
HAL Id: hal-01709868
https://hal.science/hal-01709868

Submitted on 15 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Continuous Integration and Unit Testing of Digital
Editions

Bridget Almas, Thibault Clérice

To cite this version:
Bridget Almas, Thibault Clérice. Continuous Integration and Unit Testing of Digital Editions. Digital
Humanities Quarterly, 2018, 11 (4). �hal-01709868�

https://hal.science/hal-01709868
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr

1

2

DHQ: Digital Humanities Quarterly
Preview
2017
Volume 11 Number 4

Continuous Integration and Unit Testing of Digital Editions

Bridget Almas <balmas_at_gmail_dot_com>, The Alpheios Project, Ltd.
Thibault Clérice <thibault_dot_clerice_at_enc-sorbonne_dot_fr>, Centre Jean-Mabillon (École des chartes) - PSL

Abstract

Over the last few years, the Perseus Digital Library (PDL) and the Open Philology Project
(OPP) have been moving towards enabling better interoperability and citability of their
texts by implementing the Canonical Text Services URN standard and the Epidoc subset
of the TEI P5 guidelines. This is a resource-intensive effort necessitating a scalable
workflow centered on continuous curation of these texts, from both within and outside the
PDL/OPP ecosystem. Key requirements for such a workflow are ease of maintenance
and speed of deployment of texts for use by a wide variety of analytical services and user
interfaces. Drawing on software engineering best practices, we have designed an
architecture meant for continuous integration with customizable services that test
individual files upon each contribution made to our public git repositories. The services
can be configured to test and report status on a variety of checkpoints from schema
compliance to CTS-ready markup designed for flexibility and interoperability.

Introduction

In 2012, the Perseus Digital Library (PDL) [Almas 2013] decided to apply a nascent norm in the digital classics

world, the Canonical Text Services (CTS) protocol [Smith and Blackwell 2012], to its corpus of primary source

Greek and Latin texts (see Figure 1). This effort coincided with a rather aggressive Optical Character

Recognition (OCR) campaign by its sister project, the Open Philology Project (OPP) in Leipzig, aimed "at

providing at least one version for all Greek and Latin sources produced during antiquity". Through this effort

OPP is adding thousands of new Greek and Latin texts to open access repositories, with a focus on post-

classical corpora available online [Crane et al 2013]. With hundreds of pre-existing PDL texts needing to be

made CTS compliant as well as upgraded from the Text Encoding Initiative (TEI) P4 Guidelines [TEI-

Consortium 2002] to the Epidoc [Elliott, Bodard, Cayless et al. 2006] subset of TEI P5 [TEI-Consortium 2007],

together with the incoming hundreds or thousands of texts coming out of the OPP pipeline, the work of a curator

would require much tedious checking of technical details.

In addition, management of resources needs to be scaled within the context of a non-uniform corpus. Both the

conversion process of pre-existing TEI XML files and the integration of new files needs to be validated against

the agreed upon norms. While the TEI norm and any of its subsets are a good first step towards unification of

resources, norms like CTS and digital libraries like Perseus require some specific technical solutions that can

be both scalable and cost-efficient.

1 of 11

3

4

5

6

Figure 1. CTS API Requests Explanation Diagram

Motivating Factors, Decisions and History

Lessons learned from the long history of managing the Perseus corpus and its supporting applications drove

some of the technical decisions of this project. Ingesting new and updated texts in the legacy Perseus 4.0

application is a tedious process. Perseus 4.0 is a traditional 3-tier Java web application which is deployed under

Tomcat. The views it presents the users combine the results of relational database queries of a MySQL

database [MySQL 2004] with static data served directly from the filesystem. Much of the runtime analytical

functionality (frequency calculations, word lookups, entity identification) relies on textual data being parsed and

pre-loaded into tables in the supporting MySQL database. The binary offset location of text within the XML

source files is used to synchronize the relational data with the XML source. This tight coupling between

application code, database and raw data means that any time a text is touched, the entire database needs to be

reloaded. A more scalable solution was needed that would enable Perseus to serve new and updated texts in

real time as they became available, with the confidence that they would work correctly and not break other parts

of the application. This requires a distributed architecture. Implementation of CTS is one step in this direction,

as it allows us to identify and serve text passages by their canonical identifiers, using persistent stable

identifiers and a technology-independent API.

