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EINSTEIN EQUATIONS UNDER POLARIZED U(1) SYMMETRY IN AN ELLIPTIC
GAUGE

CECILE HUNEAU AND JONATHAN LUK

ABSTRACT. We prove local existence of solutions to the Einstein—null dust system under polarized U(1)
symmetry in an elliptic gauge. Using in particular the previous work of the first author on the constraint
equations, we show that one can identify freely prescribable data, solve the constraints equations, and
construct a unique local in time solution in an elliptic gauge. Our main motivation for this work, in
addition to merely constructing solutions in an elliptic gauge, is to provide a setup for our companion
paper in which we study high frequency backreaction for the Einstein equations. In that work, the elliptic
gauge we consider here plays a crucial role to handle high frequency terms in the equations. The main
technical difficulty in the present paper, in view of the application in our companion paper, is that we need
to build a framework consistent with the solution being high frequency, and therefore having large higher
order norms. This difficulty is handled by exploiting a reductive structure in the system of equations.

1. INTRODUCTION

In this paper, we study the Einstein equation

1
R(Q);w - §guuR(g) = T;uw

under polarized U(1) symmetry in an elliptic gauge. We will consider the case where the stress-energy-
momentum tensor 7}, is either that of vacuum or a finite number of families of null dust. Previously, it
was known that

e given freely prescribable initial data, the constraint equations in vacuum for small data can be solved
[4], and

e alocal, geometrically unique (large data) solution to the Einstein—null dust system exists in a wave
coordinate gauge, even without the polarized U(1) symmetry assumption® [3].

Our main result in this paper is that in a small data regime, the constraints can be solved and that local
existence can be established in an elliptic gauge; see the precise statement in Section 5. Alternatively, this
means that at least for a short time, in the solution that we already know exists by [3], an elliptic gauge
can be constructed. In particular, under suitable conditions on the initial data, our result constructs a
local-in-time maximal foliation.

Our motivation for studying the Einstein equation in an elliptic gauge is that under such a gauge condition,
one can obtain additional regularity for some metric components and is therefore useful for low-regularity
problems. An elliptic gauge is especially advantageous under polarized U(1) symmetry? since in this case the
“dynamical part” of the solution and the “elliptic part” of the solution (which is more regular) essentially
decouple (cf. (3.3) and (3.2)). A specific application, which we discuss in our companion paper [5], is to
study high-frequency backreaction for the Einstein equations. Precisely, we show in [5], using the elliptic
gauge studied in the present paper, that any generic small data smooth polarized U(1) symmetric solution
to the Einstein—null dust system arise as suitable weak limits of solutions to the Einstein vacuum equation.
Physically, as we discuss at length in [5], this can be thought of as meaning that “high frequency gravitational
waves give rise to an effective stress-energy-momentum tensor of null dust in the limit”. Notice that it is in
view of the application in [5] that we also include null dust in our equations in this paper.

Since one of the purposes of this paper is to provide a setup for [5], our local existence and uniqueness
statement is in particular consistent with the initial data being “high-frequency” in a suitable sense. In
particular, it has the following features:

1Although strictly speaking, [3] deals with the case where the dust is massive, the methods apply to the null case with little
modifications, cf. [2]

2Such an effective decoupling in fact occurs under U(1) symmetry without the polarization assumption. For simplicity,
however, we only consider the polarized case in this paper.
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e (Choice of elliptic gauge) The elliptic gauge condition that we impose is such that the spacetime
is foliated by maximal spacelike hypersurfaces ¥; and that on each X;, the intrinsic metric is
conformal to the Euclidean metric.®> As a consequence, all metric components satisfy semilinear
elliptic equations.

e (Lack of decay at infinity) One main technical challenge in our setting arises from the fact that
we work in two spatial dimensions in all of R2. In this case, one needs to carefully control the
logarithmically divergent terms arising from the inversion of the Laplacian on R2, and place the
remaining terms in appropriate weighted Sobolev spaces.

o (Large data for high norms) Another, more serious, technical challenge concerns the smallness that
we can choose in this problem. In order to solve the constraints and handle the nonlinearity in the
elliptic part of the system, one needs some smallness of the solution (in addition to the smallness
in time). Nevertheless, in view of the application in [5], where we study high frequency solutions,
the solutions are necessarily large in any W]f norms (cf. Definition 2.1) for p € [1,00), k > 1. We
therefore study in this paper a solution regime where the W1 norm of the initial data are required
to be small, yet higher norms can be arbitrarily large. The main technical challenge of this paper is
therefore to treat the elliptic part of the system — where one cannot exploit the small time parameter
— using only the smallness of the low order norms.

As is standard, to obtain a solution to the Einstein equations in our gauge, we first introduce and solve
a reduced system, and a posteriori show that the solution to the reduced system is indeed a solution to
the Einstein equations. In our case, the reduced system is a coupled system of elliptic, wave and transport
equations. Let us note that in order to handle both the issue of the lack of decay at infinity and the largeness
of the higher order norms, we exploit a reductive structure of the reduced system. By this we mean that
one can introduce a hierarchy of estimates (both in terms of weights and in terms of size) so that when
considered in an appropriate sequence, one can bound the terms one by one in order to obtain the desired
estimates.
The remainder of this paper will be organized as follows:

e In Section 2, we introduce the notations for this paper.
e In Section 3, we introduce the class of polarized U(1) spacetimes and the system of equations to
be studied.
In Section 4, we introduce our elliptic gauge condition.
In Section 5, we give the main result of the paper.
In Section 6, we introduce a reduced system.
In Section 7, we study the constraint equations, following [4].
In Section 8, we prove existence and uniqueness of solutions to the reduced system (introduced in
Section 6)
In Section 9, we show that a solution to the reduced system is a solution to the original system.
e In Section 10, we conclude the proof of the main theorem (Theorem 5.4) by proving all the
estimates stated in Theorem 5.4.
e Finally, we have three appendices:
— In Appendix A, we collect some results about Sobolev embedding, product estimates and
elliptic estimates in weighted Sobolev spaces in R2.
— In Appendix B, we collect some computations in the elliptic gauge.
— In Appendix C, we collect some computations for the eikonal functions.

Acknowledgements. Most of this work was carried out when both authors were at Cambridge University.
C. Huneau is supported by the ANR-16-CE40-0012-01. J. Luk is supported in part by a Terman fellowship.

2. NOTATIONS AND FUNCTION SPACES

Ambient space and coordinates In this paper, we will be working on the ambient manifold M :=
I x R?, where I C R is an interval. The space will be given a system of coordinates (¢, z!,2%). We will use
2 with the lower case Latin index 4, j = 1,2 and will also sometime denote z° = t.

Conventions with indices We will use the following conventions:

3Strictly speaking, the condition that the initial hypersurface is maximal is a condition on the geometric data and is not a
gauge condition. One may in principle also consider that setting where the mean curvature is a prescribed regular function,
cf. discussions in [1]. We will however be content with the restriction that the initial hypersurface is maximal and not pursue
a general result.
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e Lower case Latin indices run through the spatial indices 1,2, while lower case Greek indices run
through all the spacetime indices.

e Repeat indices are always summed over: where lower case Latin indices sum over the spatial indices
1,2 and lower case Greek indices sum over all indices 0, 1, 2.

e Unless otherwise stated, lower case Latin indices are always raised and lowered with respect to the
standard Euclidean metric d;;.

e In contrast, lower case Greek indices are raised and lowered with respect to the spacetime metric g.
In cases where there are more than one spacetime metric in the immediate context, we will not use
this convention but will instead spell out explicitly how indices are raised and lowered.

