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Abstract

We give different conditions for the invariance of closed sets with respect to
differential inclusions governed by a maximal monotone operator defined on
Hilbert spaces, which is subject to a Lipschitz continuous perturbation depend-
ing on the state. These sets are not necessarily weakly closed as in [5, 6], while
the invariance criteria are still written by using only the data of the system.
So, no need to the explicit knowledge of neither the solution of this differential
inclusion, nor the semi-group generated by the maximal monotone operator.
These invariant/viability results are next applied to derive explicit criteria for
a-Lyapunov pairs of lower semi-continuous (not necessarily weakly-lsc) func-
tions associated to these differential inclusions. The lack of differentiability of
the candidate Lyapunov functions and the consideration of general invariant
sets (possibly not convex or smooth) are carried out by using techniques from
nonsmooth analysis.

Keywords: Lyapunov stability, lsc Lyapunov pairs and functions, invariant
sets, differential inclusions, maximal monotone operators, normal cones,
subdifferentials
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1. Introduction

We provide sufficient and, in many different interesting situations, necessary
criteria for the invariance property of closed subsets with respect to the following
differential inclusion, given in a Hilbert space H,

ẋ(t) ∈ f(x(t))−Ax(t), x(0) = x0 ∈ domA, a.e. t ≥ 0 (1)
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where A is a maximal monotone operator which is subject to a Lipschitzian
perturbation f . Equivalently, we establish many primal and dual explicit criteria
for a-Lyapunov pairs and functions associated to the differential inclusion above.
The current work extends and improves some of the results given in [5, 6] on
weakly closed invariant sets and weakly lower semi-continuous a-Lyapunov pairs.

The domain of A does not need to be closed, nor the values of A are sup-
posed to be bounded or even nonempty. Thus, the scope of the equation above
goes beyond the differential inclusions treated in [8, 7, 13, 14, 16], where the
right-hand side is generally represented by a cusco set-valued mapping (in par-
ticular, with nonempty and weak*-compact multi-valued operator). It is the
monotonicity of A which compensates the lack of compacity in our differential
inclusion, while the maximality of this operator guaranties, among other prop-
erties, the existence and the regularity of solutions. These two facts are also
essential when checking the invariance of closed sets.

In front of the lack to a direct access to the explicit calculus of either the
solution of the inclusion above or to the semi-group generated by A, the current
work aims at finding weaker conditions for the invariance of closed sets, which
only appeal to the fresh input data, namely the maximal monotone operator
and the Lipschitz mapping. These conditions are applicable to a large variety
of closed sets which do not need to be convex or smooth. Our approach fits the
general scope and the main ideas behind Lyapunov’s stability, which consists of
looking for an adjacent function to the system described by the inclusion above;
namely, an energy-like function which decreases along the trajectories and, so,
under some extra usual conditions, forces the system to converge towards its
equilibrium state and to remain there. Since our analysis allows to deal with
extended-real valued functions, the invariance of a set occurs as long as the
associated indicator function is a Lyapunov’s function. However, our approach
is more geometric since we first establish criteria for the invariance property and
next deduce the adequate conditions for Lyapunov pairs and functions.

Invariant sets associated to general differential inclusions/equations have
been the subject of extensive research during the last decades; namely, in re-
lation with differential inclusions involving cusco mappings in their right-hand
side (see, e.g., [7]). First results dealing with Lyapunov pairs and functions asso-
ciated to the differential inclusions above have been first established in [19, 20] in
the case of homogeneous systems; that is, f ≡ 0. Pazy’s criteria for a-Lyapunov
pairs are given by means of directional-like derivative using the Moreau-Yoshida
approximation of the operator A. This result has been extended to the general
inclusion above in [17, 12], with the use of implicit criteria depending heavily
on the semi-group generated by the maximal monotone operator A. Recently,
different criteria for weakly lower semi-continuous a-Lyapunov pairs have been
investigated in [5, 6].

The need of more explicit conditions, not depending on the semi-group gen-
erated by A, is of utmost importance for many reasons, one of which is that the
inclusion above is sometimes evoked as a companion tool to analyze other differ-
ential inclusions. In that case, the operator A may not be known explicitly, and
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this facts makes the access to its semi-group more complicated. For instance,
in our work [4] we have investigated the existence of solutions to a differential
inclusion governed by the normal cone to a prox-regular set ([21]), by rewriting
it in the form of (1) with A being some intrinsic maximal monotone operator to
this prox-regular set. Such an operator A is not known explicitly but it processes
enough information in order to check the invariance of the involved prox-regular
set with respect to (1). This was sufficient to get the desired existence results;
for more details, we refer the reader to [4].

Invariant sets are also referred to in the wide literature as viable sets [7, 8, 9],
and are of crucial use in many domains, as in economic, renewable resources, bi-
ology, diseases propagation, control processes of species and so on. It is manifest,
in recent papers [2, 24], that the investigation of certain algebraic varieties is suf-
ficient to characterize invariant sets forced by symmetries. Lyapunov pairs and
functions are used extensively in dynamic systems and control theory, among
many other applications; see, e.g., [1, 11].

In this work, we provide different criteria to characterize those sets which are
invariant with respect to the differential inclusion (1). Only the data, A and f,
will be appealed to and no need to solve explicitly the equation. These invariant
results are then rewritten as criteria for a-Lyapunov pairs, which are crucial for
Lyapunov stability of (1). Because the sets we consider are not necessary convex
or smooth, and the candidate Lyapunov functions are not necessarily sufficiently
regular, we use techniques of nonsmooth analysis (e.g.. [13, 18, 23]).

The organization of the paper is as follows. After an introductory section to
present the main notations and tools which are used through this work, we give
in Section 3 the main invariance criterion in Theorem 4, using the normal cone
to the nominal set. Other corollaries follow in order to simplify this invariance
criterion and provide equivalent primal and dual conditions. In Section 4, we
apply the previous invariance result to investigate a-Lyapunov pairs associated
to differential inclusion (1).

2. Notation and preliminary results

Let (H, 〈·, ·〉, ‖·‖) be a Hilbert space, with origin θ. Given a set S ⊂ H, by S
and S∗ we denote the closure of S and the polar of S, respectively, where

S∗ := {x∗ ∈ H | 〈x∗, x〉 ≤ 0 for all x ∈ S}.

The indicator and the distance functions are respectively given by

IS(x) := 0 if x ∈ S; +∞ if x �∈ S, and dS(x) := inf{‖x− y‖ : y ∈ S}

(in the sequel we shall adopt the convention inf∅ = +∞). For δ ≥ 0, we denote
P δ
S the (orthogonal) δ-projection mapping onto S defined as

P δ
S(x) := {y ∈ S : ‖x− y‖2 ≤ d2S(x) + δ2};
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for δ = 0, we simply write PS(x) := P 0
S(x). It is known that PS is nonempty-

valued on a dense subset of H \ S ([13]). For an extended-real valued function
ϕ : H → R := (−∞,+∞] , we denote domϕ := {x ∈ H | ϕ(x) < +∞} and
epiϕ := {(x, α) ∈ H × R | ϕ(x) ≤ α}. Function ϕ is lower semi-continuous
(lsc, for short) if epiϕ is closed. The contingent directional derivative of ϕ at
x ∈ domϕ in the direction v ∈ H is

ϕ′(x; v) := lim inf
t→0+,w→v

ϕ(x+ tw)− ϕ(x)

t
.

