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Abstract

Global digital image correlation (DIC) applied to infrared images is
considered for a test where very significant and localized laser heating
is applied. Because of temperature changes and high gradients, digital
levels are to be corrected in addition to the displacement registration.
Digital level corrections and kinematics are decomposed over an unstruc-
tured mesh to account for steep gradients. A regularization strategy is
used to mend ill-posedness penalizing rapid variation of corrections and
displacements. High gradients motivate further softening of the regular-
ization (i.e., reduction of the regularization length scale) based on prior
estimates. The methodology is tested on different experimental cases in
which DIC residuals are drastically reduced and systematic displacement
errors are cut down to 10−2 pixel after gray level corrections (performed
on numerical cases). Additionally, the regularization improves the conver-
gence speed as well as the quality of the sought fields. The capability of
the code to account for blur corrections is illustrated on a practical case.
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1 Introduction

Digital image correlation (DIC) is a powerful tool for many applications in solid
mechanics [1–7]. One of the main assumptions of DIC is gray-level conserva-
tion between registered images. In many practical cases such an assumption is
valid or its violation does not lead to serious consequences. Sometimes however,
violation of this assumption is more detrimental. This can result for instance
from lighting variations in the course of an experiment. Strategies have been
designed to correct for those variations by tailoring the registration cost func-
tion to be minimized so that it becomes insensitive to simple constant, linear
or affine gray level (GL) corrections where the first two are respectively termed
“brightness” or “contrast” corrections. A series of DIC criteria have been pro-
posed with different degrees of robustness (see Refs. [5, 8, 9] for reviews). The
so-called Zero-mean Normalized Sum of Squared Differences (ZNSSD) criterion
for instance is popular in local DIC measurements. For each zone of interest,
gray levels are affinely transformed in such a way that each clipped image has
a zero mean value and unit standard deviation [5, 10]. In such a case, gray
level variations become innocuous, but typically, gray level corrections are not
recorded nor exploited.

Extreme cases may be met when a real image is registered with a binary ref-
erence. This situation was encountered when optical distortions of an imaging
device were to be corrected for calibration purposes [11]. The reference binary
pattern had to be dressed by gray levels (and its blur adjusted) to be registered
with a real acquisition. A specific kinematic basis issued from Refs. [12,13] can
be used. For IR cameras, the same methodology can be followed. The digital
levels result from heterogeneous emissivity and temperature of the sample sur-
face. They are strongly affected by contrast, brightness and blur variations. A
shallow contrast in emissivity (e.g., between 0.8 and 0.9) gives a low dynamic
range as compared to plain optical images. Consequently such images are more
prone to noise. Moreover, they are also sensitive to artifacts such as gray level
modulations due to lenses. Inhomogeneous variations over the field of view may
provide spurious displacement estimates from DIC analyses and are thus to be
studied in details. An Integrated DIC (I-DIC) procedure was designed for such
calibration where the distortions are decomposed over a set of polynomial func-
tions. When adapted to IR cameras, this treatment benefitted from enrichment
with blur to provide satisfactory results [11]. For other applications where gray
level variations occur in a less mastered way more general strategies should be
considered [14].

Filters with frequency cut-offs can be used to erase gray level variations [15].
This is well understood for cases where reflections occur at specular points
in the pictures [16]. The gray level corrections are identified within the DIC
formalism. The same type of strategy is applied in Ref. [17] for IR frames in
which the effect of a laser spot disturbed the digital level distribution on images
of the deformed configuration. In a recent study [14], a more “general” method
was followed consisting in decomposing the gray level corrections onto a global
Finite Element (FE) representation inasmuch as for displacement fields. From a
single IR camera, this formalism, termed IRIC (for InfraRed Image Correlation)
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provides both 2D kinematic and temperature fields. It was used for revealing
dissipation in phase transformation bands of a shape memory alloy. In other
experimental cases, temperature variations due to laser heating can reach a few
hundred degrees [18, 19]. Even in such challenging circumstances, where gray
levels (or digital levels) display huge variations, IR frames can be used to assess
both temperature and displacement fields 1.

In the present work, it is proposed to include gray level corrections in a
global finite-element based DIC formalism [6]. Akin to the displacement field,
it is proposed to account for brightness and contrast variations by fields that
are decomposed onto unstructured triangular meshes. This formalism is suited
to cope with regions of interest of arbitrary shape (including boundaries with
acute angles or domains with inner holes). However, as finer and finer meshes
are sought, ill-posedness of the DIC problem emerges, and may become limiting.
In order to decouple the actual mesh fineness and the possible ill-conditioning
that may result, a regularization strategy is proposed, where, in the spirit of
Tikhonov regularization [20], it is proposed to add a penalization to all mea-
sured fields, including brightness, contrast and blur, when they display rapid
variations. It is important though to ensure that this regularization does not
interfere with expected fields [21]. In the above reference, any displacement
field, which is solution to a homogeneous linear elastic problem would not be
penalized.