Differential operators We will use the following conventions for differential operators:

e 0 denotes partial derivatives in the coordinate system (¢, z!, 2?). We will frequently write 9; for 9.
In particular, we denote

2
0[* = (2:€)° + D _(0::6)".
i=1
e The above 0 notation also applied to rank-r covariant tensors ,,, .. ., tangential to I x R? to mean
0= S [0
Bseespir=t,zt 22
and to rank-r contravariant tensors &;,..., tangential to R? to mean
g = D 106 I
iy p=axl,x?

e A and V denotes the spatial Laplacian and the spatial gradient on R? with the standard Euclidean metric.
In particular, we use the convention

2

2
IVEP =D [0i¢
=1

e D denotes the Levi-Civita connection associated to the spacetime metric g.
e [, denotes the Laplace-Beltrami operator on functions, i.e.,

Ot 1= ———0, (g~ )" /[ det 910, €).
VI detg|
e [ denotes the Lie derivatives.
e ¢y defines the vector field eg = 9; — 320, (where 8 will be introduced in (4.5)). We will often use
the differential operator L., .
e L denotes the Euclidean conformal Killing operator acting on vectors on R? to give a symmetric
traceless (with respect to §) covariant 2-tensor, i.e.,

(LE)ij = 6j00;€" + 6:100;€" — 6;50".

Functions spaces We will work with standard function spaces LP, H*, C™, C°, etc. and assume the
standard definitions. The following conventions will be important:

e Unless otherwise stated, all function spaces will be taken on R? and the measures will be taken to
be the 2D Lebesgue measure dx.

e When applied to quantities defined on a spacetime I x R2, the norms L?, H*, C™ denote fixed-time
norms (unless otherwise stated). In particular, if in an estimate the time ¢ € I in question is not
explicitly stated, then it means that the estimate holds for all ¢t € I for the time interval I that is
appropriate for the context.

We will also work in weighted Sobolev spaces, which are well-suited to elliptic equations. We recall here
the definition, together with the definition of weighted Holder space. The properties of these spaces that
we need are listed in Appendix A.

Definition 2.1. Let m € N, 1 < p < 00, § € R. The weighted Sobolev space Wil is the completion of C§°

under the norm
+18]

5
lullwp, = 7 1101+ o) 72" 2ul .
[B]<m
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We will use the notation Hi* = Wi, L§ = ng and W5 =Wy ,.

The weighted Hélder space C§" is the complete space of m-times continuously differentiable functions

under the norm
+181

)
ey = Y 11+ |27 Vou g

[Bl<m

Finally, let us introduce the convention that we will use the above function spaces for both tensors and
scalars on R?, where the norms in the case of tensors are understood componentwise.

3. EINSTEIN-NULL DUST SYSTEM AND REDUCTION UNDER POLARIZED U(1) SYMMETRY

From now on, we consider a Lorentzian manifold (I x R3,( g), where I C R is an interval, and g is a

Lorentzian metric that takes the following form,

Wy = e20g 4 &2 (da”)?,
where ¢ : I x R? — R is a scalar function and g¢ is a Lorentzian metric on I x R2. Abusing notation, we
also extend ¢ to a function ¢ : I x R? in such a way that ¢ is independent of 23. Given this ansatz of the
metric, the vector field J;, is Killing and hypersurface orthogonal.

On the manifold I x R3, we introduce the null dust variables (Fa,ua ), where A € A for some finite set A
with |[A| = N, Fa : I xR?2 = R, up : I x R? — R, (again also extended to I x R? in a manner independent
of z3) so that

((4)9‘1)a58auA85uA =0.
Define the stress-energy-momentum tensor

(4)Tuy = Z(FA)26MUA81/UA-
A
The Einstein—null dust system is given by

Ry (Wg) = Yoo (Fa)?*0uundyua,
2(Wg )P 0aundsFa + (Ow gua)Fa =0, (3.1)
((4)9*1)“58auA8ﬁuA =0.

Notice that the Einstein vacuum equations R(g),, = 0 for the (3 + 1)-dimensional metric is included
as a particular case.

The above symmetry assumptions (for (g, us and Fa) are known as polarized U(1) symmetry. Under
polarized U(1) symmetry, the system (3.1) reduces to the following equivalent system in (24 1) dimensions:

R;w(g) = 2au¢au¢ + ZA(FA)QauuA8VUA7
Dg¢ =0,

2(9_1)0‘68(XUA6§FA + (DguA)FA =0,
(g_l)aﬁaauAaguA =0.

(3.2)

In particular, the Einstein vacuum equations R((4) 9) v = 0 are equivalent to the following system for
(9,9): P
{ Ryu(g) = 20,60,6. 33)
4. ELLIPTIC GAUGE
We write the (2 + 1)-dimensional metric g on M := I x R? in the form
g=—N?dt* + g;;(da’ + B'dt)(dz? + B dt). (4.1)

Let 3 := {(s,21,2%) : s = t} and ¢y = 9, — 3'0;, which is a future directed normal to ;. We introduce
the second fundamental form of the embedding ¥, C M

1 _
Ki‘ - _ﬁ‘ceogij' (42)
We decompose K into its trace and traceless parts.
1
Kij =: Hij + igijT. (43)

Here, 7 :=trgK and H;; is therefore traceless with respect to g.
Introduce the following gauge conditions:
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e g is conformally flat, i.e., for some function =,
Gij = €765 (4.4)

e The constant ¢-hypersurfaces 3; are maximal

T=0.
By (4.1), it follows that
g = —N?dt* + €*76;;(dz" + B'dt)(dz’ + pdt). (4.5)
Hence the determinant of g is given by
det(g) = 2732 (—e*B?) 4 ¥ (¥ (=N? + e27|B|?) — B 1) = e N2 (4.6)
Moreover, the inverse ¢! is given by
1 -1 ﬂl 52
-1 _ m 61 N2 —2v _ ﬂ 61 _6152 . (47)
52 ﬁ 62 N2€—2fy _ 52,82

5. MAIN RESULTS

5.1. Initial data. In this section, we describe the initial data for (3.3) and (3.2). We will focus our
discussions on (3.2) as the local well-posedness of (3.3) clearly follows from that of (3.2).

The initial data for (3.2) consist of the prescription of the geometry (first and second fundamental forms
of 3p) as well as the matter fields. For convenience, we will require V¢, its normal derivative and Fa to be
initial compactly supported. By the finite speed of propagation, they will remain compactly supported.

To completely specify the initial data, we also need to prescribe the initial values for solutions to the
eikonal equation (¢71)**9,uad,ua = 0. To this end, we will prescribe the initial values for ua [y, and will
require also that

(1) ming inf,cge [Vua [s, [(z) > C;; for some Ceip, > 0,

(2) (dua)* I, to be past-directed, VA.
The former condition in particular implies that ua has no critical points. The latter condition is equivalent
to requiring that (epua) [s,> 0 (or, equivalently, by (4.5), (eoua) [s,= Ne~7|Vual [x,). Moreover, while
ua only becomes relevant in a compact subset*, we will for technical convenience define ua globally and
also require the level sets of ua to be asymptotic to planes in R?, or more precisely, for each A € A, there
exists a constant vector field® & such that Vua — ¢4 is in an appropriate weighted Sobolev space.

