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.

In the present work, we prove moderate deviation principle for these estimators.

1. Introduction 1.1. A generalization of BAR processes. Bifurcating autoregressive (BAR) processes where introduced by Cowan an Staudte [START_REF] Cowan | The bifurcating autoregressive model in cell lineage studies[END_REF] in 1986 to study E. coli bacterium. Since then it has been extensively studied. We refer in particular to the recent works of Bercu and Blandin [START_REF] Bercu | A Rademacher-Menchov approach for random coefficient bifurcating autoregressive processes[END_REF], de Saporta, Gégout-Petit and Marsalle [START_REF] De Saporta | Random coefficients bifurcating autoregressive processes[END_REF], see also references therein. Nonlinear bifurcating autoregressive (NBAR) processes, studied in Bitseki Penda et al. [START_REF] Bitseki Penda | Adaptive estimation for bifurcating Markov chains[END_REF][START_REF] Bitseki Penda | Autoregressive functions estimation in nonlinear bifurcating autoregressive models[END_REF], generalize BAR processes, avoiding an a priori linear specification on the two autoregressive functions.

We first need some notation. We introduce the infinite binary tree whose vertices are indexed by the positive integers: the initial individual is indexed by 1 and an individual k ≥ 1 gives birth to two individuals 2k and 2k + 1. For m ≥ 0, let G m = {2 m , . . . , 2 m+1 -1} be the m-th generation. A given individual k ≥ 1 lives in the r k -th generation with r k = log 2 k .

Let us now introduce precisely a NBAR process which is specified by 1) a filtered probability space (Ω, F, (F m ) m≥0 , P), together with a measurable state space (R, B), 2) two measurable functions f 0 , f 1 : R → R and 3) a probability density G on (R × R, B ⊗ B) with a null first order moment. In this setting we have the following Definition 1. A NBAR process is a family (X k ) k≥1 of random variables with value in (R, B) such that, for every k ≥ 1, X k is F r k -measurable and

X 2k = f 0 (X k ) + ε 2k and X 2k+1 = f 1 (X k ) + ε 2k+1
where (ε 2k , ε 2k+1 ) k≥1 is a sequence of independent bivariate random variables with common density G.

The distribution of (X k ) k≥1 is thus entirely determined by the autoregressive functions (f 0 , f 1 ), the noise density G and an initial distribution for X 1 . Informally, each k ≥ 1 is viewed as a particle of feature X k (size, lifetime, growth rate, DNA content and so on) with value in R. Conditional on

X k = x, the feature (X 2k , X 2k+1 ) ∈ R 2 of the offspring of k is a perturbed version of f 0 (x), f 1 (x) .
1 When X 1 is distributed according to a measure µ(dx) on (R, B), we denote by P µ the law of the NBAR process (X u ) u∈T and by E µ [•] the expectation with respect to the probability P µ .

1.2. Nadaraya-Watson type estimator of the autoregressive functions. For n ≥ 0, introduce the genealogical tree up to the (n + 1)-th generation, T n+1 = n+1 m=0 G m . Assume we observe X n+1 = (X k ) k∈Tn+1 , i.e. we have |T n+1 | = 2 n+2 -1 random variables with value in R. Let D ⊂ R be a compact interval. We propose to estimate (f 0 (x), f 1 (x)) the autoregressive functions at point x ∈ D from the observations X n+1 by ( 1)

f ι,n (x) = |T n | -1 k∈Tn K hn (x -X k )X 2k+ι |T n | -1 k∈Tn K hn (x -X k ) ∨ n , ι ∈ {0, 1} ,
where n > 0 and we set

K hn (•) = h -1 n K(h -1 n •) for h n > 0 and a kernel function K : R → R such that R K = 1.
Almost sure convergence to f 0 (x), f 1 (x) and asymptotic normality of these estimators have been studied by Bitseki Penda and Olivier in [START_REF] Bitseki Penda | Autoregressive functions estimation in nonlinear bifurcating autoregressive models[END_REF].

1.3.

