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A unified Digital Image Correlation (DIC)/eXtended Finite Element Method (X-FEM) framework based on
the Williams’ series for fatigue crack growth identification and simulation is proposed. Williams’ series
are used for post-processing the displacement measured by digital image correlation. It gives access to
the change of stress intensity factors and crack length with the number of cycles. A Paris’ crack
propagation law is subsequently identified and further validated by simulating the experiment. The
simulation uses measured displacements as Dirichlet boundary conditions and a direct estimation of
stress intensity factors based on a coupling between a finite element model and the analytical Williams’
solutions. It is shown that the use of actual boundary conditions is crucial. The use of the Williams’
formalism is further investigated on an elasto-plastic simulation to validate the extraction of nonlinear
features in the crack tip vicinity.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Fracture mechanics concepts (Muskhelishvili, 1953; Williams,
1957; Irwin, 1957) are often used in the study of fatigue crack
propagation (Newman, 1998). The stress intensity factors (SIFs),
introduced by Irwin (1957) are the leading parameters to charac-
terize the three modes of fracture. They result from the asymptotic
study of an infinite 2D elastic medium containing a semi-infinite
planar crack using the Williams’ series (Muskhelishvili, 1953;
Williams, 1957). Situations of small scale yielding where crack
growth is mainly controlled by the elastic Williams’ coefficients
(Suresh, 1998) are often met in high cycle fatigue. For instance,
numerous fatigue crack growth laws based on the SIF range have
been used (Paris et al., 1961; Molent et al., 2006), or on a similar
parameter (McEvily and Illg, 1958). Other Williams’ series coeffi-
cients play an important role in fatigue and fracture. Numerous
crack propagation laws based on these asymptotic coefficients
have proven effective (Paris et al., 1961; Suresh, 1998; Hutař
et al., 2004; Bathias and Pineau, 2013). The aim of the present
study is to provide a methodology for the identification of such
fatigue crack growth laws based on the intimate coupling of exper-
imental data (through digital surface imaging) and numerical
simulations.

The SIFs identification from experimental data provides a sound
basis for describing the propagation of long cracks. The first step is
to determine the experimental crack geometry. The main difficulty
is to estimate the crack length or the position of the tip. Methods
based on electrical potential (Ritchie et al., 1971) or compliance
variations (Saxena and Hudak, 1978) require specific equipment,
which is mostly applicable to mode I cracks. Most of the marking
methods for post-mortem analyses impact the propagation speed.
Even on pictures of the surface, the crack is only visible once the
opening reaches the pixel size, therefore extrapolation methods
have been developed. The second step is to determine the SIFs.
With the experimental geometry and loading, a classical method
is to perform linear elastic simulations. From these simulations,
the SIFs are calculated using contour integrals of mechanical fields,
either the J-integral (Rice, 1968) related to the energy release rate,
or interaction integrals (Stern et al., 1976) uncoupling cracking
modes. These contour integrals have been transformed into
domain integrals to yield more reliable values (Moran and Shih,
1987). To avoid these simulations the chosen experiment has a
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simple configuration for which closed-form solutions exist (Broek,
1989). Yet these configurations (especially the boundary condi-
tions) can be challenging to match during the experiment.

The displacement field can be measured by Digital Image Corre-
lation (DIC), be it local (i.e., sub-image based) (Sutton et al., 1983;
Sutton et al., 2009) or global (e.g., finite element based) (Besnard
et al., 2006; Réthoré et al., 2007). As it gives access to the entire dis-
placement field and not only crack openings, this analysis opens
the way to very accurate determinations of crack features. If the
displacement field is measured in the vicinity of the crack tip, it
is also possible to calculate domain integrals of mechanical fields
(Réthoré et al., 2005; Réthoré et al., 2008). The specific displace-
ment bases arising from fracture mechanics analyses can be used
to accurately determine the SIFs. McNeill et al. (1987) proposed a
least squares projection of the displacement on the singular mode.
The projection on a truncation of the Williams’ basis developed by
Roux and Hild (2006), Roux et al. (2009) accurately provides the
corresponding coefficients. Resorting to the Williams’ series as a
displacement basis allows for the direct evaluation of a small set
of generalized degrees of freedom with very low levels of uncer-
tainty. The first super-singular term of the Williams’ series can
be used to automatically and accurately determine the crack tip
position (Hamam et al., 2007; Roux et al., 2009). Higher order
super-singular terms are activated by the nonlinearities in the pro-
cess zone (Hui and Ruina, 1995; Hamam et al., 2007; Roux et al.,
2009). The displacement fields can also be used to detect crack clo-
sure (Sutton et al., 1999; Sutton et al., 2000; Hamam et al., 2007;
Limodin et al., 2009; Carroll et al., 2009), which impacts directly
the propagation conditions under cyclic loading when the load
ratio is low.