Before we proceed to define the notion of admissible initial data, we need to fix a cutoff function for the
rest of the paper:

Definition 5.1 (Cutoff function x). From now on, let x(|z|) be a fixzed smooth cutoff function with x =0
for x| <1 and x =1 for |z| > 2.

We now make precise the discussions on the initial data set in the following definition:

Definition 5.2 (Admissible initial data). For —3 <& <0, k>3, R >0 and A a finite set, an admissible
initial data set with respect to the elliptic gauge for (3.2) consists of

(1) a conformally flat intrinsic metric e*78;; s, which admits a decomposition

0
v = —ax(|z]) log(|z]) +7,

where o > 0 is a constant, x(|z|) is as in Definition 5.1, and 5 € H¥'?;
(2) a second fundamental form (H;j) Ix,€ Hﬁ‘f which is traceless;
(3) (% (e0d), V¢) I, € H®, compactly supported in B(0, R);
(4) Fa ! ZOE H*, compactly supported in B(0, R) for every A € A;
(5) ua [x, such that inf cge [Vua [, |(z) > C1 for some Cuip > 0 and (Vua Iso —C.K) S Hg““,

eik
where ¢ is a constant vector field for every A € A.

41ndeed7 ua only influences the metric according to (3.2) on the support of Fa.

Sie., ca = ((c1)a, (c2)a), where (c1)a, (c2)a € R are constants.
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v and H are required to satisfy the following constraint equations:

. 227
6O H,j = — = (e0®)0;0 - > eFZ|Vualdjua, (5.1)
A
-2 et 2, L2 2 2 2
Ay + e (o) + 1 HP ) +[Vl +)  Fi|Vual*=0. (5.2)
A

It turns out that we can find freely prescribable initial data, from which (under suitable smallness
assumptions) one can construct admissible initial data satisfying the constraint equations. To this end, it
will be convenient not to prescribe the unit normal derivative %eo of the scalar field ¢ and the density of
the null dusts Fa, but instead prescribe appropriately rescaled versions as defined in (5.3). We define the
notion of admissible free initial data as follows:

Definition 5.3 (Admissible free initial data). Define b, Fa as follows:

. 627 © ok
¢ = Hr(eod), Fa=Faez, (5.3)
where v is as in (4.5).
For —% <6<0,k>3, R>0 and A a finite set, an admissible free initial data set with respect to
the elliptic gauge is given by the following:
(1) (gzb, Vo) Is,€ HF, compactly supported in B(0, R);
(2) Fa Is,€ H*, compactly supported in B(0, R) for every A € A;
(3) ua I, such that inf,cge |Vua |5, |(x) > C;} for some Ceir > 0 and (Vua Is, —CR) € H
where ¢& is a constant vector field for every A € A.

Moreover, (d), Vo, F‘A,uA) I's, is required to satisfy

/ <—2<;'saj¢> — ZF§|VUA|8]~UA> dz=0. (5.4)
R2 A

The fact that we claimed above, i.e., that an admissible free initial data set gives rise to an actual
admissible initial data satisfying the constraint equations, will be the content of Lemma 7.1.

5.2. Local well-posedness. The following is our main result on local well-posedness for (3.2) (and therefore
also (3.3)). As we already mentioned in the introduction, we need a smallness assumption (5.5), but
importantly for the applications in [5], it is required only for the lower norms but not the high norms.

Theorem 5.4. Let —% <d§d<0,k>3, R>0and A be a finite set. Given a free initial data set as in
Definition 5.3 such that

Pl + VoL~ + mﬁXHFAHLm <k, (5.5)
and .
o .. =
Ceit, = (mlinxlenﬂgz VuA|(x)> +m1§1x||VuA cA||H§+1 < 00, (5.6)
and .
Chigh = |9llgr + IVl mx + | Fallgr < oo. (5.7)

Then, for any Ceir and Chign, there exists a constant €jou = €1ow(Ceik, k, 6, R) > 0 independent of Chign
and a T =T (Chigh, Ceir,k, 0, R) > 0 such that if € < €jow, there exists a unique solution to (3.2) in elliptic
gauge on [0,T) x R2. Moreover, defining §' =8 — e, §" = § — 2, 8" = § — 3¢, the following holds for some
constant Cp, = Cp(Ceik, Chign, k, 6, R) > 0:

e The following estimates hold for ¢, Fa and ua for all A € A fort € [0,T]:

IVl e + 10:ll e + 107l i1 <Co,
max (IFallzzx + 10 Fallgn—1 + |07 Fall gx—2) <Ch,

—1
<min inf |VuA|(:L')) +Inax(||VuA — @R lge. + "N (eoua) — 2R || sz ) <Cy,
A zE]R2 A s s

e e
mﬁx <||8tVuA||H§;/1 + ”atQVUA”H;T,? + |10 (NeouA> ”H;T,l + Haf (NeouA> |H§",7,3> <Cj,.
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e The metric components v and N can be decomposed as
v = ax(|lzDlog(|z]) +7, N =1+ Nasymp(t)x(|z|)log(|z[) + N,

with a < 0 a constant, Ngsymp(t) > 0 a function of t alone and x(|z|) is as in Definition 5.1.
e v, N and (8 obey the following estimates for t € [0,T]:

o + 170 ez + 107N e + 10731z <Co,
| Nasymp| + 10t Nasymyp| + |at2Nasymp| <Ch,
1N sz + 10N | yoss + 107N | s <O,

1811 g2 + 10:B1 grsr + 1107 Bll s, <Ch-
o The support of ¢ and Fa satisfies
supp(¢, Fa) C J*({t = 0} N B(0, R)),
where JT denotes the causal future.

Remark 5.5 (The |A| — oo limit). We observe from the proof that in Theorem 5.4, we do not need A to
be a finite set. Instead, in the case |A| = 0o, as long as we replace the estimates for Fa in (5.5) and (5.7)
with appropriate £2 norms, i.e.,

: :
(z ||FA||%OO> < (z mn;) .
A A
with all other assumptions unchanged, then the conclusion in Theorem 5.4 still holds.

Remark 5.6. We remark on the following facts regarding the mazimal foliation:

e The lapse function N has a logarithmic growth as |z| — oo.
e The following conservation laws hold:

2e27
/ (j\](emﬁ)@jq& + Ze"’Fi|VuA|8juA> dz =0, (5.8)
R? A
oy (€7 2 1o 2 2 2 _
e Nz (e09)” + 2|H\ + |V —I—ZFA\VUM dx = a. (5.9)
R? N

It will be useful to note the following easy consequence of the proof of Theorem 5.4, which states that in
the genuinely small data regime, the time of existence can be taken to be T'= 1. Since its proof is simplier
than the general case in Theorem 5.4, we omit its proof.

Corollary 5.7. Suppose the assumptions of Theorem 5.4 hold and let {ca}aca be a collection of constant
vector fields on the plane. There exists €smaii = €smali(0, k, R, ca) such that if Chign and € in Theorem 5.4
both satisfy
Chig}u €< Esmall

and moreover

Z HVUA - C_A>||H§+1 < Esmalls

A
then the unique solution exists in [0,1] x R%. Moreover, there exists Co= Cy(d,k, R,ca) such that all the
estimates in Theorem 5.4 hold with C, replaced by Cye.