A vector ξ ∈ H is called a proximal subgradient of ϕ at x ∈ H, written ξ ∈
∂Pϕ(x), if there are ρ > 0 and σ ≥ 0 such that

ϕ(y) ≥ ϕ(x) + 〈ξ, y − x〉 − σ‖y − x‖2, ∀ y ∈ Bρ(x),

where Bρ(x) ( =: B(x, ρ)) is the closed ball centered at x ∈ H of radius ρ > 0.
The vector ξ is called a Fréchet subgradient of ϕ at x, written ξ ∈ ∂Fϕ(x), if

ϕ(y) ≥ ϕ(x) + 〈ξ, y − x〉+ o(‖y − x‖), ∀ y ∈ H;

and a basic (or Limiting) subgradient of ϕ at x, written ξ ∈ ∂Lϕ(x), if there
exist sequences (xk)k and (ξk)k such that

xk
ϕ→ x, ξk ∈ ∂Pϕ(xk), ξk ⇀ ξ,

where ⇀ refers to the weak convergence in H, and xk
ϕ→ x means that xk → x

together with ϕ(xk) → ϕ(x).
If x /∈ domϕ, we write ∂Pϕ(x) = ∂Fϕ(x) = ∂Lϕ(x) = ∅. If S is a closed set

and s ∈ S, we define the proximal normal cone to S at s as NP
S (s) = ∂P IS(s),

the Fréchet normal cone to S at s as NF
S (s) = ∂F IS(s), the limiting normal

cone to S at s as NL
S(s) = ∂LIS(s), and the Clarke normal cone to S at s as

NC
S (s) = coNL

S(s). Equivalently, we have that NP
S (s) = cone(P−1

S (s)− s), where
P−1
S (s) := {x ∈ H | s ∈ PS(x)}. The Bouligand tangent cone to S at x is

defined as

TS(x) :=
{
v ∈ H | ∃ xk ∈ S, ∃ tk → 0, st. t−1

k (xk − x) → v as k → +∞}
.

We also define the Clarke subgradients of ϕ at x as the vectors ξ ∈ H such that
(ξ,−1) ∈ NC

epiϕ(x, ϕ(x)), and denote ∂Cϕ(x) the Clarke subdifferential of ϕ at
x. The singular subdifferential of ϕ at x, written ∂∞ϕ(x), is the set of vectors

ξ ∈ H for which there are sequences xk
ϕ→ x, ξk ∈ ∂Pϕ(xk) and λk → 0+

such that λkξk ⇀ ξ; equivalently, ξ ∈ ∂∞ϕ(x) iff (ξ, 0) ∈ NL
epiϕ(x, ϕ(x))

(see [18, Theorem 2.38]). It is known that every ξ ∈ H such that (ξ, 0) ∈
NP

epiϕ(x, ϕ(x)) belongs to ∂∞ϕ(x) and, moreover, there exist sequences as in
the definition before but with λkξk → ξ instead of λkξk ⇀ ξ (see [18, Lemma
2.37]). Observe that ∂Pϕ(x) ⊂ ∂Fϕ(x) ⊂ ∂Lϕ(x) ⊂ ∂Cϕ(x). For all these
concepts and properties we refer to [18, 23].
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We shall use the following version of Gronwall’s Lemma:

Lemma 1. (Gronwall’s Lemma [3]) Let T > 0 and a, b ∈ L1(t0, t0 + T ;R)
such that b(t) ≥ 0 a.e. t ∈ [t0, t0 + T ]. If an absolutely continuous function
w : [t0, t0 + T ] → R+ satisfies, for 0 ≤ α < 1,

(1− α)w′(t) ≤ a(t)w(t) + b(t)wα(t) a.e. t ∈ [t0, t0 + T ],

then

w1−α(t) ≤ w1−α(t0)e
∫ t
t0

a(τ)dτ
+

∫ t

t0

e
∫ t
s
a(τ)dτ b(s)ds, ∀t ∈ [t0, t0 + T ].

Next, we review some facts about monotone and maximal monotone opera-
tors. Given a set-valued operator A : H ⇒ H, which we identify with its graph,
we denote its domain by domA := {x ∈ H | Ax �= ∅}. Operator A is monotone
if

〈x1 − x2, y1 − y2〉 ≥ 0 for all (x1, y1), (x2, y2) ∈ A.

We say that A is maximal monotone if A is monotone and coincides with every
monotone operator containing its graph. In such a case, it is known that Ax
is convex and closed for every x ∈ H; moreover, for every λ > 0 there exists
a unique vector Jλx ∈ (id+λA)−1(x), which is the resolvent of the (maximal
monotone) operator A, while Aλx := x−Jλx

λ is the Moreau-Yoshida approxima-
tion of A. If S ⊂ H is a closed convex set, we denote S0 := {y ∈ S | ‖y‖ =
min
z∈S

‖z‖}; in particular, we write A0x := (Ax)◦, x ∈ domA.

Associated with a maximal monotone operator A : H ⇒ H we consider the
differential inclusion given in (1) :

ẋ(t) ∈ f(x(t))−A(x(t)), a.e. t ≥ 0, x(0) = x0 ∈ domA,

where f : H → H is a given (L-)Lipschitz continuous mapping. Every solution
of differential inclusion (1) will be denoted by x(·;x0).

We introduce the concept of invariant sets (see, e.g., [7, 13, 15]):

Definition 1. A set S ⊂ domA is said to be invariant for (1) provided that
x(t;x0) ∈ S for every x0 ∈ S and every t ≥ 0.

We also recall the following result on the existence of solutions of (1); for
more details, we refer to [10].

Proposition 2. For any x0 ∈ domA and T > 0, system (1) has a unique
continuous solution, which is the uniform limit on [0, T ] of xλ(·;x0) (as λ ↓ 0),
where xλ(·;x0) is the solution of the differential equation

ẋλ(t) = f(xλ(t))−Aλ(xλ(t)), xλ(0) = x0.

Moreover, the following holds :
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(i) For all s, t ≥ 0 and all y0 ∈ domA we have that

x(s;x(t;x0)) = x(t+ s;x0), ‖x(t;x0)− x(t; y0)‖ ≤ eLt ‖x0 − y0‖ .

(ii) If x(t0, x0) ∈ domA for some t0 ≥ 0, then

d+x(t0;x0)

dt
= (f(x(t0;x0))−Ax(t0;x0))

0.

(iii) The function t → d+x(t;x0)
dt is right-continuous at every t ≥ t0, where

t0 ≥ 0 is such that x(t0;x0) ∈ domA, and we have

∥∥∥∥d
+x(t;x0)

dt

∥∥∥∥ ≤ eL(t−t0)

∥∥∥∥d
+x(t0;x0)

dt

∥∥∥∥ .

3. Invariant sets

In this section, we achieve our first goal to characterize those closed sets in
the Hilbert space H, which are invariant with respect to differential inclusion
(1):

ẋ(t) ∈ f(x(t))−A(x(t)), t ∈ [0,∞), x(0) = x0 ∈ domA;

the unique solution of this inclusion is written x(·;x0).

It is worth observing that whenever differential inclusion (1) possesses a
strong solution starting from S (x0 ∈ S), which is an absolutely continuous
function such that x(t;x0) ∈ domA for all t > 0, each invariant closed set
S ⊂ domA satisfies the condition

S = domA ∩ S. (2)

However, this condition may not be true when only weak solutions exist. This
is why we shall assume in what follows that our invariance candidate sets satisfy
this “almost necessary” condition.

