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INSTABILITY OF INFINITELY-MANY STATIONARY SOLUTIONS OF THE SU (2) YANG-MILLS FIELDS ON THE EXTERIOR OF THE SCHWARZSCHILD BLACK HOLE

We consider the spherically symmetric SU (2) Yang-Mills fields on the Schwarzschild metric. Within the so called purely magnetic Ansatz we show that there exists a countable number of stationary solutions which are all nonlinearly unstable.

1. Introduction 1.1. General introduction. We study the SU (2) Yang-Mills equations on the Schwarzschild metric, with spherically symmetric initial data fulfilling the so called purely magnetic Ansatz. This equation has at least a countable number of stationary solutions. Because of energy conservation, the zero curvature solution is stable. In [START_REF] Ghanem | The decay of the SU(2) Yang-Mills fields on the Schwarzschild black hole for spherically symmetric small energy initial data[END_REF] the first author and S. Ghanem show decay estimates for small energy solutions in the exterior of the Schwarzschild black hole within this Ansatz. In this paper we show that the other solutions of the above set of stationary solutions are nonlinearly unstable.

Global existence for Yang-Mills fields on R 3+1 was shown by Eardley and Moncrief in a classical result, [START_REF] Eardley | The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space. I. Local existence and smoothness properties[END_REF] and [START_REF] Eardley | The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space. II. Completion of proof[END_REF]. Their result was then generalized by Chruściel and Shatah to general globally hyperbolic curved space-times in [START_REF] Chruściel | Global existence of solutions of the Yang-Mills equations on globally hyperbolic four-dimensional Lorentzian manifolds[END_REF]. Later, the hypotheses of [START_REF] Chruściel | Global existence of solutions of the Yang-Mills equations on globally hyperbolic four-dimensional Lorentzian manifolds[END_REF] were weakened in [START_REF] Ghanem | The global non-blow up of Yang-Mills curvature on curved space-times[END_REF].

The purely magnetic Ansatz excludes Coulomb type solutions and reduces the Yang-Mills equations to a nonlinear scalar wave equation:

∂ 2 t W -∂ 2 x W + (1 -2m r ) r 2 W (W 2 -1) = 0. (1.1)
Strong numerical evidence of the existence of a countable number of stationary solutions (W n ) n∈N in the case of Yang Mills equations coupled with Einstein equations with spherical symmetry was shown in [START_REF] Bizoń | Colored black holes[END_REF] (see also [START_REF] Bizoń | Saddle-point dynamics of a Yang-Mills field on the exterior Schwarzschild spacetime[END_REF]). It was then proved analytically, still in the coupled case, in [START_REF] Smoller | Existence of black hole solutions for the Einstein-Yang/Mills equations[END_REF], see also [START_REF] Breitenlohner | Static spherically symmetric solutions of the Einstein-Yang-Mills equations[END_REF]. For sake of completeness, we give an analytical proof of the existence of infinitely many solution to the Yang-Mills equation on Schwarzschild in the appendix of this paper (adapted from [START_REF] Smoller | Existence of black hole solutions for the Einstein-Yang/Mills equations[END_REF]). The solution W n possesses n zeros. The stationary solutions W 0 = ±1 correspond to the zero curvature solution. Linearizing around a stationary solution W n leads to the linear operator

A n = -∂ 2 x + (1 -2m r ) r 2
(3W 2 n -1).

In [START_REF] Bizoń | Saddle-point dynamics of a Yang-Mills field on the exterior Schwarzschild spacetime[END_REF] it was numerically observed for the first stationary solutions that A n has n negative eigenvalues. In this paper we show analytically that A n has at least one negative eigenvalue for n ≥ 1. Writing the equation as a first order equation one then observes that the spectrum of the linear part meets {Reλ > 0}. As already observed for example in [START_REF] Shatah | Spectral condition for instability[END_REF] this leads to nonlinear instability. We will describe in Section 2 a general abstract setting for non linear one dimensional wave equations. Adapting ideas from [START_REF] Henry | Geometric Theory of Semilinear Parabolic Equations[END_REF] we find similar results to those obtained by [START_REF] Friedlander | Nonlinear stability in ideal fluids[END_REF] and [START_REF] Shatah | Spectral condition for instability[END_REF] but in slightly different spaces. This abstract setting is applied in Section 3 to the Yang-Mills equation. This section contains in particular the proof of the existence of a negative eigenvalue for A n , n ≥ 1. The difficulty consists in the fact that the solution W n and therefore the potential V n in the operator A n is not explicitly known. Nevertheless we are able to show that V n ≤ F for some explicit F with ´F < 0. This then gives the existence of at least one negative eigenvalue.

Instability for similar solutions of the Einstein-Yang-Mills system has been investigated in [START_REF] Volkov | Gal'tsov, Odd-parity negative modes of Einstein-Yang-Mills black holes and sphalerons[END_REF], without the purely magnetic ansatz. In the setting of [START_REF] Volkov | Gal'tsov, Odd-parity negative modes of Einstein-Yang-Mills black holes and sphalerons[END_REF], the Yang-Mills field is given by four components instead of one in the purely-magnetic case (see the formula (1.8)). The instability shown analytically in [START_REF] Volkov | Gal'tsov, Odd-parity negative modes of Einstein-Yang-Mills black holes and sphalerons[END_REF] comes from perturbations which are in the "odd parity sector", which, in the notation of our paper corresponds to perturbations for the components W 2 , A 0 , A 1 of the Yang-Mills field, letting the W 1 component frozen. Consequently it does not imply the instability in the purely magnetic ansatz.

1.2. The exterior of the Schwarzschild black hole. The exterior Schwarzschild spacetime is given by M = R t × R r>2m × S 2 equipped with the metric

g = -(1 - 2m r )dt 2 + 1 (1 -2m r ) dr 2 + r 2 dθ 2 + r 2 sin 2 (θ)dφ 2 = N (-dt 2 + dx 2 ) + r 2 dσ 2
where

N = (1 - 2m r ) (1.2)
and dσ 2 is the usual volume element on the sphere. The coordinate x is defined by the requirement

dx dr = N -1 .
The coordinates t, r, θ, φ, are called Boyer-Lindquist coordinates. The singularity r = 2m is a coordinate singularity and can be removed by changing coordinates, see [START_REF] Hawking | The Large Scale Structure of Space-time[END_REF]. m is the mass of the black hole. We will only be interested in the region outside the black hole, r > 2m.

1.3. The spherically symmetric SU (2) Yang-Mills equations on the Schwarzschild metric. Let G = SU (2), the real Lie group of 2x2 unitary matrices of determinant 1. The Lie algebra associated to G is su(2), the antihermitian traceless 2x2 matrices. Let τ j , j ∈ {1, 2, 3}, be the following real basis of su(2):

τ 1 = i 2 0 1 1 0 , τ 2 = 1 2 0 -1 1 0 , τ 3 = i 2 1 0 0 -1 . Note that [τ 1 , τ 2 ] = τ 3 , [τ 3 , τ 1 ] = τ 2 , [τ 2 , τ 3 ] = τ 1 .
We are looking for a connection A, that is a one form with values in the Lie algebra su(2) associated to the Lie group SU (2), which satisfies the Yang-Mills equations which are:

D (A) α F αβ ≡ ∇ α F αβ + [A α , F αβ ] = 0, (1.3) 
where [., .] is the Lie bracket and F αβ is the Yang-Mills curvature given by

F αβ = ∇ α A β -∇ β A α + [A α , A β ], (1.4) 
and where we have used the Einstein raising indices convention with respect to the Schwarzschild metric. We also have the Bianchi identities which are always satisfied in view of the symmetries of the Riemann tensor and the Jacobi identity for the Lie bracket:

D (A) α F µν + D (A) µ F να + D (A) ν F αµ = 0. (1.5)
The Cauchy problem for the Yang-Mills equations formulates as the following: given a Cauchy hypersurface Σ in M , and a G-valued one form A µ on Σ, and a G-valued one form E µ on Σ satisfying

E t = 0, D (A) µ E µ = 0 (1.6)
we are looking for a G-valued two form F µν satisfying the Yang-Mills equations such that once F µν restricted to Σ we have

F µt = E µ (1.7)
and such that F µν corresponds to the curvature derived from the Yang-Mills potential A µ , i.e. given by (1.4). Equations (1.6) are the Yang-Mills constraints equations on the initial data.