As we mentioned above, we will omit the details of the proof of Corollary 5.7. We will focus on the proof
of Theorem 5.4, which will occupy most of the remainder of the paper. In order to simplify the exposition,
for most of the paper, we will assume k = 3. Higher derivatives estimates, i.e., the case k > 3, follows
straightforwardly from the ideas presented here.

To prove Theorem 5.4, we first introduce in Section 6 a reduced system of equations (6.1)—(6.10), which
is an elliptic-hyperbolic-transport system. We then discuss the initial data appropriate for this system in
Section 7. In Section 8, we solve the reduced system using an iteration scheme. Then in Section 9, we prove
that the solution to the reduced system indeed is a solution to (3.2). Finally, in Section 10, we conclude by
proving all the estimates as stated in Theorem 5.4

6We also remark that this is in contrast to the problem in our companion paper [5], where the assumption that |.A| is finite
is necessary
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6. THE REDUCED SYSTEM

We consider the following system of equations, which we will call the reduced system. Let us recall
that lower case Latin indices are raised and lowered with respect to d;;. We will also denote by I'jj, the
Christoffel symbols associated to g.

Ne*'1 = —2e¢y + 0,5, (6.1)

2Ay =2 (7_226%/ — %627607 — AN> —260;¢0;¢ — z N2 2 (equa)?, (6.2)

AN — e 2'N(|H? + L eM72) — 26— (eod)? ZFA eoupa)? =0, (6.3)
2 N

(LB)ij = 2Ne *VH,;, (6.4)

0y — B0 Hi; = —2e > NH;"Hjo + (9;8" Hyy + 08" Hy;) (6.5)

1
— 3,-8jN + 557,]AN + (558]’}/ + 5;6(91’)/ — 5ij5£ka[}/) oL N

ey
- 2N31¢8j¢ - N Z FiaiuA()juA + Nél]\v¢|2 + W(E] Z Fi(eouA)2,
A A

Oy¢ =0, (6.6)
LA 0,L% + T8, Ly LA =0, VA, (6.7)
LAd,ua =0, VA, (6.8)
2L40,Fa + xaFa =0, VA, (6.9)
Ladoxa +Xa = —2(L40,0)* = > _ Fa(guwliLi)®, VA. (6.10)

B
In deriving the above equations, we have used the computations in Sections B.2 and B.3. We note that
(6.1) is the definition of 7 to be the mean curvature. (6.2) is derived by setting” 6% R;; = 6 (T}; — gi;tr,T),
where we have used (B.10); (6.3) is derived by setting Roo = Too — gootrgT in the case eoT = 0; (6 4) follows
from (B.5); (6.5) is derived by setting R;; — 30;;0" Rye = Tij — gijtryT — 56" (T;; — gijtryT). The equations
(6.6)—(6.10) are chosen according to the propagation equatlons for the matter fields in (3.2), except for
issues to be discussed in Remarks 6.2 and 6.3.

Remark 6.1 (Only N and S are solved by elliptic equations). While in the full system, N, 8, v and H all
satisfy elliptic equations, in the reduced system, only N and 3 are solved through elliptic equations. v and
H are defined to be solutions to wave and transport equations respectively. We have to adopt this procedure,
because if we wanted to solve the elliptic equations for v and H, given by the constraints (5.1) and (5.2),
we would need the conservation law (5.8) to hold a priori and for each iterate of our iteration scheme.

Remark 6.2 (Introduction of xa). Notice that in (6.9), we are not directly solving the transport equation
for Fa in (3.2), but we have replaced Ogua by xa, which is an auziliary function that we introduce and is
required to satisfy (6.10) according to (C.3) and (C.4). The reason is that otherwise we would need to be
very careful in the iteration procedure to make use of the special structure in order to mot lose derivatives.
Instead, by introducing xa and treating it as a separate variable, we are exploiting that fact that by the
Raychaudhuri equation, Ogua is more regular than generic second derivatives of ua in the full nonlinear
system. This allows us to more easily close the iteration scheme, and it is only a posteriori that we show
xa = UOgua (see Proposition 9.3).

Remark 6.3 (Solving for ua ). In order to solve the eikonal equation (g~ )" 9, uad,ua = 0, it is convenient
to solve the geodesic equation (6.7) for the geodesic null vector field La and then define ua by (6.8). It is a
standard fact in Lorentzian geometry that (given appropriate initial conditions) in fact Ly = —(g_l)o‘ﬂaguA
and that (g~ 1) 9, uad,us = 0.

7. INITIAL DATA AND THE CONSTRAINT EQUATIONS

In this section, we discuss the initial data for the reduced system. The most important task is to solve
the constraint equations. In particular, we will show (as claimed in Section 5.1) that an admissible free

"Recall that Ry, — %gm,R = Ty Therefore, —%R = (g7 )Ty and hence Ry, = Ty + %guyR =Tuw — guvtrgT.
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initial data set gives rise to a unique admissible initial data set satisfying the constraint equations. Unlike
in the later section of the paper, in this section, we will consider general k£ > 3 as it does not complicate
the notations. In this step, we largely follow the ideas in [4].

After we solve the constraint equations (which can be viewed as PDEs for v and H, in the remainder of
this section, we will derive the initial data for N, 8 (Lemma 7.2), epy (Lemma 7.3), La (Lemma 7.4) and
xa (Lemma 7.5) and prove their regularity properties. Note that since V¢, é and Fa are prescribed (cf.
(5.3)), after we derive the initial data for N, v and /3, we obtain the initial data for V¢, eg¢ and Fa.

Let us first set up the notation of this section: We will use C' to denote a constant depending only on
Ceik, k, 6 and R (and independent of C; and €). We will also use the notation < where the implicit constant
has the same dependence as C.

Before we proceed to solving the constraints, it will be convenient to rewrite (5.1) and (5.2) in term of ¢
and F as follows:

5ik8kHij = —2¢8J¢ - Z FX‘VUA|8]‘UA, (71)
A
. 1 o
Ay e (64 P )+ (o2 4 30 e R Vsl = (72
A

The following is the main result on solving the constraint equations:

Lemma 7.1. Let —% <d<0,k>3,R>0andA bea finite set. Given an admissible free initial data set as
in Definition 5.3 such that the smallness assumption (5.5) holds. Then, for € sufficiently small (depending
on Ceir (¢f (5.6)), k, § and R), there exists a unique admissible initial data set as in Definition 5.2
corresponding to the given the admissible free initial data set. In particular, there exist a unique solution
(H,~) solving the constraint equations (7.1), (7.2) with H € H?Ill being a symmetric traceless covariant
2-tensor and

v = —ax(lz])log(|z]) +7
with o > 0 being a constant, x being as in Definition 5.1 and 7 € H§+2 being a function. Moreover,

ol + 1H Ly, + Rz < (73)
1w+ lhwe o+ 1 H ey, + Iy, S22 (7.4)

Proof. Solving (7.1). We solve for H;; which takes the form H;; = (LY )i; = §;00;Y* + 6;00;Y* — §;;0,Y*
for some 1-form Y;. Then (7.1) is equivalent to