The fracture parameters of the identified propagation law have
to be evaluated in the simulations too. Their estimation can also be
carried out thanks to strategies based on the Williams’ series. This
approach avoids the use of post-processing techniques, such as the
integral methods, to numerically evaluate the SIFs. A strategy
based on the partition of unity method (Babuška and Melenk,
1997) has been introduced (Liu et al., 2004), with one degree of
freedom for each asymptotic coefficient. However, it is not accu-
rate to evaluate higher order terms, even if the regular finite ele-
ment shape functions are not activated in the extraction zone
(Xiao and Karihaloo, 2003). Earlier, Tong et al. (1973) proposed
the hybrid crack element as an enrichment technique. From this
strategy, Karihaloo and Xiao (2001) proposed an accurate evalua-
tion of SIFs and higher order terms. Recently, the hybrid analytical
and extended finite element method (HAX-FEM) has been pro-
posed (Réthoré et al., 2010) to couple an analytical model based
on a truncated Williams’ series expansion in the vicinity of the
crack tip with an X-FEM modeling. The coupling was performed
Fig. 1. The different steps of the proposed identification and validation strategy. The DIC p
at the current stage (Nth cycle) of the fatigue test.
using an energetic approach over an overlapping zone (i.e.,
Arlequin method (Dhia and Rateau, 2005)). The method used
herein is very similar to the latter apart from the fact that the cou-
pling is performed on an interface in a weak sense with no overlap-
ping (Passieux et al., 2010; Passieux et al., 2013). It is referred to as
DEK-FEM for Direct Estimation of generalized stress intensity factors
K Finite Element Method.

Even if the SIFs and crack tip positions have been estimated at
different stages of propagation, the identification of the crack
growth law is far from trivial. The dependence of the crack law
coefficients on the set of measurements is strongly nonlinear,
and moreover, the measurements themselves are correlated. The
computation of crack increments will add further (anti-)correla-
tions in the data series. Resorting to a log scale, albeit natural for
a power-law expression, adds up a further distortion to the uncer-
tainty, and implicit weighting of the data for a regression. A critical
analysis of these identification procedures led to the formulation of
a protocol based solely on DIC measurements, through integrated
techniques (Mathieu et al., 2013).

The present study aims at introducing a novel procedure,
whereby a first identification of the crack growth law is obtained
from the direct determination of the SIF and crack tip position from
the DIC displacement field (in the spirit comparable to previous
studies (Mathieu et al., 2012)). Then, the DEK-FEM is used to
compute the stress intensity factors from the DIC-measured
displacements far from the crack tip, used as Dirichlet boundary
conditions. This result offers a first validation of the consistency
of the measured displacements, SIF and crack tip location. Further-
more, using the crack growth law and remote Dirichlet boundary
conditions the simulation provides a prediction of the crack tip
position versus time. The procedure is sketched in Fig. 1. It allows
the numerical model to closely conform to the experiment. This
comparison gives access to a full validation of the procedure. Such
a complete and intimate comparison between experimental data
and crack growth simulation is the key ingredient of the novel
strategy proposed herein. It allows for analyzing an experiment
by extracting the fracture parameters and identifying the propaga-
tion law from the actual solicitation experienced by the crack.
Therefore, the influence of any bias inherent to experimental
mechanics (e.g., dissymmetry, mis-orientation) is avoided and
the identified parameters become intrinsic material properties.
Moreover, the fact that both DIC post-processing and DEK-FEM
simulations use the Williams’ series decomposition is to be empha-
sized. It ensures a full consistency in the descriptive language of
the sought parameters. Let us also stress that although a Paris’
propagation law is identified herein, the strategy can be applied
to mixed-mode propagation with a crack growth law based on
any subsingular Williams’ coefficients (e.g., T-stress). The ability
rocedure evaluates the displacement field from the minimum to the maximum load



Fig. 2. Geometry (dimension in mm) and boundary conditions of the CCT sample.
The correlation area is shown as a thick dotted line. The simulation domain is
delineated by the thick dashed line.
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of Williams’ formalism to extract nonlinear crack features will be
illustrated through the analysis of a idealized elasto-plastic
simulation.

The outline of the manuscript is as follows. Section 2 presents
the considered Center Crack Tension (CCT) test shown in Fig. 2.
The chosen parameters are displayed in gray in Fig. 1. An experi-
mental post-processing procedure based on the Williams’ series
expansion that provides the asymptotic coefficients and the crack
tip position is also presented. The DEK-FEM linear elastic simula-
tion approach is discussed in Section 3. In Section 4, both strategies
are applied jointly to identify and validate an accurate Paris’
fatigue crack growth law.
Fig. 3. Local coordinate system around the crack tip.
2. Experimental case study and methods

2.1. Fatigue test on a CCT specimen

The experiment considered hereafter is described in Ref.
Mathieu et al. (2012). The specimen is made of commercially pure
titanium T35 (max 0.2 wt.% Fe, max 0.18 wt.% O, max 0.08 wt.% C,
max 0.03 wt.% N, max 0.015 wt.% H), of yield stress ry ¼ 210 MPa,
Young’s modulus E ¼ 100 GPa, Poisson’s ratio m ¼ 0:33. The speci-
men geometry is shown in Fig. 2, its thickness is t ¼ 0:3 mm, thus
a plane stress state is considered. The CCT configuration is a mode I
fatigue test where the specimen contains an initially centered
small crack perpendicular to the tensile axis. The initial half-crack
length a0 is 3 mm out of a sample half-width W of 10 mm, and the
crack grows to reach af ¼ 6 mm. This sample is subjected to cyclic
tensile loading of frequency 10 Hz, from F0 ¼ 50 to 500 N.

