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Equitable Conceptual Clustering using OWA operator

We propose an equitable conceptual clustering approach based on multi-agent optimization. In the context of conceptual clustering, each cluster is represented by an agent having its own satisfaction and the problem consists in finding the best cumulative satisfaction while emphasizing a fair compromise between all individual agents. The fairness goal is achieved using an equitable formulation of the Ordered Weighted Averages (OWA) operator. Experiments performed on UCI datasets and on instances coming from real application ERP show that our approach efficiently finds clusterings of consistently high quality.

Introduction

Structuring data in knowledge discovery appears as a fundamental task which permits to better understand the data and to define groups with regards to an a priori similarity measure. This is usually referred to clustering in unsupervised learning task. In practice, users often would like to perform further actions at the cluster level, such as interpreting the cluster semantically. Methods such as conceptual clustering address this by attempting to find descriptions of the clusters by means of formal concepts. Numerous approaches have been devised for conceptual clustering. Traditional approaches [START_REF] Michalski | Learning from observation: Conceptual clustering[END_REF][START_REF] Fisher | Knowledge acquisition via incremental conceptual clustering[END_REF] combine the formation of the clusters and of the descriptions. Other techniques [START_REF] Perkowitz | Adaptive web sites: Conceptual cluster mining[END_REF][START_REF] Pensa | A bi-clustering framework for categorical data[END_REF] have instead chosen to decouple finding the descriptions -either before or after the clustering process -and the clustering step. More recently, Constraint Programming (CP) [START_REF] Chabert | Constraint programming for multi-criteria conceptual clustering[END_REF] and Integer Linear Programming (ILP) [START_REF] Ouali | Efficiently finding conceptual clustering models with integer linear programming[END_REF] approaches have been proposed to address the problem of finding optimal conceptual clusterings in a declarative framework. They combine two exact techniques: in a first step, a dedicated mining tool (i.e., LCM [START_REF] Uno | An efficient algorithm for enumerating closed patterns in transaction databases[END_REF]) is used to compute the set of all formal concepts and, in a second step, ILP or CP is used to select the best k clusters (i.e. concepts) that optimizes some given criterion. Most of the optimization measures used in these approaches lead to an unbalanced clustering where one cluster is more dominant than others. Ensuring that the clusters obtained be (roughly) balanced, i.e. of approximately the same number of data points helps in making the resulting clusterings more useful and actionable [START_REF] Banerjee | Scalable clustering algorithms with balancing constraints[END_REF][START_REF] Yang | Segmenting customer transactions using a pattern-based clustering approach[END_REF].

This paper deals with the concept of equitably efficient solutions to conceptual clustering problem in multi-agent decision making, where each agent represents a concept and has its own utility corresponding to a specific measure (e.g. the frequency). Here, equity refers to the idea of favoring solutions that fairly share happiness or dissatisfaction among agents [START_REF] Golden | Infinite order lorenz dominance for fair multiagent optimization[END_REF]. The equity requirement has been fully studied by the multicriteria optimization community [START_REF] Michael | Equitable aggregations and multiple criteria analysis[END_REF], and formalized through the three properties: Symmetry meaning that all agents have the same importance. For instance, both utility vectors (5, 3, 0) and (0, 3, 5) are considered equivalent.

Pareto-monotony which expresses that solution (x 1 , x 2 , ..., x n ) is better than solution (y 1 , y 2 , ..., y n ) if and only if x i ≥ y i for all i, with at least one strict inequality. Transfer Principle formalizes an important notion of equitable utility distribution [START_REF] Sen | On economic inequality[END_REF]. The intuition is that any transfer between some two inequitable utilities x i and x j , which preserves the average of utilities, would improve the overall utility. For instance, a more equitable vector y = (9, 10, 9, 10) can be obtained from x = [START_REF] Marshall | Inequalities: Theory of Majorization and its Applications[END_REF][START_REF] Michael | Equitable aggregations and multiple criteria analysis[END_REF][START_REF] Dubois | Computing improved optimal solutions to max-min flexible constraint satisfaction problems[END_REF][START_REF] Michael | Equitable aggregations and multiple criteria analysis[END_REF] by transferring two units between the first and the third agents.