AY; = —2qf)8j¢ - Z Fi|VUA|3jUA- (7.5)
A

Since ¢, ¢, Fa are compactly supported, by (5.5), we have the following bound on the RHS of (7.5)
1260;6 + ) FX|Vualdjualms,, <<
A

Moreover, by the regularity assumptions and support properties of qib, Vo, Fa and ua, the RHS of (7.5) is
also in HY to- Therefore, by the condition (5.4) and Theorem A.7, there exists a unique Y; € H, §+2 with

||Yj||H§ Sen
Consequently, there exists a symmetric traceless (with respect to §) covariant 2-tensor H € H, 5111 solving
(7.1) with

1H g, S e (7.6)

S+1 ™Y
Moreover, since every symmetric traceless divergence-free (with respect to d;;) covariant 2-tensor on R?
vanishes®
Solving (7.2). We now turn to (7.2). First of all, we note that thanks to Proposition A.4 we have
2 k41 k+1
|H|* € Hys'ry C Hg [, and
2 < 4
NH g, , <&
8This is standard and can be seen by noting that for a symmetric traceless covariant 2-tensor 7;; € H§,+1, we have the

componentwise identity An;; = 0, so that Theorem A.7 implies the conclusion.
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We solve (7.2) with the contraction mapping theorem. We consider the map®
D [0,e] x BHg(O,E) — [0,¢] x BH(?(O,E),

which maps (&, 70) 1 (), 5) such that 10 = —a®x(Jlog(|]) +70, 7 = —a®x(fz|)log(|z])+
72 and the latter is defined as the solution to

oy (g 1 -
80 = e (4 ) ot = 3 e L Fual
A

All the terms involving ¢ or Fa are compactly supported and of size O(£?) in Hg+2. For the e=27" %|H|2

term, we check that by (7.6), e2" x(l2Dlog(2D)| f|2 ¢ HY, , (provided that ¢ is small enough) and eV H|2 e
HY_,, both with norms O(e?). Notice also that

1
—Ce? < —/ (RHS of (7.2)) <0.
2 R2

Therefore, by Corollary A.8, the range of ® indeed lies in the set [0,¢] x BHg (0,&). Moreover, a similar
argument for the differences shows that @ is a contraction (for e sufficiently small).

Therefore, by the contraction mapping theorem, we obtain a unique fixed point («,7) of ® with ¥ € H?
and

laf + |31l a2 < €
Moreover, v = —ax/(|z|)log(|z|) + 7 solves (7.2).

Since every term on the RHS of (7.2) is nonnegative, by Theorem A.7, o > 0. Using the estimates for
H and ~ that we just proved, and also the assumptions on gi), V¢, Fa and ua, we see that the right-hand
side of (7.2) is in H§+2. Hence, by Theorem A.7, v € H§+2. Continuing to iterate this, we conclude that
7e HF2

Proof of (7.4). We first prove the bounds for H. Since the right-hand side of (7.5) is compactly
supported and bounded in L™ by €2, we can use Theorem A.7 with p = 4 to infer that Y € W3,4 and hence

1 1
2
HH||W‘}+1A Se forall — 5 <v<g

In particular, thanks to the Sobolev embedding in Proposition A.3 we have H € CB 43 with the bound
2

|Hlgo | S

2

In the same manner, we have, for —% <v< %,
Fllw2, + Fller | S e
) v+l
Choosing v = § + % (recall that § € (—%,0)), we obtain (7.4). O

We now turn to the initial data for the lapse N and the shift 3°.

Lemma 7.2. Let 6’ = 6 —e. For ¢ sufficiently small, there exists unique (N,B) such that N = 1 +
Nasympx(|z])log(|z]) + N, with Nusymp € R, N € H"?, and B € HET? such that

AN — e 2N <|H|2+¢2+672F§vuA2> =0, (7.7)
A
(LB)” = 2N€727Hij. (78)
Moreover, Nosymp > 0 and
[Nasymp| + INllaz + [Nllwz | +[Nlex,, S &2, (7.9)
180, + 180wz, |+ 1Bl S (7.10)

9Here, and below, we use the notation that BH? (0,€) denotes the open ball centered at 0 with radius € in Banach space

B2
Hy
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Proof. Solving (7.7). We solve (7.7) with a fixed point argument. Consider the map
P [075] X BH? (075) - [075] X BH? (075)7

which maps (Néig)jmp,ﬁ(l)) — (Néi?,mp,ﬁ(z)), where given N = 1 + Nég,mpx(|x|)log(|x|) + NO with
Néi?,mp €[0,¢] and N ¢ By2(0,¢), we define N® =1+ N,gg;mpx(|x|)log(|x\) 4+ N® to be the solution
to

AN® = 27N <|H2 +¢% + e ZFiIVuAF) : (7.11)
A

We now show that this map has the range as claimed. Since N,g}g;mp > 0, it follows from Proposition A.3
that N > 14+ NW >1— Ce > 1 for e small enough, where C is a universal constant (depending only on

the constants in Proposition A.3). As a consequence'?,

1 —2v a7(1) 2 12 [2 2
o7 | INOD [ H? + ¢ +672A:FA|VUA| > 0.

Since (N(g;mp, ND) e[0,¢] x Bp2(0,¢), by (7.3), Proposition A.4 and Lemma A.6, we have

—2y A7(1)) 2712 4
le 2 NOHP o, S e

for e sufficiently small (necessary to handle the log weights in v and N (1)). Also, using the compact support
of ¢ and Fa, we have

le™¢ + e 3 F3IVuallluz,, <<
A

Therefore, by Theorem A.7, for ¢ sufficiently small, there indeed exists N(?) with (Néﬁz,mp, N @) € [0,¢] x
Bp2(0,¢€) solving (7.11).

Moreover, since RHS of (7.11) is linear in N it is easy to apply to above argument to show that ® is
in fact a contraction (for e sufficiently small). Hence, by the contraction mapping theorem, there exists a
unique fixed point N = 14 Nysympx(|z])log(|z|) + N that solves (7.7) with (Nasymp, N) € [0,¢] x By2(0,¢).

Finally, using the bounds in Proposition 7.1, we can iteratively improve the estimate of N by applying
Theorem A.7 and show that N € H§+2.

Solving (7.8). We now turn to the equation for 8. Taking the divergence of (7.8), we obtain

ABF = 675749, (2Ne > Hyy), (7.12)
which is a linear equation in 37. We first note that by the estimates in Lemma 7.1 for v and H, the estimates
for N that we just proved, Proposition A.4 and Lemma A.6, for 6’ = §—e, Ne7* H,;; € Hf,fl. Note that we

have in particular used e2ox(l2Dlog(lzl) < (1 4 |2[)9¢* and NusympX (|2)log(|z]) < e2log(|z]) < e(1 + |=|)T0.
Hence, by Lemma A.1, 0;(2Ne 2 Hy,) € H§,+2. Moreover,

6§70y, (2Ne 2 Hy;) = 0,
R2
Hence, by Theorem A.7 there exists a unique solution 5 € H§,+2 to (7.12). Since every Hgl, 41 Symmetric
traceless divergence-free (with respect to &;;) covariant 2-tensor on R? must vanish (cf. Footnote 8 on p.9),
it then follows that 3 is a solution to (7.8). Moreover, using (7.3), one sees that the above argument gives

1812z, < 1070k (2Ne> Hiy) |, < 2

Smallness in weighted L*-based Sobolev spaces. It remains to show that ||V ||y-2 . and [|Bllwe |
S+ 5.4 8/ +5.4

are O(g?) small, since the weighted C'! estimates will then follow from Proposition A.3.
Now notice that these bounds can be proven by essentially the same arguments as above, except to use
the estimates for H in (7.4) instead of (7.3). We omit the details. O

We choose the initial data for ey according to (6.1) and the initial condition 7 = 0. (Note that 7 satisfies
a wave equation (cf. (6.1), (6.2)) and therefore we need the initial condition for eg~y.)