Any spherically symmetric Yang-Mills potential can be written in the following form after applying a gauge transformation, see [START_REF] Forgacs | Space-Time Symmetries In Gauge Theories[END_REF], [START_REF] Gu | On the spherically symmetric gauge fields[END_REF] and [START_REF] Witten | Some Exact Multipseudoparticle Solutions of Classical Yang-Mills Theory[END_REF],

A = [-W 1 (t, r)τ 1 -W 2 (t, r)τ 2 ]dθ + [W 2 (t, r) sin(θ)τ 1 -W 1 (t, r) sin(θ)τ 2 ]dφ + cos(θ)τ 3 dφ + A 0 (t, r)τ 3 dt + A 1 (t, r)τ 3 dr, (1.8) 
where A 0 (t, r), A 1 (t, r), W 1 (t, r), W 2 (t, r) are arbitrary real functions. We consider here a purely magnetic Ansatz in which we have

A 0 = A 1 = W 2 = 0, W 1 =: W .
The components of the curvature are then

F θx = W τ 1 , F θt = Ẇ τ 1 , F φx = W sin(θ)τ 2 , F φt = Ẇ sin(θ)τ 2 , F tx = 0, F θφ = (W 2 -1) sin(θ)τ 3 .               
This kind of Ansatz is preserved by the evolution. Also the principal restriction is A 0 = A 1 = 0. The constraint equations then impose that W 1 is proportional to W 2 , a case which can be reduced to W 2 = 0. We refer the reader to [START_REF] Ghanem | The decay of the SU(2) Yang-Mills fields on the Schwarzschild black hole for spherically symmetric small energy initial data[END_REF] for details.

1.4. The initial value problem for the purely magnetic Ansatz. We look at initial data prescribed on t = 0 where there exists a gauge transformation such that once applied on the initial data, the potential A can be written in this gauge as

A t (t = 0) = 0, A r (t = 0) = 0, A θ (t = 0) = -W 0 (r)τ 1 , A φ (t = 0) = -W 0 (r) sin(θ)τ 2 + cos(θ)τ 3 ,        (1.9) 
and, we are given in this gauge the following one form E µ on t = 0:

E θ (t = 0) = F θt (0) = W 1 (r)τ 1 , E φ (t = 0) = F φt (0) = W 1 (r) sin(θ)τ 2 , E r (t = 0) = F rt (0) = 0, E t (t = 0) = F tt (t = 0) = 0.        (1.10)
Notice that with this Ansatz the constraint equations (1.6) are automatically fulfilled

(D (A) θ E θ + D (A) φ E φ + D (A) r E r )(t = 0) = 0.
The Yang-Mills equations now reduce to

Ẅ -W + P W (W 2 -1) = 0, W (0) = W 0 , ∂ t W (0) = W 1 ,    (1.11) where P = (1 -2m r ) r 2 .
It is easy to check that the following energy is conserved, see also [START_REF] Ghanem | The decay of the SU(2) Yang-Mills fields on the Schwarzschild black hole for spherically symmetric small energy initial data[END_REF],

E(W, Ẇ ) = ˆẆ 2 + (W ) 2 + P 2 (W 2 -1) 2 dx.
We note by Ḣk = Ḣk (R, dx) and H k = H k (R, dx), the homogeneous and inhomogeneous Sobolev spaces of order k, respectively.

Definition 1.1.

(1) We define the spaces L 4 P , resp. L 2 P , as the completion of C ∞ 0 (R) for the norm

v 4 L 4 P := ˆP |v| 4 dx resp. v 2 
L 2 P := ˆP |v| 2 dx.
(1.12)

(2) We also define for 1 ≤ k ≤ 2 the space H k as the completion of C ∞ 0 (R) for the norm

u 2 H k = u 2 Ḣk + u 2 L 4 P . (1.13) 
We note that H k is a Banach space which contains all constant functions. It turns out that E := H 1 × L 2 is exactly the space of finite energy solutions, see [START_REF] Ghanem | The decay of the SU(2) Yang-Mills fields on the Schwarzschild black hole for spherically symmetric small energy initial data[END_REF] for details. We then have [11, Theorem 1]

Theorem 1. Let (W 0 , W 1 ) ∈ H 2 × H 1 .
Then there exists a unique strong solution of (1.11) with

W ∈ C 1 ([0, ∞); H 1 ) ∩ C([0, ∞); H 2 ), ∂ t W ∈ C 1 ([0, ∞); L 2 ) ∩ C([0, ∞); H 1 ), √ P (W 2 -1) ∈ C 1 ([0, ∞); L 2 ) ∩ C([0, ∞); H 1 ).
We can reformulate the above theorem in the following way Corollary 1.1. We suppose that the initial data for the Yang-Mills equations is given after suitable gauge transformation by

A t (0) = A r (0) = 0, A θ (0) = -W 0 τ 1 , A φ (0) = -W 0 sin θτ 2 + cos θτ 3 , E θ (0) = W 1 τ 1 , E φ (0) = W 1 sin θτ 2 , E r (0) = E t (0) = 0                with (W 0 , W 1 ) ∈ H 2 × H 1 .
Then, the Yang-Mills equation (1.3) admits a unique solution F with

F θx , 1 sin θ F φx , F θt , 1 sin θ F φt , √ P 1 sin θ F θφ ∈ C 1 ([0, ∞); L 2 ) ∩ C([0, ∞); H 1 ).
1.5. Energies. We now introduce the Yang-Mills energy momentum tensor

T µν = F µβ , F β ν - 1 4 g µν F αβ , F αβ .
Here ., . is an Ad-invariant scalar product on the Lie algebra su(2). We have

∇ ν T µν = 0.
For a vector field X ν we define

J µ (X) = X ν T µν
and the energy on the spacelike slice Σ t (Σ t0 = {t = t 0 } ) by

E (X) (F (t)) = ˆΣt J µ (X)n ν d Σt .
By the divergence theorem this energy is conserved if X is Killing. In particular

E (∂t) (F (t)) = ˆΣt J µ (∂ t )n µ d Σt is conserved. If F is the curvature associated to (W, Ẇ ), then E (∂t) (F (t)) = E(W, Ẇ ),
see [START_REF] Ghanem | The decay of the SU(2) Yang-Mills fields on the Schwarzschild black hole for spherically symmetric small energy initial data[END_REF] for details.

1.6. Main result. We first recall the following result which is implicit in the paper [START_REF] Bizoń | Saddle-point dynamics of a Yang-Mills field on the exterior Schwarzschild spacetime[END_REF] of P. Bizoń, A. Rostworowski and A. Zenginoglu.