Remark 1. Theorem 4 below gives the main invariance criterion, given in (3),
for closed sets with respect to differential inclusion (1), using only the data in (1)
which are the operator A and the mapping f. Hence, explicit calculus of either
the solution or the semigroup generated by A are not required. Criterion (3)
extends and adapts some of the results given in [5, 6] on weakly closed invariant
sets. Its geometric meaning is very similar to the classical ones established in
[13, 14] for differential inclusions of the form

ẋ(t) ∈ F (x(t)),

with a w∗ -compact, nonempty and convex multifunction F . In our case, con-
dition (3) takes into account that the right-hand side in (1) , which is governed
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by a general maximal monotone operator, may have empty or unbounded val-
ues. As well, another crucial difference between (1) and the last inclusion above
is that our analysis also allows the initial condition in (1) to start from the
larger set domA. Thus, the scope of our analysis goes beyond the differential
inclusions treated in [8, 7, 13, 14, 16]. First invariance criteria for differential
inclusions involving maximal monotone operators have been given in [19] (see,
also, [10]) without considering the Lipschitzian perturbation. Such results have
been extended in [12, 17] to maximal monotone operators which are subject to
Lipschitz perturbations, using criteria which depend on the semi-group of con-
tractions generated by −A. Compared to [12, 17] (see, also, references therein),
condition (3) relies exclusively on the geometry of C as in [13, 14].

Before we state the main theorem of this section, Theorem 4 below, we give
the following lemma.

Lemma 3. Given a closed set S ⊂ H and an m ≥ 0, we denote

Sm :=
{
x ∈ S ∩ domA | ∥∥(f(x)−Ax)0

∥∥ ≤ m
}
.

Then the set Sm is closed.

Proof. Take a sequence (xk)k ⊂ Sm such that xk → x (∈ S). Without loss of
generality, and taking into account the norm-weak upper semi-continuity of the
maximal monotone operator A, we conclude that the sequence (PAxk

(f(xk)))k
weakly converges to some z ∈ Ax. Then

∥∥(f(x)−Ax)0
∥∥ ≤ ‖f(x)− z‖

≤ lim infk→∞ ‖f(xk)− PAxk
(f(xk))‖

= lim infk→∞
∥∥(f(xk)−Axk)

0
∥∥ ≤ m,

so that x ∈ Sm.

Theorem 4. Given a closed set S ⊂ domA ∩ S, we assume that for every
x ∈ S ∩ domA there exist m, r > 0 such that ‖PAx(f(x))‖ ≤ m and

sup
ξ∈NP

Sm
(y)

min
y∗∈Ay∩B(θ,m)

〈ξ, f(y)− y∗〉 ≤ 0 for all y ∈ B(x, r). (3)

Then S is invariant for (1).

Proof. We fix x0 ∈ S ∩ domA and ε > 0. Let m, r > 0 be as in the current
assumption (with x = x0), and choose an M > 0 such that

f(y)−Ay ∩B(θ,m) ⊂ B(θ,M) for all y ∈ K := Sm ∩B(x0, r). (4)

We also choose sufficiently small numbers t̄, δ > 0 and a sufficiently large integer
N such that

max{6M2t̄2, 8δ2} <
r2

2
, δ <

t̄

N
, (5)
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max

{
(M2 + 4M + 1)t̄2

N
,
M2t̄2

N2
+ 2δ2

}
<

ε2

4
. (6)

We denote by π := {t0, t1, ..., tN} the uniform partition of the interval [0, t̄].
We put d(π) := max

0≤i≤N−1
(ti+1 − ti) = t̄

N and, by (4), we choose an element

s∗0 ∈ f(x0) − A(x0) such that ‖s∗0‖ ≤ M . We consider the the function z0(t),
t ∈ [t0, t1] such that {

ż0(t) = s∗0, t ∈ [t0, t1],
z0(0) = x0,

and denote z1 := x0 + s∗0t1. We pick ŝ1 ∈ P δ
K(z1). Then there exists a pair

(y1, s1) such that s1 ∈ K, y1 − s1 ∈ NP
K(s1) and (see, e.g., [15, 22])

max{‖y1 − z1‖ , ‖s1 − ŝ1‖} ≤ δ, ‖(y1 − s1)− (z1 − ŝ1)‖ ≤ 2δ,

as well as (see [4, Lemma 4] )

‖s1 − x0‖2 ≤ 6‖z1 − x0‖2 + 8δ2 = 6t21‖s∗0‖2 + 8δ2 < 6t̄2M2 + 8δ2 < r2;

hence, s1 ∈ int(B(x0, r)) and, so, NP
K(s1) = NP

Sm
(s1). Consequently, by the

current assumption of the theorem, we find s∗1 ∈ (f(s1)−A(s1))∩B(θ,M) such
that

〈y1 − s1, s
∗
1〉 ≤ 0.

With this vector s∗1 in hand, we consider the function z1(t), t ∈ [t1, t2], such
that {

ż1(t) = s∗1, t ∈ [t1, t2]
z1(t1) = z1.

By repeating the arguments used above, for each i ∈ 2, N − 1, we consider the
function zi(t), t ∈ [ti, ti+1], such that

{
żi(t) = s∗i , t ∈ [ti, ti+1]
zi(ti) = zi−1(ti) =: zi,

and the corresponding elements (ŝi, yi, si, s
∗
i ) such that ŝi ∈ P δ

K(zi), yi − si ∈
NP

K(si) = NP
Sm

(si), s
∗
i ∈ [f(si)−A(si)] ∩B(θ,M),

〈yi − si, s
∗
i 〉 ≤ 0,

max{‖yi − zi‖ , ‖si − ŝi‖} ≤ δ, ‖(yi − si)− (zi − ŝi)‖ ≤ 2δ.

Now, we are going to prove that the absolute continuous trajectory z(·), defined
on [0, t̄] as z(t) := zi(t) = zi + (t− ti)s

∗
i for t ∈ [ti, ti+1], satisfies

dS(z(t)) ≤ ε, ∀t ∈ [0, t̄], (7)

‖si − z(t)‖ ≤ 2ε, ∀t ∈ [ti, ti+1]. (8)

8



Indeed, for any 1 ≤ i ≤ N − 1, one has

d2K(zi+1) ≤ ‖zi+1 − ŝi‖2 = ‖zi+1 − zi‖2 + ‖zi − ŝi‖2 + 2〈zi+1 − zi, zi − ŝi〉
= ‖(ti+1 − ti)s

∗
i ‖2 + d2K(zi) + δ2 + 2d(π)〈s∗i , zi − ŝi〉

≤ M2d2(π) + d2K(zi) + δ2 + 2d(π)〈s∗i , yi − si〉
+ 2d(π)〈s∗i , (zi − ŝi)− (yi − si)〉

≤ d2K(zi) + (M2 + 4M + 1)d(π)(ti+1 − ti),

which gives us

d2K(zi+1) ≤ d2K(z1) + (M2 + 4M + 1)d(π)(ti+1 − t1)

≤ ‖z1 − x0‖2 + (M2 + 4M + 1)d(π)(ti+1 − t1)

≤ (M2 + 4M + 1)d(π)t̄ ≤ (M2 + 4M + 1)t̄2

N
<

ε2

4
. (9)

This shows that, for every t ∈ [ti, ti+1],

d2S(z(t)) ≤ d2K(z(t)) = d2K(zi(t))) = d2K(zi(ti) + (t− ti)s
∗
i )

≤ 2d2K(zi) + 2(t− ti)
2M2 ≤ ε2

2
+ 2d2(π)M2 ≤ ε2

and (7) follows. Inequality (8) also follows since that for every t ∈ [ti, ti+1]

‖si − z(t)‖2 ≤ 2‖z(t)− zi‖2 + 2‖si − zi‖2

≤ 2(t− ti)
2M2 + 4‖si − ŝi‖2 + 4‖zi − ŝi‖2

≤ 2(t− ti)
2M2 + 4d2K(zi) + 8δ2

≤ 2d2(π)M2 + ε2 + 8δ2 ≤ 2ε2,

where in the last inequality we used (9).