During the experiment, both tips at each end of the initial notch
are propagating. As shown in Fig. 2, the pictures that will be used
for DIC analyses are focused around one crack tip only (i.e.,
6:4� 5:1 mm2, see Fig. 4) for high spatial resolution. The propaga-
tion is observed between 61,000 cycles and 120,000 cycles. Pairs of
pictures are taken each DN ¼ 1000 cycles, one at the maximum
and one at the minimum load level.

The load ratio R, the load frequency and the environment are
kept constant. As illustrated in Ref. Mathieu et al. (2012) for cycle
90,000, a zone of DKI dominance exists, thus the small scale yield-
ing hypothesis applies (Suresh, 1998), DKI is the parameter driving
the propagation, and a Paris’ law is expected to be relevant for this
experiment (Ciavarella et al., 2008). This condition also legitimates
the use of an asymptotic series expansion based on a linear elastic
model (provided the crack tip region is discarded from the
analysis).
2.2. Quantitative kinematics and geometry determination

Digital image correlation (DIC) is a full-field method providing
measurements of the displacement and geometry. From two con-
secutive images seen as scalar (gray level) fields, f at minimum load
level and g at the maximum level, the principle used to evaluate
the displacement field is the conservation of brightness
f ðxÞ ¼ gðxþ DuðxÞÞ þ bðxÞ where Du is the sought displacement
field and b acquisition noise. DIC involves solving a nonlinear
inverse problem where displacements are spatially interpolated.
In the following, the displacement field is decomposed over a reg-
ular mesh of finite elements (i.e., four noded quadrangles of size
16� 16 pixels, or Q4-DIC (Besnard et al., 2006)). Therefore, a con-
tinuous displacement field is provided by the method. Ideally the
correlation residual f ðxÞ � gðxþ DuðxÞÞ consists exclusively of
noise b. However, unexpected features of the transformation, or
imperfect convergence, can also be seen in the residual so that it
can be used to validate the entire procedure. It can also be used
to accurately determine the shape of the crack (Réthoré et al.,
2008).
2.2.1. Williams’ series
A straight crack in an infinite linear elastic two-dimensional

domain is considered. The compatible stress and displacement
fields are derived around the crack tip (Williams, 1957) and
expressed in a polar coordinate system defined in Fig. 3. The stress
and displacement fields take the form of a symmetric (mode I) and
an anti-symmetric (mode II) series

rðr; hÞ ¼
X1

n¼�1
bn

I rn=2�1wn
I ðhÞ þ bn

IIr
n=2�1wn

IIðhÞ and

uðr; hÞ ¼
X1

n¼�1
bn

I rn=2/n
I ðhÞ þ bn

IIr
n=2/n

IIðhÞ: ð1Þ

bn
I and bn

II are the asymptotic coefficients (or Williams’ coefficients)
depending on boundary conditions.

The terms for n < 0 are generally discarded in linear elastic
analyses as they would induce an infinite strain energy density
at the crack tip. In the vicinity of the crack tip, for a linear elastic
medium, the rigid body translations n ¼ 0, the SIFs (singular stress
n ¼ 1), the T-stress (uniform stress) and rotation (both described
by n ¼ 2) provide a good approximation of the mechanical fields.
However, when nonlinearity occurs (e.g., at the post-processing
stage), the crack tip position is not known and the first supersingu-
lar term i.e., n ¼ �1 is used to extract the position associated with
the ‘‘equivalent elastic medium’’, see Section 2. Furthermore, when
plasticity occurs the supersingular terms are activated (Hui and
Ruina, 1995; Hamam et al., 2007; Henninger et al., 2010).
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2.2.2. DIC measurement of Williams’ amplitudes and crack tip position
The post-processing method consists of projecting (in the least

squares sense) the measured Q4-DIC displacement range onto a
truncated Williams’ basis (McNeill et al., 1987; Roux and Hild,
2006) to provide the range of Williams’ amplitudes and the crack
tip position (Hamam et al., 2007; Roux et al., 2009). These data
can then be used to identify the fatigue crack growth law.

To have a uniform data treatment for a series of images (as the
crack propagates) the projection area shown in Fig. 4 has a con-
stant geometry and moves together with the crack tip. The domain
outside a circle of radius rext is excluded. The radius rext is chosen as
large as possible to maximize the information content and hence
minimize the sensitivity to measurement uncertainties. Similarly,
a disk of radius rint centered on the crack tip where the plastic
strain is expected to be intense is excluded from the analysis
(Réthoré et al., 2011). Finally, a thick layer around the crack path
is also excluded because of the use of continuous finite elements
and the accumulated plastic strain left in the wake of the propagat-
ing crack. This final exclusion zone can be seen as the trail of the
inner disk as the crack propagates.