Another primary objective for the Perseus and OPP projects is to provide a fully open-access and self-

describing corpus of texts which can stand on its own and support a wide variety of scholarly needs. Any

solution which embeds knowledge of text content or structure in software application or database code is

antithetical to this goal.

Structural Markup Guidelines

As previously noted, the CTS service protocol allows us to identify and serve text passages by their canonical

identifiers, using persistent stable identifiers and a technology-independent API. The CTS URN notation is

based on a strict hierarchical concept of the text, where its passages are sub-ordered down to the word level

with no limitations applied to the depth of the passages tree. In this context, XML fits the technical requirements.

But to implement CTS we must decide upon a single "canonical" hierarchical XML markup structure for each

text. External indices and transformations can be used to present alternative schemes or visualizations, in

addition to or instead of relying upon embedded milestones to deal with issues of overlapping citation

hierarchies.

From scholarly tradition to XML encoding

Most scholarly tradition is easily transferred from text to tree [Renear, Mylonas and Durang 1993]: hierarchical

models of lines, verses, books or chapters are easily expressed using traditional TEI[1]. Verses (in the context

of Antiquity, poetry and theater) and paragraph-based citation schemes translate perfectly to a tree system. Use

2 of 11

7

8

9

10

of the tei:n attribute to denote the identifier of a passage allows for a fast, real-time traversing of the tree, with

technologies such as XPath and XQuery, to reconstitute passages such as Homer's Iliad 1.1. Identification of

passages becomes scalable and encoder-friendly and respects both TEI guidelines and the scholarly tradition.

However, a complex situation emerges from another tradition: page-based citation schemes. Most of Perseus’

prose resources, whose citation schemes are inherited from scholarly traditions, are quoted by semantical unit

(book, chapter, section, etc.) whereas some systems have preferred topological ones (mostly pages). Cicero's

and Plato's work, two of the most studied authors in Greek and Latin, follow a page based scheme [Franzini and

Foradi 2014]. In this context, we find ourselves with two concurrent trees: one that reflects paragraphs and

divisions through markup; a second one that embodies the topographical citation scheme. This leads to the use

of the fairly common <tei:pb> or <tei:milestone>, identifying the name and the identifier of the canonical

citation scheme if required. With the constraint of an XML based delivery of passages, however, this structure

fails and collides with the tree oriented query system of XML, namely XPath.

The Perseus Digital Library needs not only to be scalable in terms of speed but also in terms of code efficiency.

Ideally a single technical implementation of the CTS protocol should be able to support the entire corpus. And to

deliver a rather fast response to the GetValidReff request for passages in the Iliad - which, without refinement,

can necessitate the transfer and the identification of the 15,693 URNs corresponding to the complete set of line

identifiers available in the text [2]- the XPATH for passage retrieval needs to be cost-efficient. The first solution

to this problem is a shift from the traditional citation scheme to a more logical one, with the publication of an

equivalences registry between one scheme and another. A second one is the manipulation of the markup rules,

with attributes which would indicate that one paragraph and its sibling actually belong to a common unit.

Self-containing text vs. outer metadata: CapiTainS Guidelines

CTS is built around three major sets of information which are covered by its guidelines and which come from

three different sources: metadata from the library, with authorship and edition information, metadata from the

data repository, including the object identifier, and metadata from scholarship, as embodied by the citation

scheme. The CapiTainS Guidelines [Almas, Clérice and Munson 2017] are designed specifically for a XML

based implementation of the CTS protocol. They supplement the core CTS specification and provide a solution

to the challenges of enabling reuse and scalability. The CapiTainS Guidelines include :

Figure 2. Directory structure

The rationale behind this approach is to avoid unnecessary duplication of information while still allowing for a

completely self-describing corpus structure. Texts adhering to the guidelines can then be integrated into the

corpus with a much lighter dependency on the current implementation of the services and tools built to support

it, while shared metadata can be of use separately from the text itself.

a directory and file naming convention (see Figure 2),

expression of the CTS citation scheme and edition specific metadata inside the edition XML file,

shared metadata files at the textgroup and notional work level

3 of 11

11

12

13

14

To facilitate text identification, the identifier of the text should be accessible from both inside and outside the

markup. While the naming convention of files does cover external identification using the work identifier, a

simple query on the text should also be able to return its full URN. In TEI P5, the deepest required common

node is the <tei:body>. In the subset commonly used in Epidoc, the deepest required node is one level

deeper, the first <tei:div> inside one text, which identifies the text as being of @type translation or edition.