Objective. The purpose of this work is to establish a moderate deviation principle for the estimators of the autoregressive functions defined by [START_REF] Bercu | A Rademacher-Menchov approach for random coefficient bifurcating autoregressive processes[END_REF]. Roughly speaking, for some range of speed

(b n , n ∈ N) such that |T n | 1-γ b n |T n | 1-γ
where γ ∈ (0, 1), for all x ∈ R and for all δ > 0, our goal is to establish asymptotic equivalences of the form

|T n |h n b 2 n log P |T n |h n b n | f ι,n (x) -f ι (x)| > δ ∼ - ν(x)δ 2 2σ 2 ι S K 2 (y)dy
, where σ 2 ι denotes the variance of ε 1+ι and the function ν(•) will be specified later. Statistical estimators are also studied under the angle of large and moderate deviation principles. Large and moderate deviations limit theorems are proved in the independent setting for the kernel density estimator and also for the Nadaraya-Watson estimator (see Louani and Joutard [12,[START_REF] Louani | Some large deviations limit theorems in conditional nonparametric statistics[END_REF][START_REF] Joutard | Sharp large deviations in nonparametric estimation[END_REF] in the univariate case, see also Mokkadem et al. [START_REF] Mokkadem | Large and moderate deviation principles for kernel estimators of the multivariate regression[END_REF] and references therein). We refer to Mokkadem and Pelletier [START_REF] Mokkadem | Confidence bands for densities, logarithmic point of view[END_REF] for the study of confidence bands based on the use of moderate deviation principles.

Before we proceed, let us introduce the notion of moderate deviation principle in a general setting. Let (Z n ) n≥0 be a sequence of random variables with values in R endowed with its Borel σ-field B and let (s n ) n≥0 be a positive sequence that converges to +∞. We assume that Z n /s n converges in probability to 0 and that Z n / √ s n converges in distribution to a centered Gaussian law. Let I : R → R + be a lower semicontinuous function, that is for all c > 0 the sub-level set {x ∈ R, 

I(x) ≤ c} is a closed set.
-inf x∈A • I(x) ≤ lim inf n→∞ 1 a n log P Z n √ a n s n ∈ A ≤ lim sup n→∞ 1 a n log P Z n √ a n s n ∈ A ≤ -inf x∈ Ā I(x),
where A • and Ā denote respectively the interior and the closure of A.

Our objective is to prove such a MDP for the estimators f 0 (x) and f 1 (x).

Moderate deviation principle

2.1. Model contraints. The autoregressive functions f 0 and f 1 will be restricted to belong to the following class. For > 0, we introduce the class F of bounded functions

f : R → R such that |f | ∞ = sup x∈R |f (x)| ≤ .
The two marginals of the noise density

G 0 (•) = R G(•, y)dy and G 1 (•) = R G(x,
•)dx are devoted to belong to the following class. For r > 0 and λ > 2, we introduce the class G r,λ of nonnegative continuous functions g : R → [0, ∞) such that

g(x) ≤ r 1 + |x| λ for any x ∈ R.
For any R > 0, we set ( 2)

δ(R) = min inf |x|≤R G 0 (x); inf |x|≤R G 1 (x)
and

η(R) = |G 0 | ∞ + |G 1 | ∞ 2 |y|>R x∈R r 1 + y -γ|x| - λ ∧ y + γ|x| + λ dxdy.
To guarantee we have geometric ergodicity of the tagged-branch Markov chain (see Guyon [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF] or Section 3.1 below), uniformly in the initial value, with an exponential decay rate smaller than 1/2, we will require the following assumption (see Lemma 9).

Assumption 3. There exists R 3 > such that 2(R 3 -)δ(R 3 ) > 1/2 with δ(•) defined by (2).
The following assumption will guarantee that the invariant density ν of the tagged-branch chain is positive on some nonempty interval (see Lemma 17 in [START_REF] Bitseki Penda | Autoregressive functions estimation in nonlinear bifurcating autoregressive models[END_REF]).