The common way to deal with the concept of equitably efficient solutions is to define aggregation functions that fulfills the above properties. This defines a family of the equitable aggregations which are Schur-convex [START_REF] Marshall | Inequalities: Theory of Majorization and its Applications[END_REF]. In the literature there are several functions to aggregate individual agents' utilities by mean of collective utility function (CUF). The most used aggregations are maxMin, minDev and maxSum. The transfer principle is not ensured in the maxMin and minDev, on all of the utilities, thereby leading to the drowning effect [START_REF] Dubois | Computing improved optimal solutions to max-min flexible constraint satisfaction problems[END_REF]. The maxSum function is fully compensatory and thus does not capture the idea of equity.

The next section introduces the concepts used in this paper. Section 3 describes how equitable conceptual clustering task can be expressed as ILP problems. We discuss related work in Section 4 before demonstrating our technique's performance in Section 5. Section 6 concludes and points towards future research directions.

Background

Formal Concepts and Conceptual Clustering

Formal Concepts. Let D be a set of m transactions (numbered from 1 to m), I a set of n items (numbered from 1 to n), and R ⊆ T × I a binary relation that lies transactions to items: (t, i) ∈ R if the transaction t contains the item i : i ∈ t. An itemset (or pattern) is a non-null subset of I. For instance, Table 1a gives a transactional dataset D with m=11 transactions t 1 , . . . , t 11 described by n=8 items.

The extent of a set I ⊆ I of items is the set of transactions containing all items in I, i.e., ext(I) = {t ∈ D| ∀i ∈ I, (t, i) ∈ R}. The intent of a subset T ⊆ D is the set of items contained by all transactions in T , i.e., int(T ) = {i ∈ I| ∀t ∈ T, (t, i) ∈ R}. These two operators induce a Galois connection between 2 D and 2 I , i. 

divers(I) = t∈ext(I) |{i ∈ I | (i / ∈ I) ∧ (i ∈ t)}|.
Additionally, we can refer to its size: size(I) = |{i | i ∈ I}|. We note C the set of all formal concepts. Conceptual Clustering. Clustering is the task of assigning the transactions in the data to relatively homogeneous groups. Conceptual clustering aims to also provide a distinct description for each cluster -the concept characterizing the transactions contained in it. This problem can be formalized as: "find a set of k clusters, each described by a closed pattern P 1 , P 2 , ..., P k , covering all transactions without any overlap between clusters".

An evaluation function f that optimizes a given criterion can be used to express the goodness of the clustering. Different optimization criteria may be considered: max-Trans.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 t1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 t2 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 t3 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 t4 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 t5 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 t6 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 t7 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 t8 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 t9 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 t10 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 t11 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 (c) (at,c) matrix associated with D. imizing the sum of frequencies of the selected concepts; minimizing the sum of diversities of the selected concepts. For instance, for dataset D and k=3, minimizing f (P1, ..., P k ) = 1≤i≤k divers(Pi) provides one clustering s 1 , with optimal value 18 (see Table 1b). Solution s 1 = (1, 1, 9) has one large cluster (of size 9) covering most of the transactions, and two clusters that cover only one transaction. Such a clustering may be less interesting than those in which the clusters are all of comparable size. A common way to get more balanced clusterings is to consider dedicated optimization settings. This can be formalized in two possible ways:

maximizing the minimal frequency (maxMin). We search for solutions in which the minimal frequency of the selected concepts is as large as possible.

minimizing the deviation in cluster frequency (minDev). We enforce a small difference between cluster frequencies: Min max(freq(P 1 ), . . .)min(freq(P 1 ), . . .).

However, as stated in the introduction, these two settings suffer from the so called drowning effect [START_REF] Dubois | Computing improved optimal solutions to max-min flexible constraint satisfaction problems[END_REF]. In fact, concerning maxMin (resp. minDev), the transfer principle is ensured only on the min (resp. min and max) utility, and thus intermediate utilities are not necessarily equitable. To address equity requirement, we consider, in the next section, a sophisticated operator that focuses on the whole utilities.