Theorem 2. There exists a decreasing sequence

{a n } n∈N ≥1 , 0 < ... < a n < a n-1 < ... < a 1 = 1+ √ 3 3 √ 3+5 and smooth stationary solutions W n of (1.11) with -1 ≤ W n ≤ 1, lim x→-∞ W n (x) = a n , lim x→∞ W n (x) = (-1) n .
The solution W n has exactly n zeros.

Remark 1.1. There is an explicit formula for the first stationary solution (see [START_REF] Boutaleb-Joutei | Gauge field configurations in curved spacetimes[END_REF])

W 1 = c -r 2m r 2m + 3(c -1) , c = 3 + √ 3 2
.

This solution corresponds to lim

x→-∞ W 1 (x) = a 1 = 1+ √ 3 3 √ 3+5 .
We give a detailed proof of this result in the appendix, where we follow arguments of Smoller, Wasserman, Yau and McLeod. The above solutions are all nonlinearly unstable : Theorem 3 (Main Theorem). For all n ≥ 1 the solution W n of (1.11) is unstable. More precisely there exists 0 > 0 and a sequence

(W m 0,n , W m 1,n ) with (W m 0,n , W m 1,n )- (W n , 0) E → 0, m → ∞, but for all m sup t≥0 (W m n (t), ∂ t W m n (t)) -(W n , 0) E ≥ 0 > 0.
Remark 1.2. We don't show in this paper that there is no stationary solution with W (2m) > a 1 . We do not exclude either the fact that there may exist solutions with an infinite number of zeros which tend to zero at infinity. Our main theorem does not apply to this two categories of hypothetical stationary solutions.

For n given we construct initial data from W n as in Section 1.4. Let F n be the corresponding curvature at time t = 0. We obtain Corollary 1.2. For all n ≥ 1 the solution F n of (1.3) is unstable. More precisely there exists 0 > 0 and a sequence of initial data giving rise to the curvature

F m 0,n with E (∂t) (F m 0,n -F n ) → 0, m → ∞, but for all m sup t≥0 E (∂t) (F m n (t) -F n ) ≥ 0 ,
where F m n (t) is the solution associated to the initial data corresponding to the curvature F m 0,n .
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Abstract setting

In this section we describe the general abstract framework. We first write the abstract wave equation as a first order equation. The properties of the potential then give rise to spectral properties of the first order operator, see Sections 2.2-2.3. In Section 2.4 we then adapt arguments of Henry [START_REF] Henry | Geometric Theory of Semilinear Parabolic Equations[END_REF] to our situation. This gives results close to those obtained in [START_REF] Friedlander | Nonlinear stability in ideal fluids[END_REF], [START_REF] Shatah | Spectral condition for instability[END_REF]. These results then have to be adapted to slightly different spaces in Section 3.2, see Remark 2.5.

2.1. Abstract result. We consider the one dimensional wave equation

   ü -u + V u = F (u), u| t=0 = u 0 , ∂ t u| t=0 = u 1 (2.1) with ˙= ∂ t , = ∂ x and V ∈ C(R) ∩ L 1 (R), lim |x|→∞ V (x) = 0, ˆR V (x)dx < 0.
(HV)

We also suppose that

F (u) -F (v) L 2 ≤ M F ( u H 1 + v H 1 ) u -v H 1 (HF) for u H 1 ≤ 1, v H 1 ≤ 1. Let X = H 1 × L 2 .
We then have the following Theorem 4. The zero solution of (2.1) is unstable. More precisely there exists

0 > 0 and a sequence (u m 0 , u m 1 ) with (u m 0 , u m 1 ) X → 0, m → ∞, but for all m sup t≥0 (u m (t), ∂ t u m (t)) X ≥ 0 > 0.
Here u m (t) is the solution of (2.1) with initial data (u m 0 , u m 1 ) and the supremum is taken over the maximal interval of existence of u m (t).

Let

A = -∂ 2 x + V, D(A) = H 2 (R).
We note that A is a selfadjoint operator.

Spectral analysis of A.

Proposition 2.1. We have

σ(A) = {-λ 2 n } n∈N ∪ [0, ∞), where -λ 2 n , λ 0 > λ 1 > ....λ n > ... > 0 is a finite (N = {0, ..., N })
or infinite (N = N) sequence of negative eigenvalues with only possible accumulation point 0.

Proof. First note that σ(A) ∩ R -= ∅. Indeed let χ ∈ C ∞ 0 (R), χ(0) = 1, χ ≥ 0, χ R (.) = χ( . R ). Then Aχ R , χ R = 1 R ˆ|χ (x)| 2 dx + ˆV (x)χ 2 R dx → ˆV (x)dx < 0, R → ∞.
We now introduce the comparison operator

B = -∂ 2 x . We compute (B -z 2 ) -1 -(A -z 2 ) -1 = (A -z 2 ) -1 V (B -z 2 ) -1 .
Using that lim x→±∞ V (x) = 0 we see that this is a compact operator. By the Weyl criterion

σ ess (A) = σ ess (B) = [0, ∞).
On the other hand we already know that A has negative spectrum. It therefore has at least one negative eigenvalue. A being bounded from below the proposition follows.

2.3. The wave equation as a first order equation. 

∂ t ψ = Lψ, L = 0 i iA 0 , ψ = v 1 i ∂ t v . Remark 2.1. Let Aφ 0 = -λ 2 φ 0 .
Then we have

(1) φ 0 ∈ H 2 .
(

) Let ψ ± 0 = φ 0 ± 1 i λφ 0 2 
. Then

Lψ ± 0 = ±λψ ± 0 .
Let V -be the negative part of the potential. For

µ 2 > V -∞ (≥ λ 2 0 ) we introduce the scalar product u, v µ = (A + µ 2 )u 0 , v 0 + u 1 , v 1
where ., . is the usual scalar product on H = L 2 (R). We note . µ the corresponding norm. It is easy to check that the norms . µ and . X are equivalent.

Proposition 2.2. L is the generator of a C 0 -semigroup e tL on X.

Proof. Let µ 2 > V -and

L µ = 0 i i(A + µ 2 ) 0 , B µ = 0 0 -iµ 2 0 .
iL µ is a selfadjoint operator on (X, ., . µ ) and in particular the generator of a C 0semigroup e Lµt . We have L = L µ + B µ . B µ being bounded, we can apply [15, Theorem 3.1.1] to see that L is the generator of a C 0 -semigroup on (X, . µ ) and thus on (X, . X ).

Let now

M i = 1l 1l λi i -λi i .
Note that detM i = 2iλ i = 0 and that M i is thus invertible. We define

P i = 1l {-λ 2 i } (A)M i and X i = P i X. We also define X ∞ = 1l R + (A)1l 2 X.
Here 1l {-λ 2 i } (A) and 1l R + (A) are defined by the spectral theorem. In particular 1l {-λ 2 i } (A) is the projection on the eigenspace of A associated to the eigenvalue -λ

2 i . Lemma 2.1. X = (⊕ i∈N X i ) ⊕ X ∞ .
Remark 2.2. Note that the sum is orthogonal with respect to the scalar product ., . µ .