Practice has shown (Henninger et al., 2010; Mathieu et al.,
2012) that nmin ¼ �3 and nmax ¼ 7 allow for an accurate evaluation
of the sought Williams’ series coefficients (i.e., low order ones such
as the SIF)

uðr;hÞ¼
X
i¼I;II

X�1

nmin

bn
i /

n
i ðhÞ r

n
2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
\supersingular" terms

þ b0
i /

0
i|ffl{zffl}

translations

þb1
i /

1
i ðhÞ

ffiffiffi
r
p|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

singular term

þ
Xnmax

n¼2

bn
i /

n
i ðhÞ r

n
2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
\subsingular" terms

2
66664

3
77775: ð2Þ

The remote boundary conditions are accounted for by adding
higher order terms (Hamam et al., 2007). The so-called supersingu-
lar terms (i.e., n < 0) are also activated since nonlinearities are
expected in a small crack tip region (Hui and Ruina, 1995; Roux
et al., 2009). The amplitude of these supersingular terms provide
the necessary data to estimate the crack tip location (Roux et al.,
2009; Henninger et al., 2010; Mathieu et al., 2012).

To express the Williams’ series expansion (i.e., determine r and
h), the crack mouth and tip have to be determined. The crack path
location and orientation are usually easy to extract from the dis-
placement field or the correlation residual. In contrast, the crack
tip position, which strongly influences the identification of the
coefficients of Williams’ series expansion (Roux et al., 2009), is
more difficult to determine from images when the crack opening
has sub-pixel levels. The amplitude b�1

I of the first supersingular
field is evaluated and is canceled out by moving the crack tip from
the current position to d

d ¼ 2 ~b�1
I

~b1
I

: ð3Þ

A few iterations are generally needed to reach a position where
the remaining mis-positioning d � 0.

In the studied example, the projection of the experimental
displacement onto the considered kinematic basis has an RMS
difference with the experimental displacement well below 1 pixel
(i.e., < 10�1 pixel). The crack tip position, aW , will be used in
DEK-FEM simulations (Section 4.3) to combine the experimental
approach and the numerical simulation in a consistent way.
Fig. 4. Parameterized projection area. rext is the external radius around the crack
tip, rint the internal radius, dhDIC the size of Q4-DIC elements, nmin and nmax the limits
of the Williams’ series projection basis.
2.3. Influence of plasticity

In order to validate the linear elastic approximation of the
Williams’ series based post-processing, a realistic elastoplastic sim-
ulation of the experiment is performed. The considered projection
procedure is also validated on this artificial case as all information
is readily accessible. In particular, the ability of the supersingular
terms to describe the nonlinear phenomena of the process zone,
as initially suggested by Hui and Ruina (1995), will be quantified.
The superscript sy refers to the values directly provided by the
plastic simulation. The output data are the displacement fields,
usy

min and usy
max under minimum and maximum load respectively,

the incremental and accumulated plastic strain fields and their sup-
port. The mode I SIF is also extracted for minimum and maximum
loading KI

sy
min

and KI
sy
max

using the elastoplastic J-integral on a domain
excluding the plastic zone (Moran and Shih, 1987).

For symmetry reasons, only one quarter (50� 10 mm) of the
sample is studied. Uniform cyclic tensile loading r0 i:e:; r0 ¼ð
F0

2tWÞ is prescribed and quasi-static assumption is used. Since plas-
ticity is the main nonlinearity, the material model is assumed
homogeneous, elastoplastic with linear kinematic hardening (of
modulus E=100). In the area where plasticity develops around
the crack tip, the mesh is refined (dhsy ¼ 40 lm) to ensure that at
least 10 elements are present in the yielding zone. The 65 nodes
located along ½a0; a0 þ 2:6� mm represent the successive crack tip
positions, the crack tip increment being dhsy . For a given crack tip
position three loading cycles are considered to stabilize the yield-
ing area.

A projection zone similar to that shown in Fig. 4 has been used.
The inner and outer radii of the main annulus are rint ¼ 0:8 mm and
rext ¼ 2:4 mm respectively. In addition a strip of width 2rint is
excluded from the projection zone. The amplitudes bn

i are esti-
mated from the projection of the displacement field difference
Du ¼ usy

max � usy

min onto the truncated Williams’ series �3 6 n 6 7.
The crack tip position (see Fig. 5(a)) is accurately determined. This
figure displays the crack tip position of the simulation and three
evaluations from the projection of the computed displacement
fields usy

min, usy
max and Dusy ¼ usy

max � usy

min onto the Williams’ series

and canceling out the amplitude b�1
I . The projections of usy

min and
usy

max lead to overestimations of the crack length. This gap is due
to cumulated plasticity. In contrast Dusy is only mildly affected
by plasticity in one loading cycle, as it is very mildly influenced
by most of the plastic history. Therefore, the small scale yielding
hypothesis, which legitimates the elastic approach, is more likely
to be valid when analyzing the Du fields.

Fig. 5(b) compares the SIF amplitude DKI extracted from the
projection of Dusy and Tada’s closed-form solution (Tada et al.,
1985) with the J-integral measurement DKIsy ¼ KI

sy
max
� KI

sy
min

. Tada’s

solution has been obtained from elastic simulations and deviates
from the J-integral measurement by about 1% due to plasticity in
the simulation. The SIF amplitude determined by projection is
shown to be consistent with DKsy

I . The residual of this projection
(from the identified Williams’ coefficients in Eq. (2)) has a standard
deviation of 10�4 maxðusy Þ. Thus the procedure based on the elastic
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Williams’ series expansion is considered as validated even in the
case of small scale yielding.