Equitable multiagent optimization

Let N = {1, .., n} be a set of n agents. A solution of a multiagent optimization problem is characterized by a utility vector x = (x 1 , ..., x n ) ∈ IR n + , where x i represent the utility (or a degree of satisfaction) of the i th agent. Utility vectors are commonly compared using the Pareto dominance relation (P -dominance). The weak-P -dominance P between two utility vectors x, x is defined as:

x P x ⇔ [∀i ∈ N, x i ≥ x i ],
whereas the strict P -dominance P between x and x is given by: x P x ⇔ [x P x ∧ not(x P x)]. A solution x * is Pareto-optimal (a.k.a efficient) if and only if there is no solution x that dominates x * . The P -dominance can be formulated as: max {(x 1 , ..., x n ) : x ∈ Q}, where Q is the set of feasible solutions. The P -dominance may lead to a large set of incomparable solutions. Also, the P -dominance is insensitive to outliers. To refine the P -dominance, we should specialize a dominance relation so as to favor equitable utility vectors. The main intuition behind the equity criterion refers to the idea of selecting solutions that fairly share satisfaction between agents [START_REF] Sen | On economic inequality[END_REF]. Formally, an equitable dominance relation should fulfill three main properties [START_REF] Marshall | Inequalities: Theory of Majorization and its Applications[END_REF][START_REF] Golden | Infinite order lorenz dominance for fair multiagent optimization[END_REF]:

Symmetry. Consider a utility vector x ∈ IR n + . For any permutation σ on N , we have (x σ(1) , ..., x σ(n) ) ∼ (x 1 , ..., x n ). P-Monotony. For all x, y ∈ IR n + , x P y ⇒ x y and x P y ⇒ x y. Transfer principle. (a.k.a Pigou-Dalton transfers in Social Choice Theory) Let x ∈ IR n + and x i > x j for some i, j ∈ N . Let e z be a vector such that ∀i = z, e z i = 0 and e z z = 1. For all where 0 < ≤ xi-xj 2 , we get x -e i + e j x. Any slight improvement of x j at the expense (reduction) of x i , which preserves the average of utilities, would produce a better distribution of the utilities among agents and consequently improve the overall utility of the solution. For example, if we consider two utility vectors x = (11, 10, 7, 10) and y = (9, 10, 9, 10), then the transfer principle implies that y

x, because there is a transfer of size = 2 (i.e. x1-x3

2

), which allows to have y from x. Combining P-monotony and the Transfer principle leads to the so called Generalized Lorenz dominance defined in [START_REF] Chong | An induction theorem for rearrangements[END_REF] (for more details see [START_REF] Golden | Infinite order lorenz dominance for fair multiagent optimization[END_REF][START_REF] Marshall | Inequalities: Theory of Majorization and its Applications[END_REF]).

Equitable aggregation functions

A usual way to assess the quality of a utility vector is to aggregate the individual utilities with a collective utility function (CUF) [START_REF] Moulin | Axioms of Cooperative Decision Making[END_REF] G : IR n + → IR + , which improves the overall welfare by max{G(x) : x ∈ Q}. The G function can be a linear combination of individual utilities (i.e. G(x) def = sum(x)), which is not suitable to fairness context.

Another way to build G is based on the min function (i.e. G(x) def = min(x)), but it is sensitive to the drowning effect [START_REF] Dubois | Computing improved optimal solutions to max-min flexible constraint satisfaction problems[END_REF]. Other refinements of the min function exist (e.g. augmented min, lexmin [START_REF] Bouveret | Computing leximin-optimal solutions in constraint networks[END_REF]), but do not really solve the problem, since all are sensitive to drowning effect. In order to guarantee equitable aggregations, G should conform to the three equity properties. The most known way is to use Schur-convex function ψ, which are order preserving the three equity properties : x y ⇔ ψ(x) ≥ ψ(y). Precisely, when some aggregation function G is Schur-convex [START_REF] Marshall | Inequalities: Theory of Majorization and its Applications[END_REF], then it is an equitable aggregation [START_REF] Michael | Equitable aggregations and multiple criteria analysis[END_REF]. Thus Schur-convex functions play a key role in equitable aggregations (for more details, see [START_REF] Marshall | Inequalities: Theory of Majorization and its Applications[END_REF][START_REF] Michael | Equitable aggregations and multiple criteria analysis[END_REF]). In this line of reasoning, we introduce, in the next section, an aggregation function that ensures equity.