Such corrections provide better IR frame registration and thus enable IRIC
analyses to be performed even with very disturbed, i.e., gray level-wise, im-
ages. The additional soft penalization allows thermomechanical phenomena to
be better captured even when small mesh sizes are considered. The use of FE
meshes for the discretization of the region of interest (ROI) enables more com-
plex topologies to be considered. Two very different examples will be shown.
The first one considers IR frames during laser shocks and the second case uses
the algorithm for estimating the effect of distortion (cause by lenses) on IR
frames. The method proposed in Ref. [11] has shown good results using inte-
grated DIC. However for more complex gray level distributions the used fields
(i.e., set of polynomials) may not suffice. The exactly same DIC formulation,
which is derived from an image analysis, between perfect and experimental
frames [11], will be implemented. However the solution space of the problem
will be less constrained than that designed by predefined global fields.

2 Regularized DIC

The proposed DIC approach is implemented in the same framework as Ref. [21],
namely, for unstructured 3-noded (T3) meshes. In the following, brightness
conservation is relaxed to a more general formulation of optical flow. Regular-
ization [20] is provided by an additional cost function based on the L2 norm of

1In the context of thermal IR cameras, gray levels are more usually termed as digital levels,
and after a suited calibration they are converted into temperatures under the assumption of
observing a surface whose emissivity is known. In order to keep the discussion general, the
“gray-level” terminology is preferred hereafter and will be used all along the remainder of the
paper
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differential operators acting on the sought fields. The differential operator is
chosen so that its kernel contains fields that are considered as physically relevant
(and hence not to be penalized).

2.1 Generalized optical flow

The reference image is a gray level-valued scalar field, denoted f(x) where x
stands for the pixel coordinates. In the course of the experiment, images of the
deformed state, or “deformed images” for conciseness, g(x) are captured. The
optical flow is in general terms the mathematical expression of the relationship
between f and g. Its most usual expression is g(x + u(x)) = f(x), stating
that the gray level is passively advected by the displacement field u(x). In this
work, it is proposed to generalize this optical flow assumption to account for
local gray level variations as well as (possibly heterogeneous) blur due to, say,
out-of-focus effects [11]. In the absence of noise, the deformed image g(x) is
assumed to obey

g(x+ u(x)) = f(x) + a(x) + +
N∑
i=0

bi(x)(Gi ∗ f)(x) (1)

where u(x) is the displacement field, Gi(x) Gaussian kernels of different widths
indexed by i, ∗ the convolution product, a(x) the brightness correction, b0(x)
and bl>0(x) the weights for the series of progressive blur of the reference image
also accounting for contrast variations. For a more compact notation, G0(x) =
δ(x) is chosen as the Dirac distribution and because G0 ∗f = f the second term
is included in the last sum. It is observed that the standard form of optical flow
is recovered when a = 0 and bi = 0 for i ≥ 0. In the absence of blur, only a and
b0 fields are needed.

Because of noise, Equation (1) cannot be fulfilled exactly, and it is proposed
to measure all unknown fields, collectively denoted as v(x) ≡ {u(x), a(x), bi(x)}>
for the minimization of the quadratic norm of the residual defined as the dif-
ference between left and right members of Equation (1). Thus, the DIC cost
function Φ2

c is introduced as

Φ2
c =

∑
x∈ROI

(
a(x) +

N∑
i=0

bi(x)Gi(x) ∗ f(x) + f(x)− g(x+ u(x))

)2

(2)

Although the minimization of Equation (2) is a highly nonlinear problem,
it is proposed to solve it with a Newton scheme about the tangent problem.
For this aim, the corrected deformed image g̃(x), which is based on the current
determination of v(x), reads

g̃(x) = g(x+ u(x))− a(x)−
N∑
i=0

bi(x)(Gi ∗ f)(x) (3)

and the current residual
ρ(x) = f(x)− g̃(x) (4)
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The unknown fields are parameterized by their discretization onto finite-
element meshes. (For rectangular ROIs, polynomial fields in an I-DIC formalism
were introduced in Ref. [11] but will not be used herein.) In the following, an
unstructured 2D mesh made of triangular elements with first order shape func-
tions is selected. Hence the nodal values, νjn, for node n, and shape function,
χn(x), allow for the interpolation of any of the considered fields vj(x)

vj(x) =
∑
n

νjnχn(x) (5)

The same mesh is used for a, bi, u1 and u2 the two components of the dis-
placement field, and equivalent nodal values are introduced. Using the global
notation, the shape functions are replicated over all fields to form a rectangu-
lar matrix [χ] indexed by pixels x and the column vector gathering all nodal
degrees of freedom {ν}, so that v(x) = [χ(x)]{ν}. The linear system in terms
of the correction vector {δν} reads [6]