Proof. Let (φ, ψ) ∈ X. We put

φ i = 1l {-λ 2 i } (A)φ, ψ i = 1l {-λ 2 i } (A)ψ, φi ψi = M -1 i φ i ψ i .
Since A is self-adjoint, we can write

φ = i∈N φ i + 1l R + (A)φ, ψ = i∈N ψ i + 1l R + (A)ψ. Then φ ψ = i∈N M i φi ψi + 1l R + (A)φ 1l R + (A)ψ
gives the required decomposition. For uniqueness let

φ i ψ i = i∈N M i φi ψi + φ ∞ ψ ∞ Applying 1l R + (A), 1l {-λ 2 i } (A) to each line immediately gives φ ∞ = 1l R + (A)φ, ψ ∞ = 1l R + (A)ψ, φi ψi = M -1 i φ i ψ i ,
where

ψ i = 1l {-λ 2 i } (A)ψ, φ i = 1l {-λ 2 i } (A)φ. Let X ± i = M i 1l {-λ 2 i } (A)P ± X, where P + (φ, ψ) = (φ, 0), P -(φ, ψ) = (0, ψ). Clearly X i = X + i ⊕ X - i and thus X = i∈N (X + i ⊕ X - i ) ⊕ X ∞ . Remark 2.3. Let (φ i , ψ i ) ∈ X ± i . Then L(φ i , ψ i ) = ±λ i (φ i , ψ i ). Remark 2.4. On X i the norm . √
2λi is equivalent to the norm . X and X + i , X - i are orthogonal with respect to this scalar product. Indeed :

φ λi i φ , ψ -λi i ψ √ 2λi = λ 2 i φ, ψ -λ 2 i φ, ψ = 0. Proposition 2.3. (1) 
The spaces X i , X ∞ are e tL invariant.

(2) For all > 0 there exists C > 0 such that for all i ∈ N and for all t ∈ R e tL | Xi X→X ≤ C e (λi+ )|t| .

(3) For all > 0 there exists C > 0 such that for all t ∈ R e tL | X∞ X→X ≤ C e |t| .

Proof. [START_REF] Bizoń | Colored black holes[END_REF] We have

e tL M i 1l {-λ 2 i } (A)1l 2 φ ψ = M i 1l {-λ 2 i } (A)1l 2 e tλi φ e -tλi ψ
and thus X i is invariant under the evolution. The fact that X ∞ is invariant follows from the fact that 1l R + (A) commutes with L.

(2) Because of the equivalence of the norms it is sufficient to estimate the . µ norm. Let

φ i ψ i ∈ X i .
We compute

e tL φ i ψ i 2 µ = (µ 2 -λ 2 i ) 1/2 0 0 1l M i e tλi 0 0 e -λit M -1 i φ i ψ i H×H ≤ N i 2 R 2 →R 2 φ i ψ i 2 µ ,
where

N i = (µ 2 -λ 2 i ) 1/2 0 0 1l M i e tλi 0 0 e -λit M -1 i (µ 2 -λ 2 i ) -1/2 0 0 1l .
We then estimate uniformly in i ∈ N :

N i 2 R 2 →R 2 1 2 e tλi + e -tλi 1 
iλi (e -tλi -e tλi ) λi i (e tλi -e -tλi )

e tλi + e -λit 2 2 
.

We have for t ≥ 0

1 λ i (e tλi -e -tλi ) = 2 ∞ i=1 (tλ i ) 2i+1 λ i (2i + 1)! ≤ 2t ∞ i=1 (tλ i ) 2i (2i)! ≤ t(e tλi + e -tλi ) ≤ C e (λi+ )t .
Using that λ i ≤ λ 0 we find uniformly in i ∈ N :

N i R 2 →R 2 e (λi+ )|t| .
(3) We consider the case t ≥ 0. First note that

u 2 X = Au 0 , u 0 + u 1 2 + 2 u 0 2 defines a norm on X ∞ . We estimate for u(t) = e tL u d dt u 2 X = 2Re Au 0 , u0 + u 1 , u1 + 2 u 0 , u0 = 2Re 2 u 0 , iu 1 ≤ 2 2 u 0 u 1 ≤ 3 u 0 2 + u 1 2 ≤ u 2 X .
By the Gronwall lemma we obtain:

u(t) 2 X ≤ C e t u 2
X . We now claim that on X ∞ the X and the X norms are equivalent. Indeed

Au 0 , u 0 + u 1 2 + 2 u 0 2 u 0 2 H 1 + u 1 2 .
Also,

u 0 2 H 1 + u 1 2 = (-∂ 2 x + V )u 0 , u 0 -V u 0 , u 0 + u 0 2 + u 1 2 Au 0 , u 0 + u 0 2 + u 1 2 u 2 X . Then we can estimate u(t) X u(t) X e t u X e t u X . Let Y = X - 0 ⊕ N i=1 X i ⊕ X ∞ .
We have X = X + 0 ⊕ Y and both spaces are invariant under e tL . Corollary 2.1. For all > 0 there exists M L, > 0 such that for all t ≥ 0 we have

e tL | Y X→X ≤ M L, e (λ1+ )t .
Proof. Because of the equivalence of the norms . X and . µ (µ 2 > V -∞ ) it is sufficient to show the estimate with respect to the norm . µ . We choose < λ 1 and apply Proposition 2.3. Let

φ = φ - 0 + N i=1 φ i + φ ∞ with φ - 0 ∈ X - 0 , φ i ∈ X i , φ ∞ ∈ X ∞ .
We have

e tL φ 2 µ = e -λ0t φ - 0 2 µ + N i=1 e tL φ i 2 µ + φ ∞ 2 µ e 2(λ1+ )t ( φ - 0 2 µ + N i=0 φ i 2 µ + φ ∞ 2 µ ) = e 2(λ1+ )t φ 2 µ . Let E 0 = 1l {-λ 2 0 } (A)M 0 P + M -1 0 , E 1 = 1l -E 0 . We easily check that ∀ψ ∈ X, E 0 ψ ∈ X + 0 ; ∀ψ ∈ X, E 1 ψ ∈ Y ; E 0 + E 1 = 1l. 2.3.2.
The nonlinear equation. The nonlinear equation can be written now as a first order equation

∂ t ψ = Lψ + G(ψ), ψ(0) = ψ 0 (2.2)
with

G(ψ) = 0 F (P + (ψ))
.

From hypothesis (HF) we directly obtain

G(ψ) -G(φ) X ≤ M F ( ψ X + φ X ) ψ -φ X (2.3) for ψ X ≤ 1, φ X ≤ 1.
The abstract theorem then reads Theorem 5. The zero solution of (2.2) is unstable. More precisely there exists 0 > 0 and a sequence ψ m 0 with ψ m 0 X → 0, m → ∞, but for all m sup t≥0 ψ m (t) X ≥ 0 > 0.

Here ψ m (t) is the solution of (2.2) with initial data ψ m 0 and the supremum is taken over the maximal interval of existence of ψ m . Remark 2.5. We could in principle apply [9, Theorem 2.1] or [16, Theorem 1], Proposition 2.3 and Corollary 2.1 establish the necessary spectral information of e tL . However the energy space we are working with is not exactly the space which is used for the spectral analysis. We therefore have to adapt the proof to the present situation, see Section 3.2. For the convenience of the reader we repeat in the following two pages the principal arguments in the proofs of the instability theorems. Our proof is an adaption of the proof of [START_REF] Henry | Geometric Theory of Semilinear Parabolic Equations[END_REF]Theorem 5.1.3]. Note however that this last theorem cannot be applied directly, because it requires the linear part to be sectorial, which is not the case here.

2.4.