Ordered Weighted Averages (OWA)

This section focuses on the Ordered Weighted Averages (OWA) [START_REF] Yager | On ordered weighted averaging aggregation operators in multicriteria decisionmaking[END_REF] defined as follows:

G w (x) = n i=1 w i x (i) (1) 
where

w = (w 1 , . . . , w n ) ∈ [0, 1] n and x (1) ≤ x (2) ≤ • • • ≤ x (n)
. OWA provides a family of compromises between the sum and min. Golden and Perny [START_REF] Golden | Infinite order lorenz dominance for fair multiagent optimization[END_REF] propose coefficients for the OWA aggregation method, such that it is Schur-convex:

Theorem 1 [START_REF] Golden | Infinite order lorenz dominance for fair multiagent optimization[END_REF] Let be the following coefficients of the OWA aggregation:

W (x) = n k=1 sin( (n+1-k)π 2n+1 )x (k) . W is a Schur-convex function.
Theorem 1 is fundamental, since that Schur-convex functions ensure equity [START_REF] Michael | Equitable aggregations and multiple criteria analysis[END_REF][START_REF] Golden | Infinite order lorenz dominance for fair multiagent optimization[END_REF].

ILP models

This section describes different ILP models for finding an equitable conceptual clustering. Our approach follows the two steps approach of [START_REF] Ouali | Efficiently finding conceptual clustering models with integer linear programming[END_REF]: (1) a dedicated closed itemset mining tool (i.e., LCM [START_REF] Uno | An efficient algorithm for enumerating closed patterns in transaction databases[END_REF]) is used to compute the set C of all closed patterns; (2) ILP is used to select a subset of C that is a partition of the set D of transactions and that optimizes some given criterion. To enforce equitable clusterings, we enhance the second step with additional constraints enabling to ensure equitable OWA aggregation.

OWA ILP models

This section presents our first ILP formulation, called basic OWA ILP model, for computing equitable conceptual clusterings using equitable OWA operator. Then, we show how this basic model can be improved by post-processing the OWA constraints.

Let D be a dataset with m transactions defined on a set of n items I. Let C be the set of p closed patterns (w.r.t. the frequency measure) representing the candidate clusters. Let a t,c be an m × p binary matrix where (a t,c = 1) iff c ⊆ t, i.e., the transaction t belongs to extension of the closed pattern c. The (a t,c ) matrix associated with dataset D of Table 1a is outlined in Table 1c. Let v be the list of closed pattern utilities (e.g., frequency, diversity, etc.). For each closed pattern (c ∈ C), a binary variable x c is associated s.t. (x c = 1) iff the cluster c is selected. (a) Basic OWA ILP model. Fig. 1a gives the ILP model for equitable conceptual clustering. It uses two types of constraints: conceptual clustering constraints and OWA constraints modeling the sorting operation required in the OWA operator:

-Conceptual clustering constraints. Constraints (C1) enforce the subset of selected closed patterns to define a partition of D. Constraints (C2) specify a lower bound k min and/or an upper bound k max on the number of selected closed patterns.

-OWA constraints. The objective function and constraints (O1) and (O2) implement a known linear programming formulation [START_REF] Ogryczak | On solving linear programs with the ordered weighted averaging objective[END_REF] of the OWA operator on the conceptual clustering, where the coefficients ω are fixed by theorem 1. As explained in section 2.4, OWA is a weighed sum on the sorted utilities. That is why we introduced r, which is equal to the sorted version of the utility vector v. M is a sufficiently large constant. Let z be |C| 2 boolean matrix dedicated only to formulate the sorting constraints (O1) and (O2), which enforce that the utility vector v . x of the closed patterns are sorted in ascending order matching the OWA coefficients ω. These sorting constraints are fully explained in [START_REF] Ogryczak | On solving linear programs with the ordered weighted averaging objective[END_REF]. It follows that the k th smallest utility value r k will have the k th biggest weight ω k . The objective function maximizes the weighted sum using OWA weights ω given in theorem 1. (b) Improved OWA ILP model. In order to find efficiently an equitable conceptual clustering, we propose the optimize model (see Fig. 1b) as follows: -Precisely, sorting constraints (O1) and (O2) are specifically used when the utility values are given in comprehension. Fortunately, the utility values of formal concepts are known beforehand. Thus, sorting is performed immediately after finding closed patterns. We use v ↑ , which is the sorted version of v in ascending order.

-We assign the weights ω of equitable OWA to the sorted utility values, so that all equal utilities will have the same weight.