Now, let x(t) be the (strong) solution of (1) starting at x0, and denote
li(t) := si − z(t), t ∈ [ti, ti+1], so that ż(t) = s∗i ∈ f(si) − A(si) = f(z(t) +
li(t))−A(z(t) + li(t)). Hence, by using the monotonicity of A we get

〈f(z(t) + li(t))− ż(t)− f(x(t)) + ẋ(t), z(t) + li(t)− x(t)〉 ≥ 0,

which leads us, using (7) and (8) together with the L-Lipschitzianity of f , to

〈ż(t)− ẋ(t), z(t)− x(t)〉 ≤ 2ε ‖f(z(t) + li(t))− ż(t)− f(x(t)) + ẋ(t)‖
+ ‖z(t)− x(t)‖ ‖f(z(t) + li(t))− f(x(t))‖
≤ 2ε ‖ż(t)− ẋ(t)‖+ 2εL ‖z(t) + li(t)− x(t)‖
+ L ‖z(t)− x(t)‖ ‖z(t) + li(t)− x(t)‖ .
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So, if C is any constant such that ‖ż(t)− ẋ(t)‖ ≤ C for all t ∈ [0, t̄] (as ‖ż(t)‖ ≤
M, and x(·) is Lipschitz on [0, t̄]), we get

〈ż(t)− ẋ(t), z(t)− x(t)〉 ≤ 2εC + 4εL ‖z(t)− x(t)‖+ L‖z(t)− x(t)‖2 + 4ε2L.

Next, by applying Lemma 1 to the function ‖z(·)− x(·)‖2 + 2εC+4ε2L
L we get,

for all t ∈ [0, t̄]

‖z(t)− x(t)‖ ≤ 4ε2L+ 2εC

L

2

eLt + 4ε(eLt − 1),

implying that, in view of (7) and (8),

dS(x(t)) ≤ dS(z(t)) + ‖z(t)− x(t)‖ ≤ 4ε2L+ 2εC

L

2

eLt̄ + 4εeLt̄.

Consequently, by the arbitrariness of ε we conclude that x(t) ∈ S for every
t ∈ [0, t̄]. Moreover, as x(t̄;x0) ∈ S ∩ domA, by the same argument as above we
find t̂ > 0 such that for every t ∈ [0, t̂] (recall Proposition 2)

x(t+ t̄;x0) = x(t;x(t̄;x0)) ∈ S ∩ domA;
that is, x(t) ∈ S for every t ∈ [0, t̄ + t̂]. This proves that x(t) ∈ S for every
t ≥ 0. Finally, if x0 ∈ S ∩ domA, we take a sequence (xk) ⊂ S ∩ domA such
that xk → x0. As we have just shown, for every k ≥ 1 we have that x(t;xk) ∈ S
for every t ≥ 0. Thus, since S is closed, as k → +∞ we deduce that x(t;x0) ∈ S
for every t ≥ 0.

The proof of Theorem 4 shows actually the following:

Corollary 5. Given a closed set S ⊂ domA ∩ S and x0 ∈ S ∩ domA, we
assume that for some m, r > 0 such that ‖PAx(f(x0))‖ ≤ m it holds

sup
ξ∈NP

Sm
(y)

min
y∗∈Ay∩B(θ,m)

〈ξ, f(y)− y∗〉 ≤ 0 for all y ∈ B(x0, r).

Then there exists t̄ > 0 such that x(t;x0) ∈ S for all t ∈ [0, t̄].

As we show in the corollary below the criterion of Theorem 4 becomes nec-
essary if the maximal monotone operator A has a minimal norm section, which
is locally bounded relative to its domain. As typical examples of such operators
there are normal cones to closed convex sets, and the subdifferential mapping
of lsc convex functions, which are Lipschitz relative to their domains. To fix
this concept we say that the operator A is locally minimally bounded on S, if
for every x ∈ S ∩ domA there exist m, r > 0 such that

∥∥A0y
∥∥ ≤ m for all y ∈ S ∩ domA ∩B(x, r). (10)
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This condition is less restrictive compared with the local boundedness of A
relative to S, which means that for every x ∈ S ∩ domA there exist m, r > 0
such that

‖y∗‖ ≤ m, ∀y∗ ∈ Ay, y ∈ S ∩ domA ∩B(x, r). (11)

Obviously every locally bounded operator is locally minimally bounded.
Then the following result gives necessary and sufficient simpler criteria for

the invariance of closed sets with respect to differential inclusion (1), using the
normal cone mapping to S, NS , which stands for either the proximal normal
cone NP

S or the Fréchet normal cone NF
S .

Corollary 6. Let S ⊂ H be a closed set satisfying (2). Then the following
statements are equivalent, provided that A is locally minimally bounded on S,

(i) S is an invariant set for (1);
(ii) for every x ∈ S ∩ domA

f(x)− PAx(f(x)) ∈ TS(x);

(iii) for every x ∈ S ∩ domA

sup
ξ∈NS(x)

〈ξ, f(x)− PAx(f(x))〉 ≤ 0;

(iv) for every x ∈ S ∩ domA and every m ≥ ‖f(x)− PAx(f(x))‖

sup
ξ∈NS(x)

inf
x∗∈(f(x)−Ax)∩B(θ,m)

〈ξ, x∗〉 ≤ 0;

and the following assertion, when A is locally bounded relative to S,
(v) for every x ∈ S ∩ domA

sup
ξ∈NS(x)

inf
x∗∈f(x)−Ax

〈ξ, x∗〉 ≤ 0.

Proof. We fix x ∈ S ∩ domA. The implication (iii) =⇒ (iv) is immediate,
while the implication (ii) =⇒ (iii) follows because TS(x) ⊂ (NS(x))

∗. In the
same line, implication (i) ⇒ (ii) follows easily by observing that

(f(x)−A(x))0 =
d+x(·;x)

dt
(0) = lim

t↓0
x(t;x)− x

t
∈ TS(x).

Thus, we only need to prove that (iv) ⇒ (i). If (iv) holds, by the current
local boundedness assumption of A0 on S ∩ domA we pick m, r > 0 such that∥∥(f(y)−Ay)0

∥∥ ≤ m for all y ∈ B(x, 2r) ∩ S ∩ domA. Hence,

B(x, 2r) ∩ S ∩ domA = Sm ∩B(x, 2r),

and, since S = S ∩ domA, for every y ∈ B(x, r) ∩ Sm,

NSm(y) = NSm∩B(x,2r)(y) = NS∩domA∩B(x,2r)(y) = NS∩domA(y) = NS(y).

11



So (iv) gives us, for every y ∈ B(x, r) ∩ Sm,

sup
ξ∈NSm (y)

inf
x∗∈(f(y)−Ay)∩B(θ,m)

〈ξ, x∗〉 ≤ 0,

and (i) follows, according to Theorem 4.
Suppose now that A is locally bounded on S ∩ domA, and consider the

intermediate assertion
(iv)′ for every x ∈ S ∩ domA and every large enough m ≥ ∥∥(f(x)−Ax)0

∥∥
we have that

sup
ξ∈NS(x)

inf
x∗∈(f(x)−Ax)∩B(θ,m)

〈ξ, x∗〉 ≤ 0.