The CapiTainS Guidelines add to this a required @n attribute containing the CTS URN of the text. This is

enough for the CTS API to identify the author, the work and the edition or translation specific metadata from

internal markup or external databases. We use the @n attribute on the div enclosing the text or translation,

rather than metadata in the TEI <header>, because the TEI P5 (and the Epidoc subset) allow for multiple

editions or translations to be included in one file, and we want the URN to be unambiguously associated with

the text it identifies.

In addition to the individual file naming convention, applying a similar approach to the hierarchical directory

structure allows us to easily support human browsing of the resources in the source repository [Crane et al.

2015]. Our guidelines call for the first level of the directory structure to be named for the CTS textgroup and to

include a file containing the CTS metadata for the textgroup, named as "__cts__.xml". The second level of the

directory structure is named after the identifier of the notional work and itself contains a metadata file which

contains the CTS metadata for the work, edition and translation. These metadata files can be used by the

service application to dynamically construct a complete CTS TextInventory, a required output of the applications

implementing the CTS API.

As for the citation scheme, the TEI P5 specifically already defines a set of nodes, the <tei:cRefPattern>,

as children of <tei:refsDecl>, that are built for this specific task: identifying references through the traversal

of the tree using regular expressions and XPath. The CapiTainS Guidelines call for implementation of this

<tei:refsDecl> structure, using the @n attribute to identify it as the CTS reference declaration and the

definition of <cRefPattern> for each level of citation to allow for the internal description to perform information

retrieval (see Code Sample 1). Applications which serve the corpus and which want to implement the CTS API

can aggregate this information with that provided by the external CTS metadata files to dynamically report the

citation scheme as part of the TextInventory.

<refsDecl n="CTS">

 <cRefPattern n="line" matchPattern="(.+).(.+)"

 replacementPattern="#xpath(/tei:TEI/tei:text/tei:body/tei:div[<att>@n</att>='$1']

//tei:l[<att>@n</att>='$2'])">

 <p>This pointer pattern extracts book and line</p>

 </cRefPattern>

 <cRefPattern n="book" matchPattern="(.+)"

 replacementPattern="#xpath(/tei:TEI/tei:text/tei:body/tei:div[<att>@n</att>='$1'])">

 <p>This pointer pattern extracts book.</p>

 </cRefPattern>

</refsDecl>

Example 1. Implementation of CTS <refsDecl> for an edition of the Iliad

Unit Tests

From text to software : defining properties and functions

Unit testing is a software engineering practice which focuses on ensuring the functional capacity of software

following changes to it by running tests on the smallest unit in a non-deployment environment to prevent

propagation of errors in the software base [Huizinga and Kolawa 2007, 75]. Test results can be expressed in

many different ways : through percentage relative to the last test, or absolutely, or in a simple binary fashion

with a passed/not passed information. Tests can generally be developed automatically but might be expanded

once specific bugs needing testing surface. Unit tests are intended to check the valid output and/or the

4 of 11

15

16

17

18

19

consistency of resources, whether they are compute-free or not. (Constants and properties are examples of

compute-free resources, whereas functions and objects are examples of the opposite, because a specific input

should give a specific output.) Unit tests on XML documents are focused on testing properties of the document

against a schema such as TEI using RelaxNG [Clark 2001]. RelaxNG is a description language for XML that

specifies how an XML document should be structured, such as what values are acceptable for attributes and

what nodes allow or require as their descendants. The scope of what we can test with a RelaxNG schema is

limited to these tests and the content and structure of a given document. It has no external data access and is

not designed for computing variable document structures.

