }, the exclusive sum-spectrum of order (n, n) can be expressed by a combination of positive sum-spectra of order p with n ≤ p ≤ n + n. The above result given by Eq. (B6) can be directly applied to the expression of the combined spectrum given by Eq.(B2), which results from the tiling relation. Some simplifications occur due to the condition n + n = N (the conditions involved in the tiling relation have to specify the status of every gate of L). We have in this case C N -p n+n-p = C N -p N -p = 1, so the exclusive sum-spectra appearing in Eq.(B2) are given by: A schematic representation of the principle of this development is shown in Figure 9. Appendix C: Case of "spiked" spectra

The optional gate condition G = {g 1 + ... + g N } m involves the list of gates L = {g 1 , ..., g N }. The simplest way to express the combined set E(G) of events selected by G is to perform the union of all positive elementary sets E(G α ), where each condition G α specifies a sublist of m gates chosen among L:

E(G) = E(L m/N ) = C N m α=1 E(G α (m, L)) (C1)
On the other hand, since the sets E(G α ) are overlapping, multi-counting of events occurs if we want to represent E(G) by the sum of elementary spectra S(G α ). This is why the resulting spectrum is called a spiked spectrum:

S s (G) = C N m α=1 S(G α (m, L))
Note that the spiked spectrum is nothing but the sum-spectrum of order m:

S s (G) = σ(m, L) (C2) 
In the spiked spectrum, the (distorted) counting of the t i transition is given by:

N i (S s (G)) = C N m α=1 N {Gα(m,L),i} = C N m α=1 N tot × P {Gα(m,L),i}
where N tot is the total number of events, and the gated probabilities P {Gα(m,L),i} are given in terms of the transition probability vector P and matrix P:

P {Gα(m,L),i} = m h=0 P T h α,0 × m j=1 P T h α,j-1 →T h α,j 1. Optional gate condition G = {g1 + g2 + g3}2
In this example, N = 3, m = 2, and L = {g 1 , g 2 , g 3 }.

• Combined set expressed by the tiling relation:

E({g 1 + g 2 + g 3 } 2 ) = E g1g2 ḡ3 ∪ E g1g3 ḡ2 ∪ E g2g3 ḡ1 ∪ E g1g2g3
• Combined spectrum expressed as a sum of exclusive elementary spectra:

S({g 1 + g 2 + g 3 } 2 ) = S g1g2 ḡ3 + S g1g3 ḡ2 + S g2g3 ḡ1 + S g1g2g3 = σ(2, 1, L) + σ(3, 0, L)
where the exclusive sum-spectrum of order (2, 1) is:

σ(2, 1, L) = σ(2, 1, {g 1 , g 2 , g 3 }) = S g1g2 ḡ3 + S g1g3 ḡ2 + S g2g3 ḡ1
and the exclusive sum-spectrum of order (3, 0), equivalent to the positive sum-spectrum of order 3, is:

σ(3, 0, L) = σ(3, 0, {g 1 , g 2 , g 3 }) = σ(3, {g 1 , g 2 , g 3 }) = S g1g2g3
• Expression of the exclusive sum-spectrum σ(2, 1, L) in terms of positive sum-spectra, as given by Eq. (B7): Note that for such a reduced list of gates, the final result can easily be obtained in a pedestrian approach, applying the development of exclusive spectra involving one closed gate:

S g1g2 ḡ3 = S g1g2 -S g1g2g3 = g 1 g 2 (1 -g 3 ) S g1g3 ḡ2 = S g1g3 -S g1g2g3 = g 1 g 3 (1 -g 2 ) S g2g3 ḡ1 = S g2g3 -S g1g2g3 = g 2 g 3 (1 -g 1 )

which are specific examples of the general relation (B4). We recover the final result:

S({g 1 + g 2 + g 3 } 2 ) = S g1g2 + S g1g3 + S g2g3 -2S g1g2g3

• We finally consider the spiked spectrum. The combined set can be expressed as the union of all positive elementary sets of order m = 2:

E(G) = C 3 2 α=1 E(G α (2, L)) = E g1g2 ∪ E g1g3 ∪ E g2g3
The corresponding summation of elementary spectra (which involves multi-counting of events in the overlapping regions of the united sets) gives the spiked spectrum:

S s (G) = σ(2, L) = C 3 2 α=1 S(G α (2, L)) = S g1g2 + S g1g3 + S g2g3
The relation between combined and spiked spectra is:

S(G) = S s (G) -2S g1g2g3
which, again, is quite straightforward in this simple example: one can see directly that the events of the overlapping part E g1g2g3 are counted three times in the spiked spectrum, since they belong to all three sets E g1g2 , E g1g3 and E g2g3 .

2. Gate condition G = {g1 + g2 + g3 + g4}2

In this example, N = 4, m = 2, and L = {g 1 , g 2 , g 3 , g 4 }. With only one more gate in the optional list, one finds that the pedestrian approach to express the combined spectrum in terms of positive elementary spectra is already much more tedious, and the analytic expressions that have been derived are now helpful.

• Combined set expressed by the tiling relation: where the sum-spectra σ are: σ(2, 2, L) = S g1g2 ḡ3 ḡ4 + S g1g3 ḡ2 ḡ4 + S g1g4 ḡ2 ḡ3 + S g2g3 ḡ1 ḡ4 + S g2g4 ḡ1 ḡ3 + S g3g4 ḡ1 ḡ2 σ(3, 1, L) = S g1g2g3 ḡ4 + S g1g2g4 ḡ3 + S g1g3g4 ḡ2 + S g2g3g4 ḡ1 σ(4, 0, L) = S g1g2g3g4

E({g 1 + g 2 + g 3 + g 4 } 2 ) =
• Expression of the exclusive sum-spectra σ(n, N -n, L) in terms of positive sum-spectra σ(p, L). Following the pedestrian approach, each term can be developed recursively according to: S g1g2 ḡ3 ḡ4 = S g1g2 ḡ3 -S g1g2g4 ḡ3 = (S g1g2 -S g1g2g3 ) -(S g1g2g4 -S g1g2g3g4 )

In the end, we recover the result expressed by the analytic formula: The modification of A, in turn, has an impact on the probability matrix P, and consequently on the gated probabilities given by Eq. ( 4). Note that the P x value will affect the gated probability P {G,i} of a transition t i if t x is between t i and one of the gates, or between one of the gates and t i , or between two gates. It also affects the gated probability P {G,x} if t x is between two gates. As a consequence, in the general case, the relative intensity is given by

S(G = {g 1 + g 2 + g 3 + g 4 } 2 ) =
I (r)
x (G) = P {G,x} (P x ) P {G,ref } (P x )

where the dependence on P x cannot be separated. This can be solved for P x using a numerical iterative procedure:

1. Propose a value of P x in the emission probability vector P.

2. Deduce the modifications that have to be done in the adjacency matrix.

3. Re-calculate the probability matrix according to Eq. (1).

4. Apply Eq. ( 4) to determine the new gated probabilities. x (G) measured in the gated spectrum.

6. Modify the value of P x for a new iteration, until convergence is reached.

We have applied this procedure to our example, using a simple dichotomy. Transition t 16 was used as the reference transition, and the different gate conditions shown in Figure 8 have been applied. All the transitions different from t ref and from the gates have been treated in turn as being the new transition t x . In all cases, the correct value of P x was recovered, except in one case: the last transition, t 21 . For this last transition, changing the value of P x has no impact on the gated probabilities. Indeed, no adjacency matrix element is affected, since t 21 is the only possible transition from level (B2) 1 , so the probability matrix P is unaffected; furthermore, t 21 is never on top of a selected cascade, so P t21 is never involved in the expression of the gated probabilities. Actually, changing P t21 only means changing the primary feeding of the initial level (B2) 1 , and any condition involving a gate above t 21 removes this contribution. For such a transition, the emission probability has to be determined without gate conditions. Let us note, however, that it is not a disadvantage for our purpose: indeed, our focus is on the transitions situated in the upper region of the level scheme, where multi-gating is needed to make observations. Lack of knowledge about transition probabilities (such as P t21 ) that do not affect such spectra has, by definition, no consequence.