[M ] {δν} = {β} (6)

where
[M ] =

∑
x∈ROI

[χ(x)]>{m(x)}>{m(x)}[χ(x)] (7)

and
β =

∑
x∈ROI

[χ(x)]>{m(x)}>ρ(x) (8)

with
{m(x)} = {f,x(x), f,y(x), 1, Gi ∗ f0(x)} (9)

where f,x =
df

dx
, and x = (x, y). Once the incremental corrections δv are com-

puted, the column vector {ν} is updated, and the same operation is repeated
until the increment is less than a chosen threshold. In all the reported results,
the change in the corrections ‖{δν}‖ has to become less than 10−5. An escape
condition is also added, which limits the number of iterations to 50. Those
cases were encountered in practice for small mesh sizes and small regulariza-
tion lengths. Their occurrence is described below but the resulting fields are
not included in the discussion as the lack of convergence precludes any sound
interpretation.

Designing a mesh that is coarse enough is a way to make the problem
well-posed, and hopefully well-conditioned. However, it is convenient to be
able to adjust the fineness of the mesh to the problem at hand, and hence
ill-conditioning may occur and sensitivities to noise. An alternative route is
provided by incorporating an extraneous requirement that penalizes rapid spa-
tial variations of the correction fields v. This strategy (i.e., regularization) is
developed below.
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2.2 Bulk regularization

Following the approaches developed in Refs. [21, 22], a natural way to penalize
displacement fields that are physically unrealistic is to express in mathematical
terms what is expected from those fields, say, in regions where DIC information
would be lacking. The most elementary answer is to refer to a reference elastic
medium. In general, with no further information, it may be assumed that
no body forces are present, and hence the balance condition, div(σ) = 0, is
expected to hold (where σ stands for the Cauchy stress tensor). Assuming
a known elastic law with Hooke’s tensor C, the displacement field u should
obey the following differential equation ∇ · (C : ∇⊗ u(x)) = 0. In the above
mentioned finite element framework, this differential equation takes the discrete
form

[Ke]{u} = {0} (10)

for all inner nodes, where {u} is the column vector gathering all nodal dis-
placements, and [Ke] the classical stiffness matrix. The regularization strategy
proposed in Refs. [21,22] consists of adding a cost function proportional to the
L2 norm of the left hand side of Equation (10). For compactness, it is conve-
nient to introduce a diagonal matrix [D] such that Dij = 1 only if i = j and i
refers to inner nodes (or a traction-free boundary node), and Dij = 0 otherwise.
The elastic regularization cost function is defined as

Φ2
e = {u}>[Ke][D][Ke]{u} (11)

where the symmetry of [Ke] has been used.
In a similar spirit, the correction fields are on a general ground linearly

related to a temperature field, T (x), and the latter, in the absence of source
terms, and for linear Fourier’s law with a uniform isotropic conductivity, obeys
∆T (x) = 0. A discretized version of this equation over the same mesh as used
previously reads

[Kt]{T } = {0} (12)

for all interior nodes, where {T } is the column vector gathering all nodal tem-
peratures. Hence, the thermal regularization cost function is defined as

Φ2
t = {T }>[Kt][D][Kt]{T } (13)

where the symmetry of [Kt] has been exploited. This regularization term is
to be used substituting the nodal temperatures by either nodal vectors {a} or
{bi}. The same [D] matrix is used herein, assuming that mechanically free
edges are also devoid of external heat flux. It is straightforward to generalize
this treatment to different |D] matrices if needed.

Let us stress that the kernel of the cost function is the set of all harmonic
fields (i.e., obeying ∆T = 0), and hence any such field will not be affected by
the penalty term Φ2

t .

2.3 Boundary regularization

The above bulk regularizations exploit models that may at least be a reasonable
approximation for the measured quantities. They assume that no heat source
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nor external loads are applied inside the studied region of interest. As earlier
mentioned, this property also includes free edges that can be considered as
interior nodes. For non-free edges, no first-principle information is available.

What is proposed herein is to be consistent with the previous approach and
introduce quadratic cost functions on these boundary conditions, Φ2

eb and Φ2
tb

respectively for the displacement and gray level correction degrees of freedom.
One may require that they be quadratic norms of differential operators of a
similar order as for the bulk, 2, so that they remain unaffected by any spatially
linear transforms. Moreover, for the elastic part, one may require that rota-
tional invariance is obeyed, which will select a differential operator that can be
interpreted as resulting from a physically sound elastic surface model [21].

When the same approach is applied to the heat transfer side, it automatically
selects a surface model such that the quadratic norm of ∂2‖T is minimized (here
∂‖ denotes the gradient component along the boundary). The consequence of
considering this boundary regularization term is to smooth out heat fluxes that
would flow across the considered boundary.

2.4 Regularization weights

In order to normalize all the previous cost functions, it is convenient to scale
them by the value taken for a reference correction field vref (x) = v0 exp(ik0 ·x),
which can be characterized by an intrinsic length scale `0 = 2π/|k0|. Addition-
ally, it is chosen to prescribe |v0| = 1. Let us introduce,

Φ̂2
X(v) ≡

Φ2
X(v)

Φ2
X(vref )

(14)

where the index X is either the DIC, X = c, or the elastic X = e or thermal
X = t regularization cost functions, bulk or boundary terms alike.