Assumption 4. For R 1 > 0 such that η(R 1 ) < 1, there exists R 2 > + γR 1 such that δ(R 2 ) > 0.
We also reinforce usual assumptions on the kernel. Assumption 5. The kernel K : R → R is bounded with compact support and for some integer

n 0 ≥ 1, we have ∞ -∞ x k K(x)dx = 1 {k=0} for k = 0, . . . , n 0 . In addition, K : R → R is such that R |K + (x)|dx > |G0|∞+|G1|∞ 2δ(R2) 1-η(R1) R |K -(x)|dx
where R 1 , R 2 come from Assumption 4 and

K + (•) = max{K(•); 0}, K -(•) = min{K(•); 0}.
Note that the strict inequality required in Assumption 5 is valid for any nonnegative kernel -since R |K -(x)|dx = 0 for such kernels. Thus the triangle kernel, the Epanechnikov kernel e.g. satisfie Assumption 5.

To finish, we introduce smooth functions described in the following way: for X ⊆ R and β > 0, with β = β + {β}, 0 < {β} ≤ 1 and β an integer, let H β X denote the Hölder space of functions h : X → R possessing a derivative of order β that satisfies |h β (y) -

h β (x)| ≤ c(h)|x -y| {β} .
The minimal constant c(h) such that the previous inequality holds defines a semi-norm |g| H β X . We equip the space H β X with the norm h H β

X = sup x |h(x)| + |h| H β X and the balls H β X (L) = {h : X → R, h H β X ≤ L}, L > 0.
2.2. Main result. We are now ready to state a moderate deviation principle (in the sense of Definition 2) for the estimators f 0 (x) and f 1 (x) in this framework. Theorem 6. Let (b n ) n≥0 be a positive sequence such that

(i) lim n→∞ b n (|T n |h n ) 1/2 = +∞ , (ii) lim n→∞ b n |T n |h n = 0 , (iii) lim n→∞ b n |T n |h 1+β n = +∞.
Let > 0, r > 0 and λ > 5. Specify ( f 0,n , f 1,n ) with a kernel K satisfying Assumption 5 for some n 0 > 0, with h n ∝ |T n | -α for α ∈ (1/(2β + 1), 1), and with n > 0 such that n → 0 as n → +∞. For any initial probability measure µ(dx) on R for X 1 , for every L, L > 0 and 

0 < β < n 0 , for every G such that (G 0 , G 1 ) ∈ G r,λ ∩ H β R ( 
(f 0 , f 1 ) ∈ F ∩ H β D (L)
2 , the sequence

|T n |h n b n f 0,n (x) -f 0 (x) f 1,n (x) -f 1 (x) , n ≥ 0 satisfies a MDP on R 2 with speed b 2 n /(|T n |h n )
and good rate function J x : R 2 → R defined by

J x (z) = 2|K| 2 2 -1 ν(x)z t Γ -1 z , z ∈ R 2 ,
with Γ the variance-covariance matrix of (ε 1 , ε 2 ), where z t stands for the transpose of vector z.

The notation ∝ means proportional to up to some positive constant. The contraction principle (see the textbook of Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF], Chapter 4) enables us to state the following corollary of Theorem 6.

Corollary 7. In the same setting as Theorem 6, for every δ > 0,

lim n→+∞ |T n |h n b 2 n log P |T n |h n b n f ι,n (x) -f ι (x) > δ = -2σ 2 ι |K| 2 2 -1 ν(x)δ 2 , ι ∈ {0, 1},
with σ 2 ι denoting the variance of ε 1+ι .

Remark 8. Let us mention that recently, Bitseki et al. [START_REF] Bitseki Penda | Transportation cost-information and concentration inequalities for bifurcating Markov chains[END_REF] have establish transportation inequality for bifurcating Markov chains. This has allowed them to obtain deviation inequalities for a large class of functions. However, their results do not allow to obtain MDP with optimal speeds as in Theorem 6.

Proofs

Preliminaries.