As we see from the proof above (namely, the implication (iv) ⇒ (i)), we have
that (iv)′ ⇒ (i), so that (v) ⇒ (iv)′ ⇒ (i). The proof of the corollary is finished
because the implication (iv) =⇒ (v) is immediate.

In the following corollary we deduce another sufficient condition for the in-
variance of closed sets, using the Moreau-Yoshida approximations of A. Observe
that we do not require here that set S satisfies condition (2).

Corollary 7. Given a closed set S ⊂ H, we suppose that for every bounded
subsets B of S

lim inf
λ↓0

sup
y∈B

sup
ξ∈NP

S (y)

〈ξ, f(y)−Aλy〉 ≤ 0.

Then S is invariant set for (1).

Proof. Fix an x ∈ S and let x(·;x) be the corresponding solution of (1). Given
an r > 0 we let λk, k ≥ 1, be such that λk ↓ 0 and

sup
ξ∈NP

S (y)

〈ξ, f(y)−Aλk
y〉 ≤ 0 for all k ≥ 1 and y ∈ B(x, r) ∩ S. (12)

If ε < r
4 and t̄ > 0 are such that x(t;x) ∈ B(x, r

4 ) for all t ∈ [0, t̄], then for
large enough k ≥ 1 the solution xλk

(·;x) of the differential equation ẋ(t) =
f(x(t))−Aλk

(x(t)), x(0) = x, satisfies (see Proposition 2)

‖x(t;x)− xλk
(t;x)‖ ≤ ε <

r

4
; (13)

hence, xλk
(t;x) ∈ B(x, r

2 ) for all t ∈ [0, t̄]. On the other hand, since Aλk
is

Lipschitz continuous, for large enough m > 0 we have B(x, r) ∩ S = {z ∈
B(x, r) ∩ S | ‖Aλk

z‖ ≤ m}. So, according to Corollary 5, (12) ensures that
for some t̂ > 0, say t̂ ∈ (0, t̄), it holds xλk

(t;x) ∈ S for all t ∈ [0, t̂]. Since
xλk

(t;x) ∈ B(x, r
2 ) for all t ∈ [0, t̄], we infer that xλk

(t;x) ∈ B(x, r
2 ) ∩ S for all

t ∈ [0, t̄]. Consequently, by (13) we get dS(x(t;x)) ≤ ε for all t ∈ [0, t̄]. Then,
as ε → 0, we deduce that x(t;x) ∈ S for all t ∈ [0, t̄]. Finally, the invariance
of S follows by using the semi-group property of the solution x(·;x) (see again
Proposition 2).
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We consider now the special case where f ≡ θ, so that our differential inclu-
sion (1) takes the simpler form

ẋ(t) ∈ −Ax(t), x(0) = x0 ∈ domA. (14)

In this case, the criterion of Theorem 4 becomes also necessary as the following
corollary shows. Here too NSm stands for either NP

Sm
or NF

Sm
.

Corollary 8. Let S ⊂ H be a closed set satisfying (2). Then the following
statements are equivalent :

(i) S is an invariant set of (14);
(ii) for every x ∈ S ∩ domA

−A0x ∈ TSm(x) for all m ≥ ∥∥A0x
∥∥ ;

(iii) for every x ∈ S ∩ domA and for every m ≥ ∥∥A0x
∥∥

sup
ξ∈NSm (x)

〈ξ,−A0x〉 ≤ 0;

(iv) for any x ∈ S ∩ domA and every m ≥ ∥∥A0x
∥∥

sup
ξ∈NSm (x)

inf
x∗∈(−Ax)∩B(θ,m)

〈ξ, x∗〉 ≤ 0.

Proof. As in the proof of Corollary 6, the implications (ii) =⇒ (iii) and
(iii) =⇒ (iv with NSm = NF

Sm
) =⇒ (iv with NSm = NP

Sm
) are immediate.

For the implication (i) =⇒ (ii), we assume that S is an invariant set of (14).
If x ∈ S ∩ domA, then for a given m ≥ ∥∥A0x

∥∥ we have

∥∥A0x(t;x)
∥∥ =

∥∥∥∥d
+x(t;x)

dt

∥∥∥∥ ≤
∥∥∥∥d

+x(0;x)

dt

∥∥∥∥ =
∥∥A0x

∥∥ ≤ m, for all t ≥ 0.

Hence, x(t;x) ∈ Sm for all t ≥ 0 and we deduce that −A0x = d+x(0;x)
dt ∈ TSm(y),

yielding (ii). Finally, the implication (iv with NSm = NP
Sm

) =⇒ (i) is direct
from Theorem 4.

To show how can our Theorem 4 be applied we consider the following ex-
ample, which is treated in details in [4] in order to study the existence and the
stability of solutions of differential inclusions involving the normal cone to a
prox-regular set.

Recall that a closed set C ⊂ H is said to be uniformly r-prox-regular (r > 0)
if for every x ∈ C and ξ ∈ NP

C(x) ∩B(θ, 1) we have ([21])

〈ξ, y − x〉 ≤ 1

2r
‖y − x‖2 for all y ∈ C.

Example 1. Let C ⊂ H be a uniformly r-prox-regular set and consider the
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associated differential inclusion

ẋ(t) ∈ g(x(t))−NC(x(t)), a.e. t ∈ [0, T ], x(0) = x0 ∈ C, (15)

where g is a Lipschitz mapping on H. According to [4, Lemma 6(c)], let T :
H ⇒ H be a maximal monotone operator such that for some m ≥ 0 it holds,
for all y ∈ C,

NC(y) ∩B(0,m) +
m

r
y ⊂ T (y) ⊂ NC(y) +

m

r
y,

and consider the associated differential inclusion

ẋ(t) ∈ g(x(t))+
m

r
x(t)−Tx(t), a.e. t ∈ [0, T ], x(0) = x0 ∈ C (⊂ domT ). (16)

This inclusion perfectly fits the form of differential inclusion (1). Then we make
appeal to Theorem 4 to prove that the set C is invariant for (1), so that

ẋ(t) ∈ g(x(t)) +
m

r
x(t)− Tx(t) ⊂ g(x(t))−NC(x(t)),

providing us with a solution for (15). We refer to [4] for more details.

4. Lyapunov pairs and functions

In this section, we apply the results of the previous section to derive different
criteria for a-Lyapunov pairs with respect to differential inclusion (1) :

ẋ(t) ∈ f(x(t))−A(x(t)), t ∈ [0,∞), x(0) = x0 ∈ domA,

whose unique solution is written x(·;x0). Similar criteria to ours have been
established recently in [5, 6] in the case of weakly lsc Lyapunov pairs.

Definition 2. We say that a pair (V,W ) of proper lsc functions V,W : H → R

with W ≥ 0, is (or forms) an a-Lyapunov pair (a ≥ 0) with respect to system
(1) if, for every x0 ∈ domA,

eatV (x(t;x0)) +

∫ t

s

W (x(τ ;x0))dτ ≤ easV (x(s;x0)), for all t ≥ s ≥ 0.