The dependence of Φ̂X with the intrinsic length scale `0 or “wave number”
|k0| is studied. The DIC functional is independent of the wave number, but
the two proposed regularization functionals, are quadratic forms based on a
second-order differential operator, and hence they are homogeneous functions
in |k0| of degree 4. As normalized, all of these functionals are valued 1 for
vref . If a similar test field as vref is constructed with a different wavelength,

`, then Φ̂2
e(v) = Φ̂2

t (v) = (`/`0)
4 and Φ̂2

c(v) = 1. It means that over large
scales (i.e., larger than `0), DIC is dominant and regularization plays virtually
no role. Conversely, at small scales, regularization takes over and the resulting
fields mostly obey the regularization equation and DIC plays a minor role.
This means that a low pass filter is defined for DIC, where high frequencies are
accounted for by fields that locally obey a differential equation rather than being
a mathematically convenient function. This allows for much more flexibility
than modifying a mesh.

The advantage of having kept the different fields in separate functionals is
that, different cross-over length scales can be assigned to each of them, be they
relative to the bulk or the edges of the ROI. This being decided, the global
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regularized functional reads

Φ2
reg({ν}) ≡ {ν}>[L]{ν}

=

(
`u
`0

)4

Φ̂2
e({u}) +

(
`a
`0

)4

Φ̂2
t ({a}) +

∑
i

(
`bi
`0

)4

Φ̂2
t ({bi})

+

(
`u
`0

)4

Φ̂2
eb({u}) +

(
`a
`0

)4

Φ̂2
tb({a})

+
∑
i

(
`bi
`0

)4

Φ̂2
tb({bi})

(15)
where the matrix [L] is block diagonal, without coupling between the different

fields u, a and bi, and `u, `a, `bi , `u, `a, `bi all the regularization lengths, which
are expressed in pixels with the chosen normalization.

2.5 Implementation

The implementation is similar to Ref. [21] i.e., a Newton iterative scheme is used

to solve the nonlinear problem of minimizing Φ2
tot({ν}) = Φ̂c

2
({ν})+Φ2

reg({ν}).
The incremental corrections that were introduced in Equation (6) now satisfy
a new linear system of equations

([M ] + [L]){δν} = {β} − [L]{ν̃} (16)

where {ν̃} is the current estimate of the nodal vector {ν}. It is worth noting
that at each iteration the corrected image g̃ and the residual field ρ have to
be recomputed for each pixel x belonging to the region of interest. A bi-cubic
interpolation is used for the gray levels. Conversely, the Hessian of the linearized
function [M ] and the regularization matrix [L] are computed once for all before
the iterative scheme is used.

2.6 Remark on temporal regularization

In the present work, only spatial regularization is aimed for. One of the reasons
is that the vast majority of DIC analyses are based upon so-called incremental
calculations in which only two images are registered, namely, one in the refer-
ence configuration and the other one in the deformed configuration. Few cases
have been analyzed by explicitly using temporal regularization. Broggiato et
al. [23] proposed to use 5 consecutive pictures for global DIC analyses and a
restricted (parabolic) time change of the displacement field. This multi-frame
procedure leads to a smoother time evolution of strain rates. It was used to
have a more precise evaluation of the strain rates in the central frame (i.e.,
local in time). The combined use of space and time kinematic bases allows
the spatial resolution to be decreased by increasing the temporal resolution to
achieve similar or even lower uncertainty levels [24]. Last, for IR pictures, spa-
tiotemporal regularizations based upon Karhunen-Loeve decomposition are yet
another alternative route [25].
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3 Synthetic test case

A synthetic test case is first considered to validate the proposed procedure and
assess the resolution that can be expected for an ideal situation where no model
error is present. Image pairs are constructed so that the exact transformation
is known. However, in order to be representative of a real experiment, the test
case was built from a real reference image and the deformed image is created
from what can be modelled as a real experimental case, here a laser shock [26].
The laser beam impacts a circular domain on the surface of a sample and
the thermal shock induces an expansion of the hot region in addition to large
gray level modulations. The deformed image is computed to match exactly the
assumed transformation, so that a direct comparison can be computed. Figure 1
shows the image pair. In this section, no blur is considered, so that bi reduces
to b0 and is thus denoted as b for the sake of conciseness.

