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EINSTEIN EQUATIONS UNDER POLARIZED U(1) SYMMETRY IN AN ELLIPTIC

GAUGE

CÉCILE HUNEAU AND JONATHAN LUK

Abstract. We prove local existence of solutions to the Einstein–null dust system under polarized U(1)
symmetry in an elliptic gauge. Using in particular the previous work of the first author on the constraint

equations, we show that one can identify freely prescribable data, solve the constraints equations, and

construct a unique local in time solution in an elliptic gauge. Our main motivation for this work, in
addition to merely constructing solutions in an elliptic gauge, is to provide a setup for our companion

paper in which we study high frequency backreaction for the Einstein equations. In that work, the elliptic
gauge we consider here plays a crucial role to handle high frequency terms in the equations. The main

technical difficulty in the present paper, in view of the application in our companion paper, is that we need

to build a framework consistent with the solution being high frequency, and therefore having large higher
order norms. This difficulty is handled by exploiting a reductive structure in the system of equations.

1. Introduction

In this paper, we study the Einstein equation

R(g)µν −
1

2
gµνR(g) = Tµν .

under polarized U(1) symmetry in an elliptic gauge. We will consider the case where the stress-energy-
momentum tensor Tµν is either that of vacuum or a finite number of families of null dust. Previously, it
was known that

• given freely prescribable initial data, the constraint equations in vacuum for small data can be solved
[4], and

• a local, geometrically unique (large data) solution to the Einstein–null dust system exists in a wave
coordinate gauge, even without the polarized U(1) symmetry assumption1 [3].

Our main result in this paper is that in a small data regime, the constraints can be solved and that local
existence can be established in an elliptic gauge; see the precise statement in Section 5. Alternatively, this
means that at least for a short time, in the solution that we already know exists by [3], an elliptic gauge
can be constructed. In particular, under suitable conditions on the initial data, our result constructs a
local-in-time maximal foliation.

Our motivation for studying the Einstein equation in an elliptic gauge is that under such a gauge condition,
one can obtain additional regularity for some metric components and is therefore useful for low-regularity
problems. An elliptic gauge is especially advantageous under polarized U(1) symmetry2 since in this case the
“dynamical part” of the solution and the “elliptic part” of the solution (which is more regular) essentially
decouple (cf. (3.3) and (3.2)). A specific application, which we discuss in our companion paper [5], is to
study high-frequency backreaction for the Einstein equations. Precisely, we show in [5], using the elliptic
gauge studied in the present paper, that any generic small data smooth polarized U(1) symmetric solution
to the Einstein–null dust system arise as suitable weak limits of solutions to the Einstein vacuum equation.
Physically, as we discuss at length in [5], this can be thought of as meaning that “high frequency gravitational
waves give rise to an effective stress-energy-momentum tensor of null dust in the limit”. Notice that it is in
view of the application in [5] that we also include null dust in our equations in this paper.

Since one of the purposes of this paper is to provide a setup for [5], our local existence and uniqueness
statement is in particular consistent with the initial data being “high-frequency” in a suitable sense. In
particular, it has the following features:

1Although strictly speaking, [3] deals with the case where the dust is massive, the methods apply to the null case with little

modifications, cf. [2]
2Such an effective decoupling in fact occurs under U(1) symmetry without the polarization assumption. For simplicity,

however, we only consider the polarized case in this paper.
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2 CÉCILE HUNEAU AND JONATHAN LUK

• (Choice of elliptic gauge) The elliptic gauge condition that we impose is such that the spacetime
is foliated by maximal spacelike hypersurfaces Σt and that on each Σt, the intrinsic metric is
conformal to the Euclidean metric.3 As a consequence, all metric components satisfy semilinear
elliptic equations.

• (Lack of decay at infinity) One main technical challenge in our setting arises from the fact that
we work in two spatial dimensions in all of R2. In this case, one needs to carefully control the
logarithmically divergent terms arising from the inversion of the Laplacian on R2, and place the
remaining terms in appropriate weighted Sobolev spaces.

• (Large data for high norms) Another, more serious, technical challenge concerns the smallness that
we can choose in this problem. In order to solve the constraints and handle the nonlinearity in the
elliptic part of the system, one needs some smallness of the solution (in addition to the smallness
in time). Nevertheless, in view of the application in [5], where we study high frequency solutions,
the solutions are necessarily large in any W k

p norms (cf. Definition 2.1) for p ∈ [1,∞), k > 1. We

therefore study in this paper a solution regime where the W 1
∞ norm of the initial data are required

to be small, yet higher norms can be arbitrarily large. The main technical challenge of this paper is
therefore to treat the elliptic part of the system – where one cannot exploit the small time parameter
– using only the smallness of the low order norms.

As is standard, to obtain a solution to the Einstein equations in our gauge, we first introduce and solve
a reduced system, and a posteriori show that the solution to the reduced system is indeed a solution to
the Einstein equations. In our case, the reduced system is a coupled system of elliptic, wave and transport
equations. Let us note that in order to handle both the issue of the lack of decay at infinity and the largeness
of the higher order norms, we exploit a reductive structure of the reduced system. By this we mean that
one can introduce a hierarchy of estimates (both in terms of weights and in terms of size) so that when
considered in an appropriate sequence, one can bound the terms one by one in order to obtain the desired
estimates.

The remainder of this paper will be organized as follows:

• In Section 2, we introduce the notations for this paper.
• In Section 3, we introduce the class of polarized U(1) spacetimes and the system of equations to

be studied.
• In Section 4, we introduce our elliptic gauge condition.
• In Section 5, we give the main result of the paper.
• In Section 6, we introduce a reduced system.
• In Section 7, we study the constraint equations, following [4].
• In Section 8, we prove existence and uniqueness of solutions to the reduced system (introduced in

Section 6)
• In Section 9, we show that a solution to the reduced system is a solution to the original system.
• In Section 10, we conclude the proof of the main theorem (Theorem 5.4) by proving all the

estimates stated in Theorem 5.4.
• Finally, we have three appendices:

– In Appendix A, we collect some results about Sobolev embedding, product estimates and
elliptic estimates in weighted Sobolev spaces in R2.

– In Appendix B, we collect some computations in the elliptic gauge.
– In Appendix C, we collect some computations for the eikonal functions.

Acknowledgements. Most of this work was carried out when both authors were at Cambridge University.
C. Huneau is supported by the ANR-16-CE40-0012-01. J. Luk is supported in part by a Terman fellowship.

2. Notations and function spaces

Ambient space and coordinates In this paper, we will be working on the ambient manifold M :=
I × R2, where I ⊂ R is an interval. The space will be given a system of coordinates (t, x1, x2). We will use
xi with the lower case Latin index i, j = 1, 2 and will also sometime denote x0 = t.

Conventions with indices We will use the following conventions:

3Strictly speaking, the condition that the initial hypersurface is maximal is a condition on the geometric data and is not a
gauge condition. One may in principle also consider that setting where the mean curvature is a prescribed regular function,

cf. discussions in [1]. We will however be content with the restriction that the initial hypersurface is maximal and not pursue
a general result.
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• Lower case Latin indices run through the spatial indices 1, 2, while lower case Greek indices run
through all the spacetime indices.

• Repeat indices are always summed over: where lower case Latin indices sum over the spatial indices
1, 2 and lower case Greek indices sum over all indices 0, 1, 2.

• Unless otherwise stated, lower case Latin indices are always raised and lowered with respect to the
standard Euclidean metric δij .

• In contrast, lower case Greek indices are raised and lowered with respect to the spacetime metric g.
In cases where there are more than one spacetime metric in the immediate context, we will not use
this convention but will instead spell out explicitly how indices are raised and lowered.

Differential operators We will use the following conventions for differential operators:

• ∂ denotes partial derivatives in the coordinate system (t, x1, x2). We will frequently write ∂i for ∂xi .
In particular, we denote

|∂ξ|2 = (∂tξ)
2 +

2∑
i=1

(∂xiξ)
2.

• The above ∂ notation also applied to rank-r covariant tensors ξµ1...µr tangential to I ×R2 to mean

|∂ξ|2 =
∑

µ1,...,µr=t,x1,x2

|∂ξµ1...µr |2

and to rank-r contravariant tensors ξi1···r tangential to R2 to mean

|∂ξ|2 =
∑

i1···r=x1,x2

|∂ξi1···r |2.

• ∆ and∇ denotes the spatial Laplacian and the spatial gradient on R2 with the standard Euclidean metric.
In particular, we use the convention

|∇ξ|2 =

2∑
i=1

|∂xiξ|2.

• D denotes the Levi–Civita connection associated to the spacetime metric g.
• �g denotes the Laplace–Beltrami operator on functions, i.e.,

�gξ :=
1√
|det g|

∂µ((g−1)µν
√
|det g|∂νξ).

• L denotes the Lie derivatives.
• e0 defines the vector field e0 = ∂t − βi∂xi (where β will be introduced in (4.5)). We will often use

the differential operator Le0 .
• L denotes the Euclidean conformal Killing operator acting on vectors on R2 to give a symmetric

traceless (with respect to δ) covariant 2-tensor, i.e.,

(Lξ)ij := δj`∂iξ
` + δi`∂jξ

` − δij∂kξk.

Functions spaces We will work with standard function spaces Lp, Hk, Cm, C∞c , etc. and assume the
standard definitions. The following conventions will be important:

• Unless otherwise stated, all function spaces will be taken on R2 and the measures will be taken to
be the 2D Lebesgue measure dx.

• When applied to quantities defined on a spacetime I×R2, the norms Lp, Hk, Cm denote fixed-time
norms (unless otherwise stated). In particular, if in an estimate the time t ∈ I in question is not
explicitly stated, then it means that the estimate holds for all t ∈ I for the time interval I that is
appropriate for the context.

We will also work in weighted Sobolev spaces, which are well-suited to elliptic equations. We recall here
the definition, together with the definition of weighted Hölder space. The properties of these spaces that
we need are listed in Appendix A.

Definition 2.1. Let m ∈ N, 1 < p <∞, δ ∈ R. The weighted Sobolev space Wm
δ,p is the completion of C∞0

under the norm

‖u‖Wm
δ,p

=
∑
|β|≤m

‖(1 + |x|2)
δ+|β|

2 ∇βu‖Lp .
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We will use the notation Hm
δ = Wm

δ,2, Lpδ = W 0
δ,p and W s

p = W s
p,0.

The weighted Hölder space Cmδ is the complete space of m-times continuously differentiable functions
under the norm

‖u‖Cmδ =
∑
|β|≤m

‖(1 + |x|2)
δ+|β|

2 ∇βu‖L∞ .

Finally, let us introduce the convention that we will use the above function spaces for both tensors and
scalars on R2, where the norms in the case of tensors are understood componentwise.

3. Einstein–null dust system and reduction under polarized U(1) symmetry

From now on, we consider a Lorentzian manifold (I × R3,(4) g), where I ⊂ R is an interval, and (4)g is a
Lorentzian metric that takes the following form,

(4)g = e−2φg + e2φ(dx3)2,

where φ : I × R2 → R is a scalar function and g is a Lorentzian metric on I × R2. Abusing notation, we
also extend φ to a function φ : I × R3 in such a way that φ is independent of x3. Given this ansatz of the
metric, the vector field ∂x3

is Killing and hypersurface orthogonal.
On the manifold I×R3, we introduce the null dust variables (FA, uA), where A ∈ A for some finite set A

with |A| = N , FA : I ×R2 → R, uA : I ×R2 → R, (again also extended to I ×R3 in a manner independent
of x3) so that

((4)g−1)αβ∂αuA∂βuA = 0.

Define the stress-energy-momentum tensor

(4)Tµν =
∑
A

(FA)2∂µuA∂νuA.

The Einstein–null dust system is given by
Rµν((4)g) =

∑
A(FA)2∂µuA∂νuA,

2((4)g−1)αβ∂αuA∂βFA + (�(4)guA)FA = 0,

((4)g−1)αβ∂αuA∂βuA = 0.

(3.1)

Notice that the Einstein vacuum equations R((4)g)µν = 0 for the (3 + 1)-dimensional metric is included
as a particular case.

The above symmetry assumptions (for (4)g, uA and FA) are known as polarized U(1) symmetry. Under
polarized U(1) symmetry, the system (3.1) reduces to the following equivalent system in (2 + 1) dimensions:

Rµν(g) = 2∂µφ∂νφ+
∑

A(FA)2∂µuA∂νuA,
�gφ = 0,
2(g−1)αβ∂αuA∂βFA + (�guA)FA = 0,
(g−1)αβ∂αuA∂βuA = 0.

(3.2)

In particular, the Einstein vacuum equations R((4)g)µν = 0 are equivalent to the following system for
(g, φ): {

�gφ = 0,
Rµν(g) = 2∂µφ∂νφ.

(3.3)

4. Elliptic gauge

We write the (2 + 1)-dimensional metric g on M := I × R2 in the form

g = −N2dt2 + ḡij(dx
i + βidt)(dxj + βjdt). (4.1)

Let Σt := {(s, x1, x2) : s = t} and e0 = ∂t − βi∂i, which is a future directed normal to Σt. We introduce
the second fundamental form of the embedding Σt ⊂M

Kij = − 1

2N
Le0 ḡij . (4.2)

We decompose K into its trace and traceless parts.

Kij =: Hij +
1

2
ḡijτ. (4.3)

Here, τ := trḡK and Hij is therefore traceless with respect to ḡ.
Introduce the following gauge conditions:



EINSTEIN EQUATIONS UNDER POLARIZED U(1) SYMMETRY IN AN ELLIPTIC GAUGE 5

• ḡ is conformally flat, i.e., for some function γ,

ḡij = e2γδij ; (4.4)

• The constant t-hypersurfaces Σt are maximal

τ = 0.

By (4.1), it follows that

g = −N2dt2 + e2γδij(dx
i + βidt)(dxj + βjdt). (4.5)

Hence the determinant of g is given by

det(g) = e2γβ2(−e4γβ2) + e2γ(e2γ(−N2 + e2γ |β|2)− e4γβ1β1) = −e4γN2. (4.6)

Moreover, the inverse g−1 is given by

g−1 =
1

N2

 −1 β1 β2

β1 N2e−2γ − β1β1 −β1β2

β2 −β1β2 N2e−2γ − β2β2

 . (4.7)

5. Main results

5.1. Initial data. In this section, we describe the initial data for (3.3) and (3.2). We will focus our
discussions on (3.2) as the local well-posedness of (3.3) clearly follows from that of (3.2).

The initial data for (3.2) consist of the prescription of the geometry (first and second fundamental forms
of Σ0) as well as the matter fields. For convenience, we will require ∇φ, its normal derivative and FA to be
initial compactly supported. By the finite speed of propagation, they will remain compactly supported.

To completely specify the initial data, we also need to prescribe the initial values for solutions to the
eikonal equation (g−1)µν∂µuA∂νuA = 0. To this end, we will prescribe the initial values for uA �Σ0

and will
require also that

(1) minA infx∈R2 |∇uA �Σ0
|(x) > C−1

eik for some Ceik > 0,

(2) (duA)] �Σ0
to be past-directed, ∀A.

The former condition in particular implies that uA has no critical points. The latter condition is equivalent
to requiring that (e0uA) �Σ0

> 0 (or, equivalently, by (4.5), (e0uA) �Σ0
= Ne−γ |∇uA| �Σ0

). Moreover, while
uA only becomes relevant in a compact subset4, we will for technical convenience define uA globally and
also require the level sets of uA to be asymptotic to planes in R2, or more precisely, for each A ∈ A, there
exists a constant vector field5 −→cA such that ∇uA −−→cA is in an appropriate weighted Sobolev space.

Before we proceed to define the notion of admissible initial data, we need to fix a cutoff function for the
rest of the paper:

Definition 5.1 (Cutoff function χ). From now on, let χ(|x|) be a fixed smooth cutoff function with χ = 0
for |x| ≤ 1 and χ = 1 for |x| ≥ 2.

We now make precise the discussions on the initial data set in the following definition:

Definition 5.2 (Admissible initial data). For − 1
2 < δ < 0, k ≥ 3, R > 0 and A a finite set, an admissible

initial data set with respect to the elliptic gauge for (3.2) consists of

(1) a conformally flat intrinsic metric e2γδij �Σ0
which admits a decomposition

γ = −αχ(|x|) log(|x|) + γ̃,

where α ≥ 0 is a constant, χ(|x|) is as in Definition 5.1, and γ̃ ∈ Hk+2
δ ;

(2) a second fundamental form (Hij) �Σ0
∈ Hk+1

δ+1 which is traceless;

(3) ( 1
N (e0φ),∇φ) �Σ0

∈ Hk, compactly supported in B(0, R);

(4) FA �Σ0∈ Hk, compactly supported in B(0, R) for every A ∈ A;

(5) uA �Σ0
such that infx∈R2 |∇uA �Σ0

|(x) > C−1
eik for some Ceik > 0 and (∇uA �Σ0

−−→cA) ∈ Hk+1
δ ,

where −→cA is a constant vector field for every A ∈ A.

4Indeed, uA only influences the metric according to (3.2) on the support of FA.
5i.e., −→cA = ((c1)A, (c2)A), where (c1)A, (c2)A ∈ R are constants.
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γ and H are required to satisfy the following constraint equations:

δik∂kHij = −2e2γ

N
(e0φ)∂jφ−

∑
A

eγF 2
A|∇uA|∂juA, (5.1)

∆γ + e−2γ

(
e4γ

N2
(e0φ)2 +

1

2
|H|2

)
+ |∇φ|2 +

∑
A

F 2
A|∇uA|2 = 0. (5.2)

It turns out that we can find freely prescribable initial data, from which (under suitable smallness
assumptions) one can construct admissible initial data satisfying the constraint equations. To this end, it
will be convenient not to prescribe the unit normal derivative 1

N e0 of the scalar field φ and the density of
the null dusts FA, but instead prescribe appropriately rescaled versions as defined in (5.3). We define the
notion of admissible free initial data as follows:

Definition 5.3 (Admissible free initial data). Define φ̇, F̆A as follows:

φ̇ =
e2γ

N
(e0φ), F̆A = FAe

γ
2 , (5.3)

where γ is as in (4.5).
For − 1

2 < δ < 0, k ≥ 3, R > 0 and A a finite set, an admissible free initial data set with respect to
the elliptic gauge is given by the following:

(1) (φ̇,∇φ) �Σ0∈ Hk, compactly supported in B(0, R);

(2) F̆A �Σ0
∈ Hk, compactly supported in B(0, R) for every A ∈ A;

(3) uA �Σ0
such that infx∈R2 |∇uA �Σ0

|(x) > C−1
eik for some Ceik > 0 and (∇uA �Σ0

−−→cA) ∈ Hk+1
δ ,

where −→cA is a constant vector field for every A ∈ A.

Moreover, (φ̇,∇φ, F̆A, uA) �Σ0
is required to satisfy∫

R2

(
−2φ̇∂jφ−

∑
A

F̆ 2
A|∇uA|∂juA

)
dx= 0. (5.4)

The fact that we claimed above, i.e., that an admissible free initial data set gives rise to an actual
admissible initial data satisfying the constraint equations, will be the content of Lemma 7.1.

5.2. Local well-posedness. The following is our main result on local well-posedness for (3.2) (and therefore
also (3.3)). As we already mentioned in the introduction, we need a smallness assumption (5.5), but
importantly for the applications in [5], it is required only for the lower norms but not the high norms.

Theorem 5.4. Let − 1
2 < δ < 0, k ≥ 3, R > 0 and A be a finite set. Given a free initial data set as in

Definition 5.3 such that

‖φ̇‖L∞ + ‖∇φ‖L∞ + max
A
‖F̆A‖L∞ ≤ ε, (5.5)

and

Ceik :=

(
min
A

inf
x∈R2

|∇uA|(x)

)−1

+ max
A
‖∇uA −−→cA‖Hk+1

δ
<∞, (5.6)

and
Chigh := ‖φ̇‖Hk + ‖∇φ‖Hk + ‖F̆A‖Hk <∞. (5.7)

Then, for any Ceik and Chigh, there exists a constant εlow = εlow(Ceik, k, δ, R) > 0 independent of Chigh
and a T = T (Chigh, Ceik,k, δ, R) > 0 such that if ε < εlow, there exists a unique solution to (3.2) in elliptic
gauge on [0, T ]×R2. Moreover, defining δ′ = δ − ε, δ′′ = δ − 2ε, δ′′′ = δ − 3ε, the following holds for some
constant Ch = Ch(Ceik, Chigh, k, δ, R) > 0:

• The following estimates hold for φ, FA and uA for all A ∈ A for t ∈ [0, T ]:

‖∇φ‖Hk + ‖∂tφ‖Hk + ‖∂2
t φ‖Hk−1 ≤Ch,

max
A

(
‖FA‖Hk + ‖∂tFA‖Hk−1 + ‖∂2

t FA‖Hk−2

)
≤Ch,(

min
A

inf
x∈R2

|∇uA|(x)

)−1

+ max
A

(
‖∇uA −−→cA‖Hk

δ′′
+ ‖eγN−1(e0uA)− |−→cA|‖Hk

δ′′

)
≤Ch,

max
A

(
‖∂t∇uA‖Hk−1

δ′′′
+ ‖∂2

t∇uA‖Hk−2

δ′′′′
+ ‖∂t

(
eγ

N
e0uA

)
‖Hk−1

δ′′′
+ ‖∂2

t

(
eγ

N
e0uA

)
‖Hk−2

δ′′′′

)
≤Ch.
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• The metric components γ and N can be decomposed as

γ = αχ(|x|)log(|x|) + γ̃, N = 1 +Nasymp(t)χ(|x|)log(|x|) + Ñ ,

with α ≤ 0 a constant, Nasymp(t) ≥ 0 a function of t alone and χ(|x|) is as in Definition 5.1.
• γ, N and β obey the following estimates for t ∈ [0, T ]:

|α|+ ‖γ̃‖Hk+2
δ

+ ‖∂tγ̃‖Hk+1
δ

+ ‖∂2
t γ̃‖Hkδ ≤Ch,

|Nasymp|+ |∂tNasymp|+ |∂2
tNasymp| ≤Ch,

‖Ñ‖Hk+2
δ

+ ‖∂tÑ‖Hk+1
δ

+ ‖∂2
t Ñ‖Hkδ ≤Ch,

‖β‖Hk+2

δ′
+ ‖∂tβ‖Hk+1

δ′
+ ‖∂2

t β‖Hk
δ′
≤Ch.

• The support of φ and FA satisfies

supp(φ, FA) ⊂ J+({t = 0} ∩B(0, R)),

where J+ denotes the causal future.

Remark 5.5 (The |A| → ∞ limit). We observe from the proof that in Theorem 5.4, we do not need A to

be a finite set6. Instead, in the case |A| =∞, as long as we replace the estimates for F̆A in (5.5) and (5.7)
with appropriate `2 norms, i.e.,(∑

A

‖F̆A‖2L∞

) 1
2

≤ ε,

(∑
A

‖F̆A‖2Hk

) 1
2

<∞,

with all other assumptions unchanged, then the conclusion in Theorem 5.4 still holds.

Remark 5.6. We remark on the following facts regarding the maximal foliation:

• The lapse function N has a logarithmic growth as |x| → ∞.
• The following conservation laws hold:∫

R2

(
2e2γ

N
(e0φ)∂jφ+

∑
A

eγF 2
A|∇uA|∂juA

)
dx = 0, (5.8)

∫
R2

(
e−2γ

(
e4γ

N2
(e0φ)2 +

1

2
|H|2

)
+ |∇φ|2 +

∑
A

F 2
A|∇uA|2

)
dx = α. (5.9)

It will be useful to note the following easy consequence of the proof of Theorem 5.4, which states that in
the genuinely small data regime, the time of existence can be taken to be T = 1. Since its proof is simplier
than the general case in Theorem 5.4, we omit its proof.

Corollary 5.7. Suppose the assumptions of Theorem 5.4 hold and let {cA}A∈A be a collection of constant
vector fields on the plane. There exists εsmall = εsmall(δ, k,R, cA) such that if Chigh and ε in Theorem 5.4
both satisfy

Chigh, ε ≤ εsmall
and moreover ∑

A

‖∇uA −−→cA‖Hk+1
δ
≤ εsmall,

then the unique solution exists in [0, 1] × R2. Moreover, there exists C0= C0(δ, k,R, cA) such that all the
estimates in Theorem 5.4 hold with Ch replaced by C0ε.

As we mentioned above, we will omit the details of the proof of Corollary 5.7. We will focus on the proof
of Theorem 5.4, which will occupy most of the remainder of the paper. In order to simplify the exposition,
for most of the paper, we will assume k = 3. Higher derivatives estimates, i.e., the case k > 3, follows
straightforwardly from the ideas presented here.

To prove Theorem 5.4, we first introduce in Section 6 a reduced system of equations (6.1)–(6.10), which
is an elliptic-hyperbolic-transport system. We then discuss the initial data appropriate for this system in
Section 7. In Section 8, we solve the reduced system using an iteration scheme. Then in Section 9, we prove
that the solution to the reduced system indeed is a solution to (3.2). Finally, in Section 10, we conclude by
proving all the estimates as stated in Theorem 5.4

6We also remark that this is in contrast to the problem in our companion paper [5], where the assumption that |A| is finite
is necessary
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6. The reduced system

We consider the following system of equations, which we will call the reduced system. Let us recall
that lower case Latin indices are raised and lowered with respect to δij . We will also denote by Γαµν the
Christoffel symbols associated to g.

Ne2γτ = −2e0γ + ∂iβ
i, (6.1)

2∆γ = 2

(
τ2

2
e2γ − 1

2N
e2γe0τ −

1

2N
∆N

)
− 2δij∂iφ∂jφ−

∑
A

e2γ

N2
F 2
A(e0uA)2, (6.2)

∆N − e−2γN(|H|2 +
1

2
e4γτ2)− 2e2γ

N
(e0φ)2 − e2γ

N

∑
A

F 2
A(e0uA)2 = 0, (6.3)

(Lβ)ij = 2Ne−2γHij , (6.4)

(∂t − βk∂k)Hij = −2e−2γNHi
`Hj` +

(
∂jβ

kHki + ∂iβ
kHkj

)
(6.5)

− ∂i∂jN +
1

2
δij∆N +

(
δki ∂jγ + δkj ∂iγ − δijδ`k∂`γ

)
∂kN

− 2N∂iφ∂jφ−N
∑
A

F 2
A∂iuA∂juA +Nδij |∇φ|2 +

e2γ

2N
δij
∑
A

F 2
A(e0uA)2,

�gφ = 0, (6.6)

LρA∂ρL
α
A + ΓαµνL

µ
AL

ν
A = 0, ∀A, (6.7)

LρA∂ρuA = 0, ∀A, (6.8)

2LρA∂ρFA + χAFA = 0, ∀A, (6.9)

LρA∂ρχA + χ2
A = −2(LρA∂ρφ)2 −

∑
B

F 2
B(gµνL

µ
AL

ν
B)2, ∀A. (6.10)

In deriving the above equations, we have used the computations in Sections B.2 and B.3. We note that
(6.1) is the definition of τ to be the mean curvature. (6.2) is derived by setting7 δijRij = δij(Tij − gijtrgT ),
where we have used (B.10); (6.3) is derived by setting R00 = T00− g00trgT in the case e0τ = 0; (6.4) follows
from (B.5); (6.5) is derived by setting Rij − 1

2δijδ
k`Rk` = Tij − gijtrgT − 1

2δ
ij(Tij − gijtrgT ). The equations

(6.6)–(6.10) are chosen according to the propagation equations for the matter fields in (3.2), except for
issues to be discussed in Remarks 6.2 and 6.3.