Proof of the abstract theorem. We note L 0 the restriction of L to X + 0 and L 1 the restriction of L to Y . For ψ 0 ∈ X + 0 with small norm we consider for a certain parameter τ > 0 the integral equation

ψ(t) = e L0(t-τ ) ψ 0 + ˆt τ e L0(t-s) E 0 G(ψ)ds+ ˆt -∞ e L1(t-s) E 1 G(ψ)ds =: I(ψ). (2.4)
We fix > 0 in Corollary 2.1 small enough such that λ1 := λ 1 + < λ 0 . We will drop in the following the index (M L = M L, ). We fix β > 0 such that λ 0 > 2β > λ1 . Let

Z = {ψ ∈ C([0, τ ]; X); ψ X ≤ e β(t-τ ) ρ}.
We equip Z with the norm

ψ Z = sup 0≤t≤τ e -β(t-τ ) ψ(t) X .
Let ψ 0 such that ψ 0 X = ρ 3 . We claim that for ρ small enough

I : B Z (0, ρ) → B Z (0, ρ)
and that it is a contraction on that space. First note that

I(ψ) = I 0 (ψ) + I 1 (ψ) + I 2 (ψ)
with

I 0 (ψ) = e L0(t-τ ) ψ 0 , I 1 (ψ) = - ˆτ t e L0(u-τ ) E 0 G(ψ(t + τ -u))du, I 2 (ψ) = ˆt -∞ e L1(t-s) E 1 G(ψ(s))ds.
We first estimate for t ≤ τ I 0 (ψ) X = e λ0(t-τ ) ψ 0 X ≤ 1/3e β(t-τ ) ρ.

We then estimate for ψ ∈ B Z (0, ρ)

I 1 (ψ) X ≤ M F E 0 ˆτ t e λ0(u-τ ) ψ 2 X (t + τ -u)du ≤ M F E 0 ˆτ t e λ0(u-τ ) ρ 2 e 2β(t-u) du ≤ M F E 0 e 2βt e -λ0τ ρ 2 ˆτ t e (λ0-2β)u du ≤ M F E 0 ρ 2 e 2βt e -λ0τ 1 λ 0 -2β e (λ0-2β)τ = M F E 0 ρ 2 λ 0 -2β e 2β(t-τ ) ≤ M F E 0 ρ 2 λ 0 -2β e β(t-τ ) ≤ 1/3ρe β(t-τ )
for ρ small enough. We then estimate for ψ ∈ B Z (0, ρ) :

I 2 (ψ(t)) X ≤ M L M F E 1 ˆt -∞ e λ1(t-s) ρ 2 e 2β(s-τ ) ds ≤ M L M F E 1 ρ 2 2β -λ1 e λ1t e -2βτ e (2β-λ1)t = M L M F E 1 ρ 2 2β -λ1 e 2β(t-τ ) ≤ 1/3ρ β(t-τ )
for ρ small enough. We have just proven I(ψ) ∈ B Z (0, ρ). Let us now show that I is a contraction. We estimate

I 1 (ψ) -I 1 (φ) X ≤ 2M F E 0 ˆτ t e λ0(u-τ ) ρe β(t-u) ψ -φ X (t + τ -u)du ≤ 2M F E 0 ρ ψ -φ Z ˆτ t e λ0(u-τ ) e 2β(t-u) du = 2M F E 0 ρ ψ -φ Z e 2βt e -λ0τ ˆτ t e (λ0-2β)u du ≤ 2M F E 0 ρ λ 0 -2β e 2β(t-τ ) ≤ 1/4e β(t-τ )
for ρ sufficiently small. We then estimate

I 2 (ψ) -I 2 (φ) X ≤ ˆt -∞ 2M L M F E 1 ρe λ1(t-s) e β(s-τ ) ψ -φ X ds ≤ 2M L M F E 1 ρ ψ -φ Z ˆt -∞ e λ1(t-s) e 2β(s-τ ) ds = 2M L M F E 1 ρ ψ -φ Z e λ1t e -2βτ ˆt -∞ e (2β-λ1)s ds ≤ 2M L M F E 1 ρ 2β -λ1 e 2β(t-τ ) ≤ 1/4e β(t-τ )
for ρ sufficiently small.

It follows that for ρ sufficiently small there exists a solution of (2.4) in B Z (0, ρ).

We note this solution ψ(t, τ ). We easily check that ψ(t, τ ) is also solution of (2.2) with initial data satisfying

ψ(0, τ ) X ≤ ρe -βτ → 0, τ → ∞.
We also estimate

ψ(τ ) X ≥ ψ 0 X -M L M F E 1 ˆτ -∞ e λ1(τ -s) ρ 2 e 2β(s-τ ) ds = ρ/3 -M L M F E 1 ρ 2 e ( λ1-2β)τ ˆτ -∞ e (2β-λ1)s ds ≥ ρ/3 - M L M F E 1 ρ 2 2β -λ1 ≥ ρ/6
for ρ small enough. It follows that ψ m (t) = ψ(t, m) does the job.

Application of the abstract result to the Yang-Mills equation

First note that if W (t, r) is a solution of the Yang-Mills equation (1.11) (written in the r variable), then W (2mt, 2mr) is a solution of the same equation with m = 1/2 and vice versa. We can therefore suppose in the following m = 1/2. We linearize around W = W n and obtain for v = W -W n :

v -v + P (3W 2 n -1)v + P v 2 (v + 3W n ) = 0. The linear operator A n = -∂ 2
x + P (3W 2 n -1) depends on the stationary solution which we don't know explicitly. We put

V n = P (3W 2
n -1). We first want to apply our abstract result on X = H 1 × L 2 . It is easy to see that the nonlinear part fulfills the hypotheses of the abstract theorem. Indeed we have Proposition 3.1. We have for v

H 1 ≤ 1, u H 1 ≤ 1: F (v) -F (u) L 2 ( v H 1 + u H 1 ) u -v H 1 .
Proof. We compute

F (v) -F (u) = P (v 2 + u 2 + uv + 3(W n v + W n u))(u -v). Thus F (v) -F (u) L 2 ( v 2 L 2 + u 2 L 2 ) u -v L ∞ + ( v L ∞ + v L ∞ u L ∞ + u L ∞ ) u -v L 2 ( v 2 L 4 + u 2 L 4 ) u -v H 1 + ( v H 1 + v H 1 u H 1 + u H 1 ) v -u H 1 ( v 2 H 1 + u 2 H 1 + v H 1 + u H 1 ) u -v H 1 ( v H 1 + u H 1 ) u -v H 1 for |u H 1 ≤ 1, v H 1 ≤ 1.
Here we have used the Gagliardo Nirenberg inequality and the Sobolev embedding

H 1 → L ∞ .
In the next subsection we will show that ˆR V n (x)dx < 0.

3.1.

Study of the potential V n . Going back to the r variable we see that the potential W n fulfills the following equation

1 - 1 r ∂ 2 r W n + 1 r 2 ∂ r W n + 1 r 2 W n (1 -W 2 n ) = 0 (3.1)
with initial data (or boundary condition)

W n (1) = a n , for 0 < a n ≤ 1+ √ 3 5+3 √ 
3 . We also have lim r→∞ W n (r) = (-1) n . We will drop the index n in the rest of this subsection.

A bound on W .

Lemma 3.1. We have -a ≤ W ≤ a for 1 ≤ r ≤ 3.