(a) (b)

Figure 1: (a) Reference image and (b) synthetically deformed image mimicking
laser illumination and thermal expansion of the hot region

3.1 Artificial laser shock generation

The applied fields ux, uy, a and b are illustrated in Figure 2. Let us stress that
no additional noise is introduced in the computed deformed image except that
induced by gray level interpolation.
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(a) (b)

(c) (d)

Figure 2: (a) x and (b) y components of the prescribed displacement field
(expressed in pixel). Gray level brightness (c) and contrast (d) correction fields
used to generate the artificial test case

In the following, the residual 〈(g̃− f)2〉1/2 is normalized after correction by
the reference dynamic range, max(f)−min(f), and is denoted as ω. It will be
used to evaluate the quality of the computed solution with a single number. For
the present test case, the computation of ω prior to any correction, i.e., using
directly g instead of g̃, amounts to 85 %. This level is mostly due to the large
variations of the gray levels (Figure 2(c)), while the mismatch in position has
a much smaller weight.

The challenge of this test case is the very sharp gradient in the gray level
corrections (Figure 2(c-d)). In order to be able to resolve it, it is necessary (al-
though not sufficient) to use a very fine mesh. An unstructured mesh composed
of T3 (three-node triangular elements) was used with a typical edge length of
4 pixels. In the following, the edge regularization is kept identical to the bulk
one for each field, i.e., `X = `X for all X. The influence of the regularization
length is first described and the effect of the mesh size will be reported in the
following section.

3.2 Influence of regularization length

The effect of the regularization length scale is now studied systematically,
through different kinematic, `e, and gray level corrections, `a = `b, regular-
ization lengths and the main results are shown in Figure 3. First, Figure 3(a)
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shows that regularization helps to speed up convergence. As the regularization
lengths decrease, convergence becomes slower, and finally DIC fails to converge.
Because of the very small size of the mesh, conditioning becomes poorer and
finally ill-posed as the regularization lengths ` decrease. For a mesh size of 4
pixels, a small gray level regularization length, `a < 20 pixels does not yield a
converged result (for the chosen criterion), and this irrespective of the elastic
regularization length `e ranging from 8 to 25 pixels. This conclusion is consis-
tent with the observation that the gray level correction is dominant in this test
case.

(a) (b)

(c)

Figure 3: (a) Number n of iterations at convergence. (b) Normalized residual
ω and (c) RMS displacement error eU as functions of the regularization length
`GL = `a = `b for different kinematic regularization lengths `e. The mesh size
is 4 pixels

However, convergence does not mean that the result will be satisfactory nor
considered as such. Figure 3(b) shows that the normalized residual ω at conver-
gence increases with the regularization lengths for large values. This observation
comes from the fact that the regularizing models do not involve any source and
hence they cannot reproduce the fields shown in Figure 2. Large regularization
lengths ` mean that sharp transitions are smeared over larger distances, and
hence induce larger discrepancies between g̃ and f . A very progressive decrease
in residuals is seen down to a value of about `a = `b = 10 pixels, below which
the behavior becomes more erratic, and the residual increases. This is due to a
lack of convergence as earlier reported. For small regularization lengths `, spu-
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rious minima become accessible and may trap the minimization scheme even if
the residual score is higher than the global minimum. Hence the limitation is
a stability issue, and this constitutes a further motivation for using a regular-
ization strategy. This result points out to using an ` value about 20 pixels for
good convergence and reasonable convergence speed.

It was earlier mentioned that most of the residual score was due to gray level
corrections in the initial state, and this property also survives at convergence.
Hence, it may righteously be deduced that the residual is not informative on
the kinematic registration. Figure 3(c) shows precisely the change of the RMS
error in displacements with the various regularization lengths `. It is observed
that the minimum is reached for `a = `b = 8 pixels and `a = `b = 10 pixels,
consistently with the value of the global residual. Yet, the shape of the curves is
different. As soon as convergence becomes dubious, error and residual increase
very fast, again signaling stability (i.e., conditioning) issues.

The slight difference in optimal length scale suggests to tune separately the
different regularization lengths. There is no necessity to keep `e = `a = `b and
hence they may be adjusted separately to reach the best solution.

3.3 Influence of mesh size

In this section the kinematic regularization length scale is set to `e = 20 pixels,
and the mesh size will explore values in the range from 8 to 64 pixels so as
to favor convergence. Figure 4 shows the same plots as in Figure 3 but for
different mesh sizes. The previously observed acceleration of convergence for
larger `a = `b lengths is observed to be less pronounced for larger mesh sizes
(Figure 4(a)) because a larger mesh size limits or cancels out the high frequency
modes that are poorly conditioned. It is seen that for a mesh size greater than or
equal to 8 pixels, convergence is achieved for all gray level regularization lengths
down to 0 (i.e., no gray level regularization at all). The discretization of fields
over a mesh is by itself a regularization from the limitation of the measured
fields to a set of (here) piecewise linear and continuous shape functions. This,
however, does not say much about the quality of the estimated fields. It is
also observed that for a very coarse mesh (i.e., 64 pixels) the trend becomes
opposite.
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(a) (b)

(c) (d)

Figure 4: (a) Number of iterations at convergence. (b) Normalized residuals,
and (c-d) RMS displacement error eU as functions of the gray level regulariza-
tion length for different mesh sizes. For all plots, the kinematic regularization
length is set to `e = 20 pixels

Figure 4(b) shows that such a large (i.e., 64 pixel) mesh size induces large
systematic errors for all values of the regularization length. For finer meshes,
a unique curve is progressively approached, where regularization provides the
only relevant scale. Therefore, from this analysis it is deduced that gray level
regularization does not induce biases to the solution only for `a = `b < 16 pixels
and for a mesh size of 8 pixels or less. Yet if smaller scales are chosen, lack of
convergence (or at least slow convergence) may appear.