Remark 6.1 (Only N and β are solved by elliptic equations). While in the full system, N , β, γ and H all
satisfy elliptic equations, in the reduced system, only N and β are solved through elliptic equations. γ and
H are defined to be solutions to wave and transport equations respectively. We have to adopt this procedure,
because if we wanted to solve the elliptic equations for γ and H, given by the constraints (5.1) and (5.2),
we would need the conservation law (5.8) to hold a priori and for each iterate of our iteration scheme.

Remark 6.2 (Introduction of χA). Notice that in (6.9), we are not directly solving the transport equation
for FA in (3.2), but we have replaced �guA by χA, which is an auxiliary function that we introduce and is
required to satisfy (6.10) according to (C.3) and (C.4). The reason is that otherwise we would need to be
very careful in the iteration procedure to make use of the special structure in order to not lose derivatives.
Instead, by introducing χA and treating it as a separate variable, we are exploiting that fact that by the
Raychaudhuri equation, �guA is more regular than generic second derivatives of uA in the full nonlinear
system. This allows us to more easily close the iteration scheme, and it is only a posteriori that we show
χA = �guA (see Proposition 9.3).

Remark 6.3 (Solving for uA). In order to solve the eikonal equation (g−1)µν∂µuA∂νuA = 0, it is convenient
to solve the geodesic equation (6.7) for the geodesic null vector field LA and then define uA by (6.8). It is a
standard fact in Lorentzian geometry that (given appropriate initial conditions) in fact LαA = −(g−1)αβ∂βuA
and that (g−1)µν∂µuA∂νuA = 0.

7. Initial data and the constraint equations

In this section, we discuss the initial data for the reduced system. The most important task is to solve
the constraint equations. In particular, we will show (as claimed in Section 5.1) that an admissible free

7Recall that Rµν − 1
2
gµνR = Tµν . Therefore, − 1

2
R = (g−1)µνTµν and hence Rµν = Tµν + 1

2
gµνR = Tµν − gµνtrgT .
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initial data set gives rise to a unique admissible initial data set satisfying the constraint equations. Unlike
in the later section of the paper, in this section, we will consider general k ≥ 3 as it does not complicate
the notations. In this step, we largely follow the ideas in [4].

After we solve the constraint equations (which can be viewed as PDEs for γ and H, in the remainder of
this section, we will derive the initial data for N , β (Lemma 7.2), e0γ (Lemma 7.3), LA (Lemma 7.4) and

χA (Lemma 7.5) and prove their regularity properties. Note that since ∇φ, φ̇ and F̆A are prescribed (cf.
(5.3)), after we derive the initial data for N , γ and β, we obtain the initial data for ∇φ, e0φ and FA.

Let us first set up the notation of this section: We will use C to denote a constant depending only on
Ceik, k, δ and R (and independent of Ci and ε). We will also use the notation . where the implicit constant
has the same dependence as C.

Before we proceed to solving the constraints, it will be convenient to rewrite (5.1) and (5.2) in term of φ̇

and F̆ as follows:

δik∂kHij = −2φ̇∂jφ−
∑
A

F̆ 2
A|∇uA|∂juA, (7.1)

∆γ + e−2γ

(
φ̇2 +

1

2
|H|2

)
+ |∇φ|2 +

∑
A

e−γF̆ 2
A|∇uA|2 = 0. (7.2)

The following is the main result on solving the constraint equations:

Lemma 7.1. Let − 1
2 < δ < 0, k ≥ 3, R > 0 and A be a finite set. Given an admissible free initial data set as

in Definition 5.3 such that the smallness assumption (5.5) holds. Then, for ε sufficiently small (depending
on Ceik (cf. (5.6)), k, δ and R), there exists a unique admissible initial data set as in Definition 5.2
corresponding to the given the admissible free initial data set. In particular, there exist a unique solution
(H, γ) solving the constraint equations (7.1), (7.2) with H ∈ Hk+1

δ+1 being a symmetric traceless covariant
2-tensor and

γ = −αχ(|x|)log(|x|) + γ̃

with α ≥ 0 being a constant, χ being as in Definition 5.1 and γ̃ ∈ Hk+2
δ being a function. Moreover,

|α|+ ‖H‖H1
δ+1

+ ‖γ̃‖H2
δ
. ε2, (7.3)

‖H‖W 1

δ+3
2
,4

+ ‖γ̃‖W 2

δ+1
2
,4

+ ‖H‖C0
δ+2

+ ‖γ̃‖C1
δ+1
. ε2. (7.4)

Proof. Solving (7.1). We solve for Hij which takes the form Hij = (LY )ij = δj`∂iY
` + δi`∂jY

` − δij∂kY k
for some 1-form Yi. Then (7.1) is equivalent to

∆Yj = −2φ̇∂jφ−
∑
A

F̆ 2
A|∇uA|∂juA. (7.5)

Since φ̇, φ, FA are compactly supported, by (5.5), we have the following bound on the RHS of (7.5)

‖2φ̇∂jφ+
∑
A

F̆ 2
A|∇uA|∂juA‖H0

δ+2
. ε2.

Moreover, by the regularity assumptions and support properties of φ̇, ∇φ, F̆A and uA, the RHS of (7.5) is

also in Hk
δ+2. Therefore, by the condition (5.4) and Theorem A.7, there exists a unique Yj ∈ Hk+2

δ with

‖Yj‖H2
δ
. ε2.

Consequently, there exists a symmetric traceless (with respect to δ) covariant 2-tensor H ∈ Hk+1
δ+1 solving

(7.1) with

‖H‖H1
δ+1
. ε2. (7.6)

Moreover, since every symmetric traceless divergence-free (with respect to δij) covariant 2-tensor on R2

vanishes8

Solving (7.2). We now turn to (7.2). First of all, we note that thanks to Proposition A.4 we have

|H|2 ∈ Hk+1
2δ+3 ⊂ H

k+1
δ+2 , and

‖|H|2‖H0
2δ+3
. ε4.

8This is standard and can be seen by noting that for a symmetric traceless covariant 2-tensor ηij ∈ H2
δ′+1

, we have the

componentwise identity ∆ηij = 0, so that Theorem A.7 implies the conclusion.
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We solve (7.2) with the contraction mapping theorem. We consider the map9

Φ : [0, ε]×BH2
δ
(0, ε)→ [0, ε]×BH2

δ
(0, ε),

which maps (α(1), γ̃(1)) 7→ (α(2), γ̃(2)) such that γ(1) = −α(1)χ(|x|)log(|x|)+γ̃(1), γ(2) = −α(2)χ(|x|)log(|x|)+
γ̃(2) and the latter is defined as the solution to

∆γ(2) = −e−2γ(1)

(
φ̇2 +

1

2
|H|2

)
− |∇φ|2 −

∑
A

e−γ
(1)

F̆ 2
A|∇uA|2.

All the terms involving φ or F̆A are compactly supported and of size O(ε2) in H0
δ+2. For the e−2γ(1) 1

2 |H|
2

term, we check that by (7.6), e2α(1)χ(|x|)log(|x|)|H|2 ∈ H0
δ+2 (provided that ε is small enough) and e−2γ̃(1) |H|2 ∈

H0
δ+2, both with norms O(ε2). Notice also that

−Cε2 ≤ 1

2π

∫
R2

(RHS of (7.2)) ≤ 0.

Therefore, by Corollary A.8, the range of Φ indeed lies in the set [0, ε] × BH2
δ
(0, ε). Moreover, a similar

argument for the differences shows that Φ is a contraction (for ε sufficiently small).
Therefore, by the contraction mapping theorem, we obtain a unique fixed point (α, γ̃) of Φ with γ̃ ∈ H2

δ

and

|α|+ ‖γ̃‖H2
δ
. ε2.

Moreover, γ = −αχ(|x|)log(|x|) + γ̃ solves (7.2).
Since every term on the RHS of (7.2) is nonnegative, by Theorem A.7, α ≥ 0. Using the estimates for

H and γ that we just proved, and also the assumptions on φ̇, ∇φ, FA and uA, we see that the right-hand
side of (7.2) is in H2

δ+2. Hence, by Theorem A.7, γ̃ ∈ H4
δ+2. Continuing to iterate this, we conclude that

γ̃ ∈ Hk+2
δ .

Proof of (7.4). We first prove the bounds for H. Since the right-hand side of (7.5) is compactly
supported and bounded in L∞ by ε2, we can use Theorem A.7 with p = 4 to infer that Y ∈W 2

ν,4 and hence

‖H‖W 1
ν+1,4

. ε2 for all − 1

2
< ν <

1

2
.

In particular, thanks to the Sobolev embedding in Proposition A.3 we have H ∈ C0
ν+ 3

2

with the bound

‖H‖C0

ν+3
2

. ε2.

In the same manner, we have, for − 1
2 < ν < 1

2 ,

‖γ̃‖W 2
ν,4

+ ‖γ̃‖C1

ν+1
2

. ε2.

Choosing ν = δ + 1
2 (recall that δ ∈ (− 1

2 , 0)), we obtain (7.4). �

We now turn to the initial data for the lapse N and the shift βi.

Lemma 7.2. Let δ′ = δ − ε. For ε sufficiently small, there exists unique (N, β) such that N = 1 +

Nasympχ(|x|)log(|x|) + Ñ , with Nasymp ∈ R, Ñ ∈ Hk+2
δ , and β ∈ Hk+2

δ′ such that

∆N − e−2γN

(
|H|2 + φ̇2 + eγ

∑
A

F̆ 2
A|∇uA|2

)
= 0, (7.7)

(Lβ)ij = 2Ne−2γHij . (7.8)

Moreover, Nasymp ≥ 0 and

|Nasymp|+ ‖Ñ‖H2
δ

+ ‖Ñ‖W 2

δ+1
2
,4

+ ‖Ñ‖C1
δ+1
. ε2. (7.9)

‖β‖H2
δ′

+ ‖β‖W 2

δ′+1
2
,4

+ ‖β‖C1
δ′+1
. ε2. (7.10)

9Here, and below, we use the notation that BH2
δ

(0, ε) denotes the open ball centered at 0 with radius ε in Banach space

BH2
δ

.
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Proof. Solving (7.7). We solve (7.7) with a fixed point argument. Consider the map

Φ : [0, ε]×BH2
δ
(0, ε)→ [0, ε]×BH2

δ
(0, ε),

which maps (N
(1)
asymp, Ñ (1)) 7→ (N

(2)
asymp, Ñ (2)), where given N (1) = 1 + N

(1)
asympχ(|x|)log(|x|) + Ñ (1) with

N
(1)
asymp ∈ [0, ε] and Ñ (1) ∈ BH2

δ
(0, ε), we define N (2) = 1 + N

(2)
asympχ(|x|)log(|x|) + Ñ (2) to be the solution

to

∆N (2) = e−2γN (1)

(
|H|2 + φ̇2 + eγ

∑
A

F̆ 2
A|∇uA|2

)
. (7.11)

We now show that this map has the range as claimed. Since N
(1)
asymp ≥ 0, it follows from Proposition A.3

that N (1) ≥ 1 + Ñ (1) ≥ 1−Cε ≥ 1
2 for ε small enough, where C is a universal constant (depending only on

the constants in Proposition A.3). As a consequence10,

1

2π

∫
R2

e−2γN (1)

(
|H|2 + φ̇2 + eγ

∑
A

F̆ 2
A|∇uA|2

)
≥ 0.

Since (N
(1)
asymp, Ñ (1)) ∈ [0, ε]×BH2

δ
(0, ε), by (7.3), Proposition A.4 and Lemma A.6, we have

‖e−2γN (1)|H|2‖H0
δ+2
. ε4

for ε sufficiently small (necessary to handle the log weights in γ and N (1)). Also, using the compact support

of φ̇ and F̆A, we have

‖e−2γ φ̇2 + e−γ
∑
A

F̆ 2
A|∇uA|2‖H2

δ+2
. ε2.

Therefore, by Theorem A.7, for ε sufficiently small, there indeed exists N (2) with (N
(2)
asymp, Ñ (2)) ∈ [0, ε]×

BH2
δ
(0, ε) solving (7.11).

Moreover, since RHS of (7.11) is linear in N (1), it is easy to apply to above argument to show that Φ is
in fact a contraction (for ε sufficiently small). Hence, by the contraction mapping theorem, there exists a

unique fixed point N = 1 +Nasympχ(|x|)log(|x|) + Ñ that solves (7.7) with (Nasymp, Ñ) ∈ [0, ε]×BH2
δ
(0, ε).

Finally, using the bounds in Proposition 7.1, we can iteratively improve the estimate of Ñ by applying

Theorem A.7 and show that Ñ ∈ Hk+2
δ .

Solving (7.8). We now turn to the equation for β. Taking the divergence of (7.8), we obtain

∆βj = δikδj`∂k(2Ne−2γHi`), (7.12)

which is a linear equation in βj . We first note that by the estimates in Lemma 7.1 for γ and H, the estimates
for N that we just proved, Proposition A.4 and Lemma A.6, for δ′ = δ−ε, Ne−2γHij ∈ Hk+1

δ′+1. Note that we

have in particular used e2αχ(|x|)log(|x|) . (1 + |x|)Cε2 and Nasympχ(|x|)log(|x|) . ε2log(|x|) . ε(1 + |x|) ε
10 .

Hence, by Lemma A.1, ∂k(2Ne−2γHi`) ∈ Hk
δ′+2. Moreover,∫

R2

δikδj`∂k(2Ne−2γHij) = 0,

Hence, by Theorem A.7 there exists a unique solution β ∈ Hk+2
δ′ to (7.12). Since every H4

δ′+1 symmetric

traceless divergence-free (with respect to δij) covariant 2-tensor on R2 must vanish (cf. Footnote 8 on p.9),
it then follows that β is a solution to (7.8). Moreover, using (7.3), one sees that the above argument gives

‖β‖H2
δ′
. ‖δik∂k(2Ne−2γHij)‖H0

δ′+2
. ε2.

Smallness in weighted L4-based Sobolev spaces. It remains to show that ‖Ñ‖W 2

δ+1
2
,4

and ‖β‖W 2

δ′+1
2
,4

are O(ε2) small, since the weighted C1 estimates will then follow from Proposition A.3.
Now notice that these bounds can be proven by essentially the same arguments as above, except to use

the estimates for H in (7.4) instead of (7.3). We omit the details. �

We choose the initial data for e0γ according to (6.1) and the initial condition τ = 0. (Note that γ satisfies
a wave equation (cf. (6.1), (6.2)) and therefore we need the initial condition for e0γ.)

10Note that if we solve (7.11) using Corollary A.8, then N
(2)
asymp is given by this expression.
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Lemma 7.3. In order that τ = 0, we set e0γ = 1
2div(β). Then, we have e0γ ∈ Hk+1

δ′+1 and

‖e0γ‖H1
δ′+1

+ ‖e0γ‖W 1

δ′+3
2
,4

+ ‖e0γ‖C0
δ′+2
. ε2.

Proof. The desired estimates follow directly from Lemma 7.2 and Lemma A.1. �

Lemma 7.4. If LµA = −(g−1)µν∂νuA, (g−1)µν∂µuA∂νuA = 0, e0uA > 0 with g as in (4.5), then

LtA =
e−γ

N
|∇uA|, LiA = −e−2γδij∂juA −

e−γβi

N
|∇uA|. (7.13)

Therefore, setting the initial data LA �Σ0 as in (7.13), and for ε sufficiently small, e2γLiA +−→cAi, NeγLtA +
|−→cA| ∈ Hk

δ′′ , where δ′′ = δ′ − ε = δ − 2ε.
Moreover, for Ceik as in (5.6), the following bounds hold for the initial data:

sup
A

(
‖e2γLiA +−→cAi‖H2

δ′′
+ ‖NeγLtA + |−→cA|‖H2

δ′′

)
≤4Ceik, (7.14)

min
A

inf
x∈R2

∣∣Neγ(LA)t
∣∣ (x) ≥C−1

eik. (7.15)

Proof. (g−1)µν∂µuA∂νuA = 0 implies

1

N2
(e0uA)2 = e−2γ |∇uA|2. (7.16)

Hence, a direct computation gives

LtA =
1

N2
e0uA =

e−γ

N
|∇uA|, LiA = −e−2γδij∂juA −

βi

N2
(e0uA) = −e−2γδij∂juA −

e−γβi

N
|∇uA|.

Now, the desired estimates e2γLiA +−→cAi, NeγLtA + |−→cA| ∈ Hk
δ′′ and (7.14) follow from the bounds in (5.6),

Lemmas 7.1 and 7.2 using Propositions A.3, A.4 and A.6. Notice that here we need to use the fact that

β ∈ Hk+2
δ′ to handle the term e−γβi

N |∇uA| without taking difference with a constant vector −→cA. We also
need to change the weight δ′ 7→ δ′′ to handle the growing factors when |x| is large; we omit the details.

Finally, (7.15) follows from (5.6) and (7.13). �

Finally, we choose the initial data for χA. Since we eventually will need χA = �guA (cf. (C.4)), we
prescribe the initial data accordingly. Note that while �guA depends on the e0 derivative of uA, by virtue
of the eikonal equation, it can in fact be computed from the initial data of ∇uA �Σ0

alone. More precisely,
we have the following estimates:

Lemma 7.5. Suppose uA satisfies (g−1)µν∂µuA∂νuA = 0, then �guA �Σ0
is given by the following expres-

sion:

�guA �Σ0
=

1

N
e−γ(e0γ)|∇uA| �Σ0

+
1

Ne2γ
δij∂i(N∂juA) �Σ0

− 1

N
e−γ

(
1

|∇uA|
δij∂iuA∂j(e

−γN |∇uA|) +
1

|∇uA|
δij(∂iuA)(∂jβ

k)∂kuA

)
�Σ0

.
(7.17)

Therefore, by setting χA �Σ0
= (RHS of (7.17)), we have on Σ0 that χA ∈ Hk

δ . Moreover, there exists Cχ
depending only on Ceik, δ, k and R such that

sup
A
‖χA‖C0

δ+1
≤ Cχ. (7.18)

Proof. Using (6.1), we have

�gf =(g−1)µν
(
eµeνf − (∇eµeν)f

)
=− 1

N2
e2

0f +
e0N

N3
e0f +

1

N
e−2γδij∂iN∂jf + e−2γ∂2

i f −
1

2N2

(
4(e0γ)− 2(∂iβ

i)
)

(e0f)

=− 1

N2
e2

0f +
e0N

N3
e0f +

1

N
e−2γδij∂iN∂jf + e−2γ∂2

i f +
e2γτ

N
(e0f).

Since τ �Σ0
vanishes, we use the fact e0uA = e−γN |∇uA| (cf. (7.16)) to obtain

�guA �Σ0= − 1

N
e0(e−γ |∇uA|) �Σ0 +

1

Ne2γ
δij∂i(N∂juA) �Σ0 .
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The only term that does not manifestly depend only on ∇uA �Σ0
is e0|∇uA|. It can be re-expressed using

the eikonal equation as follows

e0|∇uA| =
1

|∇uA|
δij(∂iuA)(e0∂juA) =

1

|∇uA|
δij∂iuA∂j(e

−γN |∇uA|) +
1

|∇uA|
δij(∂iuA)(∂jβ

k)∂kuA.

Combining the above expressions gives (7.17).
The fact that χA ∈ Hk

δ then follow from the bounds in (5.6), Lemmas 7.1 and 7.2 using Propositions A.3
and A.4. Moreover, by the estimates in (5.6), Lemmas 7.1 and 7.2, we have (7.18).

�

We conclude this section with the following corollary, which summarizes the estimates in this section:

Corollary 7.6. Given a free initial data set satisfying the assumptions of Theorem 5.4. Suppose that ε is
sufficiently small, then

• there exists an initial data set to the reduced system (6.1)–(6.10) such that the constraint equations
(7.1) and (7.2) are satisfied and τ �Σ0

= 0.
• Also, there exists a constant C (depending on Ceik, k, δ, R) such that all the smallness estimates

(7.3), (7.4), (7.9), (7.10) hold with implicit constant C.
• For the quantities associated to uA, LA and χA, the estimates (7.14), (7.15) and (7.18) hold.
• Moreover, there exists a constant Ci (depending on Chigh, in addition to Ceik, k, δ, R) such that

the following estimates hold for the initial data to the reduced system (6.1)–(6.10):

‖H‖Hk+1
δ

+ ‖Ñ‖Hk+2
δ

+ ‖β‖Hk+2

δ′
+ ‖γ̃‖Hk+2

δ
+ ‖e0γ̃‖Hk+1

δ′
+ ‖∂φ‖Hk

+ sup
A

(
‖FA‖Hk + ‖e2γLiA +−→cAi‖Hk

δ′′
+ ‖NeγLtA + |−→cA|‖Hk

δ′′
+ ‖χA‖Hkδ

)
≤ Ci.

8. Solving the reduced system of equations

In this section, we solve the reduced system of equations that we introduced in Section 6. This will be
done by an iteration method. The iteration scheme will be introduced in Section 8.1. In Section 8.2, we
show that in appropriate norms, the iterates we define are uniformly bounded. Finally, in Section 8.3, we
show the convergence of the iterates in appropriate norms, which imply the existence and uniqueness of
solutions to the reduced system of equations.

8.1. Iteration scheme. From now on we only consider the case k = 3. As we mentioned previously, larger
k can be treated in a similar manner, but would unnecessarily complicate the exposition.

We construct the sequence11

(N (n), β(n), τ (n), H(n), γ(n) = −αχ(|x|)log(|x|) + γ̃(n), φ(n), L
(n)
A , F

(n)
A , χ

(n)
A )

iteratively as follows: For n = 1, 2, letN (n), β(n), τ (n), H(n), γ(n) = −αχ(|x|)log(|x|)+γ̃(n), φ(n), L
(n)
A , F

(n)
A , χ

(n)
A

be time-independent, with initial data as in Section 7. For n ≥ 2, given the n-th iterate, the (n + 1)-st
iterate is then defined by solving the following system (Latin indices are raised and lowered with respect to
δ as before):

11Note that α is a non-negative constant independent of n.
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−∆N (n+1) =− e−2γ(n)

N (n)(|H(n)|2 +
1

2
e4γ(n)

(τ (n))2)

− 2e2γ(n)

N (n)
(e

(n−1)
0 φ(n))2 −

∑
A

e4γ(n)

N (n)(F
(n)
A )2δij(L

(n)
A )i(L

(n)
A )j , (8.1)

(Lβ(n+1))ij =2N (n)e−2γ(n)

(H(n))ij , (8.2)

−
e

(n)
0

(
e
(n)
0 γ(n+1)

N(n)

)
N (n)

+ ∆γ(n+1) =− 2(e
(n−1)
0 γ(n))2

N (n)N (n−1)
+

1

2
(τ (n))2e2γ(n)

− e2γ(n)

2N (n)
e

(n−1)
0

(
e−2γ(n)

N (n−1)
div(β(n))

)

− ∆N (n)

2N (n)
− δij∂iφ(n)∂jφ

(n) − 1

2

∑
A

e4γ(n)

(F
(n)
A )2δij(L

(n)
A )i(L

(n)
A )j , (8.3)

τ (n+1) =
e−2γ(n)

N (n)

(
−2e

(n−1)
0 γ(n) + div(β(n))

)
, (8.4)

(e
(n+1)
0 )(H(n+1))ij =− 2e2γ(n)

N (n)(H(n))i
`(H(n))j` + 2∂(j(β

(n))k(H(n))i)k

− (∂i⊗̆∂j)N (n) + ∂iγ
(n)⊗̆∂jN (n) − 2N (n)∂iφ

(n)⊗̆∂jφ(n)

−
∑
A

N (n)(F
(n)
A )2(L

(n)
A )i⊗̆(L

(n)
A )j , (8.5)

�g(n)φ(n+1) =0, (8.6)

(L
(n)
A )ρ∂ρ(L

(n+1)
A )α =− (Γ(n))αµν(L

(n)
A )µ(L

(n)
A )ν , (8.7)

2(L
(n)
A )ρ∂ρF

(n+1)
A =− (χ(n))AF

(n)
A , ∀A, (8.8)

(L
(n)
A )ρ∂ρχ

(n+1)
A + (χ

(n)
A )2 =− 2((L

(n)
A )ρ∂ρφ

(n))2 −
∑
B

F 2
B(g(n)

µν (L
(n)
A )µ(L

(n)
B )ν)2, ∀A, (8.9)

where g(n) = −(N (n))2dt2 + e2γ(n)

δij(dx
i + (β(n))idt)(dxj + (β(n))jdt); D(n), (Γ(n))αµν and �g(n) are the

Levi–Civita connection, Christoffel symbols and the Laplace–Beltrami operator, respectively, associated to

g(n); and e
(n)
0 = ∂t − (β(n))i∂i. We have also used the notation ui⊗̆vj = uivj + ujvi − δij(ukvk).

Remark 8.1 (Well-posedness of (8.1)–(8.9)). Notice that (8.1)–(8.9) is not a linear system due to the

term e
(n+1)
0 H(n+1) on the LHS of (8.5), which has a nonlinear term (β(n+1))k∂kH

(n+1)
ij in the (n + 1)-st

iterate. (This will be useful in exploiting the nonlinear structure to prove estimates.) Nevertheless, the
(local) well-posedness of the system (8.1)–(8.9) follows from the estimates we are about to prove.

8.2. Uniform boundedness of the sequence. The first order of business is to show inductively that the
sequence we just defined is uniformly bounded in appropriate function spaces. To carry out the induction,
we assume as induction hypothesis that the following estimates for some n ≥ 2 and for all t ∈ [0, T ]. Here,
A0 � A1 � A2 are all sufficiently large constants (independent of ε) to be chosen later, δ′′′ = δ′′ − ε,
δ′′ = δ′ − ε and δ′ = δ − ε. Choosing ε smaller if necessary, we assume throughout that −1 < δ′′′.