Observe that (V,W ) is an a-Lyapunov pair with respect to system (1) iff for
every x0 ∈ domA there exists a t > 0 such that (see, e.g., [5, Proposition 3.2])

easV (x(s;x0)) +

∫ s

0

W (x(τ ;x0))dτ ≤ V (x0), for all s ∈ [0, t] .

We may assume without loss of generality that W is Lipschitz continuous
on every bounded set (see, e.g., [5, Lemma 3.1] or [13, Theorem 1.5.1]). While,
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concerning function V, one need to suppose the following condition

V (x) = lim inf
y
domA→ x

V (y) for every x ∈ domV, (17)

which is in fact necessary for V to be a Lypunov function in many important
cases (for instance, when differential inclusion (1) possesses a strong solution).

Theorem 9. Given two proper lsc functions V : H → R satisfying (17), W :
H → R+, and a real number a ≥ 0, we assume that for every x ∈ domV ∩domA
there are m, r > 0 such that ‖PAx(f(x))‖ ≤ m and, for all y ∈ B(x, r),

sup
ξ∈∂P (V+IAm )(y)

inf
y∗∈Ay∩B(θ,m)

〈ξ, f(y)− y∗〉+ aV (x) +W (x) ≤ 0.

Then (V,W ) forms an a-Lyapunov pair with respect to system (1).

Proof. We fix T > 0 and x0 ∈ domV ∩ domA. Following the discussion
made before the current theorem we may suppose without loss of generality
that W is Lipschitz continuous on every bounded set containing the trajectory
{x(t;x0), t ∈ [0, T ]}.
Let us define the maximal monotone operator Â : H × R

4 ⇒ H × R
4 and the

Lipschitz function f̂ : H × R
4 → H × R

4 as

Â(x, μ) := (Ax, θR4), f̂(x, μ) := (f(x), 1, 0, 1, 0),

and, given a fixed μ0 ∈ R
4, consider the associated differential inclusion given

in H × R
4 by

ẏ(t) ∈ f̂(y(t))− Â(y(t)), a.e. t ∈ [0, T ]; y(0) = (x0, μ0), (18)

whose unique solution is y(t) := (x(t), t, 0, t, 0) + (θ, μ0), t ∈ [0, T ] (with x(t) :=
x(t;x0)).

For each n ≥ 1, we consider the lsc function Vn : H × R
3 → R defined as

Vn(x, α, β, γ) := eaγV (x) + (α− β)gn(α) +
l

2
(α− β)2, (19)

where gn is an l-Lipschitz extension of the function W (x(·;x0))− 1
n from [0, T ]

to [−1, T + 1]; hence,

∂Cgn(α) ⊂ B(0, l) for all α ∈ [0, T + 1]. (20)

We denote
S := epiVn,

so that S = S ∩ dom Â, by (17), and

epi(Vn + IAm×R3) = S ∩ Âm =: Sm. (21)
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We also denote y0 := (x0, θR3 , V (x0)) ∈ S ∩ dom Â. Let m, r > 0 be as in the
current assumption, corresponding to x0, and choose r̄ < r small enough such
that for all (x, α, β, γ) ∈ B((x0, θR3), r̄)

gn(α)− eaγW (x) + 2l |α− β| ≤ −1

2n
. (22)

Take y := (y1, μ1) ∈ B(y0, r̄)∩Sm, with y1 := (x1, α1, β1, γ1), and pick (ξ,−κ) ∈
NP

Sm
(y). Due to (21) and [13, Exercise 1.2.1],

(ξ,−κ) ∈ NP
Sm

(y) = NP
epi(Vn+IAm×R3 )

(y) ⊂ NP
epi(Vn+IAm×R3 )

(y1, Vn(y1)) ;

hence, κ ≥ 0. If κ > 0, say κ = 1 for simplicity, then ξ ∈ ∂P (Vn + IAm×R3)(y1)
and, thanks to (19), we find ξ1 ∈ ∂P (V +IAm)(x1) and ς ∈ ∂P gn(α1) ⊂ ∂Cgn(α1)
such that

ξ ∈ (eaγ1ξ1, gn(α1) + (α1 − β1)(ς + l),−gn(α1) + l(β1 − α1), ae
aγ1V (x1)) .

Since y ∈ B(y0, r̄) ∩ Sm we have that x1 ∈ B(x0, r̄) ∩ Am ∩ domV and, so, by
the current assumption, there exists an x∗

1 ∈ Ax1 ∩B(θ,m) (this last set being
weak*-compact) such that

〈ξ1, f(x1)− x∗
1〉+ aV (x1) +W (x1) ≤ 0.

Then we obtain (recall (20) and (22))

〈(ξ,−1), (f(x1)− x∗
1, 1, 0, 1, 0)〉 = 〈eaγ1ξ1, f(x1)− x∗

1〉+ gn(α1)

+ (α1 − β1)(ς + l) + aeaγ1V (x1)

= eaγ1 (〈ξ1, f(x1)− x∗
1〉+ aV (x1) +W (x1))

+ gn(α1) − eaγ1W (x1) + (α1 − β1)(ς + l)

≤ gn(α1)− eaγ1W (x1) + 2l |α1 − β1| ≤
−1

2n
.

(23)

If κ = 0, then thanks to (19) we find ξ2 ∈ H such that ξ = (ξ2, θR3), with the

property that there are sequences λk ↓ 0, zk
V+IAm−→ x1, ζk ∈ ∂P (V + IAm)(zk)

such that λkζk → ξ2 as k → ∞. By the current assumption, for each large
enough k so that zk ∈ B(x0, r) there exists z∗k ∈ Azk ∩B(θ,m) such that

〈ζk, f(zk)− z∗k〉+ aV (zk) +W (zk) ≤ 0.

Because A is maximal monotone and (z∗k)k is bounded, we can find an x∗
2 ∈

Ax1 ∩ B(θ,m) such that 〈ξ2, f(x1) − x∗
2〉 ≤ 0; hence, by multiplying the last

inequality above by λk and taking the limit as k → ∞,

〈(ξ, 0), (f(x1)− x∗
2, 1, 0, 1, 0)〉 = 〈ξ, f(x1)− x∗

2〉 ≤ 0. (24)
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According to Corollary 5, (23) and (24) imply the existence of some t̄ := t̄(n) ∈
(0, T ] such that for every t ∈ [0, t̄],

(x(t), t, 0, t, V (x0)) ∈ S;

in other words, eatV (x(t)) + tgn(t) +
l
2 t

2 ≤ V (x0) and, so, for every t ∈ [0, t̄]

eatV (x(t)) +

∫ t

0

W (x(τ))dτ ≤ eatV (x(t)) +

∫ t

0

(g(t) + l(t− τ))dτ +
t

n

≤ V (x0) +
t

n
. (25)

Now, we claim that for all t ∈ [0, T ]

eatV (x(t)) +

∫ t

0

W (x(τ))dτ ≤ V (x0) +
e(1+a)t

n
. (26)

To prove this claim we define

t∗ := sup{t ∈ [0, T ] | inequality (26) holds on [0, t]}.