6 FIG. 1 :

 61 FIG.1:(Color online) Basic illustration of the impact of gate conditions on the gamma-ray intensities observed in a spectrum. This represents a nuclear level scheme, with levels A, B, C and D linked by different transitions. The numbers on level C give the branching ratio for the two deexcitation paths. We want to measure the intensity of the transition tDC , but in order to select events where the photons are emitted by the nucleus of interest, we have to apply a gate condition. If the transition used as a gate is tCA, the resulting spectrum will show 40% of the total intensity of tDC . If tBA is used as a gate, the resulting spectrum will show 60% of the total intensity of tDC . In more complex level schemes, and when gate conditions involve several transitions, the relation between emitted and gated intensity is non-trivial.

FIG. 4 :

 4 FIG. 4: Combined sets: basic examples. (a) Combined set E(G = {g1 + g2}1). (b) Combined set E(G = {g1 + g2 + g3}2).

3 FIG. 5 : 3 FIG. 6 :

 3536 FIG. 5: Schematic illustration of the tiling of a combined set.

  p-n C p n where S(G α (p, L)) are the positive elementary spectra associated with the various combinations of p gates among the list L of N gates. The coefficients c p (m) involved in the development of S(L m/N

  and p to the column number. The binomial coefficients can even be recovered by hand, applying the Pascal relation C p+1 n+1 = C p n + C p n+1 that allows to construct the well-known Pascal triangle. The a n,p coefficients are shown in Table I up to p = 10. The coefficients c p (m) are obtained by summing the elements of column p, starting at line m.

(

  

3 . 4 .

 34 Calculate the coefficient c p (m) = p n=m (-1) (p-n) C p n . Add to the combined spectrum the sum-spectrum σ(p, L) affected by the factor c p (m).

FIG. 8 :

 8 FIG. 8: (Color online) Gated spectra associated with the synthetic level scheme of Figure 7. Gate conditions are specified on each panel : positive explicit conditions G1 = {t12 • t20} for panel a), G2 = {t8 • t12 • t20} for panel b); optional conditions G3 = {t4 + t8 + t12 + t20}3 for panel c), G4 = {t4 + t8 + t12 + t20}2 for panel d). The lines correspond to numerical results, and the markers to analytical results (dots: intra-band transitions of the ground-state band; squares: intra-band transitions of the excited band; stars: inter-band transitions). The vertical axis corresponds to the gated probability of each transition. Transitions used as gates are indicated by the letter "g".

1 .

 1 set associated with this condition is E(G β (n, n, L)) = E g (β,o)

  introduced the coefficients a n,p = (-1) p-n C p n . The combined spectrum associated with the condition G = L m/N is expressed as the following combination:S(L m/N ) = N n=m σ(n, N -n, L) p σ(p, L)The sum inversion is performed thanks to the relation verified by any function f (n, p):Introducing the coefficients c p (m) = p n=m a n,p to express the linear combination, we finally obtain Eq. (3): α (p, L))

FIG. 9 :