A key object in the study of NBAR processes (particular case of a bifurcating Markov chain, see Guyon [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF] for a general definition) is the so-called tagged-branch Markov chain. Consider the Markov chain chain (Y m ) m≥0 taking values in R, such that Y 0 = X 1 , with transition

(3) Q(x, dy) = 1 2 G 0 y -f 0 (x) + G 1 y -f 1 (x) dy, x ∈ R.
It corresponds to a lineage taken randomly (uniformly at each branching event) in the population.

In the setting of Theorem 6, we achieve uniform ergodicity for the tagged-branch Markov chain Y as stated in the following Lemma 9 (Uniform ergodicity). For every (f 0 , f 1 ) ∈ F 2 , for every G such that (G 0 , G 1 ) ∈ G 2 r,λ satisfy Assumption 3, the Markov kernel Q admits a unique invariant probability measure ν of the form ν(dx) = ν(x)dx on (R, B). Moreover, for every G such that (G 0 , G 1 ) ∈ G 2 r,λ satisfy Assumption 3, there exist a constant R > 0 and ρ ∈ (0, 1/2) such that sup (f0,f1)

|Q m h(x) -ν(h)| ≤ R |h| ∞ ρ m ,
for all x ∈ R and m ≥ 0, where the supremum is taken among all functions (f 0 , f 1 ) ∈ F 2 .

The proof is postponed to the Appendix (Section 4). Uniform ergodicity achieved by Lemma 9 is here crucial in order to make use of deviations inequalities as obtained in Bitseki Penda, Hoffmann and Olivier [START_REF] Bitseki Penda | Adaptive estimation for bifurcating Markov chains[END_REF], one key tool for the proof of Theorem 6.

We will intensively use the following two concepts: super-exponential convergence and exponential equivalence. Let (Z n ) n≥0 be a sequence of random variables and Z a random variable with values in R endowed with its Borel σ-field B.

Definition 10 (Super-exponential convergence). We say that (Z n ) n≥0 converges (s n ) n≥0 -superexponentially fast in probability to Z and we note

Z n superexp = ==== ⇒ sn Z if lim sup n→+∞ 1 s n log P (|Z n -Z| > δ) = -∞
for any δ > 0.

Let (W n ) n≥0 be another sequence of random variables with values in R.

Definition 11 (Exponential equivalence, see [START_REF] Dembo | Large deviations techniques and applications[END_REF]). We say that (Z n ) n≥0 and (W n ) n≥0 are (s n ) n≥0exponentially equivalent and we note

Z n superexp ∼ sn W n if lim sup n→+∞ 1 s n log P (|Z n -W n | > δ) = -∞.
for any δ > 0.

3.2. Proof of Theorem 6. Set x in the interior of D. In order to prove the moderate deviation principle, MDP for short, we use the decomposition

|T n |h n b n f 0,n (x) -f 0 (x) f 1,n (x) -f 1 (x) = 1 νn(x)∨ n |T n |h n b n M 0,n (x) M 1,n (x) + |T n |h n b n N 0,n (x) N 1,n (x) + |T n |h n b n R 0,n (x) R 1,n (x)
where,

ν n (x) = |T n | -1 k∈Tn K hn (x -X k ), and for ι ∈ {0, 1}, M ι,n (x) = 1 |T n | k∈Tn K hn (x -X k )ε 2k+ι , (4) N ι,n (x) = 1 |T n | k∈Tn K hn (x -X k ) f ι (X k ) -f ι (x) , (5) R ι,n (x) = ν n (x) -ν n (x) ∨ n f ι (x), . (6) 
The strategy of the proof is the following. After studying the denominator term ν n (x) ∨ n in Step 1, we will prove in Step 2 that the last two terms of the decomposition are negligible in the sense of moderate deviations which leads us to [START_REF] Dembo | Large deviations techniques and applications[END_REF] |T

n |h n b n f 0,n (x) -f 0 (x) f 1,n (x) -f 1 (x) superexp ∼ b 2 n /(|Tn|hn) 1 νn(x)∨ n |T n |h n b n M 0,n (x) M 1,n (x)
in the sense of Definition 11. Consequently, these two quantities satisfy the same MDP (see Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF], Chapter 4) and we prove a MDP for the right-hand side of ( 7) in Step 3.

