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MODERATE DEVIATION PRINCIPLE IN NONLINEAR BIFURCATING

AUTOREGRESSIVE MODELS

S. VALÈRE BITSEKI PENDA AND ADÉLAÏDE OLIVIER

Abstract. Recently, nonparametric techniques have been proposed to study bifurcating autore-

gressive processes – an adaptation of autoregressive processes for a binary tree structure. One

can build Nadaraya-Watson type estimators of the two autoregressive functions as in [3] and [5].
In the present work, we prove moderate deviation principle for these estimators.
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1. Introduction

1.1. A generalization of BAR processes. Bifurcating autoregressive (BAR) processes where
introduced by Cowan an Staudte [6] in 1986 to study E. coli bacterium. Since then it has been ex-
tensively studied. We refer in particular to the recent works of Bercu and Blandin [1], de Saporta,
Gégout-Petit and Marsalle [8], see also references therein. Nonlinear bifurcating autoregressive
(NBAR) processes, studied in Bitseki Penda et al. [4, 5], generalize BAR processes, avoiding an a
priori linear specification on the two autoregressive functions.

We first need some notation. We introduce the infinite binary tree whose vertices are indexed
by the positive integers: the initial individual is indexed by 1 and an individual k ≥ 1 gives birth
to two individuals 2k and 2k+1. For m ≥ 0, let Gm = {2m, . . . , 2m+1−1} be the m-th generation.
A given individual k ≥ 1 lives in the rk-th generation with rk = blog2 kc.

Let us now introduce precisely a NBAR process which is specified by 1) a filtered probability
space (Ω,F , (Fm)m≥0,P), together with a measurable state space (R,B), 2) two measurable func-
tions f0, f1 : R → R and 3) a probability density G on (R × R,B ⊗ B) with a null first order
moment. In this setting we have the following

Definition 1. A NBAR process is a family (Xk)k≥1 of random variables with value in (R,B) such
that, for every k ≥ 1, Xk is Frk -measurable and

X2k = f0(Xk) + ε2k and X2k+1 = f1(Xk) + ε2k+1

where
(
(ε2k, ε2k+1)

)
k≥1

is a sequence of independent bivariate random variables with common

density G.

The distribution of (Xk)k≥1 is thus entirely determined by the autoregressive functions (f0, f1),
the noise density G and an initial distribution for X1. Informally, each k ≥ 1 is viewed as a particle
of feature Xk (size, lifetime, growth rate, DNA content and so on) with value in R. Conditional on
Xk = x, the feature (X2k, X2k+1) ∈ R2 of the offspring of k is a perturbed version of

(
f0(x), f1(x)

)
.
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When X1 is distributed according to a measure µ(dx) on (R,B), we denote by Pµ the law of
the NBAR process (Xu)u∈T and by Eµ[·] the expectation with respect to the probability Pµ.

1.2. Nadaraya-Watson type estimator of the autoregressive functions. For n ≥ 0, intro-
duce the genealogical tree up to the (n+ 1)-th generation, Tn+1 =

⋃n+1
m=0 Gm. Assume we observe

Xn+1 = (Xk)k∈Tn+1
, i.e. we have |Tn+1| = 2n+2 − 1 random variables with value in R. Let D ⊂ R

be a compact interval. We propose to estimate (f0(x), f1(x)) the autoregressive functions at point
x ∈ D from the observations Xn+1 by

(1)
(
f̂ι,n(x) =

|Tn|−1
∑
k∈Tn

Khn(x−Xk)X2k+ι(
|Tn|−1

∑
k∈Tn

Khn(x−Xk)
)
∨$n

, ι ∈ {0, 1}
)
,

where $n > 0 and we set Khn(·) = h−1
n K(h−1

n ·) for hn > 0 and a kernel function K : R → R
such that

∫
RK = 1. Almost sure convergence to

(
f0(x), f1(x)

)
and asymptotic normality of these

estimators have been studied by Bitseki Penda and Olivier in [5].

1.3. Objective. The purpose of this work is to establish a moderate deviation principle for the
estimators of the autoregressive functions defined by (1). Roughly speaking, for some range of

speed (bn, n ∈ N) such that
√
|Tn|1−γ � bn � |Tn|1−γ where γ ∈ (0, 1), for all x ∈ R and for all

δ > 0, our goal is to establish asymptotic equivalences of the form

|Tn|hn
b2n

logP
(
|Tn|hn
bn

|f̂ι,n(x)− fι(x)| > δ

)
∼ − ν(x)δ2

2σ2
ι

∫
S
K2(y)dy

,

where σ2
ι denotes the variance of ε1+ι and the function ν(·) will be specified later.