The first step to properly apply unit testing in this context is to define, for an encoded text, the parts which are

"properties" and the parts which are "functions". Identifying these parts helps design the general test scenario

by grouping resources which are less compute intensive. In a CTS corpus, we can think of metadata such as

the CTS URN identifier and the text markup as properties, i.e. they should be present and respected but they

are not to be computed upon. Additional testable properties, given the CapiTainS Guidelines, include

information from the outer metadata files about the work and author, along with their translations.

Adherence to and application of a specific text encoding scheme falls in between function and property. In the

context of Object Oriented Programming (OOP) [Pierce 2002, 225], the TEI Encoding, and its subsets,

represents the architecture of the proto-object or the parent class. Objects derived from this class should

respect the parent structure. In this context, XML compliance, and moreover, schema and DTD compliance, can

be thought of as required properties of those objects.

Passage retrieval is the only specific function that one encounters in CTS. The presence of the <refsDecl> in

the XML file of a text is a property, but the accuracy of the <refsDecl> and the presence within the text of at

least one element for each level of citation is a requirement for the text to be functional. In addition, for any text,

the @replacementPattern given for any level of citation should not, when completed, resolve to more than

one passage for any given identifier at any level of the hierarchy

These then are the base cases for our tests (see Figure 3), but experience tells us that additional properties and

tests will likely be discovered to be necessary, and need to be added to the existing texts. For example, with the

expansion to semitic languages, the existence of right-to-left markers should be checked against language

rules.

Figure 3. Base Test Diagram

Reuse, present and future development

Taking the software engineering paradigm further, we can treat the corpora as a whole as a set of software

packages, where each text is a unit representing an individual code base. The test should happen in three

different steps: object discovery, test attribution, and unit tests. Within this context, test discovery means

detection of XML files. Then in the test attribution step, objects are dispatched by a type detector: here,

metadata files adhering to the __cts__.xml name are automatically sent to a specific metadata test class while

others are sent to a text test class. Finally, objects are dealt with in a test object whose output is sent back to

the main test process. In case the results are needed for further tests, such as the presence of metadata about

5 of 11

20

21

22

23

author and notional work, those are made available in this process.

Tests rely on different technical resources, and some do not require custom coding: for example, schemes are

tested against TEI or Epidoc using jingtrang [Clark 2001 (2)] and the respective RelaxNG resources. Other

tests, such as those which check the naming conventions, are implemented simply as regular expressions. And

finally, the CapiTainS Guidelines for the definition and resolution of CTS passages are exercised through tests

written in Python.

The open source software for this test framework is designed to enable extensibility and reuse. An entirely

different type of document, for example, a repository of Treebank data (see Code Sample 2), could be tested

through reuse of the archetypal test class objects and coding of new rules for the the file resolver. The

archetypal unit test class takes a path, a "parsable" method for testing ingestion, a "logs" property and a "test"

method for starting the tests. This class also has two constants which need to be supplied: "test", which

contains the list of method names to be used for tests, and "readable", which should provide human readable

explanation of the tests.

class TreebankUnit(HookTest.units.TESTUnit):

 tests = ["parsable", "has_root"]

 readable = {

 "parsable": "File parsing",

 "has_root": "Root declared"

 }

 def __init__(self, path):

 super(HookTest.units.TESTUnit, self).__init__(path)

 def has_root(self):

 # Process

 self.log("If something needs to be verbose")

 has_root = True # Assign result as a boolean

 yield has_root

 def test(self, scheme):

 tests = [] + CTSUnit.tests

 tests.append(scheme)

 for testname in tests:

 # Show the logs and return the status

 for status in getattr(self, testname)():

 yield (

 TreebankUnit.readable[testname],

 status,

 self.logs

)

 self.flush()

Example 2. Code sample, Pseudo-python sample integration of Treebank Unit Test class

Continuous Integration

Context and architecture

Continuous Integration is a software development practice in which programmers sharing the same project

commit different changes to a code base. These commits lead to the running of a series of tests to check on

compatibility of the new code and finally to the delivery of the community accepted changes to a production or a

stage environment [Fowler 2006].