• (Estimates for N (n)) N (n) admits a decomposition N (n) = 1 +N
(n)
asymp(t)χ(|x|)log(|x|) + Ñ (n) with

N
(n)
asymp ≥ 0 and satisfy the estimates

|N (n)
asymp|+ ‖Ñ (n)‖H2

δ
+ ‖Ñ (n)‖W 2

δ+1
2
,4

+ ‖Ñ (n)‖C1
δ+1
≤ε, (8.10)

|∂tN (n)
asymp|+ ‖Ñ (n)‖H5

δ
+ ‖∂tÑ (n)‖H2

δ
≤2Ci, (8.11)

‖∂tÑ (n)‖H3
δ
≤2C2

i . (8.12)

Assume that the same holds with (n) replaced by (n− 1).
• (Estimates for β(n)) β(n) satisfies the following estimates:

‖β(n)‖H2
δ′

+ ‖β(n)‖W 2

δ′+1
2
,4

+ ‖β(n)‖C1
δ′+1
≤ ε, (8.13)

‖β(n)‖H4
δ′
≤ A0Ci, ‖e(n−1)

0 β(n)‖H2
δ′
≤ A0Ci, ‖e(n−1)

0 β(n)‖H4
δ′
≤ A0C

2
i . (8.14)
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Assume also that the above estimates for β(n), but not necessarily that for e
(n−1)
0 β(n), also hold

with (n) replaced by (n− 1).
• (Estimates for γ̃(n)) γ(n) admits a decomposition γ(n) = −αχ(|x|)log(|x|) + γ̃(n), where α is as in

Lemma 7.1 (with 0 ≤ α ≤ Cε2) and γ̃(n) satisfies∑
|α|≤3

∥∥∥∥∥e(n−1)
0 ∇αγ̃(n)

N (n−1)

∥∥∥∥∥
L2
δ′+1+|α|

+
∥∥∥∇γ̃(n)

∥∥∥
H3
δ′+1

≤4Ci, (8.15)

∥∥∥∥∥∂t (e(n−1)
0 )γ̃(n)

N (n−1)

∥∥∥∥∥
H1
δ′+1

≤ A1Ci,

∥∥∥∥∥∂t (e(n−1)
0 )γ̃(n)

N (n−1)

∥∥∥∥∥
H2
δ′+1

≤A1C
2
i . (8.16)

Assume that the same holds with (n) replaced by (n− 1).
• (Estimates for τ (n)) τ (n) satisfies the following estimates:

‖τ (n)‖H3
δ′′+1

≤ A1Ci, ‖∂tτ (n)‖H1
δ′′+1

≤ A2Ci, ‖∂tτ (n)‖H2
δ′′+1

≤ A2C
2
i . (8.17)

• (Estimates for H(n)) H(n) satisfies the following estimates:

‖H(n)‖H3
δ+1
≤ 2Ci, ‖e(n)

0 H(n)‖H3
δ+1
≤ 20Ci. (8.18)

• (Estimates for the vector fields L
(n)
A and auxiliary functions χ

(n)
A ) Let L

(n)
A be decomposed with

respect to {∂t, ∂i}, i.e., L
(n)
A = (L

(n)
A )t∂t + (L

(n)
A )i∂i. Then (L

(n)
A )t obeys the lower bound

min
A

inf
x∈R2

∣∣∣N (n−1)eγ
(n−1)

(L
(n)
A )t

∣∣∣ (x) ≥ 1

2
C−1
eik. (8.19)

for Ceik as in (5.6), and L
(n)
A satisfies the following estimates:

sup
A

(∥∥∥e2γ(n−1)

(L
(n)
A )i +−→cAi

∥∥∥
H2
δ′′

+
∥∥∥N (n−1)eγ

(n−1)

(L
(n)
A )t − |−→cA|

∥∥∥
H2
δ′′

)
≤ A0Ceik, (8.20)

sup
A

(∥∥∥e2γ(n−1)

(L
(n)
A )i +−→cAi

∥∥∥
H3
δ′′

+
∥∥∥∂t (e2γ(n−1)

(L
(n)
A )i

)∥∥∥
H2
δ′′′

)
+ sup

A

(∥∥∥N (n−1)eγ
(n−1)

(L
(n)
A )t − |−→cA|

∥∥∥
H3
δ′′

+
∥∥∥∂t (N (n−1)eγ

(n−1)

(L
(n)
A )t

)∥∥∥
H2
δ′′′

)
≤ A1Ci. (8.21)

Also, for Cχ as in Lemma 7.5, χ
(n)
A satisfies the following estimates:

sup
A

∥∥∥χ(n)
A

∥∥∥
C0
δ′+1

≤ 2Cχ, sup
A

∥∥∥χ(n)
A

∥∥∥
H3
δ

≤ A0Ci. (8.22)

• (Estimates for the matter fields) φ(n) and F
(n)
A are compactly supported in

{(t, x) ∈ [0, T ]× R2 : Cs(1 +Rε)t− |x| ≥ −R},
where Cs > 0 is to be chosen in Lemmas 8.11 and 8.17. Choosing T smaller if necessary, we assume
the above set ⊂ {(t, x) ∈ [0, T ]× R2 : |x| ≤ 2R}.

Moreover, the following estimates hold:

‖∂φ(n)‖H3 +

∥∥∥∥∥∂t (e(n−1)
0 )φ(n)

N (n−1)

∥∥∥∥∥
H2

≤A0Ci, (8.23)

sup
A

∥∥∥F (n)
A

∥∥∥
H3
≤ A0Ci, sup

A

∥∥∥∂tF (n)
A

∥∥∥
H2
≤A1Ci. (8.24)

Remark 8.2 (Choice of constants). Recalling the statement of Theorem 5.4, Chigh is a potentially large
constant such that T can depend on Chigh but εlow has to be independent of Chigh. In the previous section,
we have proven that there is a Ci depending on Chigh so that the bounds in Corollary 7.6 hold. Therefore,
in the following εlow and T are chosen according to the following rules:

• εlow (and therefore ε) can be chosen to be small depending on δ, R, A0, A1, A2 and Ceik, but not
Ci.

• The time parameter T can be chosen to be small depending on all of δ, R, Ci, Ceik, A0, A1, A2 and
ε−1.
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In the remainder of this subsection, C will denote numerical constant, independent of A and
Ci, but can depend on12 Ceik, δ and R. Similarly, we use the convention . when the implicit
constant is independent of A0, A1, A2 and Ci. Constants that depend on A0, A1, A2 or Ci (in
addition to Ceik, δ and R) will be written explicitly as C(A0), C(A1), C(A2) or C(Ci).

With the above conventions in mind, we note that in the rest of this subsection, we will have the following
hierarchy of constants:

C(A0)� A1, C(A1)� A2;

while ε is much smaller than Ceik, A0, A1, A2 so that for any η > 1
100 ,

εηC(Ceik)� 1 εηC(A2)� 1.

Notice however that since ε has to be chosen independent of Ci, ε
ηCi cannot be considered as a small

constant.
It is easy to check using estimates in Section 7 that the estimates (8.10)–(8.24) hold for the base case

n = 2. Our goal now is to prove the analogue of the estimates (8.10)–(8.24) with (n) replaced by (n + 1)
(and (n− 1) replaced by (n)). For most of these, we will in fact show that they hold with better constants
on the RHS.

We begin with a propagation of smallness result, which states that for T sufficiently small, the smallness
of the data in the low norms can be propagated. Since we need to propagate smallness in L4- and L∞-type
spaces as well as L2-type spaces, it is convenient to achieve this directly using the smallness of initial data,
the boundedness of the time derivatives and the the smallness of the time interval.

Proposition 8.3 (Propagation of smallness). The following estimates hold for T sufficiently small (de-
pending on Ci)

‖∂tφ(n)‖L∞ + ‖∇φ(n)‖L∞ + ‖F (n)
A ‖L∞ ≤Cε,

‖H(n)‖H1
δ+1

+ ‖H(n)‖W 1

δ+3
2
,4

+ ‖H(n)‖C0
δ+2
≤Cε2,

‖γ̃(n)‖H2
δ′

+ ‖γ̃(n)‖W 2

δ′+1
2
,4

+ ‖γ̃(n)‖C1
δ′+1
≤Cε2,∥∥∥∥∥e(n−1)

0 γ̃(n)

N (n−1)

∥∥∥∥∥
H1
δ′+1

+

∥∥∥∥∥e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
W 1

δ′+3
2
,4

+

∥∥∥∥∥e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
C0
δ′+2

≤Cε2,

‖τ (n)‖H1
δ′′+1

+
∥∥∥τ (n)

∥∥∥
W 1

δ′′+3
2
,4

+
∥∥∥τ (n)

∥∥∥
C0
δ′′+2

≤Cε2.

Proof. By (7.3), (7.4), Lemma 7.3 and the fact τ (n) �Σ0= 0 (Lemma 7.3), all these quantities initially
satisfy the desired smallness estimates. The conclusion thus follows from the fact that the ∂t derivatives
of all these terms in the relevant norms are bounded by a constant depending on A0, A1, A2 and Ci,
which is a consequence of the weighted-L2 estimates in (8.11), (8.14), (8.15), (8.16), (8.17), (8.18), (8.23)
and (8.24), together with the Sobolev embedding results in Proposition A.3. (Notice that in applying the

above estimates to obtain bounds for the ∂t derivatives, we often need to write ∂t = e
(n)
0 + (β(n))i∂i or

∂t = e
(n−1)
0 + (β(n−1))i∂i and estimate β(n) and β(n−1) using (8.13).)

Therefore, the result follows from using calculus inequality of the type

sup
t∈[0,T ]

‖f‖W s
η,p

(t) ≤ C

(
‖f‖W s

η,p
(0) +

∫ T

0

‖∂tf‖W s
η,p

(t′) dt′

)
and choosing T to be sufficiently small. �

Proposition 8.4 (Estimate for e
(n−1)
0 γ̃(n)). The following estimate holds:∥∥∥∥∥e(n−1)

0 γ̃(n)

N (n−1)

∥∥∥∥∥
H3
δ′+1

≤ 5Ci. (8.25)

12Recall that for this subsection, we have fixed k = 3. Hence, none of the constants depend on k.
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Proof. In view of (8.15), the proof of this proposition amounts to commuting e
(n−1)
0 and ∇. Using

[e
(n−1)
0 , ∂i] = (∂iβ

j)∂j , we have∥∥∥∥∥e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
H3
δ′+1

≤
∑
|α|≤3

∥∥∥∥∥e(n−1)
0 ∇αγ̃(n)

N (n−1)

∥∥∥∥∥
L2
δ′+1+|α|

+ C
∑

|α1|+|α2|+i≤2

∥∥∥∥∥∇α1(∇ logN (n−1))i+1∇α2
e

(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
L2
δ′+1+|α1|+|α2|

+ C
∑

|α1|+|α2|+|α3|+i≤2

∥∥∥∥∇α1∇β(n−1)∇α2(∇ logN (n−1))i∇α3∇γ̃(n)

N (n−1)

∥∥∥∥
L2
δ′+1+|α1|+|α2|

.

(8.26)

Here, we have used the convention that ∇α(∇ logN (n))i denotes a product of i factors, each of which is some
spatial derivatives of ∇ logN (n) and the total number of derivatives is |α|. Now using Hölder’s inequality,
Lemma A.1, Proposition A.3, (8.10), (8.11) and Proposition 8.3,∑

|α1|+|α2|+i≤2

∥∥∥∥∥∇α1(∇ logN (n−1))i+1∇α2
e

(n−1)
0 γ̃(n)

N (n)

∥∥∥∥∥
L2
δ′+1+|α1|+|α2|

.
∥∥∥∇ logN (n−1)

∥∥∥
C0
δ+1

∥∥∥∥∥e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
H2
δ′+1

+
∥∥∥∇ logN (n−1)

∥∥∥
W 1

δ+3
2
,4

∥∥∥∥∥e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
W 2

δ′+3
2
,4

+
∥∥∥∇ logN (n−1)

∥∥∥
H2
δ+1

∥∥∥∥∥e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
C0
δ′+2

.ε

∥∥∥∥∥e(n)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
H2
δ′+1

+ εCi.

(8.27)

Similarly, but using (8.13) and (8.14) in addition to (8.10), and also the fact that 1
N(n) . 1, we have∑

|α1|+|α2|+|α3|+i≤2

∥∥∥∥∇α1∇β(n−1)∇α2(∇ logN (n−1))i∇α3∇γ̃(n)

N (n−1)

∥∥∥∥
L2
δ′+1+|α1|+|α2|

. ε
∥∥∥∇γ̃(n)

∥∥∥
H3
δ′+1

+ εA0Ci.

(8.28)
Plugging (8.27) and (8.28) into (8.26), we obtain∥∥∥∥∥e(n−1)

0 γ̃(n)

N (n−1)

∥∥∥∥∥
H3
δ′+1

≤
∑
|α|≤3

∥∥∥∥∥e(n−1)
0 ∇αγ̃(n)

N (n−1)

∥∥∥∥∥
L2
δ′+1+|α|

+ Cε

∥∥∥∥∥e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
Hk
δ′+1

+
∥∥∥∇γ̃(n)

∥∥∥
H3
δ′+1

 (t) + εCA0Ci.

(8.29)

Consequently, choosing ε sufficiently small, and using (8.15), we conclude the proof of the Proposition. �

Proposition 8.5 (Estimates for N (n+1)). For n ≥ 2, N (n+1) admits a decomposition

N (n+1) = 1 +N (n+1)
asympχ(|x|)log(|x|) + Ñ (n+1),

with N
(n+1)
asymp ≥ 0, and such that the following bounds are satisfied:

|N (n+1)
asymp|+ ‖Ñ (n+1)‖H2

δ
+ ‖Ñ (n+1)‖W 2

δ+1
2
,4

+ ‖Ñ (n+1)‖C1
δ+1
.ε2, (8.30)

|∂tN (n+1)
asymp|+ ‖Ñ (n+1)‖H5

δ
+ ‖∂tÑ (n+1)‖H2

δ
.εC(A2)Ci, (8.31)

‖∂tÑ (n+1)‖H3
δ
.εC(A1)C2

i . (8.32)
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Proof. Existence of decomposition and proof of (8.30). We claim that

‖RHS of (8.1)‖L2
δ+2

+ ‖RHS of (8.1)‖L4

δ+5
2

≤ Cε2. (8.33)

Except for13 the term e2γ(n)

N (n)(τ (n))2, all the other terms can be estimated in an identical manner as in
Lemma 7.2, except that we estimate the terms using Proposition 8.3 instead of using the assumptions on
the reduced data and the estimates in Lemma 7.1.

It therefore remains to control e2γ(n)

N (n)(τ (n))2. For this we note that, for ε sufficiently small, by
Proposition 8.3,

‖(τ (n))2‖L2
δ+2+ε

. ‖τ (n)‖L2
δ′′+1
‖τ (n)‖C0

δ′′+2
. ε4.

Now by Lemma 7.1 (for α), Proposition 8.3 (for γ̃(n)) and (8.10) (for N
(n)
asymp and Ñ (n)), for ε sufficiently

small, e2γ(n)

N (n) grows at worst as |x|Cε2 for large |x| and ‖e2γ(n)

N (n)‖C0
ε
. 1. This proves that

‖e2γ(n)

N (n)(τ (n))2‖L2
δ+2
. ε4.

An essentially identical argument also shows

‖e2γ(n)

N (n)(τ (n))2‖L4

δ+5
2

. ε4.

This proves the claim. Applying Theorem A.7 and Corollary A.8 (to ∆(N (n+1)− 1)) yields the existence of
the decomposition of N (n+1), as well as the estimate (8.30).

Proof of first part of (8.31). To obtain the H5
δ bound for Ñ (n) (first part of (8.31)), we need to control

the RHS of (8.1) in H3
δ+2. We note that it is easy to obtain some bound in H3

δ+2. The key point here,
however, is that the bound must be at worst linear in Ci, with an ε smallness constant.

We first bound the term e−2γ(n)

N (n)|H(n)|2 in H3
δ+2. There are various cases: in order to shorten the

exposition, let us use the notation (a, b, c, d) (with c ≤ d) to denote the case with at most a derivatives on
γ(n), at most b derivatives on N (n−1), at most c and d derivatives on the two factors of H(n). The following
cases, though not mutually exclusive, exhaust all possibilities:

• (1, 1, 0, 3). By Hölder’s inequality, (7.3), (8.10), (8.18) and Proposition 8.3,

. ‖H(n)‖C0
δ+2
‖H(n)‖H3

δ+1
≤ Ciε2.

• (1, 3, 0, 0). By Hölder’s inequality, (7.3), (8.10), (8.11) and Proposition 8.3,

.
(

1 + |N (n)
asymp|+ ‖Ñ (n)‖H3

δ

)
‖H(n)‖2C0

δ+2
≤ Ciε4.

• (3, 1, 0, 0). By Hölder’s inequality, (7.3), (8.10), (8.15), Proposition 8.3 and Lemma A.1,

.
(

1 + |α|+ ‖∇γ̃(n)‖H2
δ′+1

)
‖H(n)‖2C0

δ+2
. Ciε

4.

• (1, 1, 1, 2). By Hölder’s inequality, (7.3), (8.10), (8.18), Propositions 8.3 and A.3,

. ‖H(n)‖W 1

δ+3
2
,4

‖H(n)‖W 2

δ+3
2
,4

. ‖H(n)‖W 1

δ+3
2
,4

‖H(n)‖H3
δ+2
. Ciε

2.

• (2, 0, 0, 1). By Hölder’s inequality, (7.3), (8.10) and Proposition 8.3,

.

(
1 + |α|+ ‖γ̃(n)‖W 2

δ′+1
2
,4

)
‖H(n)‖C0

δ+2
‖H(n)‖W 1

δ+3
2
,4

. ε4.

• (0, 2, 0, 1). By Hölder’s inequality, (7.3), (8.10) and Proposition 8.3,

.

(
1 + |N (n)

asymp|+ ‖Ñ (n)‖W 2

δ+1
2
,4

)
‖H(n)‖C0

δ+2
‖H(n)‖W 1

δ+3
2
,4

. ε4.

The term e2γ(n)

N (n)(τ (n))2 can be treated in a similar fashion, since τ (n) and H(n) (according to (8.17),
(8.18) and Proposition 8.3) obey similar estimates14 except for a slight difference of weights (δ′ compared
to δ) and constants (A1 compared to 2). Since this term is at least quadratic in τ (n) (and its derivatives),
there is plenty of room to handle the weights. We give the estimate here and omit the straightforward proof:

‖e2γ(n)

N (n)(τ (n))2‖H3
δ+2
. C(A1)Ciε

2 . Ciε.

13Note that in (7.7), τ does not appear on the RHS.
14Notice that this comparison is only true for τ (n) and H(n) without ∂t derivatives, which is what we are concerned about

for this estimate.
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We next discuss the scalar field term, e
2γ(n)

N(n) (e
(n−1)
0 φ(n))2. Note that this term poses a different challenge

in the sense that the smallness is at a much lower level (i.e., taking any derivative of e
(n−1)
0 φ(n) destroys

the ε-smallness). Nevertheless, it has the advantage that the term is compactly supported, and we can use
the product estimate in unweighted Sobolev spaces in Proposition A.5 to obtain15∥∥∥∥∥e2γ(n)

N (n)
(e

(n−1)
0 φ(n))2

∥∥∥∥∥
H3
δ+2

.

∥∥∥∥∥e2γ(n)

N (n)

∥∥∥∥∥
L∞(B(0,3R))

‖e(n−1)
0 φ(n)‖H3‖e(n−1)

0 φ(n)‖L∞ +

∥∥∥∥∥e2γ(n)

N (n)

∥∥∥∥∥
H3(B(0,3R))

‖e(n−1)
0 φ(n)‖2L∞

.εC(A0)Ci.

(8.34)

Here we have used (8.10), (8.11), (8.15), (8.23), Proposition 8.3 and also (8.13) and (8.14) (to control the

difference between e
(n−1)
0 and ∂t).

A similar argument as (8.34) can be used to bound the term involving (F
(n)
A )2, using (8.24), (8.20) and

(8.21) instead of (8.23), since F
(n)
A is also compactly supported, to get16∥∥∥∥∥∑

A

e4γ(n)

N (n)(F
(n)
A )2δij(L

(n)
A )i(L

(n)
A )j

∥∥∥∥∥
H3
δ+2

.εC(A0)Ci + ε2C(A1)Ci . εC(A0)Ci.

Combining all the estimates above, we have ‖(RHS of (8.1))‖H3
δ+2
. εC(A0)Ci. By Theorem A.7, we

obtain ‖Ñ (n+1)‖H5
δ
≤ εCi, which is the first part of (8.31).

Proof of second part of (8.31). We now turn to the estimate for ∂tN
(n+1), including both for

∂tN
(n+1)
asymp and ∂tÑ

(n+1), in (8.31). Since RHS of (8.1) is differentiable in t, it is easy to see that ∂tN
(n+1) =

(∂tN
(n+1)
asymp)χ(|x|)log(|x|) + ∂tÑ

(n+1) is the solution given by Corollary A.8 to the equation

∆(∂tN
(n+1)) = ∂t(RHS of (8.1)).

Therefore, to prove the second part of (8.31), it suffices (1) to bound the integral of ∂t(RHS of (8.1)) with
respect to dx, and (2) to bound ∂t(RHS of (8.1)) in L2

δ+2 = H0
δ+2. Noticing moreover that (by Hölder’s

inequality) L2
δ+2 ⊂ L1 continuously, it therefore suffices to bound ∂t(RHS of (8.1)) in H0

δ+2

Since the estimates for ∂tτ
(n) are worse than those for ∂tH

(n), and those for τ (n) and H(n) are similar

(compare (8.17) and (8.18)), we will treat the term ∂t

(
e2γ(n)

N (n)(τ (n))2
)

and leave the (easier) term

∂t

(
e−2γ(n)

N (n)|H(n)|2
)

to the reader. For the term ∂t

(
e2γ(n)

N (n)(τ (n))2
)

, we can in fact bound it in the

norm H1
δ+2 (which is stronger than H0

δ+2) as follows, using (8.10), (8.11), (8.17) and Proposition 8.3:

‖∂t
(
e2γ(n)

N (n)(τ (n))2
)
‖H1

δ+2

.‖e2γ(n)

N (n)‖C1
− ε

10

(
‖τ (n)‖C0

δ′′+2
‖∂tτ (n)‖H1

δ′′+1
+ ‖τ (n)‖W 1

δ′′+3
2
,4

‖∂tτ (n)‖W 0

δ′′+3
2
,4

)
+
∥∥∥∂t (e2γ(n)

N (n)
)∥∥∥

W 1

− ε
10
− 1

2
,4

‖τ (n)‖W 1

δ′′+3
2
,4

‖τ (n)‖C0
δ′′+2

.ε2A2Ci + CiA1ε
4 . ε2C(A2)Ci . εCi.

(8.35)

15To see that using Proposition A.5 and the fact that supp(e
(n−1)
0 φ(n)) ⊂ B(0, 2R) indeed imply such an estimate where we

only require the bounds for e2γ
(n)

N(n−1) in B(0, 3R), we argue as follows: Let η be a smooth cutoff function compactly supported

in B(0, 3R) which is ≡ 1 in B(0, 2R). Then∥∥∥∥∥ e2γ
(n)

N(n)
(e

(n−1)
0 φ(n))2

∥∥∥∥∥
H3
δ+2

.

∥∥∥∥∥(η
e2γ

(n)

N(n−1)
)(e

(n−1)
0 φ(n))2

∥∥∥∥∥
H3

.‖(η
e2γ

(n)

N(n)
)‖L∞‖(e

(n−1)
0 φ(n))2‖H3 + ‖(η

e2γ
(n)

N(n−1)
)‖H3‖(e(n−1)

0 φ(n))2‖L∞ .

The support properties of η thus imply the desired estimate.
16We note again that the implicit constant in . may depend on Ceik.
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We now turn to the compactly supported terms involving (e
(n−1)
0 φ(n))2 and (F

(n)
A )2. First, for (e

(n−1)
0 φ(n))2,

by Hölder’s inequality, the support properties of e
(n−1)
0 φ(n), (8.10), (8.15), (8.23) and Propositions 8.3, 8.4

and A.3, we have∥∥∥∥∥∂t
(
e2γ(n)

N (n)
(e

(n−1)
0 φ(n))2

)∥∥∥∥∥
H0
δ+2

.

∥∥∥∥∥∂t e2γ(n)

(N (n−1))2

N (n)

∥∥∥∥∥
L∞(B(0,2R))

∥∥∥∥∥e(n−1)
0 φ(n)

N (n−1)

∥∥∥∥∥
2

L∞

+

∥∥∥∥∥e2γ(n)

(N (n−1))2

N (n)

∥∥∥∥∥
L∞(B(0,2R))

∥∥∥∥∥∂t e(n−1)
0 φ(n)

N (n−1)

∥∥∥∥∥
L∞

∥∥∥e(n−1)
0 φ(n)

∥∥∥
L∞
. εC(A0)Ci.

(8.36)

The (F
(n)
A )2 term can be treated similarly using (8.20), (8.21) and (8.24) instead of (8.23):∥∥∥∥∥∂t

(∑
A

e4γ(n)

N (n)(F
(n)
A )2δij(L

(n)
A )i(L

(n)
A )j

)∥∥∥∥∥
H0
δ+2

. εC(A1)Ci.

Combining all these gives the estimates for ∂tN
(n+1)
asymp and ∂tÑ

(n+1) in (8.31).
Proof of (8.32). Finally, in order to prove (8.32), we estimate ∂t(RHS of (8.1)) in H1

δ+2. Now, in
contrast to the second part of (8.31), we allow the estimates to be quadratic in Ci. First we note that the

∂t

(
e2γ(n)

N (n)(τ (n))2
)

term has been estimated above in (8.35). The ∂t

(
e−2γ(n)

N (n)|H(n)|2
)

term, as we

argued above, is similar.

It therefore remains to estimate the (e
(n−1)
0 φ(n))2 term and the (F

(n)
A )2 term. For the scalar field term,

we have, using the support properties17 of e
(n−1)
0 φ(n), Proposition A.5, (8.10), (8.11), (8.13), (8.15), (8.23),

Propositions 8.3 and 8.4,∥∥∥∥∥∂t
(
e2γ(n)

N (n)
(e

(n−1)
0 φ(n))2

)∥∥∥∥∥
H1
δ+2

.

∥∥∥∥∥∂t e2γ(n)

(N (n−1))2

N (n)

∥∥∥∥∥
L∞(B(0,3R))

∥∥∥∥∥e(n−1)
0 φ(n)

N (n−1)

∥∥∥∥∥
L∞

∥∥∥∥∥e(n−1)
0 φ(n)

N (n−1)

∥∥∥∥∥
H1

+

∥∥∥∥∥∂t e2γ(n)

(N (n−1))2

N (n)

∥∥∥∥∥
H1(B(0,3R))

∥∥∥∥∥e(n−1)
0 φ(n)

N (n−1)

∥∥∥∥∥
L∞

∥∥∥∥∥e(n−1)
0 φ(n)

N (n−1)

∥∥∥∥∥
L∞

+

∥∥∥∥∥e2γ(n)

(N (n−1))2

N (n)

∥∥∥∥∥
L∞(B(0,3R))

∥∥∥∥∥∂t e(n−1)
0 φ(n)

N (n−1)

∥∥∥∥∥
H1

∥∥∥∥∥e(n−1)
0 φ(n)

N (n−1)

∥∥∥∥∥
L∞

+

∥∥∥∥∥e2γ(n)

(N (n−1))2

N (n)

∥∥∥∥∥
H1(B(0,3R))

∥∥∥∥∥∂t e(n−1)
0 φ(n)

N (n−1)

∥∥∥∥∥
L∞

∥∥∥∥∥e(n−1)
0 φ(n)

N (n−1)

∥∥∥∥∥
L∞

. εC(A0)C2
i .

Using (8.20), (8.21) and (8.24) instead of (8.23), the F 2
A term is similar, for which we have∥∥∥∥∥∂t

(∑
A

e4γ(n)

N (n)(F
(n)
A )2δij(L

(n)
A )i(L

(n)
A )j

)∥∥∥∥∥
H1
δ+2

. εC(A1)C2
i .