Indeed, from (25) and the lsc of V, it follows that (26) holds at t∗. If t∗ < T,
we denote y∗ := (x(t∗), θR3 , V (x(t∗))) and we easily check that y∗ ∈ S ∩ dom Â.
Then, arguing as with y0 above, we arrive at a relation which is similar to (25);
that is, there is some t̂ > 0 such that for all t ∈ [0, t̂]

eatV (x(t;x(t∗))) +
∫ t

0

W (x(τ ;x(t∗)))dτ ≤ V (x(t∗)) +
t

n
. (27)

Hence,

ea(t+t∗)V (x(t+ t∗)) + t+t∗

0
W (x(τ))dτ

≤ ea(t+t∗)V (x(t+ t∗)) + t+t∗

0
W (x(τ))dτ + (eat

∗ − 1)
t

0
W (x(τ + t∗))dτ

= eat
∗
(eatV (x(t+ t∗)) + t

0
W (x(τ + t∗))dτ − t

n ) +
t∗

0
W (x(τ))dτ + eat∗ t

n

≤ eat
∗
V (x(t∗)) + t∗

0
W (x(τ))dτ + eat∗ t

n

≤ V (x0) +
e(1+a)t∗

n + eat∗ t
n .

Consequently, due to the inequality eγ ≥ 1 + γ, we obtain that for all t ∈ [0, t̂]

ea(t+t∗)V (x(t+ t∗)) +
∫ t+t∗

0

W (x(τ))dτ ≤ V (x0) +
e(1+a)(t+t∗)

n
,

leading us to a contradiction with the definition of t∗.
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Now, the claim being true, we take the limit in (26) as n goes to +∞ to
obtain that

eatV (x(t)) +

∫ t

0

W (x(τ))dτ ≤ V (x0) for all t ∈ [0, T ].

Finally, if x0 ∈ domV, then by the current assumption (17), there exists a

sequence (xk)k≥1 ⊂ domV ∩ domA such that xk
V→ x0. Thus, from the last

inequality above we conclude that

eatV (x(t;xk)) +

∫ t

0

W (x(τ ;xk))dτ ≤ V (xk) for all t ∈ [0, T ] and all k ≥ 1.

Hence, as k goes to +∞, the lsc of V and Proposition 2 ensure that

eatV (x(t;x0)) +

∫ t

0

W (x(τ ;x0))dτ ≤ V (x0) for all t ∈ [0, T ],

showing that (V,W ) is an a-Lyapunov pair.

As in the case of the invariance of closed sets, the criterion of Theorem
9 takes a more simpler form when the maximal monotone operator A, or its
minimal norm section, A0, is locally bounded (see (10)). Here, ∂V stands for
either ∂PV or ∂FV.

Corollary 10. Given two proper lsc functions V,W : H → R, such that W ≥ 0
and (17) holds, and a number a ≥ 0, we assume that A is minimally locally
bounded relative to domV. Then the following statements are equivalent.

(i) (V,W ) is an a-Lyapunov pair for (1);
(ii) for any x ∈ domV ∩ domA

sup
ξ∈∂V (x)

〈ξ, (f(x)−Ax)0〉+ aV (x) +W (x) ≤ 0;

(iii) for any x ∈ domV ∩ domA

V ′(x; (f(x)−Ax)0) + aV (x) +W (x) ≤ 0;

Moreover, if in addition, (11) holds, then the above statements are also equiv-
alent to

(iv) for any x ∈ domV ∩ domA

sup
ξ∈∂V (x)

inf
x∗∈Ax

〈ξ, f(x)− x∗〉+ aV (x) +W (x) ≤ 0;

(v) for any x ∈ domV ∩ domA

inf
v∈Ax

V ′(x; , f(x)− v) + aV (x) +W (x) ≤ 0.
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Proof. First, the implications (iii)(with ∂ = ∂F )⇒ (iii)(with ∂ = ∂P ) ⇒ (ii)
follow since that ∂P ⊂ ∂F and σ∂FV (x) ≤ V ′(x; ·).

(i) ⇒ (iii). Fix x0 ∈ domV ∩domA. Since (V,W ) is an a-Lyapunov for (1),
we have that for all t > 0

V (x(t;x0))− V (x0)

t
+

eat − 1

t
V (x(t;x0)) +

1

t

∫ t

0

W (x(τ ;x0))dτ ≤ 0,

while Proposition 3 ensures that

lim
t↓0

x(t;x0)− x0

t
=

d+x(0;x0)

dt
= (f(x0)−Ax0)

0.

Hence, using the lsc of V together with the continuity of x(·, x0),

V ′(x0; (f(x0)−Ax0)
0) ≤ lim inf

t↓0
V (x(t;x0))− V (x0)

t
≤ −aV (x0)−W (x0),

(28)
leading us to (ii).

(ii)(with ∂ = ∂P ) ⇒ (i). We fix x0 ∈ domV ∩ domA. From the one hand,
by the boundedness assumption of A0, for a large m ≥ 0 there exists an r > 0
such that

B(x0, r) ∩ domV ∩ domA ⊂ Am. (29)

On the other hand, we have that

∂P (V + IAm)(x) ⊂ ∂PV (x) for all x ∈ B(x0,
r

2
). (30)

Indeed, if ξ ∈ ∂P (V + IAm
)(x) for x ∈ B(x0,

r
2 ), there exist δ > 0 and ρ ∈ (0, r

2 )
such that

(V + IAm)(z) ≥ V (x) + 〈ξ, z − x〉 − δ‖z − x‖2 ∀ z ∈ B(x, ρ).

Take z ∈ B(x, ρ
4 )∩domV (⊂ B(x0, r)). By (17) together with (29), there exists

a sequence (zn)n ⊂ B(x, ρ)∩domV ∩Am such that zn → z and V (zn) → V (z).
Since each zn satisfies the last inequality above, by taking the limit as n → ∞
we arrive at V (z) ≥ V (x)+ 〈ξ, z−x〉− δ‖z − x‖2 and the inclusion (30) follows.

At this stage, from (29) and the Lipschitzianity of f there exists someM ≥ m
such that, for all x ∈ B(x0, r),

‖PAx(f(x))‖ ≤ ‖f(x)‖+ ‖A◦x‖ ≤ ‖f(x)‖+m ≤ M,

which shows that (f(x) − Ax)0 ∈ f(x) − Ax ∩ B(θ,M). Since ∂P (V + IAM
) ⊂

∂P (V + IAm), in view of (30), assumption (ii)(with ∂ = ∂P ) implies that, for
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every x ∈ B(x0,
r
2 )

sup
ξ∈∂P (V+IAM

)(x)

inf
x∗∈Ax∩B(θ,M)

〈ξ, f(x)− x∗〉+ aV (x) +W (x) ≤

sup
ξ∈∂PV (x)

〈ξ, (f(x)−Ax)0〉+ aV (x) +W (x) ≤ 0.

Thus, (i) follows from Theorem 9.
Finally, if A is locally bounded on domV, then from the first part of the

proof one only needs to verify the implication (iv) =⇒ (i), the proof of which
is similar to the one of “(ii) ⇒ (i)” that we did above.

In the following corollary we provide criteria for a-Lyapunov pairs, which
use the Moreau-Yoshida approximation of A.

Corollary 11. Let V,W and a be as in Corollary 10, and let ∂ be such that
∂P ⊂ ∂ ⊂ ∂C . If there exist λ0 > 0 such that for all λ ∈ (0, λ0]

sup
ξ∈∂V (x)

〈ξ, f(x)−Aλx〉+ aV (x) +W (x) ≤ 0, ∀x ∈ domV,

then (V,W ) is an a-Lyapunov pair for (1).

Proof. Fix x0 ∈ domV and t ≥ 0. If xλ(·;x0) is the solution of the differential
equation

ẋλ(t) = f(xλ(t))−Aλ(xλ(t)), xλ(0) = x0 (λ ∈ (0, λ0]), (31)

then, according to Corollary 10(ii), the pair (V,W ) is an a-Lyapunov pair of
(31); that is,

eatV (xλ(t)) +

∫ t

0

W (xλ(τ))dτ ≤ V (x0) for all t ≥ 0.