Step 1. Denominator ν n (x) ∨ n .

We claim that (8)

ν n (x) ∨ n superexp = ====== ⇒ b 2 n /(|Tn|hn) ν(x).
On the one hand, we know that K hn ν(x) → ν(x) as n → +∞ 1 . Since the previous sequence is deterministic, we conclude that ( 9)

K hn ν(x) superexp = ====== ⇒ b 2 n /(|Tn|hn) ν(x).
On the other hand, from Theorem 4 (ii) of [START_REF] Bitseki Penda | Adaptive estimation for bifurcating Markov chains[END_REF],

P µ 1 |T n | k∈Tn K hn (x -X k ) -K hn ν(x) > δ ≤ 2 exp -C 1 δ 2 |T n |h n 1 + δ (10) 
where C 1 is a positive constant which depends on K and Q but not on n. Note that Lemma 9 ensures we are in the setting of [START_REF] Bitseki Penda | Adaptive estimation for bifurcating Markov chains[END_REF]. Applying the log to the two terms of (10), multiplying by |T n |h n /b 2 n and letting n go to infinity, we are led to

(11) 1 |T n | k∈Tn K hn (x -X k ) -K hn ν(x) superexp = ====== ⇒ b 2 n /(|Tn|hn)
0 using conditions (i) and (ii) on the sequence b n . From the foregoing ( 9) and [START_REF] Joutard | Sharp large deviations in nonparametric estimation[END_REF], we obtain [START_REF] Louani | Large deviations limit theorems for the kernel density estimator[END_REF] ν n (x)

superexp = ====== ⇒ b 2 n /(|Tn|hn) ν(x).
To reach [START_REF] De Saporta | Random coefficients bifurcating autoregressive processes[END_REF], write the decomposition

| ν n (x) ∨ n -ν(x)| = | ν n (x) -ν(x)|1 { νn(x)≥ n } + | n -ν(x)|1 { νn(x)< n} ,
and note that it just remains to prove (13)

1 { νn(x)< n } superexp = ====== ⇒ b 2 n /(|Tn|hn) 0.
We have

P µ 1 { νn(x)< n } > δ ≤ P µ ν n (x) < n ≤ P µ | ν n (x) -K hn ν(x) | > δ with δ = inf (f0,f1) inf x∈D K hn ν(x)
n > 0 for n large enough, using inf (f0,f1) inf x∈D ν(x) > 0 (under Assumption 5, see Lemma 17 of [START_REF] Bitseki Penda | Autoregressive functions estimation in nonlinear bifurcating autoregressive models[END_REF]) and n → 0. Using the deviations inequality [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF] with δ , we obtain [START_REF] Louani | Some large deviations limit theorems in conditional nonparametric statistics[END_REF]. We finally have [START_REF] De Saporta | Random coefficients bifurcating autoregressive processes[END_REF], which ends the first step.

1 By a Taylor expansion of ν up to order β (note that ν has the same regularity as the noise density G and recall that the number n 0 of vanishing moments of K in Assumption 5 satisfies n 0 > β), we obtain

K hn ν(x) -ν(x) 2 h 2β
n , up to some positive constant independent of n, see for instance Proposition 1.2 in Tsybakov [START_REF] Tsybakov | Introduction to Nonparametric Estimation[END_REF].

Step 2. Negligible and remainder terms, N ι,n (x) and R ι,n (x).

We claim that ( 14)

|T n |h n b n N ι,n (x) superexp = ====== ⇒ b 2 n /(|Tn|hn) 0.
We use decomposition N ι,n (x) = N

(1)

ι,n (x) + N (2) 
ι,n (x) with ( 15)