For our experiments, we used the improved OWA model. Our preliminary results showed that basic OWA model performs very poorly compared to the improved OWA Max |C| c=1 ωc . rc

s.t.                              Clustering.    (C1) |C| c=1 at,c . xc = 1, ∀t ∈ D (C2) kmin ≤ |C| c=1 xc ≤ kmax OWA sorting.    (O1) rc -(vi . xi) ≤ M zc,i, ∀ i, c = 1, ..., |C| (O2) |C| i=1 zc,i ≤ c -1, ∀ c = 1, ..., |C| xc ∈ {0, 1}, rc ∈ IR+, ∀ c = 1, ..., |C| zc,i ∈ {0, 1}, ∀ i, c = 1, ..., |C| (a) Basic OWA ILP model. Max |C| c=1 ωc . (v ↑ c . x ↑ c ) s.t.          (C1), (C2) xc ∈ {0, 1}, ∀ c = 1, ..., |C| (b) Improved OWA ILP model.
Fig. 1: OWA ILP models for equitable conceptual clustering.

model in terms of CPU-times. This meanly due from the fact that (n 2 ) additional constraints and (n 2 ) additional variables are used to encode the OWA sorting constraints. This constitutes a strong limitation of the size of the databases that could be managed.

Proposition 1. Basic and improved OWA ILP models are equivalent.

Proof. Both OWA models use weights ω given in Theorem 1, which ensure an equitable aggregation. Improved OWA is an optimization of the basic model: (1) It uses an a priori sorting of utilities (no need to sorting constraints); (2) The same weight is assigned to equal utilities (the same satisfaction level), which preserves straightforwardly the conformity with theorem 1. Thus, both OWA models are equivalent. (c) ILP numerical stability. The set of extracted closed patterns is mostly huge, which leads to a huge OWA vector ω in the basic model, and affect the numerical stability of the ILP solver. The optimized OWA model tackles this issue, thanks to assigning the same weight to all equal utilities. This makes it possible to solve real-world instances in our experiments reported in Section 5.

Other ILP models

As described in section 2.1 a linear aggregation of individual utilities max{sum(x) :

x ∈ Q}, does not fit the equity requirement. This suggests resorting to non-linear aggregation operators, especially the maxMin and minDev. The maxMin aggregation max{min(x) : x ∈ Q} tackles equity by improving the worst utility. This function can be linearized by maximizing a decision variable z ≥ 0, that is a lower bound for the utility vector v . x (see Fig. 2a, inequality C3), where v is the clustering criterion to be optimized (e.g. frequency). Thus, the linear formulation for the conceptual clustering is given by the ILP model of Figure 2a. An alternative way of ensuring equity is by achieving maximum deviation minimization minDev between both the best and the worst utilities: Min {max(x) -min(x) :

x ∈ Q}. It can be linearized by introducing 2 × n constraints and two decision variables z max ≥ 0 and z min ≥ 0 to maintain the max and the min values of the utility vector v . x (see Fig. 2b, inequalities C4-C5). The resulting ILP model is given in Fig. 2b.

Related work

Heuristic approaches Several methods have explored the idea of separating clusterformation from finding the conceptual descriptions. Pensa et al. [START_REF] Pensa | A bi-clustering framework for categorical data[END_REF] begin by mining closed (or δ-closed) patterns (itemsets) and their extensions and then perform k-Means clustering on them. Perkowitz and Etzioni [START_REF] Perkowitz | Adaptive web sites: Conceptual cluster mining[END_REF], reverse the two phases: their clustermining first uses a clustering technique to form clusters. From the resulting clustering, descriptions are learned by a rule-learning technique. All those techniques are of a heuristic nature and produce results of varying quality. Moreover, they are heavily influenced by the initialization conditions, typically requiring numerous restarts, increasing computational costs. Declarative approaches. Recently, [START_REF] Ouali | Efficiently finding conceptual clustering models with integer linear programming[END_REF][START_REF] Ouali | Integer linear programming for pattern set mining; with an application to tiling[END_REF] have developed declarative frameworks using ILP, which can find optimal conceptual clusterings, where clusters correspond to concepts. Later, Chabert et al. have introduced two new CP models for computing optimal conceptual clusterings. The first model (denoted FullCP2) may be seen as an improvement of [START_REF] Dao | Constrained clustering by constraint programming[END_REF]. The second model (denoted HybridCP) follows the two step approach of [START_REF] Ouali | Efficiently finding conceptual clustering models with integer linear programming[END_REF] : the first step is exactly the same; the second step uses CP to select formal concepts. Our work is different in that we study the setting where each clustering must fulfills equity requirements. Distance-based clustering aims at finding homogeneous clusters only based on a dissimilarity measure between objects. Different declarative frameworks have been developed, which rely on CP [START_REF] Dao | Constrained clustering by constraint programming[END_REF] or ILP [START_REF] Babaki | Constrained clustering using column generation[END_REF][START_REF] Mueller | Integer linear programming models for constrained clustering[END_REF]. There are a few existing approaches for obtaining balanced clusters. The most prominent one is the approach proposed by [START_REF] Banerjee | Scalable clustering algorithms with balancing constraints[END_REF]. Our adoption of closed patterns cuts down on redundancy compared to other ways of selecting candidate clusters. Moreover, our use of an equitable OWA gives stronger guarantees about the obtained clusterings in terms of balancing.
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Experiments and Results