Quantifying nonlinearities is necessary to set the value of rint in
the procedure. In the sequel, the evaluation of the monotonic
plastic zone size (i.e., under maximum loading (Suresh, 1998)) is
studied especially when, as in experiments, the only available
information is the measured displacement field. For simple geom-
etries and material behaviors, analytical evaluations of the mono-
tonic process zone ahead of the crack tip (i.e., in the e1 direction)
exist (Suresh, 1998). For instance, resorting to a cohesive zone
model, Dugdale (1960) proposed rDB

y ¼ ðp=8ÞðKI=ryÞ2 where ry is
the yield stress.

Once the displacement field has been projected onto the
Williams’ series, an elastic stress field can directly be computed
from the estimated Williams’ coefficients, see Eq. (1). The process
zone shape and size rW

y are estimated from this stress field using
von Mises’ criterion with the yield stress ry. The shape is shown
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in Fig. 6(a) for different choices of the projection basis at the max-
imum load during the first cycle. The subsingular fields play no role
as it could have been anticipated since their strain and stress fields
vanish at the crack tip. The agreement obtained between the full
elastoplastic simulation and the three parameter evaluation
obtained from the elastic fields n ¼ �3, �1 and 1 and a simple
von Mises’ criterion is good. To further validate the ability of the
procedure to capture a fair estimate of the yield stress, the size
of the plastic zone as could be estimated from various possible
indicators is shown in Fig. 6(b). These estimates are scaled by the
value obtained from the complete elastoplastic simulation ahead
of the crack rsy

y , considered here to be the reference rref
y ¼ rsy

y . The
studied estimators of the plastic zone size are:

– rDB
y , the Dugdale estimate (Dugdale, 1960).

– rW
y , the size obtained by using von Mises’ criterion on the elastic

field computed from the Williams’ series projection.
0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Propagation steps

y
y

rPZ
aW−asimu
ry
W

ry
DB

round the crack tip.



C. Roux-Langlois et al. / International Journal of Solids and Structures 53 (2015) 38–47 43
– rPZ ¼ �8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�3

I =b1
I

q
, computed from the Williams’ series ampli-

tudes, as proposed (Roux et al., 2009).
– aW � asimu, the distance from the elastic equivalent far field

position of the crack tip and the actual one, as their difference
is expected to vary in proportion to the plastic radius.

It is worth noting that those estimates remain approximately
constant for a significant crack advance. Their precise level can
be adjusted from a calibration stage such as the present compari-
son. rPZ turns out to provide the most stable value among all the
other estimators.

3. Numerical modeling strategy DEK-FEM

3.1. Domain decomposition

The proposed simulation strategy is linear elastic and also relies
on the Williams’ series. Since it directly provides the asymptotic
coefficients as degrees of freedom, this strategy is called DEK-
FEM (Passieux et al., 2010; Passieux et al., 2013). The domain is
decomposed into an X-FEM part and a so-called analytical patch
around the crack tip (see Fig. 7). Since, the analytical expansion
of the displacement field in the crack tip vicinity is valid for
straight cracks, the analytical patch must be small enough to be
localized in an area where the crack curvature can be neglected.
Therefore, this analytical patch is made compatible with a localized
multigrid approach (Passieux et al., 2010).

Let us consider the well-posed problem described in Fig. 7
where displacement boundary conditions are applied on @1X and
traction boundary conditions on @2X with @X ¼ @1X [ @2X and
@1X \ @2X ¼£. The domain X is composed of two parts, namely,
an ‘‘analytical patch’’, XW , in the vicinity of the crack tip where
mechanical fields can be singular and an ‘‘outer domain’’, XX . In
the present case, XX is discretized within an X-FEM framework,
its associated displacement space is UX . In practice, once the mesh
of domain X is chosen, few layers of elements around the crack tip
are replaced by the analytical patch XW of radius rW .

3.2. Crack tip patch and interface

The discretization space UW of XW is a truncation of the
Williams’ series (1) for n 2 ½0 . . . nDEK �. Therefore, the associated
degrees of freedom are directly the coefficients bn

I and bn
II of the

Williams’ series expansion. To link the two parts of the model,
the displacements along a common interface are connected in a
weak sense. Compatibility between the displacements is then
enforced by Lagrange multipliers k 2 L where L is an ad hoc space
(Passieux et al., 2010)

huX � uW ; kiCW
¼
Z

CW

k � uX � uWð ÞdS ¼ 0: ð4Þ

This integral matching avoids half-enriched elements (often
called blending elements) that come from the partition of unity
method (Chahine et al., 2011). By comparison with the HAX-FEM
Fig. 7. Domain decomposition between the analytical patch XW and the X-FEM area
XX (Passieux et al., 2010).
(Réthoré et al., 2010) overlapping method, such a matching
improves the accuracy of the solution, in particular the SIF
evaluation.