Proof. Since the initial data for W are W (1) = a and W (1) = -a(1 -a 2 ) < 0, there exists r 0 > 1 such that for 1 ≤ r ≤ r 0 we have -a ≤ W (r) ≤ a Then Lemma A.1 implies that on this interval we have

-a ≤ ∂ r W (r) ≤ a.
W is initially decreasing and can not have a local minimum in the region W > 0 (this is a consequence of the maximum principle, see Lemma A.2). Consequently there exists r 1 > 1 such that 0 ≤ W ≤ a on [1, r 1 ] and W (r 1 ) = 0. Because of the bound of the derivative we have r 1 ≥ 2. By the same bound we have

-a ≤ W ≤ a on [r 1 , r 1 + 1]. Let Q(r) = 1 -1 r -1 2r 2 . Proposition 3.2. We have for r ≥ 3 -Q(r) ≤ W (r) ≤ Q(r) Let L(u, r) = 1 - 1 r ∂ 2 r u + 1 r 2 ∂ r u + 1 r 2 u(1 -u 2
). Before proving Proposition 3.2, we need the following lemma Lemma 3.2. For r ≥ 3 we have L(Q, r) < 0 and L(-Q, r) > 0.

Proof. Since L is odd in u, it is sufficient to prove L(Q, r) < 0. We calculate

L(Q, r) = 1 - 1 r - 2 r 3 - 3 r 4 + 1 r 2 1 r 2 + 1 r 3 + 1 r 2 1 - 1 r - 1 2r 2 1 -1 - 1 r - 1 2r 2 2 = - 2 r 4 + 2 r 5 + 3 4r 6 + 3 4r 7 + 1 8r 8 . Consequently, for r ≥ 3 we have L(Q, r) ≤ 1 r 4 -2 + 2 3 + 3 4 * 3 2 + 3 4 * 3 3 + 1 8 * 3 4 ≤ - 1 r 4 < 0.
Proof of Proposition 3.2. We have -a ≤ W (3) ≤ a and

a < 11 18 = 1 - 1 3 - 1 2 * 9 = Q(3).
If the inequality of Proposition 3.2 is false, there exists r 1 < r 2 with r 2 which can be infinite such that

W (r 1 ) = Q(r 1 ), W (r 2 ) = Q(r 2 )
and W > Q on ]r 1 , r 2 [ (The case W < -Q is treated in a similar way). Consider r 0 such that W -Q is maximum at r 0 . Note that such a maximum always exists independently if lim r→∞ W (r) = -1 (in which case r 2 < ∞) or lim r→∞ W (r) = 1 = lim r→∞ Q(r). Then we have

L(W, r 0 ) -L(Q, r 0 ) = -L(Q, r 0 ) > 0 so 1 - 1 r 0 (∂ 2 r W -∂ 2 r Q)(r 0 ) + 1 r 2 0 W (1 -W 2 ) -Q(1 -Q 2 ) > 0 Since W (r 0 ) > Q(r 0 ) ≥ Q(3) = 11 18 ≥ 1 √ 3 and the function x → x(1 -x 2 ) is decreasing for x ≥ 1 √ 3 we have W (1 -W 2 ) -Q(1 -Q 2 ) ≤ 0 and consequently 1 - 1 r 0 (∂ 2 r W -∂ 2 r Q)(r 0 ) > 0
which is a contradiction with the fact that W -Q is maximum at r 0 .

3.1.2.

A bound on the potential. We now come back to the potential

V = P (3W 2 -1) Proposition 3.3. We have ˆR V (x)dx < 0. Proof. First note that ˆR V (x)dx = ˆ∞ 1 3W 2 -1 r 2 dr.
We estimate

ˆ3 1 3W 2 -1 r 2 ≤ ˆ3 1 3a 2 -1 r 2 = 2(3a 2 -1) 3 and ˆ∞ 3 3W 2 -1 r 2 ≤ ˆ∞ 3 1 r 2 3 1 - 1 r 2 -1 ≤ ˆ∞ 3 1 r 2 2 - 6 r + 3 r 2 = - 2 r + 3 r 2 - 1 r 3 ∞ 3 = 1 3 + 1 27 = 10 27 Note that 2(3a 2 -1) 3 + 10 27 < 0 because a ≤ 1+ √ 3 5+3 √ 3 < 2 3 √
3 . Therefore we have ˆR V (x)dx < 0.

3.2.

Proof of Theorem 3. The main theorem with E replaced by X now follows from the abstract result. In order to be able to replace X by E we need the following lemma. We will drop the index n.

Lemma 3.3. Let φ 0 be an eigenfunction of A with eigenvalue -λ 2 . Then we have

ˆR P |φ 0 | 2 ≥ λ 2 ˆR |φ 0 | 2 . (3.2) -ˆV |φ 0 | 2 ≥ 0. (3.3) 
Proof. Let us first show (3.2). We have

(-∂ 2 x + V )φ 0 = -λ 2 φ 0 .
Multiplication by φ 0 and integration by parts gives

ˆ|φ 0 | 2 + ˆV |φ 0 | 2 + λ 2 ˆ|φ 0 | 2 = 0. (3.4) Now recall that V = P (3W 2 -1), thus ˆP |φ 0 | 2 ≥ λ 2 ˆ|φ 0 | 2 .
We now show (3.3). From (3.4) we obtain :

-ˆV |φ 0 | 2 = ˆ|φ 0 | 2 + λ 2 ˆ|φ 0 | 2 ≥ 0.
Let H1 the completion of C ∞ 0 for the norm

u 2 H1 = u 2 Ḣ1 + u 2 L 2 P We put Ẽ = H1 × L 2 .

Proof of Theorem 3

We continue using the notations of the abstract setting. We claim that it is sufficient to show the following :

There exists 0 > 0 and a sequence

ψ m 0 with ψ m 0 X → 0, m → ∞, but for all m sup t≥0 ψ m (t) Ẽ ≥ 0 > 0. (IM)
To see this we first note that

ψ m 0 E ≤ ψ m 0 X because ˆP |u| 4 1/4 u 1/2 ∞ u 1/2 L 2 ≤ u H 1
by the Sobolev embedding H 1 → L ∞ . On the other hand

u L 2 P = ˆP |u| 2 1/2 ≤ ˆP 1/4 ˆP |u| 4 1/4 u L 4 P and thus ψ m (t) E ψ m (t) Ẽ .
Let us now show (IM). We follow the proof of the main theorem. We choose

ψ 0 = φ 0 λ0 i φ 0 , φ 0 ∈ 1l {-λ 2 0 } (A)H, φ 0 = 1 3(1 + V -∞ ) 1/2 ρ.
We estimate

ψ 0 2 X = (-∂ 2 x + V )φ 0 , φ 0 -V φ 0 , φ 0 + φ 0 2 + λ 2 0 φ 0 2 ≤ ( V -∞ + 1) φ 0 2 = 1/9ρ 2 .
Thus the first part of the proof goes through without any changes. We then have to estimate ψ(τ ) Ẽ . We estimate

ψ 0 2 Ẽ = Aφ 0 , φ 0 -V φ 0 , φ 0 + ˆP |φ 0 | 2 + λ 2 0 |φ 0 | 2 = -V φ 0 , φ 0 + ˆP |φ 0 | 2 ≥ ˆP |φ 0 | 2 ≥ λ 2 0 ˆ|φ 0 | 2 = λ 2 0 1 9(1 + V -∞ ) ρ 2 .
Here we have used Lemma 3.3. Using

u Ẽ ≤ C 1 u X we find ψ(τ ) Ẽ ≥ λ 0 3(1 + V -∞ ) 1/2 ρ - 2C 1 M L M F E 1 2β -λ 1 ρ 2 ≥ λ 0 6(1 + V -∞ ) ρ
for ρ small enough.