The experimental evaluation is designed to address the following questions:

1. How do the ILP models compare and scale on the considered datasets? 2. How do the resulting clusters and their description compare qualitatively? We used LCM to extract all closed patterns and CPLEX v.12.6.1 to solve the different ILP models. For all methods, a time limit of 24 hours has been used. Test instances. We used classical ML datasets, coming from the UCI database. We have also considered the same datasets (called ERP-i, with i ∈ [START_REF] Babaki | Constrained clustering using column generation[END_REF][START_REF] Dubois | Computing improved optimal solutions to max-min flexible constraint satisfaction problems[END_REF]) used in [START_REF] Chabert | Constraint programming for multi-criteria conceptual clustering[END_REF] and coming from a real application case 4 , which aims at extracting setting concepts from an Enterprise Resource Planning (ERP) software corresponding to groups of parameter settings groups of parameter settings. Table 2 shows the characteristics of all datasets.

To evaluate the quality of a clustering, we test the coherence of a clustering, measured by the intra-cluster similarity (ICS) and the inter-clusters dissimilarity (ICD), both of which should be as large as possible. Given a similarity measure s between two transactions t and t , where s :

D × D → [0, 1], s(t, t ) = |t∩t | |t∪t | , ICS(P1, ..., P k ) = 1 2 1≤i≤k ( t,t ∈P i s(t, t )) and ICD(P1, ..., P k ) = 1≤i<j≤k ( t∈P i ,t ∈P j (1 -s(t, t )))
To evaluate how well equitable the clusters are w.r.t frequency, we used three measures: [START_REF] Babaki | Constrained clustering using column generation[END_REF] the ratio between the frequency of the smallest cluster to the average cluster frequency (i.e. M in/Avg). For m transactions put into k clusters, Avg is just (m/k); (2) the Standard Deviation in cluster frequencies (i.e. StdDev); (3) the deviation between the smallest and the largest description of selected concepts (i.e. devSize). (a) Qualitative analysis of clusterings. of balancing compared to OWA and minDev (maxMin and maxSum always achieve lower M in/Avg values). Interestingly, both OWA and minDev almost achieve similar performance on datasets with number of closed patterns comprise between 10 3 and 10 5 . However, for the three most difficult datasets -Mushroom, Hepatitis and Anneal the disparity between both models become more pronounced: OWA always obtains more equitable clusterings (M in/Avg values close to 1). On these datasets, minDev fails to find a solution even for small values of k. The same behavior is observed on ERP datasets (see Fig. 3b). On ERP-7, minDev was not able to find a solution. This is in part explained by the number of closed patterns (10 6 ) in comparison to the other ERP instances (from 10 3 to 10 5 ). When considering stdDev measure (see Figs. 3c and3d), OWA and minDev achieve the lowest StdDev on all datasets, but OWA performs marginally better than minDev. When examining the description sizes (see Supp. material [12]), we can see that maxMin and maxSum lead to higher devSize values. This is indicative of one (or few) clusters of large frequencies and small description sizes, or clusters of large description sizes and small frequencies. These results are consistent with our previous conclusions. However, for minDev and OWA, the optimal solutions found by both models tend to offer a better compromises between the two criteria. Finally, Tab. 3 compares the four models according to ICS and ICD (see Supp. material [12]). We can see that minDev and OWA sacrify ICS to achieve higher ICD values. This is indicative of more balanced clusters: the ICS is necessarily limited by the number of instances per cluster but the ICD increases if there are more instances in other clusters to compare against. maxMin and maxSum show the opposite behavior, which is indicative of one (or a few) large clusters, and numerous smaller ones.