The analytical domain size rW and the order of truncation nDEK

of series (1) are the two parameters that have to be determined.
When higher-order terms (from nDEK ¼ 5 on) of the expansion are
taken into account, the determination of the SIFs is independent
of the increase of the analytical patch dimension. Consequently,
the Williams’ expansion terms ranging from 0 to nDEK ¼ 7 are con-
sidered in the analytical patch. A patch size (rW ¼ 3dhDEK ) is large
enough to display sufficient flexibility (devoid of the constraint
of matching the X-FEM kinematic description) to give an accurate
evaluation of SIFs (Passieux et al., 2010).
4. Identification and validation of a high cycle fatigue
propagation law

The projection of the measured displacement field automati-
cally provides the crack tip position and the Williams’ series coef-
ficients including the SIF for each analyzed cycle. A standard Paris’
law (Paris et al., 1961) relating crack growth per cycle with the
range of the SIF is chosen

da
dN
¼ CðDKIÞg; ð5Þ

where C and g are material-dependent parameters to be identified.
In the sequel, the efficiency of the presented identification procedure
is analyzed but not the choice of the crack growth law expression.
However, it is worth noting that the proposed strategy is not limited
to propagation laws based on singular amplitudes (e.g., Db1

I ). Other
asymptotic amplitudes (i.e., Dbn

i ; n 2 0;nmax½ �) are measured and
can be used in more sophisticated crack growth laws such as that
proposed by Hutař et al. (2004) that involves the T-stress.

Furthermore, other parameters influence the crack propagation
such as the load ratio or crack closure. When crack closure occurs,
the full-field displacement measurement can be used to directly
evaluate effective SIF (Hamam et al., 2007; Carroll et al., 2009).
The proposed strategy may be extended to crack closure situations
provided enough images are acquired during unloading/reloading
cycles to capture crack closure/opening.

4.1. Experimental data evaluation

The above discussed DIC procedure is applied to analyze and
simulate the CCT fatigue test presented in Section 2. A set of
images (pixel size: 6.1 lm) at minimum and maximum load of fati-
gue cycles is analyzed. The variations of displacement fields from
minimum to maximum load Du is obtained from Q4-DIC
(Besnard et al., 2006) as carried out in Refs. Mathieu et al. (2012,
2013), with elements of 16� 16 pixels2. These fields are then pro-
jected onto the Williams’ series, providing the relevant Williams’
amplitudes, Dbn

I , and, from them, aW and DKDIC�WA
I . This data set

is referred to with the acronym DIC-WA (for DIC-Williams’ Ampli-
tudes) in the following. The comparison between DIC displacement
and DEK-FEM simulation reveals that optical distortions occur at
the boundary of the field of view. This allows us to set the region
of interest (and rext). The region of interest is selected as a
4:2� 3:4 mm2 rectangle. The projection domain parameters are
rext ¼ 2:1 mm and rint ¼ 0:6 mm, and the truncated Williams’ series
is limited from nmin ¼ �3 to nmax ¼ 5.

4.2. Numerical simulation strategies

Three different strategies are used to evaluate the stress inten-
sity factor amplitude DKI over a cycle. The first one is based on a



Fig. 8. Geometry and boundary conditions of the sample. The correlation area is
represented with its projection zone. Idealized stress boundary conditions or
experimental Dirichlet boundary conditions (scale in mm) are prescribed to the
simulated systems.
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published reference solution of the ideal test as studied by Tada
et al. (1985), the second one is obtained from the above presented
numerical modeling using DEK-FEM of the same ideal test, and a
third one is based on the same numerical model but uses experi-
mentally measured boundary conditions. In addition to these three
evaluations, the Williams’ series decomposition of the DIC field
also provides a measurement of DKDIC�WA

I . These four estimates will
be compared.

4.2.1. Ideal test solutions
For the ideal test geometry shown in Fig. 8, under plane stress

and uniform tensile loading Dr0 ¼ DF0
2Wt and elastic behavior, Tada

et al. (1985) proposed a closed-form solution for the SIF amplitude

DKTada
I ¼ Dr0

ffiffiffiffiffiffi
pa
p

1� 0:025
a

W

� �2
þ 0:06

a
W

� �4
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
cos pa

2W

� 	s
ð6Þ

Reference to DKI evaluated from this equation will be denoted
as ‘‘Tada’s prediction’’.

The DEK-FEM numerical approach (Section 3) is used to
evaluate DKI from the same loading conditions, geometry and
under the same assumptions. Because of symmetry, a quarter of
the CCT plate (ð1=4Þ � 2W � 100) is considered subjected to uni-
form remote stress Dr0 ¼ DF0=2Wt. Results of this second
approach will be referred to as DEK-IBC (for Ideal Boundary
Conditions).

4.2.2. DEK-FEM simulation based on DIC analysis
It can be noted that the boundary conditions used in the simu-

lation of the full specimen are an idealization of the actual ones
applied experimentally. The main merit of using a consistent
description for the experiment and the simulation is to offer the
possibility of taking into account the actual boundary conditions
as experienced by the specimen, even if they depart from the ideal
test (Fedele et al., 2009; Rannou et al., 2010). This is the purpose of
this third evaluation.