Statistical estimators are also studied under the angle of large and moderate deviation principles.
Large and moderate deviations limit theorems are proved in the independent setting for the kernel
density estimator and also for the Nadaraya-Watson estimator (see Louani and Joutard [12, 13,
11] in the univariate case, see also Mokkadem et al. [15] and references therein). We refer to
Mokkadem and Pelletier [14] for the study of confidence bands based on the use of moderate
deviation principles.

Before we proceed, let us introduce the notion of moderate deviation principle in a general
setting. Let (Zn)n≥0 be a sequence of random variables with values in R endowed with its Borel
σ-field B and let (sn)n≥0 be a positive sequence that converges to +∞. We assume that Zn/sn
converges in probability to 0 and that Zn/

√
sn converges in distribution to a centered Gaussian

law. Let I : R → R+ be a lower semicontinuous function, that is for all c > 0 the sub-level set
{x ∈ R, I(x) ≤ c} is a closed set. Such a function I is called rate function and it is called good rate
function if all its sub-level sets are compact sets. Let (an)n≥0 be a positive sequence such that
an → +∞ and an/sn → 0 as n goes to +∞.

Definition 2 (Moderate deviation principle, MDP). We say that Zn/
√
ansn satisfies a moderate

deviation principle in R with speed an and the rate function I if, for any A ∈ B,

− inf
x∈A◦

I(x) ≤ lim inf
n→∞

1

an
logP

( Zn√
ansn

∈ A
)
≤ lim sup

n→∞

1

an
logP

( Zn√
ansn

∈ A
)
≤ − inf

x∈Ā
I(x),

where A◦ and Ā denote respectively the interior and the closure of A.

Our objective is to prove such a MDP for the estimators f̂0(x) and f̂1(x).
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2. Moderate deviation principle

2.1. Model contraints. The autoregressive functions f0 and f1 will be restricted to belong to
the following class. For ` > 0, we introduce the class F` of bounded functions f : R→ R such that
|f |∞ = supx∈R |f(x)| ≤ `.

The two marginals of the noise density G0(·) =
∫
RG(·, y)dy and G1(·) =

∫
RG(x, ·)dx are devoted

to belong to the following class. For r > 0 and λ > 2, we introduce the class Gr,λ of nonnegative
continuous functions g : R→ [0,∞) such that

g(x) ≤ r

1 + |x|λ

for any x ∈ R.

For any R > 0, we set

(2) δ(R) = min
{

inf
|x|≤R

G0(x); inf
|x|≤R

G1(x)
}

and

η(R) =
|G0|∞ + |G1|∞

2

∫
|y|>R

∫
x∈R

r

1 +
∣∣y − γ|x| − `∣∣λ ∧ ∣∣y + γ|x|+ `

∣∣λ dxdy.
To guarantee we have geometric ergodicity of the tagged-branch Markov chain (see Guyon [10]

or Section 3.1 below), uniformly in the initial value, with an exponential decay rate smaller than
1/2, we will require the following assumption (see Lemma 9).

Assumption 3. There exists R3 > ` such that 2(R3 − `)δ(R3) > 1/2 with δ(·) defined by (2).

The following assumption will guarantee that the invariant density ν of the tagged-branch chain
is positive on some nonempty interval (see Lemma 17 in [5]).

Assumption 4. For R1 > 0 such that η(R1) < 1, there exists R2 > `+ γR1 such that δ(R2) > 0.

We also reinforce usual assumptions on the kernel.

Assumption 5. The kernel K : R → R is bounded with compact support and for some integer
n0 ≥ 1, we have

∫∞
−∞ xkK(x)dx = 1{k=0} for k = 0, . . . , n0. In addition, K : R→ R is such that∫

R
|K+(x)|dx > |G0|∞+|G1|∞

2δ(R2)
(

1−η(R1)
) ∫

R
|K−(x)|dx

where R1, R2 come from Assumption 4 and K+(·) = max{K(·); 0}, K−(·) = min{K(·); 0}.

Note that the strict inequality required in Assumption 5 is valid for any nonnegative kernel – since∫
R |K

−(x)|dx = 0 for such kernels. Thus the triangle kernel, the Epanechnikov kernel e.g. satisfie
Assumption 5.