(b) Scale-up property analysis. Figs.4a and 4b compare the CPU-times for computing optimal clusterings for various values of k on UCI and ERP datasets when maximizing the sum of frequencies of the selected concepts. The CPU-times include the time spent by LCM to extract all closed patterns. On UCI datasets, minDev performs very poorly compared to the other ILP models. Although the qualitative results of minDev are satisfactory, this model remains hampered by long solving times: it goes beyond the timeout on 32 instances (out of 72), particularly on the three most difficult datasets Mushroom, Hepatitis and Anneal (see Fig. 4a). This probably stems from the fact that (2 × n) additional constraints are used to capture the minimal deviation. However, OWA yields quite competitive results, while achieving optimal equitable clusterings (see the qualitative analysis). It is able to solve all instances and comes in second position. Overall, maxMin gets the best performances. However, as noticed above, the optimal solutions found are far to be equitable ones; they correspond to extreme solutions (worst cases). This probably explains in part the good behaviour of maxMin model. The same behavior is observed for minDev on ERP datasets. Finally, the three ILP models -OWA, maxMin and maxSumperform very similarly on all instances. We conclude that OWA model offers a good compromise between solution quality and computing time. (c) ILP models vs. CP based models. Figs. 5a and 5b compare the performance of maxMin ILP model with the two CP models (FullCP2 and HybridCP) maximizing the minimal frequency of a cluster on UCI and ERP datasets. The CPU-times of HybridCP include those for the preprocessing step. maxMin ILP model outperforms FullCP2 and HybridCP by several orders of magnitude on all datasets. None of the two CP models scales well for this objective: they fail to find a solution within the time limit for (k ≥ 4), except for 4 datasets. Moreover, OWA ILP model clearly beats the two CP models. Finally, notice that FullCP2 performs marginally better than HybridCP.

(d) OWA model with k not fixed. Our third set of experiments aims at evaluating OWA model capability for finding the optimal solution when k is not fixed. For this aims, we selected two settings: k ∈ [3, 10] (OWA-1) and k ∈ [3, |D| -1] (OWA-2). Fig. 4c and 4d compare the CPU-times when k is not fixed (Columns 3 and 7), and when k is fixed (Col. 5) on UCI datasets. Col. 4 reports the best values found for k (3 ≤ k ≤ 10) that optimize both objectives. For all datasets but two, OWA-1 and OWA-2 are the best performing approaches. OWA-1 is able to solve 5 (resp. 7) instances quicker when maximising the frequency (resp. diversity). Interestingly, OWA-1 and OWA (with k fixed) always agree on the best value for k. Compared to OWA-1, OWA-2 scales well, particularly on the two most difficult datasets Anneal and Hepatitis (speed-up of up to 60.09). Indeed, larger values of k enable to find balanced clustering more quickly than for smaller values of k: there |D| -1 clusters for 3 datasets, whereas for the remaining datasets the value of k is rather high.

Conclusion

We have proposed an efficient approach for equitable conceptual clustering that uses closed itemset mining to discover candidates for descriptions, and ILP implementing an equitable aggregate function based on OWA to select the best clusters of balanced frequencies. Contrary to maxMin and minDev operators, our approach offers a good compromise between solution quality and computing time. We plan to investigate multicriteria conceptual clustering, where the utilities are not comparable. Exploiting equity constraints within approximate approaches could become interesting to tackle very large datasets.

  e. T ⊆ ext(I) ⇔ I ⊆ int(T ). A pair such that (I = int(T ), T = ext(I)) is called formal concept. This definition defines a closure property on dataset D, closed(I) ⇔ I = int(ext(I)). An itemset I for which closed(I) = true is called closed pattern. Using ext(I), we can define the frequency of a concept: freq(I) = |ext(I)|, and its diversity:

  C5) zmin ≤ vc . xc, ∀ c = 1, ..., |C| xc ∈ {0, 1}, ∀ c = 1, ..., |C| zmax ≥ 0, zmin ≥ 0 (b) minDev ILP model.
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 2 Fig. 2: ILP models for the conceptual clustering.