Perseus data has been hosted on GitHub since July, 26th 2013. Before this, Perseus resources were hosted

internally and distributed at release points only on SourceForge. This made incorporating contributions of

corrections from external sources difficult. Opening the data of Perseus had two goals. The first one is simply

6 of 11

24

25

openness. Hosting resources and giving access to them in a raw fashion not dependent on any application or

API has been a best practice espoused by numerous projects in the Humanities, such as the Pleiades project

[Ragnall, Talbert, Horne and Elliott 2008]. The second point of giving access to the data on these collaboration

platforms is to allow for citizen scientists, fellow researchers and classical studies enthusiasts, to participate in

the correction of Perseus resources the same way.

In this context, the library curator finds themselves in a situation where they should ensure that changes

proposed, made in the form of pull requests, are correct from both the technical and the philological perspective

(see Figure 4). Developing a webhook to check on technical validity, built on the capacity of GitHub to ping

services when changes are proposed, has allowed us to significantly lighten the work required of the curator. It

also allows us to measure and report on progress, from the highest level (the percentage of the entire repository

which is fully CTS CapiTainS Compliant) to the individual object test result (percentage of tests passed). Results

of these tests can then also be checked automatically by deployment scripts for the CTS-enabled applications

serving the texts.

Figure 4. Continuous integration workflow

Scalability and deployment

The tool suite used for this continuous integration environment makes use of free online services and is divided

into two separate code bases, each presenting its own set of challenges. The user interface, Hook ([Almas and

Clérice 2017]), needs to offer an API endpoint for the test results and user management for registering API

access to the GitHub repositories. Hook acts as the archival service, listening for test results and annotating pull

requests or commits on the source repositories with a summary. On each transaction between Github and

Hook, identification tokens are exchanged along the required data via the oAuth protocol [Hardt 2012]. The user

interface is itself a lightweight Python Flask web application [Ronachter 2010].

7 of 11

26

27

Figure 5. Hook Testing Architecture

The second application, HookTest [Almas, Clérice and Munson 2017 b], is the testing software that actually runs

the tests. HookTest has been designed for its stable release 1.0.0 as a tool that can be both run on local

machines or on free services for Continuous Integration such as Travis-CI. Depending on the size of the corpus,

different types of verbosity of the results are made available so text status messages are manageable even on

really large corpora. HookTest also provides a second set of optional services to package the corpus into a set

of only valid files (i.e. files passing tests) and push this package back as a release to Github.

Figure 6. Continuous Integration Workflow Sequence

In a configuration which leverages both Hook and HookTest together with the Travis-CI service there are two

steps to the feedback process. At the end of the test, HookTest displays on Travis the results of the tests in a

table (see Figure 6) and dispatches the results to Hook[3]. The Hook application adds a comment to the

resource on Github (i.e. the Pull Request or the Commit which triggered the test) with a score, a binary result

(passed/failed) and a difference status (New text passings, number of new nodes, etc.). In addition to the code

comments, Hook creates and serves icons, in the form of badges which can be referenced from the README

of the repository, for the users of the repository and the application to be able to quickly access information and

status from the GitHub repository home page (see Figure 7)

8 of 11

28

29

Figure 7. PerseusDL/canonical-latinLit GitHub homepage

If the release packaging service is enabled, each new version of the corpus that has been released can then

automatically be deployed into production and test environments, in the same manner as a software update

(see Figure 8).

Figure 8. Hook Update/Integration Architecture

The comments added by Hook to Pull Requests and Commits on the GitHub repository enables the curator to

easily assess changes made by other contributors. The test results can be found on the GitHub resources, and

also activate GitHub-managed notifications (mail or web) that states the summary results of the tests with links

back to the detailed results in Travis. These notices are sent to the curator owners of the GitHub repository and

issuers of the Pull Request or Commit, and also can be subscribed to by other interested parties.

Whether working on a new corpus or converting an existing corpus to comply with the CapiTainS specification,

9 of 11

30

31

32

the tests allow for detection of errors that could not be easily caught by schema validation with RelaxNG or

Schematron. One common example of an error of this sort is the duplication of passage identifiers. Because

passage identifiers are built by combining identifiers of elements at different levels of the hierarchy, this cannot

be done without a programmatic test. These errors are identified in the HookTest results. When a text

conversion is done and the push request made, Hook provides a list of duplicate passages and writes in the

summary on the Pull Request. If there is no new text passing, the curator and the contributor can check the

output and could find the report written by HookTest on Travis (see Figure 9).