To finish, we introduce smooth functions described in the following way: for X ⊆ R and β > 0,

with β = bβc+ {β}, 0 < {β} ≤ 1 and bβc an integer, let HβX denote the Hölder space of functions

h : X → R possessing a derivative of order bβc that satisfies |hbβc(y) − hbβc(x)| ≤ c(h)|x − y|{β}.
The minimal constant c(h) such that the previous inequality holds defines a semi-norm |g|HβX . We

equip the space HβX with the norm ‖h‖HβX = supx |h(x)|+ |h|HβX and the balls HβX (L) = {h : X →
R, ‖h‖HβX ≤ L}, L > 0.
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2.2. Main result. We are now ready to state a moderate deviation principle (in the sense of

Definition 2) for the estimators f̂0(x) and f̂1(x) in this framework.

Theorem 6. Let (bn)n≥0 be a positive sequence such that

(i) lim
n→∞

bn
(|Tn|hn)1/2

= +∞ , (ii) lim
n→∞

bn
|Tn|hn

= 0 , (iii) lim
n→∞

bn

|Tn|h1+β
n

= +∞.

Let ` > 0, r > 0 and λ > 5. Specify (f̂0,n, f̂1,n) with a kernel K satisfying Assumption 5 for
some n0 > 0, with hn ∝ |Tn|−α for α ∈ (1/(2β + 1), 1), and with $n > 0 such that $n → 0
as n → +∞. For any initial probability measure µ(dx) on R for X1, for every L,L′ > 0 and

0 < β < n0, for every G such that (G0, G1) ∈
(
Gr,λ ∩HβR(L′)

)2
satisfy Assumptions 3 and 4, there

exists d = d(`,G) > 0 such that for every compact interval D ⊂ [−d, d] with nonempty interior,

for every x in the interior of D and for every functions (f0, f1) ∈
(
F` ∩HβD(L)

)2
, the sequence(

|Tn|hn
bn

(
f̂0,n(x)− f0(x)

f̂1,n(x)− f1(x)

)
, n ≥ 0

)
satisfies a MDP on R2 with speed b2n/(|Tn|hn) and good rate function Jx : R2 → R defined by

Jx(z) =
(
2|K|22

)−1
ν(x)ztΓ−1z , z ∈ R2,

with Γ the variance-covariance matrix of (ε1, ε2), where zt stands for the transpose of vector z.

The notation ∝ means proportional to up to some positive constant. The contraction principle
(see the textbook of Dembo and Zeitouni [7], Chapter 4) enables us to state the following corollary
of Theorem 6.

Corollary 7. In the same setting as Theorem 6, for every δ > 0,

lim
n→+∞

|Tn|hn
b2n

logP
( |Tn|hn

bn

∣∣f̂ι,n(x)− fι(x)
∣∣ > δ

)
= −

(
2σ2

ι |K|22
)−1

ν(x)δ2, ι ∈ {0, 1},

with σ2
ι denoting the variance of ε1+ι.

Remark 8. Let us mention that recently, Bitseki et al. [3] have establish transportation inequality
for bifurcating Markov chains. This has allowed them to obtain deviation inequalities for a large
class of functions. However, their results do not allow to obtain MDP with optimal speeds as in
Theorem 6.

3. Proofs

3.1. Preliminaries. A key object in the study of NBAR processes (particular case of a bifurcating
Markov chain, see Guyon [10] for a general definition) is the so-called tagged-branch Markov chain.
Consider the Markov chain chain (Ym)m≥0 taking values in R, such that Y0 = X1, with transition

(3) Q(x, dy) =
1

2

(
G0

(
y − f0(x)

)
+G1

(
y − f1(x)

))
dy, x ∈ R.

It corresponds to a lineage taken randomly (uniformly at each branching event) in the population.
In the setting of Theorem 6, we achieve uniform ergodicity for the tagged-branch Markov chain Y
as stated in the following
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Lemma 9 (Uniform ergodicity). For every (f0, f1) ∈ F2
` , for every G such that (G0, G1) ∈ G2

r,λ

satisfy Assumption 3, the Markov kernel Q admits a unique invariant probability measure ν of
the form ν(dx) = ν(x)dx on (R,B). Moreover, for every G such that (G0, G1) ∈ G2

r,λ satisfy

Assumption 3, there exist a constant R > 0 and ρ ∈ (0, 1/2) such that

sup
(f0,f1)

|Qmh(x)− ν(h)| ≤ R |h|∞ ρm,

for all x ∈ R and m ≥ 0, where the supremum is taken among all functions (f0, f1) ∈ F2
` .