�

17We refer the reader to Footnote 15 on p.19 regrading the use of Proposition A.5 when one of the factors is compactly

supported.
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Proposition 8.6 (Estimates for β(n+1)). For n ≥ 2, the following estimates hold:

‖β(n+1)‖H2
δ′

+ ‖β(n+1)‖W 2

δ′+1
2
,4

+ ‖β(n+1)‖C1
δ′+1
.ε2, (8.37)

‖β(n+1)‖H4
δ′
.Ci, (8.38)

‖e(n)
0 β(n+1)‖H2

δ′
.Ci, (8.39)

‖e(n)
0 β(n+1)‖H4

δ′
.C2

i . (8.40)

Proof. In view of Proposition 8.3, the existence of β(n+1) and the estimates (8.37) can be proven in exactly
the same manner as Lemma 7.2; we omit the details. We only focus on the proofs of (8.38), (8.39) and
(8.40).

Proof of (8.38). To prove (8.38), we take the divergence of (8.2) (in a similar manner as in the proof of
Lemma 7.2) to get

∆(β(n+1))i = 2δi`δjk∂k

(
N (n)e−2γ(n)

(H(n))j`

)
. (8.41)

Note that the RHS obviously has 0 mean and therefore by Theorem A.7, in order to prove (8.38), it suffices
to bound the RHS of (8.41) in H2

δ′+2 by CCi.
Let us note explicitly that in this estimate, the need to have a small loss in the weight (with δ′ = δ − ε

instead of δ) is due to18 the factor N (n)e−2γ(n)

, which grows at infinity. On the other hand, since α and

|N (n+1)
asymp| are small (by (7.3) and (8.10)), N (n)e−2γ(n)

grows at worst as |x| ε10 for large |x|, and this can
indeed be handled by putting in δ′ in place of δ in the estimates. More precisely, by Lemma A.1, Hölder’s
inequality, (7.3), (8.10), (8.11), (8.15), (8.18) and Proposition 8.3,∥∥∥∂k (N (n)e−2γ(n)

(H(n))j`

)∥∥∥
H2
δ′+2

.‖N (n)e−2γ(n)

(H(n))j`‖H3
δ′+1

.(1 + ‖Ñ (n)‖W 2

δ+1
2
,4

+ ‖γ̃(n)‖W 2

δ′+1
2
,4

)‖H(n)‖H3
δ+1

+ (‖Ñ (n)‖H3
δ

+ ‖∇γ̃(n)‖H2
δ′+1

)‖H(n)‖C0
δ+2

.Ci + ε2Ci . Ci.

(8.42)

Proof of (8.39). For the estimate of e
(n)
0 β(n+1), we take the divergence of (8.2) and commute the

resulting equation19 with e
(n)
0 to obtain

∆
(
e

(n)
0 (β(n+1))i

)
= 2δk`δije

(n)
0 ∂k(e−2γ(n)

N (n)H
(n)
`j ) + [∆, e

(n)
0 ](β(n+1))i =: I + II. (8.43)

It is easy to check that the RHS of (8.43) in fact has mean zero (as is expected). As a consequence, we can

apply Theorem A.7 so that in order to prove the estimate for e
(n)
0 β(n+1) in (8.39), it suffices to bound the

RHS of (8.43) in L2
δ′+2 = H0

δ′+2 by Ci.

For I in (8.43), after commuting [e
(n)
0 , ∂k] and using Lemma A.1, it easy to see that we only need to

estimate the following terms:

‖I‖H0
δ′+2
.‖e−2γ(n)

N (n)(e
(n)
0 H(n))‖H1

δ′+1
+ ‖e−2γ(e

(n)
0 γ(n))N (n)H(n)‖H1

δ′+1

+ ‖e−2γ(e
(n)
0 N (n))H(n)‖H1

δ′+1
+ ‖β(n)‖C0

δ′+1
‖∂k(e−2γ(n)

N (n)H(n))‖H0
δ′+1

.
(8.44)

Using (8.13) and (8.42), the last term is clearly . εCi.
To proceed, notice that according to Proposition 8.3, Ñ (n), γ̃(n) and H(n) are all O(ε2) small in L4-

based norms up to 1 derivatives, while according to (8.11), (8.15), (8.18) and Proposition 8.4 (and (8.13)),

e
(n)
0 Ñ (n), e

(n)
0 γ̃(n) and e

(n)
0 H(n) are O(Ci) in appropriate weighted H2 spaces. Hence, the first three terms

18This is for instance in contrast to the proof of Proposition 8.5, where because the corresponding RHS is more nonlinear,

one can put Ñ(n+1) in a better weighted space.
19To obtain this one needs to justify that e

(n)
0 (β(n+1))i is well-defined, but this follows from the fact that the RHS is

differentiable by e
(n)
0 ; we omit the details.
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in (8.44) can be treated in a similarly manner. We consider the first term as an example. By (7.3), (8.10),
(8.11), (8.15), (8.18), Proposition 8.3 and Proposition A.3,

‖e−2γ(n)

N (n)(e
(n)
0 H(n))‖H1

δ′+1

.‖e−2γ(n)

N (n)‖C0
−ε
‖e(n)

0 H(n)‖H1
δ+1

+ ‖e−2γ(n)

N (n)‖W 1

−ε− 1
2
,4

‖e(n)
0 H(n)‖L4

δ+3
2

.‖e−2γ(n)

N (n)‖W 1

−ε− 1
2
,4

‖e(n)
0 H(n)‖H1

δ+1
. Ci.

The other terms in (8.44) can be similarly shown to be . Ci.
For term II in (8.43), we first compute∣∣∣[∆, e(n−1)

0 ](β(n))i
∣∣∣ . |∇∇β(n−1)||∇β(n)|+ |∇β(n−1)||∇∇β(n)|.

We then estimate this term. In fact, it will be convenient later to bound it in a stronger norm, namely the
H2
δ′+2 norm (instead of the H0

δ′+2 norm), using (8.13), (8.14) and Proposition A.3:

‖II‖H2
δ′+2
.‖β(n−1)‖H4

δ′
‖β(n)‖C1

δ′+1
+ ‖β(n−1)‖W 3

δ′+1
2
,4

‖β(n)‖W 2

δ′+1
2
,4

+ ‖β(n)‖H4
δ′
‖β(n−1)‖C1

δ′+1
+ ‖β(n)‖W 3

δ′+1
2
,4

‖β(n−1)‖W 2

δ′+1
2
,4

. εC(A0)Ci.
(8.45)

Proof of (8.40). Finally, to prove (8.40), we apply Theorem A.7 and estimate the RHS of (8.43) in
H2
δ′+2. Let us note at this point that it is for the purpose of (8.40), we need to commute the equation with

e
(n)
0 instead of, say, ∂t. This is so that we can make use of the top order estimate in (8.18). Indeed, using

the estimates for H(n) in (8.18), we cannot bound general fifth derivatives of H(n), but can only bound the

combination of one e
(n)
0 and four spatial derivatives.

Arguing as (8.44) and using Proposition A.4, for I in (8.43), it suffices to estimate the following terms:

‖I‖H2
δ′+2
.‖e−2γ(n)

N (n)(e
(n)
0 H(n))‖H3

δ′+1
+ ‖e−2γ(e

(n)
0 γ(n))N (n)H(n)‖H3

δ′+1

+ ‖e−2γ(e
(n)
0 N (n))H(n)‖H3

δ′+1
+ ‖β(n)‖H2

δ′
‖∂k(e−2γ(n)

N (n)H(n))‖H2
δ′+1

.
(8.46)

As in the proof of (8.39), the last term is somewhat easier, and can be bounded by . εCi by (8.13) and
(8.42). It remains to estimate the first three terms. Again, as in the proof of (8.39), they are rather similar
and we will only carry out the estimate for the first term in detail. More precisely, by Lemma 7.1, (8.10),
(8.11), (8.15), (8.18) and Proposition 8.3,

‖e−2γ(n)

N (n)(e
(n)
0 H(n))‖H3

δ′+1

.

(
1 + |N (n)

asymp|+ ‖Ñ (n)‖W 2

δ+1
2
,4

)(
1 + ‖γ̃(n)‖W 2

δ′+1
2
,4

)
‖e(n)

0 H(n)‖H3
δ′+1

+
(
‖Ñ (n)‖H3

δ
+ ‖γ̃(n)‖H3

δ′

)
‖e(n)

0 H(n)‖C0
δ′+2

.Ci + C2
i . C

2
i .

The other terms in (8.46) can be treated in a similar manner. Finally, the term II in (8.43) has already
been estimated in H2

δ′+2 in (8.45). We therefore conclude the proof of (8.40). �

We have now completed all the elliptic estimates. In the remaining estimates, we can exploit the smallness
time parameter T . However, one still needs to take caution when estimating the time derivatives, as these
are typically controlled by estimating the RHS of the evolution equations, and one still needs to track
precisely the dependence of the constants.

The next quantity we bound is γ(n+1). In the following lemma, we prove an energy estimate for general
solutions to inhomogenous wave equations of the type satisfied by γ(n+1) in (8.3).

Lemma 8.7 (Energy estimate for the wave equation satisfied by γ(n+1)). Suppose h satisfies the following
inhomogeneous wave equation

1

N (n)
e

(n)
0

(
1

N (n)
e

(n)
0 h

)
−∆h = f. (8.47)
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Then, for a weight function w(|x|) = (1 + |x|2)σ, it holds that∫
R2

w

(
1

(N (n))2
(e

(n)
0 h)2 + |∇h|2

)
(t, x) dx

≤2

∫
R2

w

(
1

(N (n))2
(e

(n)
0 h)2 + |∇h|2

)
(0, x) dx+ CT sup

t′∈[0,T ]

∫
R2

w(N (n))2f2(t′, x) dx.

(8.48)

In particular, this implies that

∑
|α|≤3

∥∥∥∥∥e(n)
0 ∇αh
N (n)

∥∥∥∥∥
L2
δ′+1+|α|

(t) + ‖∇h‖H3
δ′+1

(t) ≤2

∑
|α|≤3

∥∥∥∥∥e(n)
0 ∇αh
N (n)

∥∥∥∥∥
L2
δ′+1+|α|

(0) + ‖∇h‖H3
δ′+1

(0)


+ C(Ci)T sup

t′∈[0,T ]

‖N (n)f‖H3
δ′+1

(t′).

(8.49)

Proof. Proof of (8.48). Let w(|x|) be as in the statement of the lemma. We multiply (8.47) by we
(n)
0 h and

integrate over R2 with respect to dx. After integration by parts, we obtain

∫
R2

1

2
we

(n)
0

(
e

(n)
0 h

N (n)

)2

dx+

∫
R2

∇h · ∇
(
we

(n)
0 h

)
dx =

∫
R2

wfe
(n)
0 h dx.

Hence,

d

dt

∫
R2

w

(
(e

(n)
0 h)2

2(N (n))2
+

1

2
|∇h|2

)
dx+

∫
R2

1

2
∂i

(
(β(n))iw

)( 1

(N (n))2
(e

(n)
0 h)2 + |∇h|2

)
dx

+

∫
R2

w′
xi

|x|
∂ihe

(n)
0 h dx−

∫
R2

wδik∂i(β
(n))j∂kh∂jh dx =

∫
R2

wfe
(n)
0 h dx.

Since w(|x|) = (1 + |x|2)σ and N (n) . (1 + ε)(1 + χ(|x|)log(|x|)),

w′(|x|) . w(|x|)
(1 + |x|2)

1
2

.
w(|x|)
N (n)

.

Moreover, by (8.13) and Proposition A.3, ‖β(n)‖L∞ + ‖∇β(n)‖L∞ . ‖β(n)‖W 2

δ′+1
2
,4

. 1. Hence,

|∇(β(n)w)| . w, |w∇β(n)| . w.

Using the above estimates and Cauchy–Schwarz, we therefore have

d

dt

∫
R2

w

(
(e

(n)
0 h)2

(N (n))2
+ |∇h|2

)
dx

.
∫
R2

w

(
(e

(n)
0 h)2

(N (n))2
+ |∇h|2

)
dx+

(∫
R2

w
(e

(n)
0 h)2

(N (n))2
dx

) 1
2 (∫

R2

w(N (n))2f2 dx

) 1
2

.

Therefore, using Grönwall’s inequality and choosing T sufficiently small, we obtain (8.48).
Proof of (8.49). We differentiate (8.47) by up to three spatial derivatives to obtain that for multi-index

α with |α| ≤ 3,

1

N (n)
e

(n)
0

(
1

N (n)
e

(n)
0 (∇αh)

)
−∆(∇αh) = ∇αf +

[
1

N (n)
e

(n)
0 (

1

N (n)
e

(n)
0 ),∇α

]
h. (8.50)

By (8.48) with σ = δ′+1+|α|
2 , in order to prove (8.49), we need to multiply the RHS of (8.50) by N (n) and

bound it in L2
δ′+1+|α|. We first control the ∇αf term. Notice that in order to obtain the term on RHS of

(8.49), we in particular need to commute [N (n),∇α]. By Hölder’s inequality, Proposition A.3 and (8.11)
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(and noting that ‖∇(χ(|x|)log(|x|)N (n)
asymp)‖Ck−1

.k |Nasymp|, ∀k ∈ N ∪ {0} and ‖ 1
N(n) ‖C0 . 1),∑

|α|≤3

‖N (n)∇αf‖L2
δ′+1+|α|

.
∑
|α|≤3

‖∇α(N (n)f)‖L2
δ′+1+|α|

+
∑

|α1|+|α2|≤2

‖∇α1∇ logN (n)∇α2(N (n)f)‖L2
δ′+2+|α1|+|α2|

+
∑

|α1|+|α2|≤1

‖(∇ logN (n))(∇α1∇ logN (n))∇α2(N (n)f)‖L2
δ′+3+|α1|+|α2|

+ ‖(∇ logN (n))3(N (n)f)‖L2
δ′+4

.‖N (n)f‖H3
δ′+1

(
1 + |N (n)

asymp|+ ‖∇ log Ñ (n)‖3H2
δ+1

)
. C(Ci)‖N (n)f‖H3

δ′+1
.

(8.51)

To control the commutator term in (8.50), we compute∣∣∣∣[ 1

N (n)
e

(n)
0

(
1

N (n)
e

(n)
0

)
,∇
]
h

∣∣∣∣
.

∣∣∣∣∣∇β(n)

N (n)
∇

(
e

(n)
0 h

N (n)

)∣∣∣∣∣+
∣∣∣f∇ logN (n)

∣∣∣+
∣∣∣∇2h∇ logN (n)

∣∣∣+

∣∣∣∣ 1

N (n)

(
e

(n)
0

∇β(n)

N (n)

)
∇h
∣∣∣∣

+

∣∣∣∣∣∇β(n)

N (n)
∇ logN (n) e

(n)
0 h

N (n)

∣∣∣∣∣+

∣∣∣∣∇β(n)

N (n)

∇β(n)

N (n)
∇h
∣∣∣∣+

∣∣∣∣∣∣
(
e

(n)
0 ∇ logN (n)

)
N (n)

(
e

(n)
0 h

N (n)

)∣∣∣∣∣∣ .
Here, we have silently used [e

(n)
0 , ∂i] = ∂i(β

(n))j∂j , and have also used the equation (8.47) to rewrite
1

N(n) e
(n)
0

(
1

N(n) e
(n)
0 h

)
. In a similar manner, one can compute the commutator with higher derivatives. We

have, for |α| ≤ 3,∣∣∣∣[ 1

N (n)
e

(n)
0 (

1

N (n)
e

(n)
0 ),∇α

]
h

∣∣∣∣
.

∑
|α1|+|α2|+i=|α|

(∣∣∣∇α1f∇α2(∇ logN (n))i
∣∣∣+
∣∣∣∇α1∇2h∇α2(∇ logN (n))i

∣∣∣)
+

∑
|α1|+|α2|+|α3|+i=|α|−1

∣∣∣∣∇α1

(
1

N (n)
e

(n)
0

(
∇β(n)

N (n)

))
∇α2(logN (n))i∇α3∇h

∣∣∣∣
+

∑
|α1|+|α2|+|α3|+i=|α|

∣∣∣∣∣∇α1

(
∇β(n)

N (n)

)
∇α2(∇ logN (n))i∇α3

e
(n)
0 h

N (n)

∣∣∣∣∣
+

∑
|α1|+|α2|+|α3|+i=|α|

∣∣∣∣∣∇α1

(
∇β(n)

N (n)

)2

∇α2(∇ logN (n))i∇α3∇h

∣∣∣∣∣
+

∑
|α1|+|α2|+|α3|+i=|α|−1

∣∣∣∣∣∣∇α1

(
e

(n)
0 logN (n)

)
N (n)

∇α2(∇ logN (n))i∇α3
e

(n)
0 h

N (n)

∣∣∣∣∣∣
+

∑
|α1|+|α2|+|α3|+|α4|+i=|α|−1

∣∣∣∣∣∣∇α1

(
e

(n)
0 logN (n)

)
N (n)

∇α2
∇β(n)

N (n)
∇α3(∇ logN (n))i∇α4h

∣∣∣∣∣∣ .

(8.52)

Here (and below), we use the notation as in the proof of Proposition 8.4 that, say, ∇α2(∇ logN (n))i denotes
a product of i factors, each of which is some spatial derivatives of ∇ logN (n) and the total number of
derivatives is |α2|.

We claim that upon multiplying by N (n), each of the terms in (8.52) can be bounded in L2
δ′+1+|α| by

C(A1, Ci)(‖h‖H3
δ′+1

+ ‖N (n)f‖H3
δ′+1

). Since the constant can depend on A1 and Ci in an arbitrary manner,

all terms linear in h can be treated in essentially the same way. We bound one representative term. Using

Hölder’s inequality, Proposition A.3, (8.11) (and noting that ‖∇(χ(|x|)log(|x|)N (n)
asymp)‖Ck−1

.k |Nasymp|,
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∀k ∈ N ∪ {0} and ‖ 1
N(n) ‖C0 . 1) and (8.14), we have∑

|α1|+|α2|+|α3|+i=|α|−1

∥∥∥∥N (n)∇α1

(
1

N (n)
e

(n)
0

(
∇β(n)

N (n)

))
∇α2(∇ logN (n))i∇α3∇h

∥∥∥∥
L2
δ′+1+|α|

.
∑

|α1|+|α2|+|α3|+i=|α|−1

∥∥∥∥∇α1∂t
∇β(n)

N (n)
∇α2(∇ logN (n))i∇α3∇h

∥∥∥∥
L2
δ′+1+|α|

+
∑

|α1|+|α2|+|α3|+|α4|+i=|α|−1

∥∥∥∥N (n)∇α1
β(n)

N (n)
∇α2∇∇β

(n)

N (n)
∇α3(∇ logN (n))i∇α4∇h

∥∥∥∥
L2
δ′+1+|α|

.

(∥∥∥∥∂t∇β(n)

N (n)

∥∥∥∥
H2
δ′

+

∥∥∥∥ β(n)

N (n)

∥∥∥∥
H2
δ′

∥∥∥∥∇∇β(n)

N (n)

∥∥∥∥
H2
δ′+1

)(
1 + |N (n)

asymp|2 + ‖∇Ñ (n)‖2H1
δ+1

)
‖∇h‖H2

δ′+1

.A1C
2
i ‖∇h‖H2

δ′+1
.

(8.53)

The term which is linear in f can be treated as in (8.51) to obtain∑
|α1|+|α2|+i=|α|

∥∥∥N (n)∇α1f∇α2(∇ logN (n))i
∥∥∥
L2
δ′+1+|α|

. C(Ci)‖N (n)f‖H3
δ′+1

. (8.54)

Combining (8.50), (8.51), (8.52), (8.53) (and analogous estimates for terms in (8.52)) and (8.54), and using
(8.48), yield∑

|α|≤3

∥∥∥∥∥e(n)
0 ∇αh
N (n)

∥∥∥∥∥
L2
δ′+1+|α|

(t) + ‖∇h‖Hk
δ′+1

(t)

≤2
∑
|α|≤3

∥∥∥∥∥e(n)
0 ∇αh
N (n)

∥∥∥∥∥
L2
δ′+1+|α|

(0) + ‖∇∇αh‖L2
δ′+1+|α|

(0)

+ C(Ci)T sup
t′∈[0,T ]

‖N (n)f‖H3
δ′+1

(t′).

(8.55)

which concludes the proof of the Lemma. �

Proposition 8.8 (Estimates for γ̃). For n ≥ 2, the following estimates hold:∑
|α|≤3

∥∥∥∥∥e(n)
0 ∇αγ̃(n+1)

N (n)

∥∥∥∥∥
L2
δ′+1+|α|

+
∥∥∥∇γ̃(n+1)

∥∥∥
H3
δ′+1

≤4Ci, (8.56)

∥∥∥∥∥∂t e(n)
0 γ̃(n+1)

N (n)

∥∥∥∥∥
H2
δ′+1

.C(A0)C2
i , (8.57)

∥∥∥∥∥∂t e(n)
0 γ̃(n+1)

N (n)

∥∥∥∥∥
H1
δ′+1

.C(A0)Ci. (8.58)

Proof. The strategy is to use Lemma 8.7 to estimate γ̃(n+1). Notice that (8.3) is an equation for γ(n+1).
Nevertheless, from (8.3) one can easily derive the following equation for γ̃(n+1):

− 2

N (n)
e

(n)
0

(
e

(n)
0 γ̃(n+1)

N (n)

)
+ 2∆γ̃(n+1)

=(RHS of (8.3)) + 2α∆(χ(|x|)log(|x|)) +
2α

N (n)
e

(n)
0

(
(β(n))i

N (n)
∂i(χ(|x|)log(|x|))

)
.

(8.59)

Moreover, if γ̃(n+1) satisfies the estimates as indicated in the statement of the proposition and α is a fixed
constant as in the initial data (and in particular time-independent), then γ(n+1) = −αχ(|x|)log(|x|)+ γ̃(n+1)

is indeed the solution to (8.3).
Proof of (8.56): Estimates for RHS of (8.59) in H3

δ′+1. By Lemma 8.7, to prove (8.56), it suffices

to show that N (n) × (RHS of (8.59)) is bounded in the H3
δ′+1 norm by C(A0, Ci). We first estimate the
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RHS of (8.3). For the term
2(e

(n−1)
0 γ(n))2

N(n)N(n−1) , we write

(e
(n−1)
0 γ(n))2 =

(
e

(n−1)
0 γ̃(n) + αβ

(n−1)
i ∂i(χ(|x|)log(|x|))

)2

.

By Cauchy–Schwarz, it clearly suffices to bound
(e

(n−1)
0 γ̃(n))2

(N(n−1))
and

(α(β(n−1))i∂i(χ(|x|)log(|x|)))
2

N(n−1) in H3
δ′+1.

By Hölder’s inequality (8.10), (8.11), (8.15), Proposition 8.3, (8.25) and Proposition A.3,∥∥∥∥∥ (e
(n−1)
0 γ̃(n))2

(N (n−1))

∥∥∥∥∥
H3
δ′+1

=

∥∥∥∥∥N (n−1) · e
(n−1)
0 γ̃(n)

(N (n−1))
· e

(n−1)
0 γ̃(n)

(N (n−1))

∥∥∥∥∥
H3
δ′+1

.
(

1 + |N (n−1)
asymp|+ ‖Ñ (n−1)‖H2

δ

)∥∥∥∥∥e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
H3
δ′+1

∥∥∥∥∥e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
C0
δ′+2

+

∥∥∥∥∥e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
W 2

δ′+3
2
,4

∥∥∥∥∥e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
W 1

δ′+3
2
,4

+ ‖Ñ (n−1)‖H3
δ

∥∥∥∥∥e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
2

C0
δ′+2

. εCi.

Next, we estimate using Hölder’s inequality, Proposition A.3, (7.3), (8.10), (8.11), (8.13) and (8.14) (and
the fact | 1

N(n) | . 1) that∥∥∥∥∥
(
α(β(n−1))i∂i(χ(|x|)log(|x|))

)2
N (n)

∥∥∥∥∥
H3
δ′+1

.|α|2
(

1 + |N (n)
asymp|3 + ‖Ñ (n)‖2H2

δ

)(
‖β(n−1)‖H3

δ′
‖β(n−1)‖C0

δ′+1
+ ‖β(n−1)‖W 2

δ′+1
2
,4

‖β(n−1)‖W 1

δ′+1
2
,4

)
+ |α|2‖Ñ (n)‖H3

δ
‖β(n−1)‖2C0

δ′+1

. ε5C(A0)Ci.

(8.60)

For the second term on the RHS of (8.3), by Hölder’s inequality, Proposition A.3, Lemma A.6, (7.3), (8.10),
(8.11), (8.15), (8.17) and Proposition 8.3, we have

‖N (n)(τ (n))2e2γ(n)

‖H3
δ′+1

.

(
1 + |N (n)

asymp|+ ‖Ñ (n)‖W 2

δ+1
2
,4

)(
1 + |α|+ ‖γ̃(n)‖W 2

δ′+1
2
,4

)(
‖τ (n)‖H3

δ′′+1
‖τ (n)‖C0

δ′′+2

+‖τ (n)‖W 2

δ′′+3
2
,4

‖τ (n)‖W 1

δ′′+3
2
,4

)
+
(
‖Ñ (n)‖H3

δ
+ ‖γ̃(n)‖H3

δ′

)
‖τ (n)‖2C0

δ′′+2

.εC(A1)Ci.

(8.61)

We next bound the most difficult term, e2γ(n)

e
(n−1)
0

(
e−2γ(n)

N(n−1) div(β(n))

)
, which is also the term that limits

the weight allowable in the estimate. Distributing the e
(n−1)
0 derivative and commuting e

(n−1)
0 with β(n), it

is clear that it suffices to control the following terms:∥∥∥∥∥e2γ(n)

e
(n−1)
0

(
e−2γ(n)

N (n−1)
div(β(n))

)∥∥∥∥∥
H3
δ′+1

≤

∥∥∥∥∥2(e
(n−1)
0 γ(n))

N (n−1)
div β(n)

∥∥∥∥∥
H3
δ′+1

+

∥∥∥∥∥e(n−1)
0 logN (n−1)

N (n−1)
div β(n)

∥∥∥∥∥
H3
δ′+1

+

∥∥∥∥∇β(n)∇β(n−1)

N (n−1)

∥∥∥∥
H3
δ′+1

+

∥∥∥∥∥div(e
(n−1)
0 β(n))

N (n−1)

∥∥∥∥∥
H3
δ′+1

=: I + II + III + IV.

(8.62)
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We begin with term I. By (7.3), (8.10), (8.11), (8.13), (8.14), (8.15), Propositions 8.3, 8.4, Lemma A.1 and
Proposition A.3,

I .

|α|∥∥∥∥β(n−1)∇(χ(|x|)log(|x|))
N (n−1)

∥∥∥∥
W 1

δ′+3
2
,4

+

∥∥∥∥∥e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
W 1

δ′+3
2
,4

 ‖div β(n)‖H3
δ′+1

+

|α|∥∥∥∥β(n−1)∇(χ(|x|)log(|x|))
N (n−1)

∥∥∥∥
H3
δ′+1

+

∥∥∥∥∥e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
H3
δ′+1

 ‖div β(n)‖W 1

δ′+3
2
,4

.εC(A0)Ci.

(8.63)

For term II, we write e
(n−1)
0 logN (n−1) =

(∂t−(β(n−1))i∂i)(N
(n−1)
asympχ(|x|)log(|x|)+Ñ(n−1))

N(n−1) . Hence, using Lemma A.1,

Proposition A.4, (8.10), (8.11), (8.13), (8.14) and dropping the good 1
N(n−1) factor, we have

II .