Figure 4(c) shows the root mean square (RMS) displacement error. It con-
firms that a very coarse mesh (i.e., 64 pixel elements) is unadapted to the test
case, and it induces a large systematic error. For smaller mesh sizes, the effect
on the displacement field is modest. This is due to the fact that the displace-
ment field is smoother than the gray level corrections and may be well described
even for a mesh size of 32 pixels. Moreover for this study the kinematic reg-
ularization is kept equal to `e = 20 pixels. Thus it is observed that using a
too strong gray level regularization such as `a = `b = 95 pixels, whose quality
is poor as judged from the global residual, has a very limited influence on the
displacement field.
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In order to illustrate the meaning of the global residual, residual maps are
shown in Figure 5 for mesh sizes of 4 and 32 pixels. Their global residual score
amounts to ω = 0.3 % and 1.1 %, respectively. For the coarser mesh, residuals
concentrate over the region where gray level gradients are the largest.

(a) (b)

Figure 5: DIC residual maps (expressed in gray levels) for a mesh size of (a)
4 and (b) 32 pixels with gray level and kinematic regularization lengths `a =
`b = ` = 20 pixels

To highlight the parallel in terms of regularization, Figure 6 shows the DIC
residual maps for regularization lengths `a = `b = 95 and `a = `b = 20 pixels.
A large regularization length gives rise to a large model error (as observed with
`a = `b = 95 pixels from Figure 4(b)). The residual field signals that the
constrains on the gray level corrections are too stringent to account for the real
ones, whereas `a = `b = 20 pixels succeeds in bringing the residual down almost
to 0 over the same color scale.

(a) (b)

Figure 6: DIC residuals maps (expressed in gray levels) obtained with a mesh
size of 4 pixels and regularization lengths `a = `b = 600 pixels (a) and `a =
`b = 120 pixels (b)

3.4 Spatially adapted regularization

In the previous section it has been shown that the regularization length has to
be set in order to capture the steep gradients in gray levels on the edge of the
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laser spot. However, away from this ring, the sought fields are very smooth
and could be captured with a large regularization length with the benefit of
fast convergence and low sensitivity to noise due to the better conditioning of
the incremental linear system to solve at each iteration. Thus, it is natural to
design a strategy whereby the regularization length would no longer be uniform,
but rather spatially adapted to the field. The idea is to relax the regularization
constraint where a feature (here a large gradient) is detected and is penalized
by regularization. Let us introduce a weight varying between 0 and 1, such that

d = d0 + (1− d0) exp
(
−‖∇ (G1 ∗ g0) ‖2/α2

)
(17)

This parameter (whose complement to 1 can be seen as a kind of damage pa-
rameter [27]) varies from d = 1 when ‖∇ (G1 ∗ g0) ‖ = 0 to d0 for very large
gradients. α sets the magnitude of the gradient where d drops from 1 to d0. The
field of d can be computed element-wise once {a} has been evaluated. Using
the above estimate of the d field, one may revisit the regularization operator.
Only the gray level corrections are weighted as it was seen that the smoother
kinematics was well captured with a uniform regularization. The stiffness ma-

trix [Kt] is the assembly over elements j of elementary matrices [K
(j)
t ]. Thus

it is proposed to weight each elementary matrix by dj so that

[Kt] ≡
∑
j

dj [K
(j)
t ] (18)

From those relaxed stiffness matrices, the regularization matrix [L] is reassem-
bled. The d0 parameter defines the minimum weight to be given to the regular-
ization in order not to generate ill-conditioning. It is arbitrarily set to d0 = 0.1
in the following. It is to be noted that as written, the regularization becomes
a nonlinear problem, because d is computed from {a}, which itself depends
on the solution to the regularized problem. It is proposed to start the process
with a large regularization length smoothing out the steep gradients, and pro-
gressively lower the weight given to those elements where the gradients are the
largest (i.e., they will be subjected to a weaker regularization operator), and
hence gradients are expected to concentrate over a small support. It is also
very important to choose α appropriately. Here it is suggested to study the
histogram and spatial distribution of ‖∇ (G1 ∗ g0) ‖ in order to select α such
that it captures gradients in the beam spot edge in a conservative fashion.