 9 FIG.9:(Color online) Schematic illustrations of the development in positive spectra. (a) Recursive development allowing to express an exclusive elementary spectrum of order (n0, n0) in terms of positive elementary spectra of order p, with n0 ≤ p ≤ n0 + n0. The horizontal axis (n or p) is the number of open gates; the vertical axis (n) is the number of closed gates. One square of the grid represents an exclusive elementary spectrum of order (n, n); if n = 0, it is a positive elementary spectrum of order p. The two arrows from each square (n, n) symbolize its development in two elementary spectra of order (n, n -1) and (n + 1, n -1), according to relation (B3). The horizontal arrow on the lower line shows the ensemble of positive elementary spectra of order p involved in the development of the original elementary spectrum of order (n0, n0). For correspondence with Eq. (B6), we can also identify each square (n, n) with the exclusive sum-spectrum σ(n, n, L), and each square (p, 0) with the positive sum-spectrum σ(p, L). (b) Similar illustration, applied to the combined spectrum S(L m/N ) composed of exclusive sum-spectra σ(n, N -n, L) (red squares) according to the tiling relation S(L m/N ) = N n=m σ(n, N -n, L) given by Eq. (B2). The arrows showing the steps of the recursive developments are not shown here. Each horizontal arrow on the lower line illustrates the expression of an exclusive sum-spectrum σ(n, N -n, L) in terms of positive sum-spectra σ(p, L), corresponding to the development σ(n, N -n, L) = N p=n an,p σ(p, L) given by Eq. (B7). Each square σ(p, L) is involved in the development of all the squares σ(n, N -n, L) with m ≤ n ≤ p, hence the coefficients cm(p) = p n=m an,p in the final development S(L m/N ) = N p=m cp(m) σ(p, L) given by Eq. (3).

σ( 2 , 1 ,

 21 L) = a 2,2 σ(2, L) + a 2,3 σ(3, L) = σ(2, L) -3σ(3, L) with σ(2, L) = S g1g2 + S g1g3 + S g2g3 σ(3, L) = S g1g2g3As a result:S({g 1 + g 2 + g 3 } 2 ) = [σ(2, L) -3σ(3, L)] + σ(3, L) = σ(2, L) -2σ(3, L) = S g1g2 + S g1g3 + S g2g3 -2S g1g2g3

3 β•

 3 β (2, 2, L)) = E g1g2 ḡ3 ḡ4 ∪ E g1g3 ḡ2 ḡ4 ∪ E g1g4 ḡ2 ḡ3 ∪ E g2g3 ḡ1 ḡ4 ∪ E g2g4 ḡ1 ḡ3 ∪ E g3g4 ḡ1 ḡ2 C 4 =1 E(G β (3, 1, L)) = E g1g2g3 ḡ4 ∪ E g1g2g4 ḡ3 ∪ E g1g3g4 ḡ2 ∪ E g2g3g4 ḡ1Combined spectrum expressed as a sum of exclusive elementary spectra:S({g 1 + g 2 + g 3 + g 4 } 2 ) = β (4, 0, L))= σ(2, 2, L) + σ(3, 1, L) + σ(4, 0, L)

(- 1 )

 1 p-n C p n = 1 σ(2, L) = S g1g2 + S g1g3 + S g1g4 + S g2g3 + S g2g4 + S g3g4

5 .

 5 Compare the ratio P {G,x} /P {G,ref } to the relative intensity I (r)

a) Level scheme l 1 l 2 l 3 l 4 l 5 Energy t 1 t 2 t 3 t 4 t 5 t 6 b) Level-space graph l 3 l 5 t 1

  Levels are denoted by li (ordered by increasing energy), transitions are denoted by ti (ordered by decreasing energy of the initial level). In the graph representations, vertices are represented as dots and directed edges as arrows.

				c) Transition-space graph
							t 1	
	l 4			t 3	t 2		l 3	l 3
	t 3	t 2 l 2	t 6	t 4 t 5	l 2	t 6	t 4 l 2	t 5
	l 1							
	FIG. 2: (Color online) A simple illustration of nuclear structure representations: (a) usual level-scheme representation, (b)
	representation of a level-space graph, (c) representation of a transition-space graph.				

TABLE I :

 I Coefficients an,p that allow to express any combined spectrum S(L m/N ) with gate list size N ≤ 10.