(
|∂tN (n−1)

asymp|+ |N (n−1)
asymp|‖β(n−1)(1 + |x|)−1‖H3

δ
+
∥∥∥∂tÑ (n−1)

∥∥∥
H2
δ

+
∥∥∥β(n−1)∇Ñ (n−1)

∥∥∥
H3
δ

)
×
((

1 + |N (n−1)
asymp|3 + ‖Ñ (n−1)‖3H2

δ

)
‖div β(n)‖H3

δ′+1
+ ‖Ñ (n−1)‖H3

δ
‖div β(n)‖C0

δ′+2

)
+ ‖∂tÑ (n−1)‖H3

δ
‖div β(n)‖C0

δ′+1

.C(A0)C2
i .

(8.64)

For term III, after expanding in terms of derivatives of β(n−1), β(n) and logN (n−1) (and dropping the good
1

N(n) factor), there are the following possibilities: (1) Any factors of β(n−1), β(n) and N (n−1) have at most

2 derivatives; (2) one factor of β(n−1) or β(n) has at least three derivatives; (3) there is a factor of three
derivatives of logN (n−1). In case (1), by (8.10), (8.13) and Lemma A.1, we estimate

.
(

1 + |N (n−1)
asymp|3 + ‖∇ log Ñ (n−1)‖3C0

δ+2

)
‖β(n−1)‖W 2

δ′+1
2
,4

‖β(n)‖W 2

δ′+1
2
,4

+

(
1 + |N (n−1)

asymp|+ ‖∇ log Ñ (n−1)‖W 1

δ+3
2
,4

)(
1 + |N (n−1)

asymp|+ ‖∇ log Ñ (n−1)‖C0
δ+2

)
×
(
‖β(n−1)‖C1

δ′+1
‖β(n)‖W 2

δ′+1
2
,4

+ ‖β(n)‖C1
δ′+1
‖β(n−1)‖W 2

δ′+1
2
,4

)
.ε2.

(8.65)

In case (2), by (8.10), (8.13), (8.14), Lemma A.1 and Proposition A.3, we have

.‖β(n−1)‖W 3

δ′+1
2
,4

(‖β(n)‖W 2

δ′+1
2
,4

+ ‖β(n)‖C1
δ′+1
‖∇ log Ñ (n−1)‖C0

δ+2
) + ‖β(n−1)‖H4

δ′
‖β(n)‖C1

δ′+1

+ ‖β(n)‖W 3

δ′+1
2
,4

(‖β(n−1)‖W 2

δ′+1
2
,4

+ ‖β(n−1)‖C1
δ′+1
‖∇ log Ñ (n−1)‖C0

δ+2
) + ‖β(n)‖H4

δ′
‖β(n−1)‖C1

δ′+1

.εC(A0)Ci.

(8.66)

Finally, in case (3), there must be only one derivative on β(n−1) and β(n) and hence using (8.10), (8.11),
(8.13) and Lemma A.1, the term can be bounded by

.
(

1 + |N (n−1)
asymp|+ ‖∇ log Ñ (n−1)‖H2

δ+1

)
‖β(n−1)‖C1

δ′+1
‖β(n)‖C1

δ′+1
. (1 + ε+ Ci)ε

2 . ε2Ci. (8.67)

Combining these we have

III . εC(A0)Ci. (8.68)

It remains to bound the term IV , which is the hardest: it is the term that determines the weight we can
put in. By (8.10), (8.11), (8.14), Lemma A.1 and Proposition A.3,

IV .

(
1 + |N (n)

asymp|3 + ‖Ñ (n)‖3W 2

δ+1
2
,4

)
‖div(e

(n−1)
0 β(n))‖H3

δ′+1
+ ‖Ñ (n)‖W 3

δ+1
2
,4

‖div(e
(n−1)
0 β(n))‖L4

δ′+3
2

.C(A0)C2
i .

(8.69)
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This concludes the estimates for (8.62), we summarize it as follows:∥∥∥∥∥e2γ(n)

e
(n−1)
0

(
e−2γ(n)

N (n−1)
div(β(n))

)∥∥∥∥∥
H3
δ′+1

. C(A0)C2
i . (8.70)

The fourth term on the RHS of (8.3), after multiplying by Ñ (n), can be estimated in a trivial manner using
Lemma A.1, (8.10) and (8.11):

‖∆N (n)‖H3
δ′+1
. |N (n)

asymp|+ ‖Ñ (n)‖H5
δ′−1
. |N (n)

asymp|+ ‖Ñ (n)‖H5
δ
. Ci.

Finally, the last two terms on the RHS of (8.3), i.e., the terms involving ∂φ(n) and F
(n)
A , are compactly

supported, and can be controlled exactly as in the proof of Proposition 8.5 by∥∥∥∥∥δij2 ∂iφ
(n)∂jφ

(n) +
1

2

∑
A

e4γ(n)

(F
(n)
A )2δij(L

(n)
A )i(L

(n)
A )j

∥∥∥∥∥
H3
δ′+1

. εC(A0)Ci. (8.71)

We now bound the remaining terms on RHS of (8.59) (i.e., those that are not on RHS of (8.3)), after
multiplying by N (n). First, an easy explicit computation, together with (7.3), (8.10) and (8.11), show

‖αN (n)∆(χ(|x|)log(|x|))‖H3
δ′+1
. |α|(1 + |N (n)

asymp|+ ‖Ñ (n)‖H3
δ
) . ε2Ci. (8.72)

For the final term, we have

∥∥∥∥αe(n)
0

(
(β(n))i

N (n)
∂i(χ(|x|)log(|x|))

)∥∥∥∥
H3
δ′+1

.|α|

(∥∥∥∥e(n)
0

β(n)

N (n)

∥∥∥∥
H3
δ′

+

∥∥∥∥β(n)β(n)

N (n)

∥∥∥∥
H3
δ′

)
. ε2C(A0)C2

i , (8.73)

where the estimate is obtained by writing e
(n)
0 (β(n))i = e

(n−1)
0 (β(n))i − (β(n) − β(n−1))j∂j(β

(n))i and

e
(n)
0 N (n) = ∂tN

(n) − (β(n))i∂iN
(n) and using (7.3), (8.10), (8.11), (8.12), (8.13) and (8.14).

We now apply the energy estimate in (8.49). Combining all the estimates above, we have shown that the
N (n) × (RHS of (8.59)) is bounded in H3

δ′+1 by C(A0, A1, Ci). Since T can depend on Ci, A0 and A1, by
choosing T sufficiently small, (8.49) implies (8.56).

Proof of (8.57). First note that by equation (8.59), we need to control (1) N (n) × (RHS of (8.59))

in H2
δ′+1 by C(A0)C2

i , (2) N (n)∆γ(n+1) in H2
δ′+1 by C(A0)C2

i , and (3) N (n)δikβ
(n)
k ∂i

e
(n)
0 γ̃(n+1)

N(n) in H2
δ′+1

by C(A0)C2
i . For (1), note that in the estimates we proved in the course of obtaining (8.56), indeed all

terms on RHS of (8.59) satisfy the desired bound. For (2), we have the desired bound thanks to (8.10) and
the estimate (8.56) that we just established above. Finally, for (3), we follow the proof of (8.25) and use
additionally (8.11) and (8.14) to obtain∥∥∥∥∥N (n)δikβ

(n)
k ∂i

e
(n)
0 γ̃(n+1)

N (n)

∥∥∥∥∥
H2
δ′+1

.(1 + ‖∇ logN (n)‖H2
δ

+ ‖β(n)‖H3
δ′

)

‖∇γ̃(n+1)‖H2
δ′+1

+
∑
|α|≤2

∥∥∥∥∥e(n)
0 ∇αγ̃(n+1)

N (n)

∥∥∥∥∥
L2
δ′+1+|α|


.C2

i .

Proof of (8.58) step 1: Estimates for RHS of (8.59) in H1
δ′+1. Similar to in the proof of (8.57),

we first bound N (n) × (RHS of (8.59)) - except that this time we bound it in H1
δ′+1 by C(A0)Ci. Now

the bounds in the proof of (8.56) show that it remains to improve the estimates for the term II in (8.64),
the term IV in (8.69) and the term (8.73) when we replace the H3

δ′+1 norm by the H1
δ′+1 norm. We first
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estimate the term analogous to (8.64). By (8.10), (8.11), (8.13), Lemma A.1 and Proposition A.3,∥∥∥∥∥e(n−1)
0 logN (n−1)

N (n−1)
div (β(n))

∥∥∥∥∥
H1
δ′+1

.

(
|∂tN (n−1)

asymp|+ |N (n−1)
asymp|

∥∥∥β(n−1)(1 + |x|)−1
∥∥∥
C1
δ+1

+
∥∥∥∂tÑ (n−1)

∥∥∥
C0
δ+1

+
∥∥∥β(n−1)∇Ñ (n−1)

∥∥∥
C1
δ+1

)
×
(

1 + |N (n−1)
asymp|+

∥∥∥∇ log Ñ (n−1)
∥∥∥
C0
δ+2

)∥∥∥div (β(n))
∥∥∥
H1
δ′+1

+
∥∥∥∂tÑ (n−1)

∥∥∥
W 1

δ+1
2
,4

∥∥∥div (β(n))
∥∥∥
W 1

δ′+3
2
,4

.εCi.

Next, we consider the term analogous to (8.69). By Lemma A.1, Proposition A.4, (8.10), (8.13) and (8.14),∥∥∥∥∥div (e
(n−1)
0 β(n))

N (n−1)

∥∥∥∥∥
H1
δ′+1

.
(

1 + |N (n−1)
asymp|+ ‖Ñ (n−1)‖H2

δ

)
‖div (e

(n−1)
0 β(n))‖H1

δ′+1
. C(A0)Ci.

Finally, for the term analogous to (8.73), we have∥∥∥∥αe(n)
0

(
(β(n))i

N (n)
∂i(χ(|x|)log(|x|))

)∥∥∥∥
H1
δ′+1

.|α|

(∥∥∥∥e(n)
0

β(n)

N (n)

∥∥∥∥
H1
δ′

+

∥∥∥∥β(n)β(n)

N (n)

∥∥∥∥
H1
δ′

)
. ε2C(A0)Ci,

(8.74)

where the last estimate is obtained by writing e
(n)
0 (β(n))i = e

(n−1)
0 (β(n))i − (β(n) − β(n−1))j∂j(β

(n))i and

e
(n)
0 N (n) = ∂tN

(n) − (β(n))i∂iN
(n) and using (7.3), (8.10), (8.11) and (8.13).

Proof of (8.58) step 2: Completion of the proof. As in the proof of (8.57), it remains to control

N (n)∆γ(n+1) and N (n)δikβ
(n)
k ∂i

e
(n)
0 γ̃(n+1)

N(n) . The former term can be controlled using (8.10) and (8.56) (that
we proved above) as follows:

‖N (n)∆γ(n+1)‖H1
δ′+1
. (1 + |Nasymp|+ ‖Ñ (n)‖C1

δ+1
)(ε2 + ‖∇γ(n+1)‖H2

δ′+1
) . ε2 + Ci . Ci.

Finally, the remaining term can be estimated using (8.10), (8.13) and the argument leading to (8.25):∥∥∥∥∥N (n)δikβ
(n)
k ∂i

e
(n)
0 γ̃(n+1)

N (n)

∥∥∥∥∥
H1
δ′+1

.(1 + ‖∇ logN (n)‖H1
δ

+ ‖β(n)‖H2
δ′

)

‖∇γ̃(n+1)‖H1
δ′+1

+
∑
|α|≤1

∥∥∥∥∥e(n)
0 ∇αγ̃(n+1)

N (n)

∥∥∥∥∥
L2
δ′+1+|α|


.(1 + Cε)Ci.

This concludes the proof of the proposition.
�

Proposition 8.9 (Estimates for τ (n+1). For n ≥ 2, the following estimates hold:

‖τ (n+1)‖H3
δ′′+1

≤C(A0)Ci, (8.75)

‖∂tτ (n+1)‖H1
δ′′+1

≤C(A1)Ci, (8.76)

‖∂tτ (n+1)‖H2
δ′′+1

≤C(A1)C2
i . (8.77)

Proof. In view of (8.4), the estimates for τ (n+1) can be obtained by directly controlling

e−2γ(n)

N (n)

(
−2e

(n−1)
0 γ(n) + div (β(n))

)
.

Similarly, to bound ∂tτ
(n+1), it suffices to estimate the ∂t derivative of the above quantity. To this end, we

use the estimates in (8.10), (8.11), (8.13), (8.14), (8.15) and (8.16). Let us first control the factor e−2γ(n)

N(n) .

Notice that it has growing factors in |x|2α or N
(n−1)
asymplog(|x|), which ultimately contributes to the fact that
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we need to worsen the weight in our estimates – using δ′′ instead of δ′. Nevertheless, for ε sufficiently small,
for |x| large, these growing factors can be controlled by |x| ε10 . Hence, by Propositions A.3, A.4 and 8.3, we
have ∥∥∥∥∥e−2γ(n)

N (n)

∥∥∥∥∥
H2
− ε

10
−1

+

∥∥∥∥∥e−2γ(n)

N (n−1)

N (n)

∥∥∥∥∥
H2
− ε

10
−1

. 1. (8.78)

Also, by (8.11), (8.15), (8.16), Propositions 8.3 and 8.4, as well as Propositions A.3 and A.4, we also have∥∥∥∥∥e−2γ(n)

N (n)

∥∥∥∥∥
H3
− ε

10
−1

+

∥∥∥∥∥e−2γ(n)

N (n−1)

N (n)

∥∥∥∥∥
H3
− ε

10
−1

+

∥∥∥∥∥∂t e−2γ(n)

N (n)

∥∥∥∥∥
H2
− ε

10
−1

+

∥∥∥∥∥∂t e−2γ(n)

N (n−1)

N (n)

∥∥∥∥∥
H2
− ε

10
−1

. Ci. (8.79)

Using (8.78) and (8.79) together with Proposition A.4, (8.13), (8.14), (8.15), Propositions 8.3 and 8.4, we
prove (8.75):∥∥∥∥∥e−2γ(n)

N (n)

(
−2e

(n−1)
0 γ(n) + div(β(n))

)∥∥∥∥∥
H3
δ′′+1

.

∥∥∥∥∥e−2γ(n)

N (n−1)

N (n)

∥∥∥∥∥
H2
− ε

10
−1

∥∥∥∥∥e(n−1)
0 γ(n)

N (n−1)

∥∥∥∥∥
H3
δ′+1

+

∥∥∥∥∥e−2γ(n)

N (n)

∥∥∥∥∥
H2
− ε

10
−1

‖div β(n)‖H3
δ′+1

+

∥∥∥∥∥e−2γ(n)

N (n−1)

N (n)

∥∥∥∥∥
H3
− ε

10
−1

∥∥∥∥∥e(n−1)
0 γ(n)

N (n−1)

∥∥∥∥∥
C0
δ′+2

+

∥∥∥∥∥e−2γ(n)

N (n)

∥∥∥∥∥
H3
− ε

10
−1

‖div β(n)‖C0
δ′+2
. C(A0)Ci.

Next, we prove (8.76). By Proposition A.4, (8.13), (8.14), (8.15), (8.16), (8.78), (8.79) and Proposition 8.4,∥∥∥∥∥∂t
(
e−2γ(n)

N (n)

(
−2e

(n−1)
0 γ(n) + div(β(n))

))∥∥∥∥∥
H1
δ′′+1

.

∥∥∥∥∥e−2γ(n)

N (n−1)

N (n)

∥∥∥∥∥
H2
− ε

10
−1

∥∥∥∥∥∂t e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
H1
δ′+1

+ |α|
∥∥∥∥∂t β(n−1)∇(χ(|x|)log(|x|))

N (n−1)

∥∥∥∥
H1
δ′+1


+

∥∥∥∥∥∂t e−2γ(n)

N (n−1)

N (n)

∥∥∥∥∥
H1
− ε

10
−1

∥∥∥∥∥e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
H2
δ′+1

+ |α|
∥∥∥∥β(n−1)∇(χ(|x|)log(|x|))

N (n−1)

∥∥∥∥
H2
δ′+1


+

∥∥∥∥∥e−2γ(n)

N (n)

∥∥∥∥∥
H2
− ε

10
−1

∥∥∥∂t(div β(n))
∥∥∥
H1
δ′+1

+

∥∥∥∥∥∂t e−2γ(n)

N (n)

∥∥∥∥∥
H2
− ε

10
−1

∥∥∥div β(n)
∥∥∥
H1
δ′+1

. C(A1)Ci.

Finally, we prove (8.77). Again, using Proposition A.4, (8.13), (8.14), (8.15), (8.16), (8.78), (8.79) and
Proposition 8.4, we obtain∥∥∥∥∥∂t

(
e−2γ(n)

N (n)

(
−2e

(n−1)
0 γ(n) + div(β(n))

))∥∥∥∥∥
H2
δ′′+1

.

∥∥∥∥∥e−2γ(n)

N (n−1)

N (n)

∥∥∥∥∥
H2
− ε

10
−1

∥∥∥∥∥∂t e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
H2
δ′+1

+ |α|
∥∥∥∥∂t β(n−1)∇(χ(|x|)log(|x|))

N (n−1)

∥∥∥∥
H2
δ′+1


+

∥∥∥∥∥∂t e−2γ(n)

N (n−1)

N (n)

∥∥∥∥∥
H2
− ε

10
−1

∥∥∥∥∥e(n−1)
0 γ̃(n)

N (n−1)

∥∥∥∥∥
H2
δ′+1

+ |α|
∥∥∥∥β(n−1)∇(χ(|x|)log(|x|))

N (n−1)

∥∥∥∥
H2
δ′+1


+

∥∥∥∥∥e−2γ(n)

N (n)

∥∥∥∥∥
H2
− ε

10
−1

∥∥∥∂t(div β(n))
∥∥∥
H2
δ′+1

+

∥∥∥∥∥∂t e−2γ(n)

N (n)

∥∥∥∥∥
H2
− ε

10
−1

∥∥∥div β(n)
∥∥∥
H2
δ′+1

. C(A1)C2
i .

�
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Proposition 8.10 (Estimates for H(n+1)). For n ≥ 2, the following estimates hold:

‖e(n+1)
0 H(n+1)‖H3

δ+1
≤20Ci, (8.80)

‖H(n+1)‖H3
δ+1
≤2Ci. (8.81)

Proof. Proof of (8.80). In order to estimate (e
(n+1)
0 )(H(n+1))ij in H3

δ+1, it obviously suffices to bound the

RHS of (8.5) in the H3
δ+1 norm by 20Ci. We consider each term on RHS of (8.5): in fact, all but two terms

can be controlled in the stronger H3
δ+2 space.

First notice that the terms 2e2γ(n)

N (n)(H(n))i
`(H(n))j`, N

(n)∂iφ
(n)⊗̆∂jφ(n) andN (n)(F

(n)
A )2(L

(n)
A )i⊗̆(L

(n)
A )j

are analogous to terms in (8.1) and can be treated as in Proposition 8.5 so that they are bounded as
‖ · ‖H3

δ+2
≤ εC(A0)Ci; we omit the details.

The remaining terms can be treated as follows. For ∂(j(β
(n))k(H(n))i)k, we use (8.13), (8.14), (8.18),

Proposition 8.3 and Lemma A.1 to get

‖∂(j(β
(n))k(H(n))i)k‖H3

δ+2

.‖∇β(n)‖C0
δ′+2
‖H(n)‖H3

δ+1
+ ‖∇β(n)‖H3

δ′+1
‖H(n)‖C0

δ+2

+ ‖∇β(n)‖W 2

δ′+3
2
,4

‖H(n)‖W 1

δ+3
2
,4

+ ‖∇β(n)‖W 1

δ′+3
2
,4

‖H(n)‖W 2

δ+3
2
,4

. εC(A0)Ci.

The term ∂iγ
(n)⊗̆∂jN (n) can be treated similarly, except for extra care regarding the logarithmically growing

terms. More precisely, by Hölder’s inequality, (8.10), (8.11), (8.15), Proposition 8.3 and Lemma A.1, we
have

‖∂iγ(n)⊗̆∂jN (n)‖H3
δ+1

.|α||N (n)
asymp|‖(1 + |x|)−2‖H3

δ+1
+ |α|‖∇Ñ (n)‖H3

δ+1
+ |N (n)

asymp|‖∇γ̃(n)‖H3
δ′+1

+ ‖∇γ̃(n)‖C0
δ′+2
‖∇Ñ (n)‖H3

δ+1

+ ‖∇γ̃(n)‖H3
δ′+1
‖∇Ñ (n)‖C0

δ+2
+ ‖∇γ̃(n)‖W 1

δ′+3
2
,4

‖∇Ñ (n)‖W 2

δ+3
2
,4

+ ‖∇γ̃(n)‖W 2

δ′+3
2
,4

‖∇Ñ (n)‖W 1

δ+3
2
,4

.εCi.

Finally, by Lemma A.1, (8.10) and (8.11),

‖∂i⊗̆∂jN (n)‖H3
δ+1
≤ 6‖Ñ (n)‖H5

δ
+ C|Nasymp| ≤ (12 + εC)Ci,

where the norm on the LHS is to be understood as the H3
δ+2 norm for a 2-tensor.

Combining all the above estimates and choosing ε sufficiently small give (8.80).

Proof of (8.81). First note that |[e(n+1)
0 ,∇α]H(n+1)| .

∑
|α1|+|α2|=|α| |∇

α1∇β(n+1)||∇α2H(n+1)|. Hence,

for |α| ≤ 3, using Proposition A.3 and Proposition 8.6, we have

‖e(n+1)
0 ∇αH(n+1)

ij ‖L2
δ+1+|α|

. ‖e(n+1)
0 H

(n+1)
ij ‖H3

δ+1
+ Ci‖H(n+1)‖H3

δ+1
. (8.82)

Next, writing e
(n+1)
0 ∇αH(n+1)

ij = (∂t − (β(n+1))k∂k)∇αH(n+1)
ij , squaring the expression, multiplying by

(1 + |x|2)δ+2+|α|, integrating with respect to dx dt, integrating by parts and using the estimates for β(n+1)

in Proposition 8.6, we have

sup
t∈[0,T ]

‖∇αH(n+1)‖L2
δ+2+|α|

(t) ≤‖∇αH(n+1)‖L2
δ+2+|α|

(0) + CT sup
t∈[0,T ]

‖e(n+1)
0 ∇αH(n+1)

ij ‖L2
δ+2+|α|

(t)

≤‖∇αH(n+1)‖L2
δ+2+|α|

(0) + CCiT (1 + ‖H(n+1)‖H3
δ+1

),

where in the last inequality we have used (8.82) and (8.80).
Now, summing over all |α| ≤ 3, choosing T sufficiently small, and absorbing the term CCiT‖H(n+1)‖H3

δ+1

to the LHS, we obtain (8.81). �

Lemma 8.11 (Suppport of φ(n+1)). There exists a constant Cs > 0 such that for ε, T sufficiently small
(depending on R) and n ≥ 2, φ(n+1) is supported in the set {(t, x) ∈ [0, T ]×R2 : Cs(1 +Rε)t− |x| ≥ −R}.
In particular, choosing T smaller if necessary, supp(φ(n+1)) ⊂ {(t, x) ∈ [0, T ]× R2 : |x| ≤ 2R}.



32 CÉCILE HUNEAU AND JONATHAN LUK

Proof. Since the initial data for φ(n+1) and ∂tφ
(n+1) is compactly supported in |x| ≤ R, it suffices to show

that {(t, x) ∈ [0, T ] × R2 : Cs(1 + Rε)t − |x| = −R} is a spacelike hypersurface with respect to g(n). We
compute using (4.7)

(g(n))−1 (d (Cs(1 +Rε)t− |x|) , d (Cs(1 +Rε)t− |x|))

=− C2
s (1 +Rε)2

(N (n))2
− 2Cs(1 +Rε)(x · β(n))

|x|(N (n))2
+ e−2γ(n)

− (x · β(n))2

|x|2(N (n))2
.

(8.83)

For |x| ≥ 2, e−2γ(n)

= e2αχ(|x|)log(|x|)e−2γ̃(n)

. |x|Cε2 , 1
(N(n))2

& min{1, 1
ε2 log |x|}, and |x·β(n)|

|x|(N(n))2
, (x·β(n))2

|x|2(N(n))2
.

ε. Hence, after choosing the parameters appropriately, one easily sees that (8.83) is non-positive. �

Proposition 8.12 (Estimates for φ(n+1)). For n ≥ 2, the following estimate holds:

‖∂φ(n+1)‖H3 +

∥∥∥∥∥∂t
(
e

(n)
0 φ(n+1)

N (n)

)∥∥∥∥∥
H2

. Ci.

Proof. We perform the energy estimate for the wave equation. First, note that since φ(n+1) is compactly
supported in B(0, 2R) for all time by Lemma 8.11, we do not need to worry about the spatial decay.

Given a function f , define a 2-tensor Q(n) as follows:

Q
(n)
αβ [f ] := ∂αf∂βf −

1

2
g

(n)
αβ ((g(n))−1)ρσ∂σf∂ρf.

An easy computation shows that

((g(n))−1)µαD(n)
µ Q

(n)
αβ [f ] = (∂βf)(�g(n)f),

where D(n) is the Levi-Civita connection associated to g. Defining

(∂t)π
(n)
αβ = D(n)

α (∂t)β +D
(n)
β (∂t)α,

we have by Stoke’s theorem that for every t ∈ (0, T ],∫
Σt

Q(n)[f ](∂t,
1

N (n)
e

(n)
0 )(t, x)

√
|det ḡ(n)| dx

=

∫
Σ0

Q(n)[f ](∂t,
1

N (n)
e

(n)
0 )(0, x)

√
|det ḡ(n)| dx

−
∫ t

0

∫
Σt′

(
(∂tf)(�g(n)f) +

1

2
Q

(n)
αβ [f ](∂t)(π(n))αβ

)
(t′, x)

√
|det g(n)| dx dt′,

(8.84)

where ḡ(n) is as in (4.1). We now apply (8.84) to φ(n+1) and its derivatives. The key point here is to note
that by (8.10), (8.13) and Proposition 8.3, the metric components have appropriate smallness in the C0

norm on B(0, 2R), and therefore on the compact set B(0, 2R), for ε sufficiently small,

(1− Cε) ≤
√
|det ḡ(n)| ≤ (1 + Cε), (1− Cε) ≤

√
|det g(n)| ≤ (1 + Cε).