N (1) ι,n (x) = 1 |T n | k∈Tn E ν K hn (x -X k ) f ι (X k ) -f ι (x) , (16) N (2) ι,n (x) = 1 |T n | k∈Tn K hn (x -X k ) f ι (X k ) -f ι (x) -E ν K hn (x -X k ) f ι (X k ) -f ι (x) .
On the one hand, one can check that |N 

|T n |h n b n N (1) ι,n (x) superexp = ====== ⇒ b 2 n /(|Tn|hn)
0, see e.g. Worms [START_REF] Worms | Moderate deviations of some dependent variables. I. Martingales[END_REF] for more details. On the other hand, from Theorem 4 (ii) of [START_REF] Bitseki Penda | Adaptive estimation for bifurcating Markov chains[END_REF], slightly refined 2 , the following deviations inequality holds

P µ |N (2) ι,n (x)| > δ ≤ 2 exp -C 2 δ 2 |T n |h n h β n + h 2β+1 n |T n | + (|T n h n |) -1 + δ
where C 2 is a positive constant which depends on K and Q but not on n. Recalling conditions (i) and (ii) on b n and h n ∝ |T n | -α with α ∈ (1/(2β + 1), 1), it brings

|T n |h n b n N (2) ι,n (x) superexp = ====== ⇒ b 2 n /(|Tn|hn) 0.
Hence ( 14) is proved. We also have

|T n |h n b n R ι,n (x) superexp = ====== ⇒ b 2 n /(|Tn|hn) 0, using R ι,n (x) = ν n (x) -n f ι (x)1 { νn(x)
< n } and recalling ( 12) and ( 13). Together with Step 1, it leads us to

1 νn(x)∨ n |T n |h n b n N 0,n (x) N 1,n (x) + 1 νn(x)∨ n |T n |h n b n R 0,n (x) R 1,n (x) superexp = ====== ⇒ b 2 n /(|Tn|hn)
0 and finally to [START_REF] Dembo | Large deviations techniques and applications[END_REF].

Step 3. Main term M ι,n (x). First, we introduce the filtration G = (G

(n) m ; n ≥ 0, m ≤ |T n |)
, where for all n ≥ 0,

G (n) 0 = σ(X 1 ) and ∀1 ≤ m ≤ |T n |, G (n) m = σ (X k , X 2k , X 2k+1 ), 1 ≤ k ≤ m .
2 One has to note that the inequality still holds with the refinement Σ 

; h -1 n K h -1 n (x - y) fι(y) -fι(x) for x fixed, |Qg 2 |∞ is of order h β-1 n , |Qg| 2 ∞ is of order h 2β n and |g| 2 ∞ is of order h -2 n .
We then consider the triangular array of bivariate random variables (E (n) k (x)) defined by ( 17)

E (n) k (x) = k l=1 E (n) l (x) where for l ≤ |T n | E (n) l (x) = (|T n |h n ) -1/2 K h -1 n (x -X l ) ε 2l K h -1 n (x -X l ) ε 2l+1 . Note that E (n) k (x); n ≥ 0, 1 ≤ k ≤ |T n | is a G-martingale triangular arrays whose bracket is given by E (n) (x) k = k l=1 E E (n) l (x) E (n) l (x) t G (n) l-1 = 1 |T n |h n k l=1 K 2 X l -x h n Γ.
In order to make use of the MDP for martingale triangular arrays (see Worms [START_REF] Worms | Moderate deviations of some dependent variables. I. Martingales[END_REF][START_REF] Worms | Moderate deviations of some dependent variables[END_REF] or Puhalskii [START_REF] Puhalskii | Large deviations of semimartingales via convergence of the predictable characteristics[END_REF]), one need to check ( 18)

E (n) (x) |Tn| superexp = ====== ⇒ b 2 n /(|Tn|hn) |K| 2 2 ν(x)Γ, and (19) 
k∈Tn

E E (n) k -E (n) k-1 4 G k-1 superexp = ====== ⇒ b 2 n /(|Tn|hn) 0.
The condition [START_REF] Worms | Moderate deviations of some dependent variables. I. Martingales[END_REF] is called exponential Lyapunov condition and it implies exponential Lindeberg condition, we refer to Worms [START_REF] Worms | Moderate deviations of some dependent variables. I. Martingales[END_REF][START_REF] Worms | Moderate deviations of some dependent variables[END_REF] for more details. One can easily check that it suffices to show

(20) 1 |T n |h n k∈Tn K 2 h -1 n (x -X k ) superexp = ====== ⇒ b 2 n /(|Tn|hn) |K| 2 2 ν(x) and (21) 1 (|T n |h n ) 2 k∈Tn K 4 h -1 n (x -X k ) superexp = ====== ⇒ b 2 n /(|Tn|hn)
0.