Figure 7 shows the results obtained for a mesh size of 16 pixels, a kinematic
regularization length of 20 pixels, and initial lengths `a = `b = 38 pixels. The
initial brightness field shown in Figure 7(a) is too smooth because of the choice
of `a that prevents sharp boundaries. From the deformed image gradient, a
weighting field d is computed as shown in Figure 7(b). The resulting brightness
and residual fields are displayed in Figures 7(c-d). It is observed that the
prescribed brightness field is much better captured at the beam spot edge, and
the residuals are lowered, close to the minimum value obtained with a much
finer regularization length.
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(a) (b)

(c) (d)

Figure 7: (a) Initial brightness field a (expressed in gray levels) estimated with
an identical regularization length of ` = `a = `b = 38 pixels. (b) Weighting field
d and (c) resulting brightness field with a relaxed weight at the sharp gradients
and (d) residual field. The mesh size is 16 pixels

The adaption of the regularization length is now tested over different mesh
sizes. Figure 8 shows the dimensionless residual ω for different mesh sizes and
initial regularization length.
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Figure 8: Normalized DIC residuals ω obtained with the adapted regularization
strategy for various mesh sizes and initial regularization lengths ` = `a = `b
(in the legends with the letter “d” are the results with the consideration of
damage). For all tested cases, the mechanical regularization length is kept to
`e = 20 pixels

For any mesh size the same trends are observed, namely, the nominal DIC
residual decreases with the addition of damaged elements. The enhancement
is more pronounced for the larger regularization lengths. For instance, when
the mesh size is equal to 8 pixels there is almost no difference between the
two sets of calculations when `a = `b = 10 pixels (ω = 0.4 %) while when
`a = `b = 95 pixels the residual level decreases from 2.4% (when no damage is
applied) to 1.5% (when damaged is applied). This proves that the sought effect
is achieved, namely, a better estimation of the gray level fields near laser shock
edges (or large gradient zones) even if a large regularization length is applied.

4 Experimental cases

The aim of this section is to analyze two situations in which IR images were
captured to measure thermal and displacement fields (Section 4.1) and to eval-
uate optical distortions (Section 4.2). In both cases, acquisition noise, which
was not added in the synthetic case is present. In the second one, blur is also
an issue that will be dealt with.

4.1 Thermal shock assessment

The investigation of thermal fatigue is the considered field of application of the
present procedure. In the following, its feasibility is investigated. A new testing
device was proposed [18], which allows for the use of optical methods. Only
the images acquired by the IR camera will be analyzed.

Figure 9:

A pair of reference and deformed images and their initial difference (resid-
uals) are shown in Figure 10. The deformed image (Figure 10(b)) undergoes
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large gray level variations in the impacted zone in addition to the motion in-
duced by the thermomechanical behavior of the investigated material. If no
gray level corrections are considered in the DIC formalism such images cannot
be registered (see the initial residuals in Figure 10(c)).

(a) (b)

(c)

Figure 10: Reference (a) and deformed (b) IR images. (c) Initial correlation
residuals (RMS: 120% of the dynamic range)

DIC accounting for regularized gray level corrections is run with a mesh
size equal to 10 pixels, and regularization lengths of 20 pixels for both gray
level and displacement fields. The estimated gray level corrections during the
thermal shocks are shown in Figure 11.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Gray level correction fields (left column: gray level brightness a, and
right column contrast b0) before (a-b) and during the thermal shock (c-d) when
t = 30 ms and (e-f) t = 50 ms

The 2D displacement fields correspond to a biaxial deformation induced by
the laser shock (see Figure 12). Even though their dynamic range remains less
than 0.5 pixel, they are well captured.
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(a) ux (b) uy

(c) ux (d) uy

(e) ux (f) uy

Figure 12: Displacement fields expressed in pixel (1 pixel ≡ 15 µm) before (a-b)
and during the thermal shock (c-d) when t = 30 ms and (e-f) t = 50 ms

At convergence, the residuals are reduced from 120 % to less than 2 %
of the dynamic range when the images with the highest temperature levels are
registered, thanks to the gray level corrections. Only 15 iterations are needed to
reach convergence. The DIC residual maps are illustrated in Figure 13. Except
on the edge of the laser spot, the local levels are also very small.
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(a) (b)

(c)

Figure 13: DIC residual maps (expressed in gray levels) before (a) and during
the thermal shock (b) when t = 30 ms and (c) t = 50 ms

As the element size is 10 pixels and the regularization lengths are set to
20 pixels the high temperature gradients near the laser spot are well captured.
A ring can still be distinguished in the residual maps and has a thickness of
about 10 pixels. Therefore the strategy with damage is not useful in that
particular case as the regularization applied by the mesh cannot be reduced
without considering smaller element sizes.