On the other hand, since |(∂t)(π(n))αβ | is controlled by the C1 norm of the metric, by the estimates in (8.10),
(8.11), (8.13), (8.14) and (8.15), |(∂t)(π(n))αβ | . C(A0, Ci) on B(0, 2R). Therefore,

sup
t∈[0,T ]

‖∂φ(n+1)‖L2(t) ≤ 2‖∂φ(n+1)‖L2(0) + C(A0, Ci)T sup
t∈[0,T ]

‖∂φ(n+1)‖L2(t) ≤ 3Ci,

after choosing T to be sufficiently small.
To obtain up to the H3 estimates for ∂φ(n+1), however, we need to differentiate the equation with

respect to spatial derivatives and this leads to higher derivatives of the metric components. Nevertheless,
even though these higher derivative terms are no longer small (and are in general only bounded by constants
depending on A0 and Ci), these terms only appear as inhomogeneous terms in the wave equation. Hence,
by choosing T sufficiently small, we obtain

sup
t∈[0,T ]

‖∂φ(n+1)‖H3(t) ≤ 2‖∂φ(n+1)‖H3(0) + C(A0, Ci)T sup
t∈[0,T ]

‖∂φ(n+1)‖H3(t) ≤ 3Ci.
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Finally, in order to control ∂t

(
e
(n)
0 φ(n+1)

N(n)

)
, notice that the equation for φ(n+1) is given in coordinates as

follows:

−e
−2γ(n)

N (n)
e

(n)
0

(
e2γ(n)

N (n)
e

(n)
0 φ(n+1)

)
+

1

N (n)e2γ(n)
div(N (n)∇φ(n+1))+

e2γ(n)

(div β(n))

N (n)
(e

(n)
0 φ(n+1)) = 0. (8.85)

Therefore,

∂t

(
e

(n)
0 φ(n+1)

N (n)

)
=(β(n))i∂i

(
e

(n)
0 φ(n+1)

N (n)

)
+
div(N (n)∇φ(n+1))

N (n)e2γ(n)
+
e2γ(n)

(−2e
(n)
0 γ(n) + div β(n))

N (n)
(e

(n)
0 φ(n+1)).

(8.86)

We directly bound each term on the RHS of (8.86) in H2. The key point in handling these terms is to notice

that upon expanding the derivatives, the only way that Ñ (n), β(n) or γ̃(n) has three spatial derivatives (or

e
(n)
0 γ(n) has two spatial derivatives) is when φ(n+1) has at most one derivative. In that case, we can bound

the first derivative of φ(n+1) in L∞ by Proposition 8.3 independent of Ci. In the case where we do not have
the highest derivative on the metric components, we can use (8.10), (8.13) and Proposition 8.3 to control
the metric components independent of Ci and use (8.23) to estimate the scalar field. Let us consider a
typical term. By (8.10), (8.11), (8.13), (8.14), (8.23) and Proposition 8.3,∥∥∥∥β(n)∇

(
1

N (n)
e

(n)
0 φ(n+1)

)∥∥∥∥
H2

.‖β(n)‖W 2
0,4(B(0,R))(1 + |N (n)

asymp|+ ‖Ñ (n)‖W 2
0,4(B(0,R)))(1 + ‖β(n)‖W 2

0,4(B(0,R)))‖∂φ(n+1)‖H3

+ (‖Ñ (n)‖H3(B(0,R)) + ‖β(n)‖H3(B(0,R)))(1 + ‖β(n)‖L∞(B(0,R)))‖∂φ‖L∞

.εA0Ci + ε2Ci . εC(A0)Ci . Ci.

The other terms can be estimated in a similar manner. �

Lemma 8.13. Let h satisfy the following transport equation with an inhomogeneous term f for some A:

L
(n)
A h = f. (8.87)

Then, h obeys the estimate

sup
t∈[0,T ]

∫
Σt

(1 + |x|2)σh2 dx ≤ C(σ)

(∫
Σ0

(1 + |x|2)σh2 dx+

∫ T

0

∫
Σt

(1 + |x|2)σ+ ε
10 f2 dx dt

)
,

where C(σ) is a constant depending on σ, in addition to Ceik, δ and R.

Proof. Decompose L
(n)
A with respect to {∂t, ∂i}, i.e.,

L
(n)
A = (L

(n)
A )t∂t + (L

(n)
A )i∂i. (8.88)

(8.87) can be written as

(L
(n)
A )t∂th+ (L

(n)
A )i∂ih = f. (8.89)

Let w(|x|) = (1+ |x|2)σ. Multiplying (8.89) by (eγ
(n−1)

N (n−1))wh and integrating in spacetime with respect
to dx dt, we obtain

1

2

∫ t

0

∫
Σt′

(
w(eγ

(n−1)

N (n−1))
(

(L
(n)
A )t∂th

2 + (L
(n)
A )i∂ih

2
))

dx dt′

=

∫ t

0

∫
Σt′

fw(eγ
(n−1)

N (n−1))h dx dt′.

This yields

1

2

d

dt

∫
Σt

w(L
(n)
A )t(eγ

(n−1)

N (n−1))h2 dx

=
1

2

∫
Σt

∂t

(
eγ

(n−1)

N (n−1)(L
(n)
A )t

)
wh2 +

1

2

∫
Σt

∂i

(
(L

(n)
A )iweγ

(n−1)

N (n−1)
)
h2 dx

+

∫
Σt

fweγ
(n−1)

N (n−1)h dx.
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The conclusion follows from the Cauchy–Schwarz inequality, the bounds (8.10), (8.11), (8.15), Proposi-

tion 8.4 (and Proposition A.3), and the observations that eγ
(n−1)

N (n−1) . (1 + |x|2)
ε
10 (by (7.3), (8.10),

(8.15), Proposition 8.3) and (L
(n)
A )t(eγ

(n−1)

N (n−1)) & 1 (by (8.19)).
�

Lemma 8.14. Suppose h and f satisfy (8.87). Then, for ` = 2, 3, t ∈ [0, T ], and for any σ ∈ (−1, 0), we
have

‖h‖H`σ (t) . ‖h‖H`σ (0) + C(A0, Ci)

∫ T

0

‖f‖H`
σ+ ε

10

(t′) dt′.

Proof. The ` = 3 case is harder, so we only consider that case. Let α be a spatial multi-index with |α| ≤ 3.
Clearly, we have

(L
(n)
A )ρ∂ρ(∇αh) = ∇αf − [∇α, (L(n)

A )ρ∂ρ]h. (8.90)

To compute the commutator, we consider separately20 the cases ρ = t and ρ = i. Denoting by L
(n)
A the

spatial part of L
(n)
A , we have∣∣∣[∇α, (L(n)

A )t∂t]h
∣∣∣ . ∑
|α1|+|α2|+|α3|≤|α|−1

∣∣∣∇α1∇
(

log(L
(n)
A )t

)∣∣∣ |∇α2L
(n)
A ||∇

α3∇h|

+
∑

|α1|+|α2|≤|α|−1

∣∣∣∇α1∇
(

log(L
(n)
A )t

)∣∣∣ |∇α2f |,
(8.91)

and ∣∣∣[∇α, (L(n)
A )i∂i]h

∣∣∣ . ∑
|α1|+|α2|=|α|−1

|∇α1∇L(n)
A ||∇

α2∇h|. (8.92)

Here, in (8.91), we have used the equation (8.89).
Hence, applying Lemma 8.13 to ∇αh (instead of h) with σ + |α| in place of σ in the weight function w,

using (8.90), (8.91) and (8.92), and summing over all |α| ≤ 3, we obtain

‖h‖H3
σ
(t) .‖h‖H3

σ
(0) +

∫ t

0

‖f‖H3
σ+ ε

10

dt′ +

∫ t

0

∥∥∥∥∥∥
∑

|α1|+|α2|=|α|−1

∣∣∣∇α1∇
(

log(L
(n)
A )t

)∣∣∣ |∇α2f |

∥∥∥∥∥∥
L2
σ+ ε

10
+|α|

(t′) dt′

︸ ︷︷ ︸
=:I

+

∫ t

0

∥∥∥∥∥∥
∑

|α1|+|α2|=|α|−1

|∇α1∇L(n)
A ||∇

α2∇h|

∥∥∥∥∥∥
L2
σ+ ε

10
+|α|

(t′) dt′

︸ ︷︷ ︸
=:II

+

∫ t

0

∥∥∥∥∥∥
∑

|α1|+|α2|+|α3|=|α|−1

|∇α1∇
(

log(L
(n)
A )t

)
||∇α2L

(n)
A ||∇

α3∇h|

∥∥∥∥∥∥
L2
σ+ ε

10
+|α|

(t′) dt′

︸ ︷︷ ︸
=:III

.

(8.93)

To proceed, we note that using the estimate (8.21), together with the bounds for N (n−1) and γ(n−1) in
(8.11) and (8.15), and Lemma A.1, Propositions A.3 and A.6, we have∥∥∥∇(log(L

(n)
A )t

)∥∥∥
H2
δ′′′+1

+ ‖∇L(n)
A ‖H2

δ′′′+1
. C(A0, Ci). (8.94)

Here, note in particular there are terms growing as |x| → ∞ in N (n−1) and γ(n−1) so that we need to use
δ′′′ instead of δ′′ in the weights. Therefore, using Proposition A.4,

I .‖∇
(

log(L
(n)
A )t

)
‖H2

δ′′′+1
‖f‖H3

σ+ ε
10

. C(A0, Ci)‖f‖H3
σ+ ε

10

.

20This is because in the H3
σ norm in the statement of the lemma, we only allow spatial derivatives.
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Similarly, for II and III, we can use (8.94) and Proposition A.4 to get

II . ‖∇L(n)
A |H2

δ′′′+1
‖h‖H3

σ
. C(A0, Ci)‖h‖H3

σ

and

III .
∥∥∥∇(log(L

(n)
A )t

)∥∥∥
H2
δ′′′+1

(1 + ‖∇L(n)
A ‖H2

δ′′′+1
)‖h‖H3

σ
. C(A0, Ci)‖h‖H3

σ
.

Notice here that in III, there is a potentially growing factor of L
(n)
A , but the weights are strong enough to

handle it, as long as ε is sufficiently small. Plugging in the estimates for I, II and III into (8.93), we thus
obtain

sup
t∈[0,T ]

‖h‖H3
σ
(t) . ‖h‖H3

σ
(0) + C(A0, Ci)

∫ T

0

(
‖f‖H3

σ+ ε
10

+ ‖h‖H3
σ
(t)

)
(t) dt.

The conclusion therefore follows from Grönwall’s inequality. �

Proposition 8.15 (Estimates for L
(n+1)
A ). For n ≥ 2, the following estimates hold:∥∥∥e2γ(n)

(L
(n+1)
A )i +−→cAi

∥∥∥
H2
δ′′

+
∥∥∥N (n)eγ

(n)

(L
(n+1)
A )t − |−→cA|

∥∥∥
H2
δ′′

. Ceik, (8.95)∥∥∥e2γ(n)

(L
(n+1)
A )i +−→cAi

∥∥∥
H3
δ′′

+
∥∥∥N (n)eγ

(n)

(L
(n+1)
A )t − |−→cA|

∥∥∥
H3
δ′′

. A0Ci, (8.96)

‖∂t
(
e2γ(n)

(L
(n+1)
A )i

)
‖H2

δ′′′
+ ‖∂t

(
N (n)eγ

(n)

(L
(n+1)
A )t

)
‖H2

δ′′′
. A0Ci. (8.97)

Proof. For this proof, it is convenient to write L
(n+1)
A in the basis {e(n)

0 , ∂i}. For this we use the notation

L
(n+1)
A = (L̃

(n+1)
A )0e

(n)
0 + (L̃

(n+1)
A )i∂i.

One checks that

(L
(n+1)
A )t = (L̃

(n+1)
A )0, (L

(n+1)
A )i = (L̃

(n+1)
A )i − (β(n))i(L̃

(n+1)
A )0. (8.98)

We similarly decompose L
(n)
A with respect to {e(n)

0 , ∂i} (instead of {e(n−1)
0 , ∂i}) and define L̃

(n)
A analogously.

Proof of (8.95) and (8.96). We first estimate the (L̃
(n+1)
A )0 component, which satisfies

(L̃
(n)
A )αe(n)

α (L̃
(n+1)
A )0 = −(Γ̃(n))0

αβ(L̃
(n)
A )α(L̃

(n+1)
A )β , (8.99)

where e
(n)
i = ∂i and (Γ̃(n))µαβ is defined by D

(n)
eα eβ = (Γ̃(n))µαβeµ, which are given by (B.3).

According to (B.3) (applied to g(n)), and the estimates in (8.10), (8.11), (8.13), (8.14), (8.15) and

Proposition 8.4, the worst component (from the point of view of the weights) of (Γ̃(n))µαβ is (Γ̃(n))0
00 =

e
(n)
0 logN (n); and all the remaining components have H3

δ′ norm bounded above by . C(A1)Ci. (To see this,

simply notice that if there is a spatial (as opposed to e
(n)
0 ) derivatives of the metric components have better

spatial decay, and that e0γ also has better spatial decay since α is independent of t.)

Now, in (8.99), the worst component (Γ̃(n))0
00 indeed appears on the RHS. Nevertheless, if we consider

the equation instead for

(L̃
(n)
A )αe(n)

α

(
eγ

(n)

N (n)(L̃
(n+1)
A )0

)
=eγ

(n)

N (n) × (RHS of (8.99)) + (L̃
(n)
A )α

(
e(n)
α

(
eγ

(n)

N (n)
))

(L̃
(n+1)
A )0,

(8.100)

we cancel off the term (e0 logN (n))(L̃
(n)
A )0(L̃

(n+1)
A )0 (and the other terms that are introduced also take the

form of (L̃
(n)
A )α(L̃

(n+1)
A )β multiplied by an H3

δ′ function.)
Next, since −→c A is a constant vector, we can rewrite (8.100) as

(L̃
(n)
A )αe(n)

α

(
eγ

(n)

N (n)(L̃
(n+1)
A )0 − |−→cA|

)
= (RHS of (8.100)). (8.101)
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On the other hand, on the RHS we can write the components of L̃
(n)
A as

(L̃
(n)
A )i = (L

(n)
A )i + e−2γ(n−1)−→cAi − e−2γ(n−1)−→cAi + (β(n))i(L

(n)
A )t,

(L̃
(n)
A )0 = (L

(n)
A )t − (N (n−1))−1e−γ

(n−1)

|−→cA|+ (N (n−1))−1e−γ
(n−1)

|−→cA|;

and write the components of (L̃
(n+1)
A )α as

(L̃
(n+1)
A )i = (L̃

(n+1)
A )i + e−2γ(n)−→cAi − e−2γ(n)−→cAi,

(L̃
(n+1)
A )0 = (L̃

(n+1)
A )0 − (N (n))−1e−γ

(n)

|−→cA|+ (N (n))−1e−γ
(n)

|−→cA|;

and use the triangle inequality. Therefore, we conclude using the estimates for (Γ̃(n))µαβ we mentioned above

and (8.11), (8.14), (8.15), (8.21) that for ` = 2, 3, the RHS of (8.101) is bounded above in the H`
δ′′+ ε

10
norm

as follows:

‖(RHS of (8.101))‖H`
δ′′+ ε

10

.C(A1, Ci)
(

1 + ‖e2γ(n−1)

(L
(n)
A )i +−→cAi‖H3

δ′′
+ ‖N (n−1)eγ

(n−1)

(L
(n)
A )t − |−→cA|‖H3

δ′′

+‖N (n−1)eγ
(n−1)

(β(n))i(L
(n)
A )t‖H3

δ′′

)
×
(

1 + ‖e2γ(n)

(L̃
(n+1)
A )i +−→cAi‖H`

δ′′
+ ‖N (n)eγ

(n)

(L̃
(n+1)
A )0 − |−→cA|‖H`

δ′′

)
.C(A1, Ci)

(
1 + ‖e2γ(n)

(L̃
(n+1)
A )i +−→cAi‖H`

δ′′
+ ‖N (n)eγ

(n)

(L̃
(n+1)
A )0 − |−→cA|‖H`

δ′′

)
.

(8.102)

Here, we used the weighted space H`
δ′′+ ε

10
instead of H`

δ′ to handle the logarithmically diverging terms

e−2γ(n−1)

, e−2γ(n)

, etc.
By Lemma 8.14, (7.14), (8.101) and (8.102), we have, for ` = 2, 3,

sup
t∈[0,T ]

∥∥∥∥eγ(n)

N (n)(L̃
(n+1)
A )0 − |−→cA|

∥∥∥∥
H`
δ′′

(t) .

∥∥∥∥eγ(n)

N (n)(L̃
(n+1)
A )0 − |−→cA|

∥∥∥∥
H`
δ′′

(0)

+ C(A1, Ci)T sup
t∈[0,T ]

(
1 + ‖e2γ(n)

(L̃
(n+1)
A )i +−→cAi‖H`

δ′′
+ ‖N (n)eγ

(n)

(L̃
(n+1)
A )0 − |−→cA|‖H`

δ′′

)
(t).

(8.103)

An entirely analogous argument for the equation of e2γ(n)

(L̃
(n+1)
A )i+−→cAi instead of eγ

(n)

N (n)(L̃
(n+1)
A )0−|−→cA|

implies that for ` = 2, 3,

sup
t∈[0,T ]

∥∥∥∥e2γ(n)

(L̃
(n+1)
A )i +−→cAi

∥∥∥∥
H`
δ′′

(t) .

∥∥∥∥e2γ(n)

(L̃
(n+1)
A )i +−→cAi

∥∥∥∥
H`
δ′′

(0)

+ C(A1, Ci)T sup
t∈[0,T ]

(
1 + ‖e2γ(n)

(L̃
(n+1)
A )i +−→cAi‖H`

δ′′
+ ‖N (n)eγ

(n)

(L̃
(n+1)
A )0 − |−→cA|‖H`

δ′′

)
(t).

(8.104)

Combining (8.103) and (8.104) and choosing T sufficiently small give that for ` = 2, 3,

sup
t∈[0,T ]

(∥∥∥∥eγ(n)

N (n)(L̃
(n+1)
A )0 − |−→cA|

∥∥∥∥
H`
δ′′

(t) +

∥∥∥∥e2γ(n)

(L̃
(n+1)
A )i +−→cAi

∥∥∥∥
H`
δ′′

(t)

)

.

∥∥∥∥eγ(n)

N (n)(L̃
(n+1)
A )0 − |−→cA|

∥∥∥∥
H`
δ′′

(0) +

∥∥∥∥e2γ(n)

(L̃
(n+1)
A )i +−→cAi

∥∥∥∥
H`
δ′′

(0).

(8.105)

To obtain (8.95) from (8.105), we use (7.14) to control the data term and note that

• by (8.98), (L̃
(n+1)
A )0 = (L

(n+1)
A )t;
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• and that by (8.98), (7.3) (for α), (8.13) (for β(n)), (8.15) (for γ̃(n)) and (8.105),

‖e2γ(n)

(L̃
(n+1)
A )i − e2γ(n)

(L
(n+1)
A )i‖H2

δ′′
.‖e2γ(n)

(β(n))i(L̃
(n+1)
A )0‖H2

δ′′
. Ceik.

Finally, to obtain (8.96) from (8.105), we argue similarly except that

• we use Corollary 7.6 instead of (7.14) to estimate the initial data term;
• and that we need to use (8.14) instead of (8.13) to control β(n) in H3

δ′ .

Note that these result in the estimate being linear in A0Ci.
Proof of (8.97). To obtain (8.97), we directly use the equation (8.101) and the corresponding equation

for e2γ(n)

(L̃
(n+1)
A )i. For simplicity, let us just consider the bound for ∂t

(
eγ

(n)

N (n)(L̃
(n+1)
A )0

)
. For this, we

express L̃
(n)
A in terms of L

(n)
A and write (8.101) as follows:

∂t

(
eγ

(n)

N (n)(L̃
(n+1)
A )0

)
= −

(L
(n)
A )i

(L
(n)
A )t

∂i

(
eγ

(n)

N (n)(L̃
(n+1)
A )0 − |−→cA|

)
+

(RHS of (8.100))

(L
(n)
A )t

. (8.106)

The first term on the RHS of (8.106) can be estimated using (8.96) (which we just proved), (8.19), (8.10),
Proposition 8.3, Lemma A.1 and Proposition A.4 as follows: (Recall here that the constant in . can depend
on Ceik)∥∥∥∥∥ (L

(n)
A )i

(L
(n)
A )t

∂i

(
eγ

(n)

N (n)(L̃
(n+1)
A )0 − |−→cA|

)∥∥∥∥∥
H2
δ′′′

.

(
1 +

∥∥∥eγ(n)

N (n)(L
(n)
A )t − |−→cA|

∥∥∥2

H2
δ′′

+
∥∥∥e2γ(n)

(L
(n)
A )i +−→cAi

∥∥∥2

H2
δ′′

)∥∥∥∥eγ(n)

N (n)(L̃
(n+1)
A )0 − |−→cA|

∥∥∥∥
H3
δ′′

.A0Ci.

Finally, for the second term on the RHS of (8.106), we need to get an estimate better than (8.102) (in
terms of dependence on the constants), which is possible since we now only have up to 2 derivatives.

The key point is that the appropriately-weighted-H2 norms for β(n), γ̃(n), Ñ (n), e2γ(n)

(L
(n+1)
A )i +−→cAi and

N (n)eγ
(n)

(L
(n+1)
A )t − |−→cA| are bounded independently of Ci, A0, A1 or A2. More precisely, by Lemma 7.1,

(8.10), (8.13), (8.19), (8.21), Proposition 8.3, (8.95) (which we just proved) and Proposition A.4, we have∥∥∥∥∥ (RHS of (8.100))

(L
(n)
A )t

∥∥∥∥∥
H2
δ′′′

.
(

1 + |N (n)
asymp|+ ‖β(n)‖H2

δ′
+ ‖Ñ (n)‖H2

δ
+ ‖γ̃(n)‖H2

δ

)2

×
(

1 + ‖e2γ(n−1)

(L
(n)
A )i +−→cAi‖H2

δ′′
+ ‖N (n−1)eγ

(n−1)

(L
(n)
A )t − |−→cA|‖H2

δ′′

)
×
(

1 +
∥∥∥e2γ(n)

(L
(n+1)
A )i +−→cAi

∥∥∥
H2
δ′′

+
∥∥∥N (n)eγ

(n)

(L
(n+1)
A )t − |−→cA|

∥∥∥
H2
δ′′

)
. C.

Note that here on the LHS we use H2
δ′′′ instead of H2

δ′′ to compensate for the factors growing as |x| → ∞.

Combining the above estimates and plugging into (8.106) give (8.97) for ∂t

(
eγ

(n)

N (n)(L̃
(n+1)
A )0

)
. The

other term can be dealt with similarly. �

Proposition 8.16 (Lower bound for N (n)eγ
(n)

(L
(n+1)
A )t). For n ≥ 2, the following lower bound holds:

min
A

inf
x∈R2

∣∣∣N (n)eγ
(n)

(L
(n+1)
A )t

∣∣∣ (x) ≥ 1

2
C−1
eik.

Proof. By (7.15), at t = 0, we have

min
A

inf
x∈R2

∣∣∣N (n)eγ
(n)

(L
(n+1)
A )t

∣∣∣ (0, x) ≥ C−1
eik.

The desired estimate therefore follows from the bound for ∂t

(
N (n)eγ

(n)

(L
(n+1)
A )t

)
in Proposition 8.15 to-

gether with Proposition A.3, after choosing T to be sufficiently small. �
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In our next lemma, we show that F
(n+1)
A is supported in an appropriate compact set.

Lemma 8.17 (Support of F
(n+1)
A ). Choosing Cs (from (8.11)) larger if necessary, for ε, T sufficiently small

(depending on R) and n ≥ 2, F
(n+1)
A is supported in the set {(t, x) ∈ [0, T ]×R2 : Cs(1 +Rε)t− |x| ≥ −R}.

In particular, choosing T smaller if necessary, the support supp(F
(n+1)
A ) ⊂ {(t, x) ∈ [0, T ]×R2 : |x| ≤ 2R}.

Proof. By the transport equation (8.8) for F
(n+1)
A , it suffices to show that any integral curve L

(n)
A which at

t = 0 is in {(x ∈ R2 : |x| ≤ R} remains in the set {(t, x) ∈ [0, T ]×R2 : Cs(1 +Rε)t− |x| ≥ −R} for all time.
To see this, let us fix such an integral curve γ. By (8.21), (and (7.3), (8.10) and Proposition 8.3,)

δij(L
(n)
A )i(L

(n)
A )j

(L
(n)
A )t(L

(n)
A )t

≤ e−2γ(n−1)

(N (n−1))2 +
CA0

(1 + |x|2)
δ′′+1

2

. (1 + |x|2)
ε
10 +

A0

(1 + |x|2)
δ′′+1

2

.

We parametrize γ by its t-value, and denote by r(t) the |x| value of γ(t). The above inequality implies that

r(t) ≤ R+ C

∫ t

0

(
(1 + (r(τ))2)

ε
10 +

A0

(1 + (r(τ))2)
δ′′+1

2

)
dτ.

A simple continuity argument shows that for Cs, ε, T appropriately chosen,

r(t) ≤ R+ Cs(1 +Rε)t,

which is to be shown. �

Proposition 8.18 (Estimates for F
(n+1)
A and χ

(n+1)
A ). For n ≥ 2, the following estimates hold:∥∥∥F (n+1)

A

∥∥∥
H3
. Ci,

∥∥∥∂tF (n+1)
A

∥∥∥
H2
.C(A0)Ci,∥∥∥χ(n+1)

A

∥∥∥
C0
δ′+1

≤ 2Cχ,
∥∥∥χ(n+1)

A

∥∥∥
H3
δ

.Ci.

Proof. We now apply Lemma 8.14 to control F
(n+1)
A and χ

(n+1)
A satisfying the equations (8.8) and (8.9). By

the compact support of FA that we established in Lemma 8.17, we can put in any weights in the bounds
for terms in which FA appears.

Estimate for F
(n+1)
A . By Lemma 8.14, Proposition A.4, (8.22) and (8.24), we have

sup
t∈[0,T ]

‖F (n+1)
A ‖H3(t) . ‖F (n+1)

A ‖H3(0) + C(A0, Ci)T‖F (n)
A ‖H3(t)‖χ(n)

A ‖H3
δ
(t) . Ci,

after choosing T sufficiently small.

Estimate for ∂tF
(n+1)
A . We use (8.8) to write ∂tF

(n+1)
A in terms of

(L
(n)
A )i∂iF

(n+1)
A

(L
(n)
A )t

and 1

(L
(n)
A )t

χ
(n)
A F

(n+1)
A .

In other words,

‖∂tF (n+1)
A ‖H2 .

∥∥∥∥∥ (L
(n)
A )i∂iF

(n+1)
A

(L
(n)
A )t

∥∥∥∥∥
H2

+

∥∥∥∥∥ 1

(L
(n)
A )t

χ
(n)
A F

(n+1)
A

∥∥∥∥∥
H2

.

The first term is easily seen to obey ∥∥∥∥∥ (L
(n)
A )i∂iF

(n+1)
A

(L
(n)
A )t

∥∥∥∥∥
H2

. C(A0)Ci

using (8.19), (8.20) and the estimate for ‖F (n+1)
A ‖H3 that we have just established above, and recalling our

convention that C can depend on Ceik.

For the second term, we use the fact that supp(F
(n+1)
A ) ⊂ B(0, 2R) and use21 Proposition A.5 together

with (8.19), (8.20), (8.22) and the estimate for ‖F (n+1)
A ‖H3 that we have just established above to obtain∥∥∥∥∥ 1

(L
(n)
A )t

χ
(n)
A F

(n+1)
A

∥∥∥∥∥
H2

.

∥∥∥∥∥ 1

(L
(n)
A )t

χ
(n)
A

∥∥∥∥∥
C0(0,3R)

∥∥∥F (n+1)
A

∥∥∥
H2

+

∥∥∥∥∥ 1

(L
(n)
A )t

χ
(n)
A

∥∥∥∥∥
H2(0,3R)

∥∥∥F (n+1)
A

∥∥∥
C0
. C(A0)Ci.