3.3. Proof of Corollary 1.2. We recall

E (∂t) (F (t)) = E(W, Ẇ ).
We take the same sequence of data W m 0,n as in Theorem 3. We first have to show that ˆP ((W m

0,n ) 2 -W 2 n ) 2 → 0, m → ∞. This follows from ˆP ((W m 0,n ) 2 -W 2 n ) 2 ˆP (W m 0,n -W n ) 4 + ˆP W 2 n (W m 0,n -W n ) 2 ˆP (W m 0,n -W n ) 4 + ˆP (W m 0,n -W n ) 4 1/2 → 0, m → ∞
by Theorem 3. In the first inequality we have used the estimate

(A 2 -B 2 ) 2 = (A-B) 2 (A+B) 2 = (A-B) 2 (A-B+2B) 2 ≤ 2(A-B) 4 +8B 2 (A-B) 2 ,
and the fact that W n L ∞ ≤ 1. Now we have to show that

sup t≥0 ˆ( Ẇ m n ) 2 + ((W m n ) -W n ) 2 + P ((W m n ) 2 -W 2 n ) 2 ≥ 1 > 0. (3.5) is to estimate | z (r) -z (1)| |r -1| α ≤ 1 |r -1| α - 1 r(r -1) (z + w(1 -w 2 )) -c ≤ 1 |r -1| α - 1 r(r -1) b + ˆr 1 (z (ρ) -z (1))dρ + c(r -1) + a(1 -a 2 ) + ˆr 1 (w(1 -w 2 )) (ρ) -(w(1 -w 2 )) (1)dρ + b(1 -3a 2 )(r -1) -c ≤ 1 |r -1| α - 1 r(r -1) ˆr 1 (z (ρ) -z (1))dρ + 1 |r -1| α - 1 r(r -1) -(r -1)c + ˆr 1 (w(1 -w 2 )) (ρ) -(w(1 -w 2 )) (1)dρ -c ≤ 1 r(r -1) 1+α ˆr 1 |z (ρ) -z (1)| + c 1 (r -1) α 1 - 1 r + 1 (r -1) 1+α (w(1 -w 2 )) C 1 (r -1) 2 ≤ 1 r(r -1) 1+α z C 0,α ˆr 1 |ρ -1| α + c 1-α + C( w C 2 ) 1-α ≤ 1 1 + α z C 0,α + c 1-α + C( w C 2 ) 1-α .
Consequently we can show that for small enough, T is a contraction, with contracting constant 1 1+α + C(A) 1-α , and consequently it has a unique fixed point.

As a corollary of the proof of local existence we obtain the continuity of the family of solutions W a with respect to the initial data a.

Corollary A.1. Let δ > 0. If W a is a solution on [1, R] with -1 ≤ W a ≤ 1 and a is sufficiently close to a, then W a is defined on [1, R] we have W a -W a C 2,α ([1,R]) ≤ δ. A.2. Basic facts. Lemma A.1. Let 0 < B ≤ 1. As long as W is a C 2 solution with |W | ≤ B we have |W | ≤ B. Proof. Assume that in [1, r 0 ] we have |W | ≤ B. Then - B r 2 ≤ (1 - 1 r )W + 1 r 2 W ≤ B r 2 and consequently B r r 1 ≤ (1 - 1 r )W r 1 ≤ - B r r 1 so -B ≤ W (r) ≤ B.
Corollary A.2. The solution W exists and is C 2,α as long as |W | ≤ 1.

We now consider the solution W on [0, r a [ where r a is the smallest r such that |W | = 1 if it exists, and r a = ∞ otherwise.

Lemma A.2. The solution W cannot have a local minimum with W > 0 nor a local maximum with W < 0.

Proof. If W has a positive local minimum at r 0 then

1 - 1 r 0 W (r 0 ) + 1 r 2 W (r 0 )(1 -W 2 (r 0 )) = 0 but 1 r 2 W (r 0 )(1 -W 2 (r 0
)) > 0 (the local minimum cannot be 1), and W (r 0 ) ≥ 0, which is a contradiction.

Lemma A.3. The solution W can not have a limit l = -1, 0, 1.

Proof. Assume that W → l with 0 < l < 1. We can write for r 1 big enough and

r n ≥ r 1 l(1 -l 2 ) + r rn r1 ≤ (1 - 1 r )W rn r1 ≤ l(1 -l 2 ) - r rn r1
.

Since W → l there exists a sequence Proof. We consider the case W (r 0 ) > 0. The other case can be treated similarly. We consider

r n → ∞ such that W (r n ) → 0. Letting n → ∞ we obtain l(1 -l 2 ) - r 1 ≤ W (r 1 ) 1 - 1 r 1 ≤ l(1 -l 2 ) + r 1 so l(1 -l 2 ) - r 1 -1 ≤ W (r 1 ) ≤ l(1 -l 2 ) + r 
H = r 2 (W ) 2 2 + W 2 2 - W 4 4 .
We calculate

H (r) =r(W ) 2 + r 2 1 r(1 -r) (W + W (1 -W 2 ))W + W W -W 3 W =(W ) 2 r + r 2 r(1 -r) + W W (1 -W 2 ) 1 + r 2 r(1 -r) =(W ) 2 r + r 2 r(1 -r) + W W (1 -W 2 ) 1 1 -r .
Let R be such that for r ≥ R we have

r + r 2 r(1 -r) > 0 
then for r ≥ R and W W ≤ 0 we have H (r) > 0. With our assumption on r 0 we can estimate

H(r 0 ) ≥ (1 -) 2 2 - 1 4 ≥ 1 4δ
for a suitable δ which will be precised later, and small enough. Since W has a local maximum at r 0 , there are two possibilities

• We have r a = ∞, W is decreasing on [r 0 , +∞[ and W → 0 at ∞. • There exists r 1 < r a such that W (r 1 ) = 0 and W is decreasing on [r 0 , r 1 ].
In the first case we obtain for all r ≥ r a , H (r) > 0 so H(r) ≥ 1 4δ and since W → 0 the expression of H yields the existence of r 2 such that for r ≥ r 2 W (r) 2 ≥ 1 (2δ + 1)r 2 so W (r) ≤ -1 √ 2δ+1r and W (r) ≤ W (r 2 ) -1 √ 2δ+1 ln(r) which is a contradiction. Consequently we are in the second case. We have H(r 1 ) ≥ H(r 0 ) so we can estimate W (r 1 )

W (r 1 ) ≤ - 1 √ 2δr 1 Moreover, when -1 ≤ W ≤ 1 we have W (1 -W 2 ) ≤ 2 3 √
3 and consequently we can write for r a > r 2 > r 1

W (r) 1 - 1 r r2 r1 ≤ - 2 3 √ 3r r2 r1 and consequently 1 - 1 r 2 W (r 2 ) ≤ -1 - 1 r 1 1 √ 2δr 1 + 2 3 √ 3r 1 - 2 3 √ 3r 2 .
For r 1 big enough (which is possible by choosing R big enough) and δ close enough to 1 (which is possible by choosing small enough) we have 

-1 - 1 r 1 1 √ 2δr 1 + 2 3 √ 3r 1 ≤ 0,
- π 2 -N π < θ(r 0 ) < π 2 -N π.
It is totally similar to count the number of zero thanks to the function ψ defined by tan(ψ) = rW W .