The proof is postponed to the Appendix (Section 4). Uniform ergodicity achieved by Lemma 9 is
here crucial in order to make use of deviations inequalities as obtained in Bitseki Penda, Hoffmann
and Olivier [4], one key tool for the proof of Theorem 6.

We will intensively use the following two concepts: super-exponential convergence and expo-
nential equivalence. Let (Zn)n≥0 be a sequence of random variables and Z a random variable with
values in R endowed with its Borel σ-field B.

Definition 10 (Super-exponential convergence). We say that (Zn)n≥0 converges (sn)n≥0-super-

exponentially fast in probability to Z and we note Zn
superexp
=====⇒

sn
Z if

lim sup
n→+∞

1

sn
logP (|Zn − Z| > δ) = −∞

for any δ > 0.

Let (Wn)n≥0 be another sequence of random variables with values in R.

Definition 11 (Exponential equivalence, see [7]). We say that (Zn)n≥0 and (Wn)n≥0 are (sn)n≥0-

exponentially equivalent and we note Zn
superexp∼

sn
Wn if

lim sup
n→+∞

1

sn
logP (|Zn −Wn| > δ) = −∞.

for any δ > 0.

3.2. Proof of Theorem 6. Set x in the interior of D. In order to prove the moderate deviation
principle, MDP for short, we use the decomposition

|Tn|hn
bn

(
f̂0,n(x)− f0(x)

f̂1,n(x)− f1(x)

)
= 1

ν̂n(x)∨$n

{
|Tn|hn
bn

(
M0,n(x)
M1,n(x)

)
+
|Tn|hn
bn

(
N0,n(x)
N1,n(x)

)
+
|Tn|hn
bn

(
R0,n(x)
R1,n(x)

)}
where, ν̂n(x) = |Tn|−1

∑
k∈Tn

Khn(x−Xk), and for ι ∈ {0, 1},

Mι,n(x) =
1

|Tn|
∑
k∈Tn

Khn(x−Xk)ε2k+ι,(4)

Nι,n(x) =
1

|Tn|
∑
k∈Tn

Khn(x−Xk)
(
fι(Xk)− fι(x)

)
,(5)

Rι,n(x) =
(
ν̂n(x)−

(
ν̂n(x) ∨$n

))
fι(x), .(6)
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The strategy of the proof is the following. After studying the denominator term ν̂n(x) ∨ $n in
Step 1, we will prove in Step 2 that the last two terms of the decomposition are negligible in the
sense of moderate deviations which leads us to

(7)
|Tn|hn
bn

(
f̂0,n(x)− f0(x)

f̂1,n(x)− f1(x)

)
superexp∼

b2n/(|Tn|hn)

1
ν̂n(x)∨$n

|Tn|hn
bn

(
M0,n(x)
M1,n(x)

)
in the sense of Definition 11. Consequently, these two quantities satisfy the same MDP (see Dembo
and Zeitouni [7], Chapter 4) and we prove a MDP for the right-hand side of (7) in Step 3.

Step 1. Denominator ν̂n(x) ∨$n.
We claim that

(8) ν̂n(x) ∨$n
superexp

=======⇒
b2n/(|Tn|hn)

ν(x).

On the one hand, we know that Khn ? ν(x) → ν(x) as n → +∞1. Since the previous sequence is
deterministic, we conclude that

(9) Khn ? ν(x)
superexp

=======⇒
b2n/(|Tn|hn)

ν(x).

On the other hand, from Theorem 4 (ii) of [4],

(10) Pµ
(∣∣ 1

|Tn|
∑
k∈Tn

Khn(x−Xk)−Khn ? ν(x)
∣∣ > δ

)
≤ 2 exp

(−C1δ
2|Tn|hn

1 + δ

)
where C1 is a positive constant which depends on K and Q but not on n. Note that Lemma 9
ensures we are in the setting of [4]. Applying the log to the two terms of (10), multiplying by
|Tn|hn/b2n and letting n go to infinity, we are led to

(11)
1

|Tn|
∑
k∈Tn

Khn(x−Xk)−Khn ? ν(x)
superexp

=======⇒
b2n/(|Tn|hn)

0

using conditions (i) and (ii) on the sequence bn. From the foregoing (9) and (11), we obtain

(12) ν̂n(x)
superexp

=======⇒
b2n/(|Tn|hn)

ν(x).