21We refer the reader to Footnote 15 on p.19 regrading the use of Proposition A.5 when one of the factors is compactly

supported.
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Here, we again recall that C can depend on Ceik, and hence also Cχ.
Combining the above estimates, we obtain

‖∂tF (n+1)
A ‖H2 . C(A0)Ci.

Estimate for χ
(n+1)
A in H3

δ . For the χ
(n)
A estimate, notice that the only inhomogeneous term in (8.9)

that is not compactly supported in the (χ
(n)
A )2 term, which can be controlled using Proposition A.4 by

‖(χ(n)
A )2‖H3

δ
. ‖χ(n)

A ‖
2
H3
δ
. C(A0)C2

i .

The remaining terms, which can compactly supported, as easier to handle and can be treated in a similar
manner as in the proof of Proposition 8.5, namely, we have

∥∥∥∥∥2((L
(n)
A )ρ∂ρφ

(n))2 +
∑
B

F 2
B(g(n)

µν (L
(n)
A )µ(L

(n)
B )ν)2

∥∥∥∥∥
H3
δ

. εC(A0)Ci.

Therefore, by Lemma 8.14, we have

sup
t∈[0,T ]

‖χ(n+1)
A ‖H3

δ
(t) . ‖χ(n+1)

A ‖H3
δ
(0) + T (C(A0)C2

i + εC(A0)Ci) . Ci (8.107)

after choosing T to be sufficiently small.

Estimate for χ
(n+1)
A in C0

δ+1. We first estimate ∂tχ
(n+1)
A in a similar manner as we bound ∂tF

(n+1)
A

above, namely, we use the equation (8.9) to write ∂tχ
(n+1)
A in terms of

(L
(n)
A )i∂iχ

(n+1)
A

(L
(n)
A )t

, (χ(n))2

(L
(n)
A )t

and
RHS of (8.9)

(L
(n)
A )t

.

Using the bounds for the terms in (8.9) we proved above and the estimate (8.107) above, we have

‖∂tχ(n+1)
A ‖H2

δ′
. C(Ci).

By Proposition A.3, this implies that ‖∂tχ(n+1)
A ‖C0

δ′+1
. C(Ci), which, together with (7.18), imply

‖χ(n+1)
A ‖C0

δ′+1
≤ 2Cχ.

�

We conclude this subsection by noting that the combination of the propositions proved in this subsection
show that we can recover all the estimates in (8.10)–(8.24) (in fact with better constants for most of the
estimates) when replacing (n) by (n+ 1). As a consequence, the estimates in (8.10)–(8.24) hold for all n.

8.3. Convergence of the sequence and solution to the reduced system. Next, we show that the
sequence we constructed in fact converges to a limit (in a larger functional space).
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Define the following distances:

d
(n)
1 :=‖γ̃(n+1) − γ̃(n)‖H1

δ′
+ ‖∂t(γ̃(n+1) − γ̃(n))‖L2

δ′
+ ‖H(n+1) −H(n)‖H1

δ+1
+ ‖τ (n+1) − τ (n)‖L2

δ′′+1

+
∑
A

‖e2γ(n)

(L
(n+1)
A )i − e2γ(n−1)

(L
(n)
A )i‖H1

δ′′
+
∑
A

‖N (n)eγ
(n)

(L
(n+1)
A )t −N (n−1)eγ

(n−1)

(L
(n)
A )t‖H1

δ′′

+ ‖∂(φ(n+1) − φ(n))‖H1 +
∑
A

‖F (n+1)
A − F (n)

A ‖H1 +
∑
A

‖χ(n+1)
A − χ(n)

A ‖H1
δ
, (8.108)

d
(n)
2 :=|N (n+1)

asymp −N (n)
asymp|+ ‖Ñ (n+1) − Ñ (n)‖H2

δ
+ ‖β(n+1) − β(n)‖H2

δ′
, (8.109)

d
(n)
3 :=

∑
A

‖∂t(e2γ(n)

(L
(n+1)
A )i − e2γ(n−1)

(L
(n)
A )i)‖L2

δ′′′

+
∑
A

‖∂t(N (n)eγ
(n)

(L
(n+1)
A )t −N (n−1)eγ

(n−1)

(L
(n)
A )t)‖L2

δ′′′

+ ‖∂t(
e

(n)
0 φ(n+1)

N (n)
− e

(n−1)
0 φ(n)

N (n−1)
)‖L2 +

∑
A

‖∂t(F (n+1)
A − F (n)

A )‖L2 , (8.110)

d
(n)
4 :=‖e(n+1)

0 H(n+1) − e(n)
0 H(n)‖H1

δ+1
, (8.111)

d
(n)
5 :=‖∂t(

e
(n)
0 γ̃(n+1)

N (n)
− e

(n−1)
0 γ̃(n)

N (n−1)
)‖L2

δ′
+ ‖∂t(τ (n+1) − τ (n))‖L2

δ′′+1
, (8.112)

d
(n)
6 :=|∂t(N (n+1)

asymp −N (n)
asymp)|+ ‖∂t(Ñ (n+1) − Ñ (n))‖H2

δ
+ ‖e(n)

0 β(n+1) − e(n−1)
0 β(n)‖H2

δ′
. (8.113)

Since we have already obtained uniform bound on the iterates, from now on we need not keep track of
the constants A0, A1, A2. They will henceforth be simply absorbed into constants depending Ceik, k, δ.

The following proposition gives estimates for the distances d
(n)
i . The estimates are easier than those

required for uniform boundedness in the previous subsection, since

• we have already closed the nonlinear bootstrap argument,

• and in the estimates for d
(n)
i , we only need bounds for lower order of derivatives.

The estimate we prove nevertheless crucially relies on the structure of the equations so that the distances
can be controlled in a step-by-step manner such that at each step the RHS either consists terms bounded in
the previous step or has appropriate smallness constant. It is exactly the same kind of structure that allowed
us to prove the uniform boundedness statement in the previous subsection. We will only briefly indicate
how these estimates are proven, but will refer the reader to the corresponding propositions in the previous
subsection, where the analogous estimates for the corresponding quantities (without taking difference) were
proven.

Proposition 8.19. For n ≥ 3, the following inequalities hold for some fixed C∗ > 1 depending on Ceik, δ,
R:

d
(n)
1 ≤C∗(Ci)T (d

(n−1)
1 + d

(n−2)
1 + d

(n−1)
2 + d

(n−2)
2 + d

(n−1)
3 + d

(n−1)
4 + d

(n−1)
5 + d

(n−1)
6 ), (8.114)

d
(n)
2 ≤C∗(d(n−1)

1 + d
(n−2)
1 ) + C∗ε(d

(n−1)
2 + d

(n−2)
2 ), (8.115)

d
(n)
3 ≤C∗(d(n−1)

1 + d
(n−2)
1 + d

(n−1)
2 + d

(n−2)
2 ), (8.116)

d
(n)
4 ≤C∗Ci(d(n−1)

1 + d
(n−1)
2 ), (8.117)

d
(n)
5 ≤C∗d(n−1)

6 + C∗Ci(d
(n−1)
1 + d

(n−1)
2 + d

(n−2)
2 + d

(n−1)
3 + d

(n−1)
4 ), (8.118)

d
(n)
6 ≤C∗Ci(d(n−1)

1 + d
(n−1)
2 + d

(n−2)
2 + d

(n−1)
3 + d

(n−1)
4 ) + C∗ε(d

(n−1)
5 + d

(n−1)
6 ). (8.119)

Proof. The basic strategy is to estimate these differences in a way similar to Section 8.2. In particular, we
use the structure of the equations in a similar manner.

To control d
(n)
1 is the easiest. All of these terms are controlled using transport or wave type equations with

0 initial data. Therefore, on the RHS we need to use all of d
(n)
1 , . . . d

(n)
6 and d

(n−2)
1 , d

(n−2)
2 , the estimate comes

with a small constant T associated with a time integral (cf. estimates for the analogous quantities without
taking differences in Propositions 8.8 (for γ̃(n+1)−γ̃(n) and ∂t(γ̃

(n+1)−γ̃(n))), 8.10 (H(n+1)−H(n)), 8.12 (for

∂(φ(n+1)−φ(n))), 8.15 (for e2γ(n)

(L
(n+1)
A )i− e2γ(n−1)

(L
(n)
A )i and N (n)eγ

(n)

(L
(n+1)
A )t−N (n−1)eγ

(n−1)

(L
(n)
A )t),
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8.18 (for F
(n+1)
A − F

(n)
A and χ

(n+1)
A − χ

(n)
A )). For τ (n+1) − τ (n), we estimate it directly by integrating

∂t(τ
(n+1) − τ (n)), which can be controlled in terms of d

(n−1)
1 , d

(n−1)
2 , d

(n−2)
2 , d

(n−1)
5 and d

(n−1)
6 .

To control d
(n)
2 , we consider the difference between the (n+1)-st iterates of (8.1) and (8.2) and their n-th

iterates and perform elliptic estimates for the differences of N (n+1)−N (n) and β(n+1)−β(n). Arguing as in
Propositions 8.5 and 8.6, for most terms there is a smallness constant ε in the coefficient. The only exception
arise when controlling the difference β(n+1)−β(n), on the right hand side there is a term H(n+1)−H(n) with

coefficients depending on N (n)eγ
(n)

, N (n−1)eγ
(n−1)

, N (n−2)eγ
(n−2)

, which while not small, can be controlled

by a constant independent of Ci. To control d
(n)
2 , we consider the difference between the (n+ 1)-st iterates

of (8.1) and (8.2) and their n-th iterates and perform elliptic estimates for the differences of N (n+1)−N (n)

and β(n+1) − β(n). Arguing as in Propositions 8.5 and 8.6, for most terms there is a smallness constant ε
in the coefficient. The only exception arise when controlling the difference β(n+1) − β(n), on the right hand

side there is a term H(n+1) −H(n) with coefficients depending on N (n)eγ
(n)

, N (n−1)eγ
(n−1)

, N (n−2)eγ
(n−2)

,
which while not small, can be controlled by a constant independent of Ci.

To control d
(n)
3 , we control the differences for appropriates n’s of RHSs of (8.6), (8.7) and (8.8). It is easy

to check that to control this we only need to control the difference of terms appearing in d
(n)
1 , d

(n−1)
1 , d

(n−1)
2

and d
(n−2)
2 , i.e., we do need to estimate the difference of the top ∂t derivative of any quantity. Moreover,

since we do not need to take any derivatives of the RHS of these equations, we check using the estimates
(8.10)-(8.24) and Proposition 8.3 that the constant we have in the estimate can be chosen independent of
Ci (cf. Proposition 8.12, 8.15, 8.18).

To control d
(n)
4 , we bound the difference e

(n+1)
0 H(n+1)− e(n)

0 H(n) and its spatial derivative by controlling

the appropriate difference of of the RHS (8.5). This is similar to the estimates for d
(n)
3 , except that since we

now need to take one spatial derivative, the constant may depend (linearly) on Ci (cf. Proposition 8.10).

To control d
(n)
5 , we first estimate ∂t(

e
(n)
0 γ̃(n+1)

N(n) − e
(n−1)
0 γ̃(n)

N(n−1) )by taking appropriate difference of (8.3). The

estimate for ∂t(τ
(n+1) − τ (n)) then follows easily using (8.4). There are two main observations. First, we

note that the RHS does not depend on d
(n−1)
5 , this follows easily from inspecting the RHS of (8.3). Second,

we note that when d
(n−1)
6 appears on the RHS, the constant is independent of Ci. The relevant term here

is e2γ
(n)

2N(n) e
(n−1)
0

(
e−2γ(n)

N(n−1) div(β(n))

)
. The key point is that e

(n−1)
0 β(n) − e(n−2)

0 β(n−1) must be multiplied by

at most two derivatives of γ(n), γ(n−1), N (n), N (n−1) and N (n−2). Hence, by (8.10), Proposition 8.3, these
terms indeed can be bounded independent of Ci. The other terms can be controlled more roughly using the
estimate in the previous section since we will allow the coefficient to depend on Ci.

To control d
(n)
6 , we take ∂t derivatives of (8.1) and (8.2), take the appropriate difference, and use elliptic

estimates. The key is to observe that when d
(n−1)
5 and d

(n−1)
6 appear on the RHS, then there is a smallness

constant C∗ε. To see this, one can argue in a similar manner as in Propositions 8.5 and 8.6. The remaining
terms can be controlled more roughly using the estimate in the previous section since we will allow the
coefficient to depend on Ci. �

Proposition 8.19, together with a simple induction argument, imply the following estimates (we omit the
easy proof):

Corollary 8.20. Assume that for n = 1, 2, we have the bound

d
(n)
1 ≤ B, d

(n)
2 ≤ 8C∗B, d

(n)
3 ≤ 2(3C∗ + 16(C∗)

2)B, d
(n)
4 ≤ 2Ci(C∗ + 8(C∗)

2)B,

d
(n)
5 ≤ 4(1 + C∗)Ci

(
2C∗ + 16(C∗)

2 + 2C∗(2C∗ + 16(C∗)
2) + 2C∗Ci(C∗ + 8(C∗)

2)
)
B,

d
(n)
6 ≤ 4Ci

(
2C∗ + 16(C∗)

2 + 2C∗(2C∗ + 16(C∗)
2) + 2C∗Ci(C∗ + 8(C∗)

2)
)
B,

for some B > 0, where C∗ is as in Proposition 8.19 and Ci is as in Corollary 7.6. (Note that this can
always be achieved by taking B larger if necessary).

Then, if T and ε are sufficiently small (where T may depend on Ci, Ceik, δ, R, but ε may only depend
on Ceik, δ, R, but not Ci), for every n ≥ 3, the following bounds hold:

d
(n)
1 ≤ 2−(n−3)2−1B, d

(n)
2 ≤ 2−(n−3) · 4C∗B, d

(n)
3 ≤ 2−(n−3) · (3C∗ + 16(C∗)

2)B,

d
(n)
4 ≤ 2−(n−3)Ci(C∗ + 8(C∗)

2)B,

d
(n)
5 ≤ 2−(n−3)2(1 + C∗)Ci

(
2C∗ + 16(C∗)

2 + 2C∗(3C∗ + 16(C∗)
2) + 2C∗Ci(C∗ + 8(C∗)

2)
)
B,
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d
(n)
6 ≤ 2−(n−3)2Ci

(
2C∗ + 16(C∗)

2 + 2C∗(3C∗ + 16(C∗)
2) + 2C∗Ci(C∗ + 8(C∗)

2)
)
B.

The precise expression above is of course unimportant, but it shows that in the function spaces as in

the definition of d
(n)
1 , . . . , d

(n)
6 , the sequence we constructed is Cauchy and therefore convergent. Using

the regularity that we have obtained, it is easy to verify the limit indeed satisfies the system (6.1)-(6.7),
(6.9)-(6.10). Finally, define uA by (6.8). It is easy to verify that we have indeed constructed a solution
to (6.1)–(6.10). Moreover, one easily checks that the solution is unique: indeed, if there are two solutions,
we can control their difference using the distances (8.108)-(8.113), then an argument as in Proposition 8.19
and Corollary 8.20 shows that these two solutions coincide. We summarize this discussion in the following
theorem:

Theorem 8.21. Given the initial conditions in Section 7, there exists a unique solution

(N, β, τ,H, γ, φ, LA, FA, χA)

to the reduced system (6.1)–(6.10) such that

• γ and N admit the decompositions

γ = −αχ(|x|)log(|x|) + γ̃, N = 1+Nasympχ(|x|)log(|x|) + Ñ ,

where α ≥ 0 is a constant, Nasymp(t) ≥ 0 is a function of t alone and

γ̃ ∈ H4
δ′ ,

e0γ̃

N
∈ H3

δ′+1, ∂t
e0γ̃

N
∈ H2

δ′+1, Ñ ∈ H5
δ , ∂tÑ ∈ H3

δ ,

with estimates depending only on Ci, Ceik, δ and R.
• For all A, φ, ∂tφ, FA are supported in22

J+({t = 0} ∩B(0, R))

and satisfy

∇φ, ∂tφ ∈ H3, ∂t
e0φ

N
∈ H2, FA ∈ H3, ∂tFA ∈ H2,

with estimates depending only on Ci, Ceik, δ and R.
• (β, τ,H,LA, χA) are in the following spaces (for all A):

β, e0β ∈ H4
δ′ , τ ∈ H3

δ′′+1, ∂tτ ∈ H2
δ′′+1, H, e0H ∈ H3

δ+1, χA ∈ H3
δ ,

e2γLiA +−→cAi, NeγLtA − |−→cA| ∈ H3
δ′′ , ∂t(e

2γLiA), ∂t(Ne
γLtA) ∈ H2

δ′′′ ,

with estimates depending only on Ci, Ceik, δ and R.
• NeγLtA is bounded below by

min
A

inf
x
|NeγLtA|(x) ≥ 1

2
C−1
eik.

• The smallness conditions in (8.10), (8.13) and Proposition 8.3 hold (without the (n)).

Before we end this subsection, it will be convenient to note that according to Remark 6.3, for uA defined
as above, we have

Proposition 8.22. Given a solution to (6.1)–(6.10), ∀A, uA satisfies

LαA = −(g−1)αβ∂βuA, (g−1)αβ∂αuA∂βuA = 0.

22Here, J+ denotes the causal future with respect to the metric g. Strictly speaking, we have only proved that φ, ∂tφ, FA

are supported in {(t, x) ∈ [0, T ]× R2 : Cs(1 +Rε)t− |x| ≥ −R}, but a posteriori, it is easy to check that the supports indeed

lie in J+({t = 0} ∩B(0, R)).
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9. Local well-posedness for the system (3.2)

In the previous section, we have shown that a unique local solution to the reduced system (6.1)–(6.10)
exists (cf. Theorem 8.21). We now show that given initial data satisfying the constraint equations (7.1)
and (7.2), as well as the initial conditions in Section 7, this solution is indeed a solution to the system (3.2).
For this purpose, it will be notationally convenient to denote23 as in Section B.3 that Tµν = 2∂µφ∂νφ −
gµν(g−1)αβ∂αφ∂βφ+

∑
A F

2
A∂µuA∂νuA.

Given a solution to (6.1)–(6.10), we have the geometric quantities γ, β, N , H and τ . Let Kij be defined
according to (4.2) with τ , H and γ as given. At this point, we do not yet know that (1) Kij is the second
fundamental form and that (2) Hij is the traceless part of Kij . On the other hand, by (6.1), we know that
τ is the mean curvature of the constant-t hypersurfaces.

We compute using (6.1) and (6.4) to get that

Kij :=
1

2
e2γτδij +Hij = (

1

2
e2γτ − 1

2N
e2γ(∂kβk))δij +

1

2N
e2γ(∂iβj + ∂iβj)

=− 1

2N
e0(e2γ)δij +

1

2N
e2γ(∂iβj + ∂iβj).

(9.1)

Hence, by (B.4), Kij is indeed the second fundamental form of the constant-t hypersurfaces. Moreover,
since we already know that τ is the mean curvature, it follows from (4.2) that Hij is indeed the traceless
part (with respect to ḡ) of Kij .

Therefore, it remains to show that τ = 0, �guA = χA, and that the first equation in (3.2) is satisfied. Let
us note that the first equation can be rephrased as Gµν = Tµν , where Gµν := Rµν − 1

2gµνR is the Einstein
tensor.

We first need some preliminary calculations for G00 and Gij .

Proposition 9.1. Given a solution to the reduced system (6.1)–(6.10), the Einstein tensor (in the basis
{e0, ∂i}) is given by

G00 =
N

2
(e0τ) + T00, Gij = Tij +

1

2

e2γ(e0τ)

N
δij . (9.2)

Moreover, T satisfies the following propagation equation:

DµTµν =
∑
A

F 2
A(�guA − χA)(∂νuA). (9.3)

Proof. First note that by Proposition 8.22, the computations in (B.3) are applicable.
Proof of first identity in (9.2). By (6.2), (B.10) and (B.19), we have

δijRij = δij(Tij − gijtrgT ). (9.4)

By (6.3), (B.9) and (B.17), we obtain

R00 = N(e0τ) + T00 − g00trgT. (9.5)

(9.4) and (9.5) (and (4.5)) together give

R = −N−2(Ne0τ + T00 − g00trgT ) + e−2γδij(Tij − gijtrgT ) = − 1

N
e0τ − 2trgT, (9.6)

which then implies (using (9.5) again)

G00 =
N

2
e0τ + T00. (9.7)

Proof of second identity in (9.2). By (6.5), (B.7), (B.10), (B.18), (B.19), (9.4) and (9.6), we obtain

Rij = Tij − gijtrgT, Gij = Tij +
1

2

e2γe0τ

N
δij . (9.8)

Proof of (9.3). Finally, to derive (9.3), we use (6.6), (6.8), (6.9), (6.10) and Proposition 8.22 to obtain

DµTµν =2�gφ(∂νφ) +
∑
A

2FA(∂αFA)(g−1)αβ(∂βuA)(∂νuA) +
∑
A

F 2
A(�guA)(∂νuA)

+
∑
A

F 2
A(g−1)αβ(∂αuA)Dβ(∂νuA) =

∑
A

F 2
A(�guA − χA)(∂νuA).

(9.9)

�

23Note that this is different from the expression for (4)Tµν .
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By Proposition 9.1, in order to show that a solution to (6.1)–(6.10) is indeed a solution to (3.2), it remains
to show that

τ = 0, �guA = χA, G0i = T0i. (9.10)

These will be shown simultaneously. We first derive the main equations used to prove (9.10).

Proposition 9.2. The following coupled system hold for τ , (G0i−T0i− 1
2N(∂iτ)) and (�guA−χA) (where

we again use the basis {e0, ∂i}):

− 1

N2
(∂t − βk∂k)(G0i − T0i) +

1

2

∂ie0τ

N
+

1

2

(∂iN)(e0τ)

N2

+
1

N2

(
(e0N)δij

N
+

1

2

(
−4(e0γ)δji + 2δki ∂`β

` + 2(∂iβ
j)
))

(G0j − T0j)

=−
∑
A

F 2
A(�guA − χA)(∂iuA),

(9.11)

1

2
(∂t − βi∂i)

(e0τ

N

)
− e−2γδij∂i(Gj0 − Tj0)

=
e−2γδij(∂iN)

N
(G0j − T0j)−

(
2e0γ − ∂iβi

) e0τ

N
+
∑
A

F 2
A(�guA − χA)(e0uA),

(9.12)

LρA∂ρ(�guA − χA) = −(�guA − χA)(�guA + χA)−N(e0τ)(L̃A)0(L̃A)0 − 2(G0i − T0i)(L̃A)0(L̃A)i,

(9.13)

where (L̃A)µ denotes the components of LA with respect to the basis {e0, ∂i}.

Proof. Proof of (9.11). By (B.3),

D0(G0i − T0i) =(∂t − βk∂k)(G0i − T0i)−
(e0N)

N
(G0i − T0i)− e−2γδjkN∂kN(Gij − Tij)

− ∂iN

N
(G00 − T00)− 1

2
(2(e0γ)δji + (∂iβ

j)− δikδj`(∂`βk))(G0j − T0j)

=(∂t − βk∂k)(G0i − T0i)− (∂iN)(e0τ)

−
(

(e0N)δij

N
+

1

2

(
2(e0γ)δji + (∂iβ

j)− δikδj`(∂`βk)
))

(G0j − T0j),

(9.14)

where in the last line we have used (9.2). On the other hand, by (B.3), we have

(g−1)jkDj(Gki − Tki)

=e−2γδjk∂j

(
1

2

e2γ(e0τ)

N
δki

)
− e−2γδjk(δ`j∂kγ + δ`k∂jγ − δjkδ`m∂mγ)(G`i − T`i)

− δjk

2N2
(2(e0γ)δjk − δk`∂jβ` − δj`∂kβ`)(G0i − T0i)

− e−2γδjk(δ`i∂jγ + δ`j∂iγ − δijδ`m∂mγ)(Gk` − Tk`)−
1

2N2
δjk(2(e0γ)δij − δi`∂jβ` − δj`∂iβ`)(G0k − T0k)

=
1

2

∂ie0τ

N
− 1

2

(∂iN)(e0τ)

N2
+

(∂iγ)(e0τ)

N
+ (−3(e0γ)

N2
+

1

N2
∂`β

`)(G0i − T0i)

− 1

2N2

(
−(∂jβ

`)δjkδi` − (∂iβ
k)
)

(G0k − T0k)− e−2γ∂iγδ
k`(Gk` − Tk`)

=
1

2

∂ie0τ

N
− 1

2

(∂iN)(e0τ)

N2
+

1

2N2

(
−6δki (e0γ) + 2δki ∂`β

` + (∂jβ
`)δjkδi` + (∂iβ

k)
)

(G0k − T0k),

(9.15)

where in the last line we have used (9.2). By (9.3) and the Bianchi equation DµGµi = 0, we have

(− 1
N2×(9.14))+(9.15)= −

∑
A F

2
A(�guA − χA)(∂iuA).
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The LHS can be expanded, using the expressions in (9.14) and (9.15), as

− 1

N2
(∂t − βk∂k)(G0i − T0i) +

1

N2
(∂iN)(e0τ)

+
1

N2

(
(e0N)δij

N
+

1

2

(
2(e0γ)δji + (∂iβ

j)− δikδj`(∂`βk)
))

(G0j − T0j)

+
1

2

∂ie0τ

N
− 1

2

(∂iN)(e0τ)

N2
+

1

2N2

(
−6δki (e0γ) + 2δki ∂`β

` + (∂jβ
`)δjkδi` + (∂iβ

k)
)

(G0k − T0k)

=− 1

N2
(∂t − βk∂k)(G0i − T0i) +

1

2

∂ie0τ

N
+

1

2

(∂iN)(e0τ)

N2

+
1

N2

(
(e0N)δij

N
+

1

2

(
−4(e0γ)δji + 2δki ∂`β

` + 2(∂iβ
j)
))

(G0j − T0j),

which proves (9.11).
Proof of (9.12). By (B.3) and (9.2), we have

(g−1)00D0(G00 − T00)

=− 1

N2
(∂t − βi∂i)(G00 − T00) +

1

N2

(
2(e0N)

N
(G00 − T00)+2e−2γδijN(∂iN)(G0j − T0j)

)
=− 1

2N2
(∂t − βi∂i)(N(e0τ)) +

(e0N)(e0τ)

N2
+

2e−2γδij(∂iN)

N
(G0j − T0j).

(9.16)

On the other hand, using (B.3) and (9.2), we also have

(g−1)ijDi(Gj0 − Tj0)

=e−2γδij∂i(Gj0 − Tj0)− 1

2N2
δij
(
2(e0γ)δij − (∂iβ

k)δjk − (∂jβ
k)δik

)
(G00 − T00)

− e−2γδij
(
δki ∂jγ + δkj ∂iγ − δijδk`∂`γ

)
(Gk0 − Tk0)

− e−2γδij
∂iN

N
(Gj0 − Tj0)− 1

2
e−2γδij

(
2(e0γ)δki − (∂iβ

k)− δimδk`(∂`βm)
)

(Gjk − Tjk)

=e−2γδij∂i(Gj0 − Tj0)− 1

4N

(
4(e0γ)− 2(∂iβ

i)
)

(e0τ)

−e−2γδij
∂iN

N
(Gj0 − Tj0)− 1

4
e−2γ

(
2(e0γ)δjk − δij(∂iβk)− δik(∂iβ

j)
) e2γ(e0τ)

N
δjk

=e−2γδij∂i(Gj0 − Tj0)−
(
2e0γ − ∂iβi

) e0τ

N
− e−2γδij(∂iN)

N
(Gj0 − Tj0).