  Fig. 3a compares qualitatively the resulting clusterings of the different ILP models for various values of k on UCI datasets according to the M in/Avg measure. maxMin and maxSum performs very poorly in terms Evaluating (M in/Avg) on UCI datasets. Evaluating (M in/Avg) on ERP datasets. Evaluating StdDev on ERP datasets.

Fig. 3 :

 3 Fig. 3: Quality of balancing of the resulting clusterings of the different ILP models.

  ERP datasets: maximizing frequency.

Fig. 4 :

 4 Fig. 4: CPU-times analysis.

  ERP datasets: maximizing frequency.

Fig. 5 :

 5 Fig. 5: Comparing CPU-times of maxMin ILP model with the two CP models.

Table 1 :

 1 Running example.

  [START_REF] Bouveret | Computing leximin-optimal solutions in constraint networks[END_REF]. How (in terms of CPU-times) does our ILP model compares to the CP models of Chabert et al.[START_REF] Chabert | Constraint programming for multi-criteria conceptual clustering[END_REF]? Experimental protocol. All experiments were conducted on Linux cluster3 , where each node has a dual-CPU Xeon E5-2650 with 16 cores, 64 GB RAM, running at 2.00GHz.

	Dataset Soybean Primary-tumor 336 31 # D # I Density(%) 630 50 32 48	# C 31,759 87,230	Dataset # D # I Density(%) # C ERP-1 50 27 48 1,580
	Lymph	148 68	40	154,220	ERP-2 47 47	58	8,1337
	Vote	435 48	33	227,031	ERP-3 75 36	51	10,835
	tic-tac-toe	958 27	33	42,711	ERP-4 84 42	45	14,305
	Mushroom 8124 119	18	221,524	ERP-5 94 53	51	63,633
	Zoo-1 Hepatitis Anneal	101 36 137 68 812 93	44 50 45	4,567 3,788,341 1,805,193	ERP-6 95 61 ERP-7 160 66	48 45	71,918 728,537
		(a) UCI datasets.		(b) ERP datasets.	

Table 2 :

 2 Dataset characteristics. Each row gives the number of transactions (#D), the number of items (#I), the density and the number of closed patterns extracted (#C).

	D k	OWA	minDev	maxMin	maxSum	D k	OWA	minDev	maxMin	maxSum
			ICS ICD ICS ICD ICS ICD ICS ICD			ICS ICD ICS ICD ICS ICD ICS ICD
		3 0.447 0.784 0.447 0.784 1.000 0.026 1.000 0.026		3 0.447 0.776 0.447 0.776 1.000 0.026 0.447 0.776
		4 0.331 0.865 0.331 0.865 1.000 0.026 1.000 0.026		4 0.334 0.839 0.338 0.854 1.000 0.026 0.406 0.831
	Soybean	5 0.259 0.895 0.284 0.905 1.000 0.026 1.000 0.026 6 0.231 0.940 0.231 0.940 1.000 0.026 1.000 0.026 7 0.195 0.964 0.195 0.964 0.959 0.108 0.959 0.108	soybean	5 0.296 0.900 0.301 0.900 1.000 0.026 0.389 0.843 6 0.257 0.929 0.265 0.934 1.000 0.026 0.398 0.851 7 0.240 0.956 0.240 0.956 0.959 0.106 0.330 0.909
		8 0.186 0.987 0.186 0.987 0.671 0.474 0.959 0.108		8 0.220 0.971 0.198 0.978 0.959 0.106 0.323 0.918
		9 0.166 1.000 0.166 1.000 0.671 0.474 0.959 0.108		9 0.183 0.991 0.184 0.989 0.959 0.106 0.216 0.975
		10 0.136 0.999 0.142 0.999 0.670 0.474 0.959 0.108		10 0.170 0.999 0.157 1.000 0.959 0.106 0.213 0.980
			(a) Maximizing frequency.			(b) Minimizing diversity.

Table 3 :

 3 Comparing the quality of the resulting clusterings in terms of ICS and ICD.

http://www.rx-racim.cerist.dz/?page_id=26.

These datasets are available on http://liris.cnrs.fr/csolnon/ERP.html.