During the cooling stage the gray level fields are presenting less sharp dis-
tributions (Figure 14). The DIC residuals are uniform and do not reveal any
ring. They started from 25 % and were reduced to about 1 % of the dynamic
range at convergence.
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(a) (b)

(c) (d)

Figure 14: Brightness corrections (left) and DIC residual maps expressed in
gray levels (right) after the thermal shock (a-b) when t = 75 ms and (c-d)
t = 100 ms

The displacement fields during the cooling phase of the thermal shock are
shown in Figure 15. They are less pronounced during this phase in comparison
with Figure 12. These fields can be further used to validate a numerical model
and ensure that the selected constitutive parameters are well suited for the
thermomechanical predictions [26].
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(a) (b)

(c) (d)

Figure 15: Displacement fields expressed in pixel (1 pixel ≡ 15 µm) after the
thermal shock (a-b) when t = 75 ms and (c-d) t = 100 ms

Up to now only brightness and contrast fields have been discussed as in the
case of laser shocks or more generally thermomechanical tests implying neither
out-of-plane motions nor blur (from the initial to deformed states). The next
subsection illustrates the ability of the present DIC formulation to account for
blur corrections for the particular case of calibration, which has been discussed
in Ref. [11].

4.2 Optical lens distortion

One of the camera calibration step consists in correcting optical lens distor-
tion. This can be performed by using a patterned calibration target, which is
pictured by the imaging system [11]. A reference image is generated numer-
ically (i.e., synthetic target) and hence is free from any deformation due to
lens distortion. The displacement fields obtained by registering the pictured
and synthetic target images are interpreted as distortions (after subtraction of
rigid body motions for positioning and scaling). Two strategies can be applied.
The first one is to use an integrated DIC algorithm that directly provides the
parameters of distortion models (such as Zernike polynomials [12, 13]). The
second approach is to use a generic DIC algorithm and either low-pass filter the
measured displacement or project it onto a suited basis (such as generic distor-
tion fields [5]). In both cases, it is necessary to consider gray level variations
between the reference and deformed images, which are from different origins,
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see Figure 16). In the case of IR cameras for instance the frames are often
blurred in the edges (Figure 16a).

(a) (b)

Figure 16: (a) Acquired (with IR camera) and (b) reference images of a cali-
bration target

The proposed formulation (1) is well-suited for such effects. Only two blur
kernels are considered in the sequel. The contrast, brightness and blur fields
are regularized (i.e., `a = `b = 12 pixels).

(a) (b)

(c)

Figure 17: Gray level correction fields when binary and IR frames are registered.
(a) Gray level brightness, (b) contrast and (c) weight applied to blur corrections
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Figure 17 shows the gray level correction fields. The elliptical shape of the
fields corresponds to a slight vignetting effect. This is consistent with the results
reported in Ref. [11]. It is noteworthy that significant blur is present, and is not
uniform over the image. To highlight the relevance of blur, Figure 18 shows the
residual fields obtained when blur corrections are or are not considered. The
significant reduction in residual magnitude, from ω = 10 % to 5 %, shows the
importance of accounting for blur. The same trend was observed in Ref. [11].

(a) (b)

Figure 18: DIC residual maps (expressed in gray levels) obtained either (a)
without or (b) with blur corrections

The distortion displacement field is shown in Figure 19. In Ref. [11] FE-
DIC and integrated DIC were compared and the RMS gap was of the of order
0.1 pixel between the two methods. In the present case the same level is ob-
served.

(a) ux (b) uy

Figure 19: Displacement fields when binary and IR frames are registered

5 Conclusions

A generalized formulation for global DIC purposes is proposed in which the
hypothesis of gray level conservation is relaxed. Brightness, contrast and blur
corrections are decomposed onto a finite element mesh, the same as that chosen
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for the kinematic basis. In order to preserve good conditioning of the problem,
regularization is proposed so that these fields may be less dependent on the
mesh (i.e., independent if regularization lengths are large enough).

A synthetic test case, which is designed to mimic a real experimental sit-
uation, was tested to probe the sensitivity and reliability of such an approach
for a difficult configuration where sharp variations of the correction field are
present. The interplay of regularization length scales and mesh size was con-
sidered and shown to impact convergence speed as well as the level of residuals.
It is also shown that although the gray level corrections are essential for a suc-
cessful DIC, the details of gray level correction has a negligible influence on
the displacement field (i.e., the root mean square error being of the order of
0.03-0.04 pixel), thereby showing that the proposed algorithm is very robust.
A strategy aiming at adapting locally the regularization length is proposed and
shown to be an effective way of handling situations where the regularization
assumptions are expected to be violated.

Application to a real experimental case allowed the displacement field to
be measured with an IR camera from the observation of the surface that is
heated by a laser beam. For this application, the gray level variations due
to the temperature field are much larger than the texture modulation due to
the kinematic field, and yet the displacement could be estimated and favorably
compared with a model. After a suitable calibration, the gray level corrections
also provide the surface temperature field. Further comparisons [26] can be
performed with that single IR camera.

The same methodology was also shown to be applicable to distortion mea-
surements from the registration between a binary model and its IR image. The
gray level corrections allow vignetting and blur to be corrected as can be judged
from the (low) residual fields.
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