10Note that if we solve (7.11) using Corollary A.8, then Nﬁz,mp is given by this expression.
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Lemma 7.3. In order that 7 = 0, we set egy = %div(ﬂ). Then, we have eyy € Hf/il and

< 2
||€0’7|\H;,+1 + ||€0A/||VI/61,+%4 + ||60'YHC§/+2 Sen
Proof. The desired estimates follow directly from Lemma 7.2 and Lemma A.1. O

Lemma 7.4. If Lly = —(g7 )" 0,ua, (¢71)"0,uadyua =0, egua > 0 with g as in (4.5), then

- ) .
Ly = %WUAL Ly = —e 275 9up — (7.13)
Therefore, setting the initial data La |, as in (7.13), and for e sufficiently small, e*V L%, + Al Ne LY +
K| € HE,, where §" = ' —e =6 — 2¢.
Moreover, for Ceir as in (5.6), the following bounds hold for the initial data:

sup <||€27L§; +c ||Hz” +||[Ne"Lly + |CTA>|||H§,/) <4C,;r, (7.14)
o ¢ -1
Irxnxlenﬂgz |NeV(La)!| (z) >C;. (7.15)

Proof. (971" 8,uad,ua = 0 implies

1 _
e (eoun)? = e 27| Vual?. (7.16)
Hence, a direct computation gives
1 - . . i . e~ 7R
Ly = yaeoua = e—|VuA|, Ly = —e_hé”ajuA — %(eouA) = —6_275”8]-1% — ﬂ |Vual.

Now, the desired estimates €27 L} + &', Ne'LY + |cx| € HE, and (7.14) follow from the bounds in (5.6),

Lemmas 7.1 and 7.2 using Propositions A.3, A 4 and A.6. Notlce that here we need to use the fact that

8 e H §,+2 to handle the term e_]:,ﬁ & |Vua| without taking difference with a constant vector cx. We also

need to change the weight ¢’ — 6” to handle the growing factors when |z| is large; we omit the details.
Finally, (7.15) follows from (5.6) and (7.13). O

Finally, we choose the initial data for xa. Since we eventually will need xa = Ojua (cf. (C.4)), we
prescribe the initial data accordingly. Note that while L ua depends on the ey derivative of ua, by virtue
of the eikonal equation, it can in fact be computed from the initial data of Vua [5, alone. More precisely,
we have the following estimates:

Lemma 7.5. Suppose ua satisfies (g7 1) 9, uadyua = 0, then Ogua |5, is given by the following expres-

ston:

0

1
Ugua fzo=N€_7(607)|VUA| 2o + §79;(NOjua) Is,

NQV

! 1
v - B 7/ ok
10 (o0 0ady (e NIV ual) + 87 0iua) 05)0kun ) T

Therefore, by setting xa |s,= (RHS of (7.17)), we have on X that xa € HY. Moreover, there exists C,,
depending only on Ce;i, 8, k and R such that

sup [xallcg,, < Cy- (7.18)

5+1 T

(7.17)

Proof. Using (6.1), we have
Dgf :(971)HV (euel,f (vm l/)f)

1 €0N 1 _ i — 1
- Nz 0f+ RE ——eof + Ne 2154 9, NO;f+e 27812 2N2 (4(60’}/) —2(0:8 )) (eof)

1 N 1
= A+ S eof + e OIONG S+ e 0+ S (eof).
Since 7 [y, vanishes, we use the fact egua = e "N |Vua] (cf. (7.16)) to obtain
1
Ne2v

5ij8i(N8juA) rzo .

1 _
Ogua [s,= —Neo(e Y|Vual) Is, +



EINSTEIN EQUATIONS UNDER POLARIZED U(1) SYMMETRY IN AN ELLIPTIC GAUGE 13

The only term that does not manifestly depend only on Vua [x
the eikonal equation as follows

o 1s eo|Vua|. It can be re-expressed using

L
[Vual

3 1 . 1 .
59 (0un)(e0djua) = —=—0690und;(e "' N|Vual) + —=—06"(9;un)(0;8%)Okua.

eo|Vual =
o[ Vual N N

Combining the above expressions gives (7.17).
The fact that xya € Hé“ then follow from the bounds in (5.6), Lemmas 7.1 and 7.2 using Propositions A.3
and A.4. Moreover, by the estimates in (5.6), Lemmas 7.1 and 7.2, we have (7.18).
U

We conclude this section with the following corollary, which summarizes the estimates in this section:

Corollary 7.6. Given a free initial data set satisfying the assumptions of Theorem 5.4. Suppose that € is
sufficiently small, then

e there exists an initial data set to the reduced system (6.1)—(6.10) such that the constraint equations
(7.1) and (7.2) are satisfied and T [5,= 0.

e Also, there exists a constant C (depending on Ceir, k, 6, R) such that all the smallness estimates
(7.3), (7.4), (7.9), (7.10) hold with implicit constant C.

e For the quantities associated to up, La and xa, the estimates (7.14), (7.15) and (7.18) hold.

o Moreover, there exists a constant C; (depending on Chigp, in addition to Ceix, k, 6, R) such that
the following estimates hold for the initial data to the reduced system (6.1)—(6.10):

[ | gz + N ez 1Bl ez + 171 vz + Hleodl] e + 1091 e

+sup (1 Falis + 1€ Ly + 2Ry, +INe Ly + 1Ry, + Ixallg ) < Ci

8. SOLVING THE REDUCED SYSTEM OF EQUATIONS

In this section, we solve the reduced system of equations that we introduced in Section 6. This will be
done by an iteration method. The iteration scheme will be introduced in Section 8.1. In Section 8.2, we
show that in appropriate norms, the iterates we define are uniformly bounded. Finally, in Section 8.3, we
show the convergence of the iterates in appropriate norms, which imply the existence and uniqueness of
solutions to the reduced system of equations.