(9.17)

By (9.3) and the Bianchi equation DµGµ0 = 0, we have

(9.16) + (9.17) = −
∑
A

F 2
A(�guA − χA)(e0uA),

which implies (9.12).
Proof of (9.13). By Proposition 8.22, (LA)µ = −(g−1)µν∂νuA. Computing as in Section C.2, we get

LρA∂ρ(�guA) = −(�guA)2 −RLALA

=− (�guA)2 − 2(LρA∂ρφ)2 −
∑
B

F 2
B(LρA(∂ρuB))2 −N(e0τ)(L̃A)0(L̃A)0 − 2(G0i − T0i)(L̃A)0(L̃A)i,

where in the last line we have used (9.5) and (9.8). Subtracting (6.10) from this and using Proposition 8.22,
we then obtain (9.13). �

Proposition 9.3. Suppose the solution to (6.1)–(6.10) as constructed in Section 8.1 arises from initial
data with τ �Σ0= 0, (�guA − χA) �Σ0= 0 and that the constraint equations are initially satisfied, then the
solution satisfies

τ = 0, �guA = χA, G0i − T0i = 0.

As a consequence, the solution to (6.1)–(6.10) is indeed a solution to (3.2).
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Proof. We will consider the equations (9.11), (9.12) and (9.13) as a linear system for the unknowns τ ,
�guA−χA and G0i−T0i. We will use the Grönwall’s inequality to simultaneously show that they are zero.
In order to carry this out, we need to put them in an appropriately weighted L2 space. To see that all the
weights are compatible, we will use the following two facts without further comments:

(1) According to the estimates proven in Section 8.1, not all derivatives of the metric components decay.
The only subtlety here are the logarithmic terms as |x| → ∞ in γ and N . Nevertheless, one notes
that all the spatial derivatives of any metric components decay as |x| → ∞, and ∂tγ, ∂tβ

i decay
as |x| → ∞. and ∂t logN is bounded as |x| → ∞. (The decay of ∂tγ follows from the fact that in
the asymptotic term αχ(|x|)log(|x|), α is a constant; while the boundedness of ∂t logN follows from
the fact that Nasymp(t) is a function of t only and the log(|x|) terms cancel.) Moreover, for εlow
sufficiently small, for any term that decays, the decay rate is faster than any powers of log(|x|) and
is also faster than e2γ .

(2) FA is compactly supported.

We begin the equations in Proposition 9.2. Consider the energy

E(t) :=

∫
R2

(
1

2N2
(e0τ)2 + 2e−2γ |G0i − T0i|2 + |G0i − T0i −

1

2
N∂iτ |2 + (�guA − χA)2

)
(t, x) dx.

Contracting (9.11) with N2δij(G0j − T0j − 1
2N∂jτ) and integrating by parts, we obtain

d

dt

∫
R2

|G0i − T0i −
1

2
N∂iτ |2(t, x) dx ≤ CE(t) (9.18)

for some constant C > 0.
Next, we consider the estimates for τ , which is slightly more subtle. We compute using (9.11) and (9.12).

In the computation to follow, notice that whenever a derivative falls on the metric components N and γ,
we obtain a term O(E(t)). For this we have in particular used the decay and boundedness properties of the
derivatives of the metric components that we mentioned above. Also, we can freely commute e0 and ∂i and
the error terms are again O(E(t)). More precisely, we have

d

dt

∫
R2

(
1

2N2
(e0τ)2 + 2e−2γ |G0i − T0i|2

)
(t, x) dx

=

∫
R2

(
1

N2
(e0τ)(e0e0τ) + 4e−2γ(Gi0 − Ti0)(e0(Gi0 − Ti0))

)
(t, x) dx+O(E(t))

(9.12)
=

∫
R2

(
2e−2γ

N
(e0τ)(∂i(Gi0 − Ti0)) + 4e−2γ(Gi0 − Ti0)(e0(Gi0 − Ti0))

)
(t, x) dx+O(E(t))

=

∫
R2

(
−2e−2γ

N
(e0∂iτ)(Gi0 − Ti0) + 4e−2γ(Gi0 − Ti0)(e0(Gi0 − Ti0))

)
(t, x) dx+O(E(t))

(9.11)
=

∫
R2

(
−4e−2γ(Gi0 − Ti0)(e0(Gi0 − Ti0)) + 4e−2γ(Gi0 − Ti0)(e0(Gi0 − Ti0))

)
(t, x) dx+O(E(t))

=O(E(t)).

(9.19)

By (9.13), we get that for some C > 0

d

dt

∫
R2

(�guA − χA)2(t, x) dx ≤ CE(t). (9.20)

Combining (9.18), (9.19) and (9.20), we thus obtain

d

dt
E(t) ≤ CE(t).

Finally, by assumptions, we have, initially, E(0) = 0. Therefore, by Grönwall’s inequality, we have for every
t ∈ [0, T ]

E(t) = 0

The conclusion follows immediately. �
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10. Improved regularity

Finally, to conclude the proof of Theorem 5.4, it remains to prove the bounds stated in Theorem 5.4.
Notice that some of the estimates are already obtained in Theorem 8.21. The remaining task is therefore
to improve some of the estimates in Theorem 8.21, using now the fact that we know the solution also solves
the original (3.2) and we can therefore use the elliptic equations for the metric components. More precisely,
we have the following proposition:

Proposition 10.1. In the k = 3 case, taking εlow smaller if necessary, all the estimates stated in Theo-
rem 5.4 hold for the solution to (3.2) constructed in Theorem 8.21 and Proposition 9.3.

Proof. Estimates for φ and FA. We first note that by Theorem 8.21, we already have all the desired
estimates for ∇φ, ∂tφ, ∂2

t φ, FA and ∂tFA. It thus remains to show the estimate for ∂2
t FA. It can be

easily seen that ∂2
t FA ∈ H1 by differentiating the equation (6.9) by ∂t, and then using the estimates in

Theorem 8.21 and the fact that FA is compactly supported in B(0, 2R).
Estimates for the metric components. Now that we know that we have a solution to (3.2), it follows

that the metric components satisfy the following elliptic equations:

∆βj = δikδj`∂k
(
log(Ne−2γ)

)
(Lβ)i` − 4δij(e0φ)(∂iφ)− 2δij

∑
A

F 2
A(e0uA)(∂iuA) (10.1)

∆γ = −|∇φ|2 − 1

2

∑
F 2
A|∇uA|2 −

e2γ

N2

(
(e0φ)2 +

1

2

∑
A

F 2
A(e0uA)2

)
− e2γ

8N2
|Lβ|2, (10.2)

∆N =
e2γ

4N
|Lβ|2 +

e2γ

N

(
2(e0φ)2 +

∑
A

F 2
A(e0uA)2

)
. (10.3)

All the computations are given in Appendix B.2. More precisely, (10.1) follows from (B.8) and (B.5); (10.2)
follows from (B.16); (10.3) follows from R00 = T00−g00trgT , which can be computed using (B.9) and (B.17).

For the metric components (without ∂t derivatives), we need Ñ , γ̃ ∈ H5
δ and β ∈ H5

δ′ . The estimate for

Ñ is already proven in Theorem 8.21. To improve the estimates for γ̃ and β, we use (10.1), (10.3), the

estimates in Theorem 8.21 and Corollary A.8 to obtain that γ̃ ∈ H5
δ , β ∈ H5

δ′ . (Notice that Ñ and γ̃ can
be put in a better weighted space compared to β since on the RHS of (10.2) and (10.3), the terms that are
not compactly supported is quadratic in Lβ and decay sufficiently fast. This is in contrast to, say, the term
δikδj`∂k

(
log(Ne−2γ)

)
(Lβ)i` on the RHS of (10.1).)

Estimates for uA and its ∂t derivatives. First, by Proposition 8.22 and (C.1), we have

LtA =
1

N2
(e0uA), LiA = −δije−2γ(∂juA)− βi 1

N2
(e0uA).

Hence, derivatives of uA can be written in terms of components of LA and their derivatives. Therefore,
by Theorem 8.21, we have the desired estimates for uA when there are at most two ∂t derivatives on uA.
Moreover, the upper bound for (minA infx∈R2 |∇uA|(x))

−1
holds due to the lower bound for NeγLtA in

Theorem 8.21.
Finally, to bound the third ∂t derivatives for uA, i.e., the term ∂2

t

(
eγN−1e0uA

)
, we simply note that

since (g−1)αβ∂µuA∂νuA = 0 (cf. Proposition 8.22),

e0uA = Ne−γ |∇uA|.
Hence, we can write eγN−1e0uA in terms of ∇uA and apply24 the estimates above.

Estimates for the ∂t derivatives of the metric components. To estimate the ∂t derivatives of
the metric components, we again use (10.1), (10.2) and (10.3). Differentiating (10.1), (10.2), (10.3) by ∂t
and using the estimates in Theorem 8.21 as well as Corollary A.8, we have that for some C ′h depending on
Ceik, Chigh, k, δ, R, the following estimates hold:

|∂tNasymp|+ ‖∂tÑ‖H2
δ

+ ‖∂tβ‖H2
δ′

+ ‖∂tγ̃‖H2
δ
. ε2

(
|∂tNasymp|+ ‖∂tÑ‖H1

δ
+ ‖∂tβ‖H1

δ′
+ ‖∂tγ̃‖H1

δ

)
+ C ′h,

Hence, we have ∂tÑ ∈ H2
δ , and ∂tβ, ∂tγ̃ ∈ H2

δ′ . Now, by using again the equations (10.1), (10.2), (10.3)
differentiated by ∂t, we can apply Corollary A.8 to iteratively improve the regularity until we obtain

∂tÑ , ∂tγ̃ ∈ H4
δ , ∂tβ ∈ H4

δ′ .

24Notice here that by lower bound on |∇uA|, |∇uA| is bounded away from 0 and therefore has the same regularity properties
as ∇uA.
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Similarly, to estimate the ∂2
t derivatives of the metric components, we differentiate (10.1), (10.2), (10.3) by

∂2
t . Using the estimates in Theorem 8.21 , the estimates for the ∂t derivatives of the metric components (that

we just derived above), and also Corollary A.8, we have that for some C ′h depending on Ceik, Chigh, k, δ, R,
the following estimates hold:

|∂2
tNasymp|+ ‖∂2

t Ñ‖H2
δ

+ ‖∂2
t β‖H2

δ′
+ ‖∂2

t γ̃‖H2
δ
. ε2

(
|∂2
tNasymp|+ ‖∂2

t Ñ‖H1
δ

+ ‖∂2
t β‖H1

δ′
+ ‖∂2

t γ̃‖H1
δ

)
+C ′′h ,

This implies that ∂2
t Ñ , ∂

2
t γ̃ ∈ H2

δ , and ∂2
t β ∈ H2

δ′ . As before, we now use the equations (10.1), (10.2), (10.3)
differentiated by ∂2

t and apply Corollary A.8 to iteratively improve the regularity until we obtain

∂2
t Ñ , ∂tγ̃ ∈ H3

δ , ∂2
t β ∈ H3

δ′ .

�

This concludes the proof of Theorem 5.4 when k = 3. As we mentioned earlier, in the case of larger k,
one can easily show that higher regularity is propagated, and we will omit the proof.

Appendix A. Weighted Sobolev spaces

For sake of completeness, we collect some results about weighted Sobolev spaces. For this we recall the
definitions in Definition 2.1. Unless otherwise stated, we will only be interested in weighted Sobolev spaces
on R2. Most of the results can be found in [2, Appendix I] (although we use slightly different notations).

The following is immediate from the definition.

Lemma A.1. Let m ≥ 1, p ∈ [1,∞) and δ ∈ R. Then there exists C > 0 such that for j = 1, 2,

‖∂ju‖Wm−1
δ+1,p

≤ C‖u‖Wm
δ,p
.

Similarly, for m ≥ 1, δ ∈ R, j = 1, 2,
‖∂ju‖Cm−1

δ+1
≤ C‖u‖Cmδ .

We have an easy embedding result, which is a straightforward application of the Hölder’s inequality:

Lemma A.2. If 1 ≤ p1 ≤ p2 ≤ ∞ and δ2 − δ1 > 2
(

1
p1
− 1

p2

)
, then we have the continuous embedding

W 0
δ2,p2 ⊂W

0
δ1,p1 .

Next, we have Sobolev embedding theorems for weighted Sobolev spaces:

Proposition A.3. Let s,m ∈ N ∪ {0}, 1 < p <∞. The following holds:

• Suppose s > 2
p and β ≤ δ + 2

p . Then, the following continuous embedding holds

W s+m
δ,p ⊂ Cmβ .

• Suppose s < 2
p . Then, the following continuous embedding holds

W s+m
δ,p ⊂Wm

δ+s, np
n−sp

.

We will also need a product estimate.

Proposition A.4. Let s, s1, s2 ∈ N ∪ {0}, p ∈ [1,∞], δ, δ1, δ2 ∈ R. Assume that s ≤ min(s1, s2) and
s < s1 + s2 − 2

p . Let δ < δ1 + δ2 + 2
p . Then ∀(u, v) ∈W s1

δ1,p
×W s2

δ2,p
,

‖uv‖W s
δ,p
. ‖u‖W s1

δ1,p
‖v‖W s2

δ2,p
.

We also state another product estimate, which concerns unweighted Hs spaces, and is especially conve-
nient when handling compactly supported functions. See [7, Appendix A] for a proof.

Proposition A.5. Let s ∈ N. Then ∀(u, v) ∈ (Hs ∩ L∞)× (Hs ∩ L∞),

‖uv‖Hs . ‖u‖Hs‖v‖L∞ + ‖u‖L∞‖v‖Hs .

The following simple lemma will be useful as well.

Lemma A.6. Let α ∈ R and g ∈ L∞loc be such that

|g(x)| . (1 + |x|2)α.

Then the multiplication by g maps H0
δ to H0

δ−2α with operator norm bounded by supx∈R2
|g(x)|

(1+|x|2)α .
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The next result, which is due to McOwen, concerns the invertibility of the Laplacian on weighted Sobolev
spaces.

Theorem A.7. (Theorem 0 in [6]) Let m ∈ Z, m ≥ 0, 1 < p < ∞ and − 2
p + m < δ < m + 1 − 2

p . The

Laplace operator ∆ : W 2+m
δ,p →Wm

δ+2,p is an injection with closed range{
f ∈Wm

δ+2,p |
∫
fv = 0 ∀v ∈ ∪mi=0Hi

}
,

where Hi is the set of harmonic polynomials of degree i. Moreover, u obeys the estimate

‖u‖W 2+m
δ,p
≤ C(δ,m, p)‖∆u‖Wm

δ+2,p
,

where C(δ,m, p) > 0 is a constant depending on δ, m and p.

The following is a corollary of Theorem A.7:

Corollary A.8. Let −1 < δ < 0 and f ∈ H0
δ+2. Then there exists a solution u of

∆u = f

which can be written

u =
1

2π

(∫
f

)
χ(|x|)log(|x|) + v,

where χ is as in Definition 5.1, and v ∈ H2
δ is such that ‖v‖H2

δ
≤ C(δ)‖f‖H0

δ+2
.

Appendix B. Computations in the elliptic gauge

In this section, we collect some computations for the spacetime metric in the elliptic gauge defined in
Section 4. We will frequently use conventions defined in Section 4 without further comment.

B.1. Connection coefficients. We compute the connection coefficients for the metric (4.5) with respect
to the frame {e0, e1, e2}, where e0 = ∂t − βi∂i and ei = ∂i. Notice that

[e0, ei] = [∂t − βj∂j , ∂i] = (∂iβ
j)∂j , [ei, ej ] = 0, g(ei, e0) = 0.

Using this, we compute

g(D0e0, e0) =
1

2
e0(g(e0, e0)) = −1

2
(e0N

2) = −N(e0N),

g(D0e0, ei) = −g(e0, D0ei) = −g(e0, Die0)− (∂iβ
j)g(e0, ej) = −1

2
∂i(g(e0, e0)) = N∂iN,

g(Die0, e0) =
1

2
∂i(g(e0, e0)) = −1

2
∂iN

2 = −N∂iN,

g(Die0, ej) =
e2γ

2

(
(2e0γ)δij − (∂iβ

k)δjk − (∂jβ
k)δik

)
, (B.1)

g(D0ei, e0) = −g(D0e0, ei) = −N∂iN,

g(D0ei, ej) = g(Die0, ej) + e2γ(∂iβ
k)δjk =

e2γ

2

(
(2e0γ)δij + (∂iβ

k)δjk − (∂jβ
k)δik

)
,

g(Diej , e0) = −g(Die0, ej) = −e
2γ

2

(
(2e0γ)δij − (∂iβ

k)δjk − (∂jβ
k)δik

)
,

g(Diej , ek) = e2γ
(
δik∂jγ + δjk∂iγ − δijδ`k∂`γ

)
.

Most of these are straightforward, let us just mention that (B.1) is derived using the symmetry g(Deie0, ej) =
g(Deje0, ei) so that

(e0e
2γ)δij = e0(g(ei, ej)) = g(D0ei, ej) + g(D0ej , ei) = 2g(Die0, ej) + e2γ(∂iβ

k)δjk + e2γ(∂jβ
k)δik.

Note in particular that the computation for g(Diej , ek) implies that the Christoffel symbols Γ̄kij associated
to the spatial metric ḡ (cf. (4.1)) are given by

Γ̄kij = δi
k∂jγ + δj

k∂iγ − δijδk`∂`γ. (B.2)



50 CÉCILE HUNEAU AND JONATHAN LUK

From the above calculations, we then obtain

D0e0 =
e0N

N
e0 + e−2γδijN∂iNej , D0ei =

∂iN

N
e0 +

1

2
((2e0γ)δji + (∂iβ

j)− δikδj`(∂`βk))ej ,

Die0 =
∂iN

N
e0 +

1

2
((2e0γ)δji − (∂iβ

j)− δikδj`(∂`βk))ej ,

Diej =
e2γ

2N2

(
(2e0γ)δij − (∂iβ

k)δjk − (∂jβ
k)δik

)
e0 +

(
δki ∂jγ + δkj ∂iγ − δijδk`∂`γ

)
ek.

(B.3)

B.2. Decomposition of the Ricci tensor.

Proposition B.1. Given g of the form (4.5), the second fundamental form Kij (cf. (4.2)) is given by

Kij = − 1

2N
e0(e2γ)δij +

1

2N
e2γ(∂iβj + ∂iβj), (B.4)

Moreover, its traceless part H satisfies

2Ne−2γHij = (Lβ)ij , (B.5)

where
(Lβ)ij := δj`∂iβ

` + δi`∂jβ
` − δij∂kβk (B.6)

as in Section 2.

Proof. (B.4) follows from (4.2); and (B.5) follows from (B.4). �

Proposition B.2. Given g of the form (4.5), the components of the Ricci curvature in the basis {e0 =
∂t − βk∂k, ∂i} are given by

Rij =δij

(
−∆γ +

τ2

2
e2γ − 1

2N
e2γe0τ −

1

2N
∆N

)
− 1

N
(∂t − βk∂k)Hij − 2e−2γHi

`Hj` (B.7)

+
1

N

(
∂jβ

kHki + ∂iβ
kHkj

)
− 1

N

(
∂i∂jN −

1

2
δij∆N −

(
δki ∂jγ + δkj ∂iγ − δijδ`k∂`γ

)
∂kN

)
,

R0j =N

(
1

2
∂jτ − e−2γδik∂kHij

)
, (B.8)

R00 =N

(
e0τ −Ne−4γ

(
|H|2 +

1

2
e4γτ2

)
+ e−2γ∆N

)
. (B.9)

Moreover,

δijRij = 2

(
−∆γ +

τ2

2
e2γ − 1

2N
e2γe0τ −

1

2N
∆N

)
. (B.10)

Proof. From [2, Chapter 6], we have

Rij =R̄ij +Kij(trḡK)− 2(ḡ−1)mlKimKjl −N−1(Le0Kij + D̄i∂jN), (B.11)

R0j =N(∂j(trḡK)− (ḡ−1)hkD̄hKjk), (B.12)

R00 =N(e0(trḡK)−N(ḡ−1)ii
′
(ḡ−1)jj

′
KijKi′j′ + ∆ḡN), (B.13)

where D̄, R̄ij and ∆ḡ are defined with respect to ḡ.
Proof of (B.7). First, by (4.3) and (B.2), we have

Rij =− δij∆γ + τ

(
Hij +

1

2
e2γδijτ

)
− 2e−2γ

(
Hi

` +
1

2
e2γδ`i τ

)(
Hj` +

1

2
e2γδj`τ

)
− 1

N

(
Le0Kij + ∂i∂jN −

(
δki ∂jγ + δkj ∂iγ − δijδk`∂`γ

)
∂kN

)
.

(B.14)

To proceed, we compute Le0Kij by considering Hij and τ . We calculate

Le0Hij =(∂t − βk∂k)Hij − ∂jβkHki − ∂iβkHkj ,

Le0(τ ḡij) =e2γδije0τ − 2NτKij .

Therefore, using (4.3) and plugging Le0Kij into (B.14), we obtain (B.7).
Proof of (B.8). This follows from (B.12) and the fact that (using (B.2),) for any covariant symmetric

2-tensor Aij ,

(ḡ−1)ikD̄kAij = e−2γ∂iAij − (∂jγ)(trḡA).
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Proof of (B.9). This is immediate from (B.13) and the conformal invariance of the Laplacian.
Proof of (B.10). Finally, to prove (B.10), we first note that

δij
(
∂jβ

kHki + ∂iβ
kHkj

)
= Hij(Lβ)ij ,

where L is as in (B.6). Combining this with (B.5), we obtain

δij
(
−2e−2γHi

`Hj` +
1

N

(
∂jβ

kHki + ∂iβ
kHkj

))
= 0.

Taking the trace of (B.7) and using this identity yield (B.10). �

Proposition B.3. Given g of the form (4.5), the scalar curvature R and the G00 = G(e0, e0) component
of the Einstein tensor are given by

R =− 2

N
e0τ +

3

2
τ2 + e−4γ |H|2 − 2e−2γ

N
∆N − 2e−2γ∆γ, (B.15)

G00 =N2e−2γ

(
−∆γ − e−2γ 1

2
|H|2 + e2γ 1

4
τ2

)
. (B.16)

Proof. By (4.5), (B.9) and (B.10),

R =− 1

N

(
e0τ −Ne−4γ

(
|H|2 +

1

2
e4γτ2

)
+ e−2γ∆N

)
+ e−2γ2

(
−∆γ +

τ2

2
e2γ − 1

2N
e2γe0τ −

1

2N
∆N

)
.

Simplifying this yields (B.15). By (4.5), (B.9) and (B.15),

G00 =
1

2
N

(
e0τ −Ne−4γ

(
|H|2 +

1

2
e4γτ2

)
+ e−2γ∆N

)
+ e−2γN2

(
−∆γ +

τ2

2
e2γ − 1

2N
e2γe0τ −

1

2N
∆N

)
.

Simplifying this yields (B.16). �

B.3. Computations for the stress-energy-momentum tensor. Definet Tµν by

Tµν := 2∂µφ∂νφ− gµν(g−1)αβ∂αφ∂βφ+
∑
A

F 2
A∂µuA∂νuA.

If (g−1)µν∂µuA∂νuA = 0, then

trgT = −(g−1)αβ∂αφ∂βφ+
∑
A

F 2
A(g−1)µν∂µuA∂νuA = −(g−1)αβ∂αφ∂βφ.

This implies, with respect to the {e0, ∂i} basis,

T00 − g00trgT =2(e0φ)2 +
∑
A

F 2
A(e0uA)2, (B.17)

Tij − gijtrgT =2∂iφ∂jφ+
∑
A

F 2
A(∂iuA)(∂juA), (B.18)

δij(Tij − gijtrgT ) =2δij∂iφ∂jφ+
∑
A

e2γ

N2
F 2
A(e0uA)2. (B.19)

Appendix C. Computations regarding eikonal functions

C.1. Geodesic equation in coordinates. Suppose u satisfies the eikonal equation25

(g−1)µν∂µu∂νu = 0.

Observe that a consequence of the eikonal equation is the geodesic equation D(duA)](duA)] = 0. As is
well-known, they are in fact equivalent: one can solve for DLL = 0, Lu = 0 for L being an appropriately
defined future-directed null vector field initially orthogonal to the hypersurface of u so that u satisfies the
eikonal equation and L = −(du)].

In our setting, it is convenient to solve the eikonal equation using yet another (equivalent) set of equations.
In this subsection, we derive these equations by performing some manipulations in coordinates, with g given
by (4.5).

25In applications, u will be uA as in (3.2).
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Suppose we are given a solution u to the eikonal equation, with L = −(du)] future-directed. In terms of
the basis {e0, ∂1, ∂2}, L is given by

Lt =
1

N2
(e0u), Li = −δije−2γ(∂ju)− βi 1

N2
(e0u). (C.1)

By convention, we take e0u > 0 so that L is future-directed. In terms of L, the fact that u satisfies the
eikonal equation can be expressed as follows:

N2(Lt)2 = e2γδij(L
i + βiLt)(Lj + βjLt). (C.2)

C.2. Raychaudhuri equation. Let u be a solution to the eikonal equation

(g−1)αβ∂αu∂βu = 0.

Consider the vector field
Lβ := −(g−1)αβ∂αu.

This vector field is null and geodesic. The second fact can be proven as follows:

DLL
β = LαDαL

β

= (g−1)αρ∂ρuDα((g−1)βµ∂µu)

= (g−1)αρ(g−1)βµ∂ρuDα∂µu

= (g−1)αρ(g−1)βµ∂ρuDµ∂αu

=
1

2
(g−1)βµDµ((g−1)αρ∂αu∂ρu)

= 0.

Let `t∗,u∗ := {(t, x1, x2) : t = t∗, u(t, x1, x2) = u∗} and let eθ be the unique unit (spacelike) vector field
tangent to `t,u. Let L be the unique null vector field which satisfies both g(L, eθ) = 0 and g(L,L) = −2.
Notice that eθ verifies g(eθ, L) = g(eθ, L) = 0 and g(eθ, eθ) = 1. Let

χ := 〈DeθL, eθ〉g.
We write

DeθL = χeθ − ζL, DLeθ = ηL,

where ζ := 1
2 〈DeθL,L〉g and η := − 1

2 〈DLeθ, L〉g. We calculate

DLχ = DL〈DeθL, eθ〉g
= 〈DLDeθL, eθ〉g + 〈DeθL,DLeθ〉g
= RLθL

θ + 〈DeθDLL, eθ〉g + 〈D[L,eθ]L, eθ〉g + 〈DeθL,DLeθ〉g
= RLθL

θ + (η + ζ)〈DLL, eθ〉g − χ〈DeθL, eθ〉g.

(C.3)

Consequently, using that L is geodesic,

L(χ) + χ2 = RLθL
θ = −RLL.

Moreover, we calculate

�gu = div(L) = 〈DeθL, eθ〉g −
1

2
〈DLL,L〉g −

1

2
〈DLL,L〉g = 〈DeθL, eθ〉g = χ. (C.4)
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