A DEK-FEM simulation is now performed on a part of the region
where the displacements from DIC measurements are available
(i.e., DEK-ABC of Fig. 8). On the boundary of that area, the displace-
ment amplitude DuDIC extracted from the DIC measurements is
prescribed as Dirichlet boundary conditions. Further, the mesh
used for the correlation measurement is fine enough to have an
accurate evaluation of SIFs when used in the DEK-FEM simulations
(i.e., a mesh four times finer leads to a difference in evaluated SIFs
less than 1%). Moreover, having the same mesh for the simulation
and the correlation analysis makes the application of boundary
conditions easier. This DEK-ABC (for Actual Boundary Conditions)
simulation relaxes two hypotheses, namely, the idealized bound-
ary conditions and the symmetric propagation of both crack tips.
The first and presumably the second of these two hypotheses are
not fulfilled in the experiment.
4.3. Simulations with prescribed experimental crack tip position aW

First, numerical simulations are run with a prescribed history of
crack tip positions extracted by projection of the measured dis-
placement fields onto the Williams’ series. The SIFs are computed
and compared to experimental estimates. Fig. 9 shows the stress
intensity factor as a function of the measured crack tip position.
The DEK-FEM simulations using the ideal boundary conditions
DEK � IBC give stress intensity factors that can hardly be distin-
guished from Tada’s predictions Eq. (6). This agreement shows
the accuracy of DEK-FEM simulations and are considered as a val-
idation of the numerical procedure.

Fig. 9 also shows that the DEK-ABC simulations (Section 4.2.2)
yield SIFs values DKDEK�ABC

I very close to those obtained with the
experimental post-processing procedure (i.e., DKDIC�WA

I ). This result
demonstrates that the assumptions made on the elastic behavior of
the sample over the analyzed region are well satisfied, and that the
DIC measurement is extremely reliable over the bulk of the region
of interest (the boundaries are by construction identical). Projected
and simulated displacements have a low RMS difference when
compared with the measured displacement fields (i.e., < 7� 10�2

pixel). This difference is of the order of the measurement uncer-
tainty and thus shows that the Williams’ series and DEK-FEM bases
accurately describe the experimental displacement fields.

The two previous observations show that the reference solution,
the modeling approach and the DIC technique are all consistent
with each other. Yet a very significant difference in DKI (i.e., by
more than 10%) can be observed in Fig. 9 between Tada’spredic-
tions and DEK-IBC on the one hand, and DEK-ABC and DIC-WA
on the other hand. The conclusion to be drawn from these compar-
isons is that the boundary conditions of the experiment are not
consistent with those of an ideal test. Among the different condi-
tions of the ideal test, the assumption of a perfectly symmetric
loading appears as the most fragile. Any slight dissymmetry in
loading, or initial geometry of the notch, or even its tip curvature,
as well as any minute fluctuations in the material properties at the
crack tip will induce a breakdown of symmetry that will increase
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with further crack growth. This result shows the importance of
properly accounting for the actual boundary conditions. In the fol-
lowing, it will be shown that this difference becomes even more
striking when a crack growth law is identified.

4.4. Crack growth law identification

The identification can now be performed based on the mea-
sured crack length aðNÞ and SIF amplitude DKIðNÞ. The procedure
followed herein has been introduced in Reference Mathieu et al.
(2012). It consists of minimizing A the time cumulated quadratic
difference of the measured and predicted crack lengths. The pre-
dicted crack length itself results from the integration of Paris’
law da=dN ¼ CðDKIðNÞÞg computed from the DKIðNÞ time series.
Explicitly, the objective function to be minimized is

AðC;gÞ¼
XNf

p¼1

aðN0Þ�aðNpÞþ
X

i2½2...p�
C

DKIðNi�1Þð Þgþ DKIðNiÞð Þg

2
ðNi�1�NiÞ

" #2

ð7Þ

where propagation is monitored from N0 to Nf , at cycles Np.
From the previous section, it has been shown that due to

imperfections in the experiment, or conversely to idealization of
actual loading conditions, the local evaluation of DKI does not
match the theoretically expected one. Two parameter sets of Paris’
crack growth law can thus be identified.The first one considers
KDIC�WA

I as representative of the actual boundary conditions
(denoted as ABC � Paris in the following), while the second one
uses the DKTada

I with ideal boundary conditions (denoted as
IBC � Paris). As a consequence of this last result, using solely a care-
ful inspection of the crack tip position but without resorting to full
Table 1
Identified coefficients for Paris’ law compared with previous studies of this
experiment (Mathieu et al., 2012; Mathieu et al., 2013), and with values for another
titanium grade (Adib and Baptista, 2007). Units such that the crack length a is
expressed in mm, and SIF range DKI in MPa

ffiffiffiffiffi
m
p

.

Parameters 1011 C g

IBC � Paris (Mathieu et al., 2013) 0.3 4.4
ABC � Paris 5.3 3.4
Adib and Baptista (2007) 7.5 3.0
Integrated DIC (Mathieu et al., 2012) 4.7 3.1
Fully integrated procedure (Mathieu et al., 2013) 2.5 3.4
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Fig. 10. Comparison of the different propagation velo
field measurements, it is possible to estimate a Paris’ crack growth
law (IBC � Paris) assuming ideal boundary conditions. The
identified parameters are given in Table 1, along with previously
published values. A good agreement is observed between the
reported results and those obtained herein when the experimen-
tally measured boundary conditions are considered.