TABLE III :

 III 

	Identification Initial Level Final Level Transition Energy Emission Probability
	t1	(B1)8	(B1)7	354	0.098
	t2	(B1)7	(B1)6	276	0.199
	t3	(B1)6	(B2)5	238	0.086
	t4	(B1)6	(B1)5	312	0.216
	t5	(B2)5	(B1)5	74	0.028
	t6	(B2)5	(B2)4	617	0.111
	t7	(B1)5	(B2)4	543	0.117
	t8	(B1)5	(B1)4	843	0.233
	t9	(B2)4	(B1)4	300	0.073
	t10	(B2)4	(B2)3	606	0.209
	t11	(B1)4	(B2)3	306	0.156
	t12	(B1)4	(B1)3	638	0.259
	t13	(B2)3	(B1)3	332	0.120
	t14	(B2)3	(B2)2	549	0.299
	t15	(B1)3	(B2)2	217	0.163
	t16	(B1)3	(B1)2	466	0.325
	t17	(B2)2	(B1)2	249	0.397
	t18	(B2)2	(B2)1	570	0.119
	t19	(B1)2	(B2)1	321	0.237
	t20	(B1)2	(B1)1	1111	0.592
	t21	(B2)1	(B1)1	790	0.408

Level-space characterization: branching matrix B. Each element Bij gives the probability that level i depopulates directly to level j.

TABLE IV :

 IV Transition-space characterization: list of transitions with associated denomination, initial level, final level, transition energy, and emission probability. The data for emission probability can be considered either as an input, or as deduced from level-space information about primary feeding and branching ratios.

	Energy (keV)		Groud-State Band (B1)				Excited Band (B2)	
	4000 3000	(B1) 5 (B1) 6 (B1) 8 (B1) 7	t 1 t 2 t 4 t 8	t 9	t 5	t 3 t 7	t 6	(B2) 4 (B2) 5
	1000 2000	(B1) 3 (B1) 4 (B1) 2	t 12 t 16	t 13 t 17		t 11 t 15 t 19	t 10 t 14 t 18	(B2) 2 (B2) 3 (B2) 1
			t 20					
	0	(B1) 1			t 21		

FIG. 7: (Color online) Synthetic level scheme used to illustrate the accuracy of the formalism.

TABLE V :

 V Transition ti P {G 1 ,i} P {G 2 ,i} P {G 3 ,i} P {G 4 ,i} Gated probabilities of the different transitions, with the sets of gates used to obtain the spectra of Figure

	t1	0.0258 0.0207 0.0432 0.0673
	t2	0.0525 0.0421 0.0880 0.1370
	t3	0.0127 0.0047 0.0047 0.0177
	t4	0.0670 0.0593 0.1290 0.1907
	t5	0.0086 0.0076 0.0076 0.0166
	t6	0.0119	0	0	0.0119
	t7	0.0124	0	0.0077 0.0515
	t8	0.0960 0.0960 0.1580 0.2190
	t9	0.0301	0	0.0077 0.0382
	t10	0	0	0	0.0310
	t11	0	0	0.0314 0.0775
	t12	0.1710 0.0960 0.1344 0.2246
	t13	0	0	0.0102 0.0331
	t14	0	0	0.0212 0.0753
	t15	0.0475 0.0267 0.0452 0.0812
	t16	0.1235 0.0694 0.0994 0.1765
	t17	0.0475 0.0267 0.0594 0.1343
	t18	0	0	0.0069 0.0222
	t19	0	0	0.0237 0.0540
	t20	0.1710 0.0960 0.1351 0.2568
	t21	0	0	0.0307 0.0762

Appendix B: Combined spectrum in terms of elementary spectra This Appendix is dedicated to the detailed demonstration of Eq. ( 3). This equation expresses the combined spectrum associated with an optional gate condition as a summation over positive elementary spectra. It is obtained following two main steps, whose principle is exposed in Section V:

• the tiling of the combined set, which involves exclusive elementary sets;

• the development of exclusive spectra in terms of positive spectra.

More details concerning these two steps, and the formulation of the final result, are given below.

Tiling of the combined set: formalisation

Let us introduce the following definitions:

• Exclusive explicit gate condition: list of gates where each gate is required to be either open or closed. The term "explicit" means that each gate involved in the condition has a specified (open or closed), "exclusive" means that some gates are required to be closed.