To reach (8), write the decomposition

|ν̂n(x) ∨$n − ν(x)| = |ν̂n(x)− ν(x)|1{ν̂n(x)≥$n} + |$n − ν(x)|1{ν̂n(x)<$n},

and note that it just remains to prove

(13) 1{ν̂n(x)<$n}
superexp

=======⇒
b2n/(|Tn|hn)

0.

We have

Pµ
(
1{ν̂n(x)<$n} > δ

)
≤ Pµ

(
ν̂n(x) < $n

)
≤ Pµ

(
|ν̂n(x)−Khn ? ν(x) | > δ′

)
with δ′ = inf(f0,f1) infx∈DKhn ? ν(x)−$n > 0 for n large enough, using inf(f0,f1) infx∈D ν(x) > 0
(under Assumption 5, see Lemma 17 of [5]) and $n → 0. Using the deviations inequality (10) with
δ′, we obtain (13). We finally have (8), which ends the first step.

1By a Taylor expansion of ν up to order bβc (note that ν has the same regularity as the noise density G and
recall that the number n0 of vanishing moments of K in Assumption 5 satisfies n0 > β), we obtain(

Khn ? ν(x)− ν(x)
)2 . h2βn ,

up to some positive constant independent of n, see for instance Proposition 1.2 in Tsybakov [17].
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Step 2. Negligible and remainder terms, Nι,n(x) and Rι,n(x).
We claim that

(14)
|Tn|hn
bn

Nι,n(x)
superexp

=======⇒
b2n/(|Tn|hn)

0.

We use decomposition Nι,n(x) = N
(1)
ι,n (x) +N

(2)
ι,n (x) with

(15) N (1)
ι,n (x) =

1

|Tn|
∑
k∈Tn

Eν
[
Khn(x−Xk)

(
fι(Xk)− fι(x)

)]
,

(16) N (2)
ι,n (x) =

1

|Tn|
∑
k∈Tn

(
Khn(x−Xk)

(
fι(Xk)− fι(x)

)
− Eν

[
Khn(x−Xk)

(
fι(Xk)− fι(x)

])
.

On the one hand, one can check that |N (1)
ι,n (x)| . hβn (see [5], Proof of Theorem 8, Step 1.1). Thus

|Tn|hn
bn

|N (1)
ι,n (x)| . |Tn|h

1+β
n

bn

and since the right-hand side of the previous inequality is deterministic and tends to 0 (condition
(iii) on the sequence bn), we conclude that

|Tn|hn
bn

N (1)
ι,n (x)

superexp
=======⇒
b2n/(|Tn|hn)

0,

see e.g. Worms [19] for more details. On the other hand, from Theorem 4 (ii) of [4], slightly
refined2, the following deviations inequality holds

Pµ
(
|N (2)

ι,n (x)| > δ
)
≤ 2 exp

( −C2δ
2|Tn|hn(

hβn + h2β+1
n |Tn|+ (|Tnhn|)−1

)
+ δ

)
where C2 is a positive constant which depends on K and Q but not on n. Recalling conditions (i)
and (ii) on bn and hn ∝ |Tn|−α with α ∈ (1/(2β + 1), 1), it brings

|Tn|hn
bn

N (2)
ι,n (x)

superexp
=======⇒
b2n/(|Tn|hn)

0.

Hence (14) is proved. We also have

|Tn|hn
bn

Rι,n(x)
superexp

=======⇒
b2n/(|Tn|hn)

0,

using Rι,n(x) =
(
ν̂n(x)−$n

)
fι(x)1{ν̂n(x)<$n} and recalling (12) and (13). Together with Step 1,

it leads us to

1
ν̂n(x)∨$n

|Tn|hn
bn

(
N0,n(x)
N1,n(x)

)
+ 1

ν̂n(x)∨$n
|Tn|hn
bn

(
R0,n(x)
R1,n(x)

)
superexp

=======⇒
b2n/(|Tn|hn)

0

and finally to (7).

Step 3. Main term Mι,n(x).

First, we introduce the filtration G = (G(n)
m ;n ≥ 0,m ≤ |Tn|), where for all n ≥ 0,

G(n)
0 = σ(X1) and ∀1 ≤ m ≤ |Tn|, G(n)

m = σ
(
(Xk, X2k, X2k+1), 1 ≤ k ≤ m

)
.