Figure 9. Logs example for PerseusDL/canonical-latinLit

Conclusion

With around 100 million words available on PDL, and millions more words still to come through OPP, in a

context of opening contributions up to wide ranging communities of users, dealing with ingestion of new texts

scalably is a matter of security, flexibility and efficiency. Developing stronger and more flexible guidelines has

helped the project move towards generalization of its norms and reduced the cost to encode, develop and

curate.

With a strong continuous integration service in place, we can now support not only a wider range of genres and

languages, but also a wider diversity of contributors. We can delegate the tedious tasks of checking markup to

the machine, leaving curators free to focus on the scholarship. We also expect that automating checks on the

integrity and the adaptability of textual objects for specific frameworks can reduce the error rate and allow for

shorter feedback loops to contributors and users of our corpora.

Notes

[1] Tree, or as put by [Renear, Mylonas and Durang 1993] "Ordered hierarchy of content objects (OHCO)", is a
model that many texts of western classical literature can fit. This modelization is the same that supports the real
bases of TEI. See "Complicating the Issue" in the TEI Guidelines [TEI-C 2007]

[2] GetValidReff for Homer's Iliad, with a level parameter set to 2, should return identifiers for all 15,693 lines to
the API client. See http://www.perseus.tufts.edu/hopper/CTS?request=GetValidReff&
urn=urn:cts:greekLit:tlg0012.tlg001.perseus-grc1

[3] In a local-only configuration, HookTest displays results of tests on the console or a local log file.

Works Cited

Almas 2013 2013-05-01 Perseus CTS API Bridget Almas

Almas and Clérice 2017 Bridget Almas Thibault Clérice Hook Hook 2017-06-19 Zenodo

Almas, Clérice and Munson 2017 Bridget Almas Thibault Clérice Matthew Munson CapiTainS Guidelines 2.0.0
2017-05-02

Almas, Clérice and Munson 2017 b Bridget Almas Thibault Clérice Matthew Munson HookTest: 1.1.2 2017-06-23
Zenodo

Clark 2001 Clark James The Design of RelaxNG 2001

Clark 2001 (2) Clark James JingTrang 2001

Crane et al 2013 Gregory R. Crane Open Greek and Latin Project Humboldt Chair of Digital Humanities
2013-12-13

Crane et al. 2015 Gregory R. Crane Perseus Digital Library Canonical Latin Literature Repository 2015

Elliott, Bodard, Cayless et al. 2006 2006-2016 Tom Elliott Gabriel Bodard Hugh Cayless EpiDoc: Epigraphic

10 of 11

Documents in TEI XML

Fowler 2006 Martin Fowler Continuous Integration 2006-05-01

Franzini and Foradi 2014 Elena Franzini Maryam Foradi Latin and Greek Texts: What Are We Reading in
Schools and Universities? Humboldt Chair of Digital Humanities 2014-09-10

Hardt 2012 2012 Dick Hardt The OAuth 2.0 authorization framework

Huizinga and Kolawa 2007 Automated defect prevention: best practices in software management Dorota
Huizinga Adam Kolawa 2007-01-22 Wiley-IEEE Computer Society Pr

MySQL 2004 2004 MySQL AB MySQL database server

Pierce 2002 Benjamin C. Pierce Types and Programming Languages 2002 MIT Press

Ragnall, Talbert, Horne and Elliott 2008 Roger Bagnall 2008 Richard Talbert Ryan Horne Tom Elliott PLEIADES,
A community-built gazetteer and graph of ancient places

Renear, Mylonas and Durang 1993 Refining our notion of what text really is: The problem of overlapping
hierarchies. 1993-01-06 Allen Renear Elli Mylonas David Durand

Ronachter 2010 Flask (A Python Microframework) Armin Ronachter

Smith and Blackwell 2012 Neel Smith Christopher Blackwell 2012 An overview of the CTS URN notation Homer
Multitext project

TEI-C 2007 TEI Consortium Complicating the Issue 2007

TEI-Consortium 2002 TEI Consortium TEI: P5 Guidelines 2002

TEI-Consortium 2007 TEI Consortium TEI: P4 Guidelines University of Virginia Press 2002

11 of 11