• From a given list L of N gates, exclusive explicit conditions can be built by extracting two sublists: a list of n gates required to be open

}, and a list of n gates required to be closed • The set of events selected by a gate condition

and is called an exclusive elementary set of order (n, n).

• The spectrum that represents E(G β (n, n, L)) is noted S(G β (n, n, L)) and is called an exclusive elementary spectrum of order (n, n).

• For a given list L and fixed values of n and n, the sum of spectra associated with all the conditions G β (n, n, L) is noted σ(n, n, L) and is called the exclusive sum-spectrum of order (n, n). It reads :

For the tiling of E(G) by elementary sets, we need to consider all the conditions G β (n, n, L) such that n ≥ m and n + n = N . For a given value of n, the number of β combinations is then given by C

This leads to the tiling relation :

The tiling relation allows to obtain the combined spectrum representing E(G) as: The same formula applies to the reference transition t ref , so that the spiked relative intensity is obtained as:

We could conclude that, although the spiked spectrum gives a distorted representation of the events selected by G, it is also linked to the transition probability vector P and matrix P in a well-defined way. So it can also be used as an analysis tool if the goal is, for instance, to obtain information on the transition probabilities by measuring the peak ratio N i (S s (G))/N ref (S s (G)). Note however that, if one of the gates is a doubled transition (namely, there is another possible transition with the same energy), even if we intend to apply an explicit condition, the filtered events obey an effective condition that is combined: no elementary spectrum can be isolated. In this case the analysis has to take into account the combinatory effects associated with "or"-type gate conditions.

Appendix D: Examples of optional conditions and associated spectra

An optional condition is denoted by G = {g 1 +...+g N } m ; it involves a list of N optional gates L = {g 1 , ..., g N }, and m is the minimal number of open gates among this list. The combined set of events associated with this condition is E(G); it is represented by the combined spectrum S(G). We want to develop S(G) in terms of positive elementary spectra

p } extracted from L, with m ≤ p ≤ N . In this appendix, we illustrate with specific examples the formulas that are derived in B and summarized below:

• Tiling relation (B1) to express the combined set as non-overlapping exclusive elementary sets:

• The resulting relation (B2) between combined and exclusive elementary spectra:

• Expression of exclusive sum-spectra in terms of positive sum-spectra, given by Eq. (B7): 

Term p = 3:

Term p = 4:

The combined spectrum is then expressed as:

Note that the coefficients c p (m) = p n=m (-1) p-n C p n can be obtained by column summation in a universal table that contains the coefficients a n,p (Table I).

• Let us finally consider the spiked spectrum. The union of all positive elementary sets of order m = 2 is now:

The corresponding summation of elementary spectra (which involves multi-counting of events in the overlapping region of the united sets) gives the spiked spectrum:

The relation between combined and spiked spectra is:

Appendix E: Intensity of a new transition of arbitrary position

We have shown in section VI C how the present formalism allows to determine the intensity of a new transition situated above the transitions involved in the gate condition, by a straightforward application of Eq. ( 4). In this Appendix, we discuss the more general case where t x is located anywhere in the level scheme. This case can still be treated by our formalism, but the transition probability matrix elements used in Eq. ( 4) for the determination of the gated probabilities P {G,x} and P {G,ref } now have a dependence on P x . As a result, the link between P x , P {G,x} and P {G,ref } is not explicit anymore and an iterative procedure is needed to recover the value of P x .

To more precisely study this point, let us detail the consequences of inserting a new transition t x in the level scheme. The transition-space dimension increases: the element t x is added to the transition vector, and the transition probability vector P has to be completed with the corresponding value of P x . The impact on the adjacency matrix A are the following:

• The line and column corresponding to t x have to be added.

• For all transitions t i arriving on the initial level of t x , the adjacency matrix elements A ij have to be renormalized to take into account the new possible deexcitation path: the new values depend on P x . We have: A ij = P j / j P j , where j runs over all transitions with same initial level as t x (including now t x ).

• The line added for t x is similar to the lines corresponding to the transitions that have the same final level as t x (it is determined by the branching properties of this final level, unaffected by P x ).