2One has to note that the inequality still holds with the refinement Σ1,n(g) = |Qg2|∞+ min1≤`≤n−1 |Qg|2∞2` +

|g|2∞2−`, see equation (3) and Theorem 4 in [4]. In our case, with the test function g : y ; h−1
n K

(
h−1
n (x −

y)
)(
fι(y)− fι(x)

)
for x fixed, |Qg2|∞ is of order hβ−1

n , |Qg|2∞ is of order h2βn and |g|2∞ is of order h−2
n .
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We then consider the triangular array of bivariate random variables (E
(n)

k (x)) defined by

(17) E
(n)

k (x) =

k∑
l=1

E
(n)
l (x)

where for l ≤ |Tn|

E
(n)
l (x) = (|Tn|hn)−1/2

(
K
(
h−1
n (x−Xl)

)
ε2l

K
(
h−1
n (x−Xl)

)
ε2l+1

)
.

Note that
(
E

(n)

k (x);n ≥ 0, 1 ≤ k ≤ |Tn|
)

is a G-martingale triangular arrays whose bracket is given
by

〈E(n)
(x)〉k =

k∑
l=1

E
[
E

(n)
l (x)

(
E

(n)
l (x)

)t ∣∣∣G(n)
l−1

]

=

(
1

|Tn|hn

k∑
l=1

K2

(
Xl − x
hn

))
Γ.

In order to make use of the MDP for martingale triangular arrays (see Worms [19, 20] or Puhalskii
[16]), one need to check

(18) 〈E(n)
(x)〉|Tn|

superexp
=======⇒
b2n/(|Tn|hn)

|K|22ν(x)Γ,

and

(19)
∑
k∈Tn

E
[
‖E(n)

k − E(n)

k−1‖4
∣∣∣Gk−1

]
superexp

=======⇒
b2n/(|Tn|hn)

0.

The condition (19) is called exponential Lyapunov condition and it implies exponential Lindeberg
condition, we refer to Worms [19, 20] for more details. One can easily check that it suffices to show

(20)
1

|Tn|hn

∑
k∈Tn

K2
(
h−1
n (x−Xk)

) superexp
=======⇒
b2n/(|Tn|hn)

|K|22ν(x)

and

(21)
1

(|Tn|hn)
2

∑
k∈Tn

K4
(
h−1
n (x−Xk)

) superexp
=======⇒
b2n/(|Tn|hn)

0.

The same argument as in Step 1 (replacing K by |K|−2
2 K2 or |K2|−2

2 K4 in (10)) enables us to

prove (20) and (21). Gathering (18) and (19) and using the truncation of the martingale (E
(n)

k (x))
as in the proof of Theorem 5.1 of Bitseki Penda and Djellout [2], we conclude that√

|Tn|hn
bn

E
(n)

|Tn|(x) =
|Tn|hn
bn

(
M0,n(x)
M1,n(x)

)
satisfies a MDP on R2 with speed b2n/(|Tn|hn) and the good rate function defined for all z ∈ R2

by

Ix (z) = sup
λ∈R2

{
λtz − 1

2
ν(x)|K|22ztΓz

}
=
(
2|K|22

)−1
ν(x)−1ztΓ−1z.

Finally, using Lemma 4.1 of Worms [18] (which is a consequence of the contraction principle) and
Step 1, we conclude that

1
ν̂n(x)∨$n

|Tn|hn
bn

(
M0,n(x)
M1,n(x)

)
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satisfies a MDP on R2 with speed b2n/(|Tn|hn) and rate function Jx defined in Theorem 6. Re-
minding (7), we get the MDP stated in Theorem 6.

4. Appendix

Proof of Lemma 9. Set C = {y ∈ R; |y| ≤ R3− `} 6= ∅ since R3 > ` under Assumption 3. We prove
that, for all y ∈ C,

inf
x∈R

Q(x, y) =
1

2

{
inf
x∈R

G0

(
y − f0(x)

)
+ inf
x∈R

G1

(
y − f1(x)

)}
≥ δ(R3) > 0

recalling that Q is defined by (3) and δ(·) by (2), since |y − fι(x)| ≤ R3 (for |fι|∞ ≤ ` and
|y| ≤ R3 − `). Thus Q satisfies the Doeblin condition (see Definition 6.10 of Douc et al. [9])
with constant |C|δ(R3) > 0. By Lemma 6.10 of [9], we are in position to apply Theorem 6.6 of
[9]. Thus the Markov kernel Q admits a unique invariant probability measure and one can take
ρ = 1 − |C|δ(R3) = 1 − 2(R3 − `)δ(R3) for the exponential decay rate. Under Assumption 3, we
have ρ < 1/2. �

Acknowledgements. We thank G. Fort for suggesting us the reading of the recent textbook [9].
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