Hence, the conclusion follows as λ ↓ 0.

We consider now the case when f ≡ 0 so that differential inclusion (1) reads

ẋ(t) ∈ −A(x(t)), x(0) = x0 ∈ domA. (32)

In the following theorem ∂ stands for either ∂P or ∂F .

Corollary 12. Let V,W : H → R be two proper lsc functions, such that W ≥ 0
and (17) holds, and let a ≥ 0. Then the following statements are equivalent :

(i) (V,W ) is an a-Lyapunov pair for (32);

(ii) for every x ∈ domV ∩ domA and every m ≥ ∥∥A0x
∥∥

sup
ξ∈∂(V+IAm )(x)

〈ξ,−A0x〉+ aV (x) +W (x) ≤ 0;
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(iii) for every x and m as in (ii)

sup
ξ∈∂(V+IAm )(x)

inf
x∗∈−Ax∩B(θ,m)

〈ξ, x∗〉+ aV (x) +W (x) ≤ 0;

(iv) for every x and m as in (ii)

(V + IAm)′(x;−A0x) + aV (x) +W (x) ≤ 0;

(v) for every x and m as in (ii)

inf
v∈−Ax∩B(θ,m)

(V + IAm)′(x; v) + aV (x) +W (x) ≤ 0.

Proof. The implications (ii) ⇒ (iii), (iv) ⇒ (v), (iv) ⇒ (ii), and (v) ⇒ (iii)
are immediate. To prove that (i) ⇒ (iv), we fix x0 ∈ domV ∩ domA and
m ≥ ∥∥A0x0

∥∥ . According to Proposition 2, for any t ≥ 0 we have that

∥∥−A0(x(t;x0))
∥∥ =

∥∥∥∥d
+x(t;x0)

dt

∥∥∥∥ ≤
∥∥∥∥d

+x(0;x0)

dt

∥∥∥∥ =
∥∥−A0x0

∥∥ ≤ m;

that is, x(t, x0) ∈ Am for all t ≥ 0. Hence, since x(t,x0)−x0

t → −A0x0 as t ↓ 0,
provided that (V,W ) is an a-Lyapunov pair for (32) we obtain, by arguing as
in the proof of (28),

(V + IAm)′(x0;−A0x0) ≤ lim inf
t↓0

(V + IAm)(x(t;x0))− (V + IAm)(x0)

t

= lim inf
t↓0

V (x(t;x0))− V (x0)

t
≤ −aV (x)−W (x),

giving rise to (iv).
Finally, the conclusion of the corollary follows because the implication (iii) ⇒

(i) holds according to Theorem 9.

We obtain the following corollary, which can be find in [17]; the original
version of this result was established in [19]

Corollary 13. Let V,W : H → R be two proper lsc functions, such that W ≥ 0,
and let a ≥ 0. If condition (17) and, for every x ∈ domV,

lim inf
λ↓0

V (Jλ(x))− V (x)

λ
+ aV (x) +W (x) ≤ 0,

then (V,W ) is an a-Lyapunov pair for (32).

Proof. We fix x ∈ domV ∩ Am for some large m ≥ 1. Since Aλx ∈ A(Jλx)
and ‖Aλx‖ ≤ ‖A◦x‖ ≤ m, we infer that Jλx ∈ Am and, so, using the current
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assumption,

(V + IAm)′(x0;−A0x0) ≤ lim inf
t↓0

V (Jλ(x))− V (x)

t
≤ −aV (x)−W (x).

The conclusion follows then from Corollary 12(iv).

Corollary 10 obviously covers the case when A is the null operator, where
(1) becomes a usual differential equation stated in the Hilbert space H as

ẋ(t) = f(x(t)), a.e. t ≥ 0, x(0) = x0 ∈ H. (33)

The following characterization is known when ∂ is the viscosity subdifferential
as defined in [17, Definition 2.7], while the case of weakly lsc a-Lyapunov pairs
can be found in [5].

Corollary 14. Let V,W and a be as in Corollary 10, and let ∂ be such that
∂P ⊂ ∂ ⊂ ∂C . Then the following statements are equivalent :

(i) (V,W ) is an a-Lyapunov pair for differential equation (33),
(ii) for every x ∈ domV

sup
ξ∈∂V (x)

〈ξ, f(x)〉+ aV (x) +W (x) ≤ 0, (34)

(iii) for every x ∈ domV

V ′(x; f(x)) + aV (x) +W (x) ≤ 0.

Proof. In view of Corollary 10, we only need to check that (i) =⇒ (ii) (with
∂ = ∂C), and this easily follows from the relation ∂CV = co{∂LV + ∂∞V }.
Indeed, assume that (i) holds and take ξ ∈ ∂LV (x) and ζ ∈ ∂L,∞V (x). By the

definition of ∂LV (x) we choose sequences ξk ∈ ∂PV (xk) such that xk
V→ x and

ξk ⇀ ξ. Then, by (i),

〈ξk, f(xk)〉+ aV (xk) +W (xk) ≤ 0 for all k ≥ 1,

and, so, as k → ∞, we deduce that 〈ξ, f(x)〉+ aV (x) +W (x) ≤ 0. Similarly, we

choose sequences xk
V→ x and λk ↓ 0 such that ζk ∈ ∂PV (xk) and λkζk ⇀ ζ.

Then, by arguing as above we deduce that 〈ζ, f(x)〉 ≤ 0, which in turn yields

〈ξ + ζ, f(x)〉+ aV (x) +W (x) ≤ 0,

and this gives us (ii) (with ∂ = ∂C) by convexification.

We close this section by analyzing a typical example of Lyapunov pairs.

Example 2. Assume that a function V : H → R is a proper, convex and lsc,
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and consider the differential inclusion

ẋ(t) ∈ −∂V (x(t)).

Then the pair (V,
∥∥(∂V )0

∥∥2) is a Lyapunov pair, so that for every x0 ∈ domV

V (x(t, x0)) +

∫ t

0

‖ẋ(τ , x0)‖2dτ ≤ V (x0) for all t > 0.

To see this fact we fix x ∈ domV ∩ dom ∂V. Since Aλ(x) ∈ A(Jλ(x)) for every
λ > 0 (A = ∂V ), condition (17) holds and one has that

V (Jλ(x))− V (x) ≤ −〈Aλ(x), x− Jλ(x)〉 = − 1

λ
‖x− Jλ(x)‖2.

Hence,

lim inf
λ↓0

V (Jλ(x))−V (x)
λ +

∥∥A0x
∥∥2

≤ lim inf
λ↓0

(
V (Jλ(x))−V (x)

λ + 1
λ2 ‖x− Jλ(x)‖2 ≤ 0 ,

and Corollary 13 (together with Proposition 2) applies.

5. Conclusion and further research

We gave different conditions for the invariance of closed sets, which only
involve the input data, represented by the maximal monotone operator and the
Lipschitz mapping. These conditions are applicable to a large variety of closed
sets which do not need to be convex or smooth. The current work extends
and improves some of the results given in [5, 6] and dealing with weakly closed
invariant sets and weakly lower semi-continuous a-Lypunov pairs. It will be our
aim in a forthcoming work to apply the current results to specific differential
equations/inclusions where the underlying maximal monotone operator is not
known explicitly. This will make the access to the corresponding semi-group
more easier, namely regarding the behavior at infinity of trajectories.
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