The same argument as in Step 1 (replacing K by |K| -2 2 K 2 or |K 2 | -2 2 K 4 in ( 10)) enables us to prove [START_REF] Worms | Moderate deviations of some dependent variables[END_REF] and (21). Gathering ( 18) and ( 19) and using the truncation of the martingale (E Finally, using Lemma 4.1 of Worms [START_REF] Worms | Principes de déviations modérées pour des martingales et applications statistiques[END_REF] (which is a consequence of the contraction principle) and

Step 1, we conclude that

1 νn(x)∨ n |T n |h n b n M 0,n (x) M 1,n (x)
satisfies a MDP on R 2 with speed b 2 n /(|T n |h n ) and rate function J x defined in Theorem 6. Reminding [START_REF] Dembo | Large deviations techniques and applications[END_REF], we get the MDP stated in Theorem 6. ) with constant |C|δ(R 3 ) > 0. By Lemma 6.10 of [START_REF] Douc | Chapman & Hall/CRC Texts in Statistical Science[END_REF], we are in position to apply Theorem 6.6 of [START_REF] Douc | Chapman & Hall/CRC Texts in Statistical Science[END_REF]. Thus the Markov kernel Q admits a unique invariant probability measure and one can take ρ = 1 -|C|δ(R 3 ) = 1 -2(R 3 -)δ(R 3 ) for the exponential decay rate. Under Assumption 3, we have ρ < 1/2.

L ) 2 satisfy

 2 Assumptions 3 and 4, there exists d = d( , G) > 0 such that for every compact interval D ⊂ [-d, d] with nonempty interior, for every x in the interior of D and for every functions

( 1 )

 1 ι,n (x)| h β n (see[START_REF] Bitseki Penda | Autoregressive functions estimation in nonlinear bifurcating autoregressive models[END_REF], Proof of Theorem 8, Step 1.1). Thus|T n |h n b n |N (1) ι,n (x)| |T n |h 1+β nb n and since the right-hand side of the previous inequality is deterministic and tends to 0 (condition (iii) on the sequence b n ), we conclude that

2 λ 2 - 1

 221 as in the proof of Theorem 5.1 of Bitseki Penda and Djellout[START_REF] Bitseki Penda | Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models[END_REF], we conclude that|T n |h n b n E (n) |Tn| (x) = |T n |h n b n M 0,n (x) M 1,n (x)satisfies a MDP on R 2 with speed b 2 n /(|T n |h n ) and the good rate function defined for all z ∈ R 2 by I x (z) = sup λ∈R ν(x) -1 z t Γ -1 z.

4 .G

 4 AppendixProof of Lemma 9.Set C = {y ∈ R; |y| ≤ R 3 -} = ∅ since R 3 > under Assumption 3. We prove that, for all y ∈ C, 0 y -f 0 (x) + inf x∈R G 1 y -f 1 (x) ≥ δ(R 3 ) > 0 recalling that Q is defined by (3) and δ(•) by (2), since |y -f ι (x)| ≤ R 3 (for |f ι | ∞ ≤ and |y| ≤ R 3 -).Thus Q satisfies the Doeblin condition (see Definition 6.10 of Douc et al.[START_REF] Douc | Chapman & Hall/CRC Texts in Statistical Science[END_REF]

  Such a function I is called rate function and it is called good rate function if all its sub-level sets are compact sets. Let (a n ) n≥0 be a positive sequence such that a n → +∞ and a n /s n → 0 as n goes to +∞.

	Definition 2 (Moderate deviation principle, MDP). We say that Z n / √ a n s n satisfies a moderate
	deviation principle in R with speed a n and the rate function I if, for any A ∈ B,
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