We estimate ψ ψ (r) = 1

1 + rW W 2 W (W + rW ) -r(W ) 2 W 2 = W W -W 1 r-1 (W + W (1 -W 2 )) -(rW ) 2 W 2 + (rW ) 2 = W W r-2 r-1 -1 r-1 W 2 (1 -W 2 ) -(rW ) 2 W 2 + (rW ) 2 .
We first estimate W W r-2 r-1

W 2 + (rW ) 2 ≤ 1 r |rW W | W 2 + (rW ) 2 ≤ 1 2r
.

We assume that |W | ≤ δ. To estimate the other terms we consider three cases

• 2|W | 2 ≤ |rW | 2 . Then we have ψ (r) ≤ 1 2r - r(W ) 2 W 2 + (rW ) 2 ≤ 1 2r - 2 3r = - 1 6r . • 2|rW | 2 ≤ |W | 2 .
Then we have

ψ (r) ≤ 1 2r - W 2 (1 -W 2 ) (r -1)(W 2 + (rW ) 2 ) ≤ 1 2r - 2(1 -δ 2 ) 3(r -1) ≤ 3 -4(1 -δ 2 ) 6r . • 1 2 |W | 2 ≤ |rW | 2 ≤ 2|W | 2 .
Then we have

ψ (r) ≤ 1 2r - r(W ) 2 W 2 + (rW ) 2 - W 2 (1 -W 2 ) (r -1)(W 2 + (rW ) 2 ) ≤ 1 2r - 1 3r - (1 -δ 2 ) 3r ≤ 3 -4 + 2δ 2 6r .
If we take δ small enough we then have ψ (r) ≤ -1 12r

.

Let now R be such that -1 12 ln(R) ≤ -N π. Thanks to Corollary A.1, we can find a 0 small enough such that for 0 ≤ a ≤ a 0 the solution exists on [1, R] and satisfies |W | ≤ δ on this interval. Then ψ(R) -ψ(1) ≤ -N π so W has at least N zero on [1, R]. This concludes the proof of Proposition A.3.

Corollary A.3. Let W be a solution with r a = ∞ and a finite number of zeros. Then W → ±1.

Proof. Because of Lemma A.2 a solution with a finite number of zeros has a finite limit. Because of Lemma A.3 this limit must be 0 or ±1. If it was 0 we could find R 0 such that |W | ≤ δ for r ≥ R 0 , with δ defined in the proof of Proposition A.3. then for r ≥ R 0 we have

ψ (r) ≤ - 1 12r
, consequently ψ is unbounded from above, so W has an infinite number of zeros.

A.4. Proof of the Theorem.

Lemma A.4. Let X n be the set of initial data a such that the corresponding solution has n zeros and satisfies r a < ∞. Then X n is open and if α is a limit point of X n the corresponding solution satisfies r α = ∞ has m zeros, with m = n or m = n -1 and tends to (-1) m at infinity.

Proof. The fact that X n is open is a direct consequence of Corollary A.1. Let α be a limit point and let a i ∈ X n be such that a i → α.

Assume first that W α is such that r a < ∞. Then we can compare the solution on the fixed interval [1, r α ] so Corollary A.1 implies that W α has exactly n zeros, so α ∈ X n which is a contradiction. Consequently r a = ∞. This also implies that the sequence of r ai is not bounded.

Assume now that there exists R such that W α has strictly more than n zeros before R. Once again Corollary A.1 yields a contradiction.

Assume now that W α has m zeros with m < n. Then thanks to Corollary A.3 W α tend to (-1) m and Proposition A.2 implies that the W ai have m or m + 1 zeros.

Proof of Theorem 2. Let X n be the set of initial data a such that the corresponding solution has less than n zeros. Let α = min( X n ). Proposition A.3 implies that α > 0. There are two case

• If α ∈ X n , then W α is a solution with m ≤ n zeros with r α = ∞. Then Corollary A.1 and Proposition A.2 imply that for a close to α either the solutions have m zeros, either have m + 1 zeros and r a < ∞. Consequently we have m = n and considering a sequence a i < α converging to α we have shown that X n+1 is non empty. • If α / ∈ X n then W α must be a solution with r α = ∞ and k > n zeros. But we have shown in the previous point that in a neighborhood of such a solution we can only have solutions with k or k + 1 zeros, so this case can not occur.

We start the iteration with the function

W 1 = c -r r + 3(c -1) , c = 3 + √ 3 2 ,
which is a special solution of (3.1), with only one 0 (see [START_REF] Boutaleb-Joutei | Gauge field configurations in curved spacetimes[END_REF]). Note also that

W 1 (1) = 1 + √ 3 5 + 3 √ 3 = a 1 .
We then obtain at least one solution -1 ≤ W an ≤ 1 for each number of zeros n. This concludes the proof of Theorem 2.
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 31 The linear equation. The equation v + Av = 0 is equivalent to
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 3 1 -1 and there exists a constant C such that for r big enough(l(1 -l 2 ) -) ln(r -1) ≤ W (r) -Cwhich is a contradiction. More technical facts. Proposition A.2. Let 0 ≤ a ≤ 1. There exists > 0 and R > 0 such that if there exists R < r 0 < r a such that W has a local extremum at r 0 with 1 -≤ |W (r 0 )| < 1 then r a < ∞ and W has one and only one zero in [r 0 , r a ].

2 Proposition A. 3 .

 23 therefore r a < ∞, W (r a ) = -1 and W is decreasing on [r 1 , r a ]. This concludes the proof of Proposition A.Let N > 0. Then for a small enough, the solution W has more than N zeros on [1, r a ] Proof. To count the number of zeros of a solution W we can introduce the function θ which is the continuous function such that tan(θ) = W W and -π 2 < θ(1) < π 2 . Then W has N zero between 1 and r 0 if and only if

We know by Theorem 3 that

We also know from the proof of Theorem 3 that this supremum is achieved on the interval [0, m] and that on this interval

Indeed by density we can suppose u ∈ C ∞ 0 (R) and then compute

Let us now show (3.5). We can suppose that

because otherwise there is nothing to show. Then we estimate

where in the first inequality we have used the estimate

and in the second inequality we have used (3.7) and the fact that

The supremum over t ≥ 0 of this expression is ≥ 0 /4 by (3.6).

Appendix A. Proof of Theorem 2

In this appendix we give an explicit proof of theorem 2. We adapt in the simpler uncoupled case the arguments of Smoller Wasserman Yau, McLeod [START_REF] Smoller | Smooth static solutions of the Einstein/Yang-Mills equations[END_REF]; Smoller, Wasserman, Yau [START_REF] Smoller | Existence of black hole solutions for the Einstein-Yang/Mills equations[END_REF] and Smoller, Wasserman [START_REF] Smoller | Existence of infinitely-many smooth, static, global solutions of the Einstein/Yang-Mills equations[END_REF] to show the existence of infinitely many solutions. In this appendix we work with the r variable and we note = ∂ r .

Again we can suppose that m = 1/2. Recall that the stationary equation reads

A.1. Local solutions.

Proposition A.1. Let 0 < α < 1 and 0 ≤ a ≤ 1. There exists r a > 1 and a unique solution W ∈ C 2,α ([1, r a ]) with boundary condition

Proof. We set z = W to write the equation as a first order system. We consider 

We first show that T preserves the boundary conditions. We calculate

so z (r) → -z (1) -w (1)(1 -3w 2 (1)) = -c + 2c = c when r → 1. We now show that T is a contraction in B X (0, A) for small enough. For this the only difficulty