4.5. Simulation of propagation

Once the crack propagation law is identified, crack propagation
is simulated. The crack tip position is now set to its initial position
to start the simulation, and then it is computed from Paris’ growth
law and computed SIFs values. Integration is explicit in time with a
time step of 1000 cycles. The results are shown in Fig. 10 in terms
of crack growth as a function of the propagation step. Fig. 10(a)
displays the crack tip positions obtained from the simulation
DEK-ABC with the two crack propagation laws (ABC � Paris and
IBC � Paris). These simulations are compared to the crack growth
predicted by DEK-IBC, which is equivalent to Tada’s solutions,
according to the two crack propagation laws, as displayed in
Fig. 10(b).

The DEK-ABC crack advance(see Fig. 10(a)) agrees well with the
experimental measurement DaW when the ABC � Paris law is used.
Even if such a good agreement could have been anticipated
because of the identification procedure used, integration of such
a strongly nonlinear law may have revealed a residual discrepancy.
Thus, it can also be interpreted as the adequacy of the Paris’ law
algebraic form, together with a reliable identification procedure.
The same graph also shows that the IBC � Paris law is clearly
inconsistent with the experimental results, which is a natural con-
sequence of the previous observation of the differences between
DEK-IBC and DEK-ABC SIFs.

Fig. 10(b) shows that the IBC � Paris law in DEK-IBC simulations
predicts a crack position that fits very well the experimental data.
The regression quality is quite comparable to what was obtained
for ABC � Paris law used in simulation and DIC-WA data shown
in Fig. 10(a). From Figs. 9 and 10(a), it is observed that idealized
boundary conditions may lead to bad SIF evaluations and then to
overestimate the crack advance. Identification resorting to full-
field displacement measurement allows the identification of the
SIF and then of the ABC � Paris crack growth law without assump-
tion on the boundary conditions.

Furthermore, it provides an assessment of the simulation model
through to the comparison between experimental full-field
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displacement measurements and simulated displacement fields.
From Fig. 10(b), the influence of boundary conditions in crack
propagation simulation observed in Ref. Rannou et al. (2010) is
displayed. The assumption of idealized boundary conditions in
the simulation with the ABC � Paris law leads to an underestima-
tion of the crack advance by a factor of 3 to 4. The assumption of
idealized boundary conditions is thus problematic when it is not
accounted for both in the crack growth law identification and sim-
ulations. However, the IBC � Paris law may include experimental
biases leading to higher SIF range values. The identified Paris’law
coefficient may thus exhibit a large scatter between different tests
and/or experimental devices or operators. It is not the case for the
ABC � Paris law that considers the actual loading conditions of the
specimen.

From the above analysis it is concluded that identifying an
accurate crack growth law cannot rely on globally approximated
boundary conditions. It was shown herein that this is one of the
key points of a fatigue crack growth law identification and of its
validation through propagation simulations. A method based on
Q4-DIC displacement measurement, SIFs estimations based on
the Williams’ series and simulations using experimentally mea-
sured boundary conditions and a Williams’ patch around the crack
tip has been validated. The consistent framework of analysis used
for the DIC analysis and FEM simulations revealed not only conve-
nient, but also very instrumental for reaching trustful conclusions.
5. Conclusion

A new strategy to accurately identify and simulate fatigue crack
propagation is presented herein. It unifies experimental full-field
measurements and numerical simulations. Both approaches are
based on a truncation of the Williams’ series expansion, giving
access to asymptotic coefficients such as the stress intensity fac-
tors, T-stress from the experiment and provided by the simulation
(and, for the experimental analysis, a similar treatment for the
supersingular amplitude provides the crack tip position). This for-
malism is used in conjunction with DIC analyses of the displace-
ment field, and a recently proposed extended X-FEM strategy,
where a similar enrichment is proposed over a patch around the
crack tip. The parallel is all the more complete that the boundary
conditions prescribed in the X-FEM simulation are the measured
experimental displacement fields.

This procedure was used to identify parameters of the Paris’ law
for the crack growth in a CCT cyclic fatigue test performed on a thin
titanium sheet. The numerical simulation of the crack growth
using the DEK-FEM numerical model and a time integration of
the Paris’ law was shown to accurately reproduce the observed
crack advance. It was shown that a comparable procedure could
be followed based on the assumption of an ideal test. A different
Paris’ law would result in a similar agreement with the observed
crack advance, when a similar ideal loading is considered. One
important observation of the present study is that any slight
imperfection in the actual experimental test may lead to very
strong errors in crack length predictions, errors that cannot be
detected from the crack tip position history (when a consistent
assumption on loading is made).

Having a homogeneous toolbox for analyzing and modeling the
experimental test allows unavoidable imperfections and break-
down of symmetries to be accounted for. Securing the actual
boundary conditions of the test in the analysis as well as in the
modeling, allows for the identification of crack growth laws with
a much improved reliability. Let us finally stress the generality
of the proposed procedure, as no closed-form of asymptotic
coefficients are needed, and any geometry and loading can be
considered.
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