8.1. Iteration scheme. From now on we only consider the case k = 3. As we mentioned previously, larger
k can be treated in a similar manner, but would unnecessarily complicate the exposition.
We construct the sequence11

(N, 80 7 ) 300 — oy (| ]log(|a]) + 7™, 6™, LG, FEY A Q)

iteratively as follows: Forn = 1,2, let N(™ g 70 () () — oy (|2))log(|z])+7™), ™), LXL), F&"), xf:)
be time-independent, with initial data as in Section 7. For m > 2, given the n-th iterate, the (n + 1)-st
iterate is then defined by solving the following system (Latin indices are raised and lowered with respect to

0 as before):

HNote that « is a non-negative constant independent of n.
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n 1 n
SANCHD = = N (HOP 4 et (7))

262,),(70 . . B . e e
— (o) = DD NI (F (L) (LYY, (81

(LB V), —oN (=2 (H(”))”, (8.2)

(n)( (n) <n+1>)
SO W v o (n—1)_ (n))2 2y(m) —2(m)
2(e ™) 1 m e e
— (n+1) — _ 2\*0 T ") S (n)\2,2y . (n—1) (n)
N AT = - e Talm ) (N(n ~ooy div(B ))

AN®) 1 (n) . .
AN sia.ema.em — L 4y (M2 (7 ()yigp ()
— SNy 970006 2;«3 (FX8i, (LX) (TR, (83)
(n+1) e (n=1)_(n) | 7.0 (3(n)
T - N(n) <_260 Y +d“)(5 ))7 (84)
(6(()n+1))(H(n+l))ij _ (n)N(n)(H(n)) (H(n))jf + za(j (ﬂ(n))k( (n))‘)k
(a &0, )N(" + 3y ™M@ N™ — 2N ™ g, 30, ¢™
Z N(n) L(n)) (L(")) ) (8.5)
Oy o™ =0, (8.6)
(LY, (L) = — (0 (LYY (L), (8.7)
2(LY) )’33;)1*1;"+1 =—(x" ) FRY, VA, (8.8)

where ¢g(") = —(N™)2dt> + ez'y(n)éij(dxi + (ﬁ(”))idt)(dmj + (BM)Yidt); D™, (F(”))Z‘V and Oy are the
Levi—Civita connection, Christoffel symbols and the Laplace-Beltrami operator, respectively, associated to
¢(™; and e(()n) =0 — (5(71))1‘31_. We have also used the notation ui®vj = U5 + uv; — 5ij(ukvk).

Remark 8.1 (Well-posedness of (8.1)-(8.9)). Notice that (8.1)—(8.9) is not a linear system due to the
term 6(()"+1)H(”+1) on the LHS of (8.5), which has a nonlinear term (ﬂ(”+1))k3kHi(f+l) in the (n + 1)-st
iterate. (This will be useful in exploiting the nonlinear structure to prove estimates.) Nevertheless, the
(local) well-posedness of the system (8.1)—(8.9) follows from the estimates we are about to prove.

8.2. Uniform boundedness of the sequence. The first order of business is to show inductively that the
sequence we just defined is uniformly bounded in appropriate function spaces. To carry out the induction,
we assume as induction hypothesis that the following estimates for some n > 2 and for all ¢ € [0,T]. Here,
Ag € A; < Ay are all sufficiently large constants (independent of €) to be chosen later, §" = 6" — ¢,
0" =¢" —¢e and ' =0 — e. Choosing ¢ smaller if necessary, we assume throughout that —1 < §"”.

e (Estimates for N(™) N admits a decomposition N =1 + Né?gmp(t)x(|x|)log(|m|) + N™ with
Né?ﬁmp > 0 and satisfy the estimates

NGl + IN ]2 + ||N(n)HW2 1. T IN® e, <e, (8.10)
0N |+ IN g5 + 0N 2 <2C5, (8.11)
10:N 0 s <2C7. (8.12)

Assume that the same holds with (n) replaced by (n — 1).
e (Estimates for 5(™)) 3(") satisfies the following estimates:

18 s, + 18 s, |, 18y, <=, (5.13)
57 4 541

18 3, < AoCirlleg" ™8™ 1z, < AoCir lleg" 8™ 1y, < AoCE. (8.14)

1
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Assume also that the above estimates for 3(), but not necessarily that for e(()n_l)ﬁ("), also hold
with (n) replaced by (n —1).

e (Estimates for ™) v(® admits a decomposition v = —ax(|z|)log(|z]) + 7™, where « is as in
Lemma 7.1 (with 0 < a < Ce?) and 5(") satisfies

>

la]<3

eé"—l)vai(n)

o i Hw(n)

. S4C;, (8.15)

§'+1

L6’+1+\a\

n—1)\~(n
9 (e )7t
) TN (1)
Hyg,

8 +1 8/ +1
Assume that the same holds with (n) replaced by (n — 1).
e (Estimates for 7(")) 7(") satisfies the following estimates:

17Ny, < MG 10Ny, < A2C 10y, < A€ (8.17)

P (e

t N(nfl) S Alciv

<A, C?. (8.16)

o (Estimates for H(™) H(™ satisfies the following estimates:
IH™ g3, <2, 5% H(”)HHs L, < 20C;. (8.18)

o (Estimates for the vector fields LXL) and auxiliary functions XXL)) Let Lf:) be decomposed with

respect to {0, 0;}, i.e., L(n) (L("))ta + (L(")) 0;. Then (L(")) obeys the lower bound

.. _ (n—1)
min inf [N~ De?
A zcR2?

(L)) (@) = 500 (8.19)

for Ceit, as in (5.6), and LSS) satisfies the following estimates:

Sip <H627(n—1) (LXL))i + e . + HN(nfl)ev("—ﬂ(LXl))t _ |C—A>| s ) < ApCleik, (8.20)
1" 6//
sup( 62V(ﬂ'_1)(LXl))i + X! w2, + Ha ( 2y 1) (n) ) 2 )
A. HS/II
+ sup <HN(n1)67<n1)(LXﬂ)t _ |C—A>|H . + Hat (N(n 1)~ 1) t) , ) < A.C;. (8.21)
A H(s// H&”'
Also, for C', as in Lemma 7.5, sz) satisfies the following estimates:
(n) (n)
w20l = me
up || XA e, xo SUP[IXA a3 0 (8.22)

o (Estimates for the matter fields) ¢(™) and Flg") are compactly supported in
{(t,z) € [0,T] x R? : C5(1 + R°)t — |z| > —R},
where Cs > 0 is to be chosen in Lemmas 8.11 and 8.17. Choosing T smaller if necessary, we assume

the above set C {(t,x) € [0,T] x R? : |z| < 2R}.
Moreover, the following estimates hold:

g, (e o™

<AoC;, (8.23)
H?2

(n) , (n) .
sipHFA HH3 < AoCs, sipHatFA HH2 <A,C;. (8.24)

Remark 8.2 (Choice of constants). Recalling the statement of Theorem 5.4, Chign s a potentially large
constant such that T can depend on Chign but €100 has to be independent of Chign. In the previous section,
we have proven that there is a C; depending on Chign so that the bounds in Corollary 7.6 hold. Therefore,
in the following €10, and T are chosen according to the following rules:

® 210w (and therefore €) can be chosen to be small depending on 6, R, Ag, A1, Ay and Cey, but not
C;.

e The time parameter T' can be chosen to be small depending on all of §, R, C;, Ceik, Ao, A1, Az and
-1
e .
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In the remainder of this subsection, C' will denote numerical constant, independent of A and
C;, but can depend on'? C,;;, 6 and R. Similarly, we use the convention < when the implicit
constant is independent of Aj, A;, A; and C;. Constants that depend on Aj, A1, As or C; (in
addition to C.;;, § and R) will be written explicitly as C(4y), C(A;1), C(A3) or C(C;).

With the above conventions in mind, we note that in the rest of this subsection, we will have the following
hierarchy of constants:

C(Ap) < A1, C(A1) < Ay;

while ¢ is much smaller than C.;i, Ag, Ay, A so that for any n > -

100°
5”0(0@@ <1 87]0(142) < 1.

Notice however that since ¢ has to be chosen independent of C;, €"C; cannot be considered as a small
constant.

It is easy to check using estimates in Section 7 that the estimates (8.10)—(8.24) hold for the base case
n = 2. Our goal now is to prove the analogue of the estimates (8.10)—(8.24) with (n) replaced by (n + 1)
(and (n — 1) replaced by (n)). For most of these, we will in fact show that they hold with better constants
on the RHS.

We begin with a propagation of smallness result, which states that for T sufficiently small, the smallness
of the data in the low norms can be propagated. Since we need to propagate smallness in L*- and L>®-type
spaces as well as L2-type spaces, it is convenient to achieve this directly using the smallness of initial data,
the boundedness of the time derivatives and the the smallness of the time interval.

Proposition 8.3 (Propagation of smallness). The following estimates hold for T sufficiently small (de-
pending on C;)
100l + V6 | + | FA” | <Ce,
IH gy, + IH P s + [1H™ o, <O,
5+3 .4 o+2

5+1

SO NIRRT ~(n) 2
7 Wz, + 17wz A+ 1oy, <Ce7

3
2

n—1)~(n n—1)~(n n—1)~(n
ef* V5™ e§" Dy e§* V5™ o
No—1) NGO NGO =LES
H;’Jrl W;/+%,4 ,(SJ’+2
||T(n) ||H1,, + HT(TL) ) + HT(n) . SO&‘Q.
8/ +1 W&” 3. 05//+2

Proof. By (7.3), (7.4), Lemma 7.3 and the fact 7(") [y = 0 (Lemma 7.3), all these quantities initially
satisfy the desired smallness estimates. The conclusion thus follows from the fact that the 0; derivatives
of all these terms in the relevant norms are bounded by a constant depending on Ay, Ay, A and Cj,
which is a consequence of the weighted-L? estimates in (8.11), (8.14), (8.15), (8.16), (8.17), (8.18), (8.23)
and (8.24), together with the Sobolev embedding results in Proposition A.3. (Notice that in applying the
above estimates to obtain bounds for the 0, derivatives, we often need to write 9; = e(()") + (5(”))%91- or
O = egnfl) + (B=1)?9; and estimate 3™ and 3"~ using (8.13).)
Therefore, the result follows from using calculus inequality of the type

T
sup HfHW;J,(U <C (”f”Wg’p(O) Jr/O ||5tfHW;)p(t/) dt’)

t€[0,T

and choosing T to be sufficiently small. O

Proposition 8.4 (Estimate for e(()nfl)ﬁ(”)). The following estimate holds:
e(()nfl)i(n)

3
§'+1

12Recall that for this subsection, we have fixed k = 3. Hence, none of the constants depend on k.
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Proof. In view of (8.15), the proof of this proposition amounts to commuting eén_l) and V. Using

[eénfl), 9;] = (6;87)0;, we have
e

N(n—l)
3
§'+1
(n—1) ax(n) (n Dz(n)
460 \ 7 aq n—1)\i+1 Oéz Y
< Z N(n-1) +C Z v (Viog N =)y N(n )
|| <3 LHERTN loa[+]az|+i<2 L3 vatiaritias)
vy (nfl)vag \val N(nfl) ivagv~(n)
s, Z s ( 0% ) v
N(n=1) L2
lax|+]oz]+|as|+i<2 8/ 14| oy |+]az]

(8.26)

Here, we have used the convention that V¢(V log N ("))i denotes a product of ¢ factors, each of which is some
spatial derivatives of Vlog N(™ and the total number of derivatives is |a|. Now using Holder’s inequality,
Lemma A.1, Proposition A.3, (8.10), (8.11) and Proposition 8.3,

>

[ag|+]az]+i<L2

vV (Vieg N~ 1>)l+1va27m)

L2
8+ 14 oy [+]az]

< n—1) 60 V(n) (n—1) e(()n_l)ﬁ(n)
HVIogN ‘ o NSO + HVIogN H ) NG
41 ’ 5+3 .4 w2
v e (8.27)
(n=1)=(n)
(n—1) ) Y
+ HVIogN ‘ 2 NSO
+1
§'+2
(n)~(n)
€ 7 .
S D
H6’+1
Similarly, but using (8.13) and (8.14) in addition to (8.10), and also the fact that N(") < 1, we have

vy (nfl)voq \val N(nfl) iva3v~(n) _
ja | +laz|+las|+i<2 L3 t1t1as 4ol o
(8.28)
Plugging (8.27) and (8.28) into (8.26), we obtain
er D5
N(n—1)
3
§'+1
o V%W . (8.29)
|| <3 L2 ol HEY, 41

Consequently, choosing ¢ sufficiently small, and using (8.15), we conclude the proof of the Proposition. O

Proposition 8.5 (Estimates for N(”H)). Forn > 2, NtY admits a decomposition
n+l) _ n+1 A7 (n+1
NOHD 14 N (folog([al) + N+,

sym,

with Né?;,,i; > 0, and such that the following bounds are satisfied:

INSGhanl + INCHD gz 4+ [Ny |+ [Ny <e?, (8.30)
1
O NSE ]+ INCTD s 4+ 0N | 2 SeC(A2)C (8.31)

[0 N s SeC(ANCE. (8.32)
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Proof. Existence of decomposition and proof of (8.30). We claim that
IRHS of (8.1)]z , + |RHS of (8.1)]: < Ce?. (8.33)
5+5

Except for'® the term e N (7(")2 all the other terms can be estimated in an identical manner as in
Lemma 7.2, except that we estimate the terms using Proposition 8.3 instead of using the assumptions on
the reduced data and the estimates in Lemma 7.1.
It therefore remains to control 27" N(®) (T(”))Q. For this we note that, for e sufficiently small, by
Proposition 8.3,
TR,

Now by Lemma 7.1 (for «), Proposition 8.3 (for ™) and (8.10) (for Né?&mp and N(™), for e sufficiently
|c€® (”)N(")Hcg < 1. This proves that

ST g2

5+ 1||T( )HCU <E4'

51+ ~

for large |z| and ||e2”

NOE 2|, S et

+2

small, 27" N() grows at worst as |z
||62,Y(")
An essentially identical argument also shows

) ~r(n
1 N (7)) 4

5+5
This proves the claim. Applying Theorem A.7 and Corollary A.8 (to A(N™*1) —1)) yields the existence of
the decomposition of N1 as well as the estimate (8.30).

Proof of first part of (8.31). To obtain the H} bound for N (first part of (8.31)), we need to control
the RHS of (8.1) in H§’+2. We note that it is easy to obtain some bound in H§+2. The key point here,
however, is that the bound must be at worst linear in C;, with an & smallness constant.

We first bound the term e~ N N |HM2 in H§’+2. There are various cases: in order to shorten the
exposition, let us use the notation (a,b, ¢, d) (with ¢ < d) to denote the case with at most a derivatives on
~(™ at most b derivatives on N~V at most ¢ and d derivatives on the two factors of H(™. The following
cases, though not mutually exclusive, exhaust all possibilities:

e (1,1,0,3). By Hoélder’s inequality, (7.3), (8.10), (8.18) and Proposition 8.3,
SIHE o, JIH™ g3, < Cie®.
(1,3,0,0). By Holder’s inequality, (7.3), (8.10), (8.11) and Proposition 8.3,
S (1 ING ] + 1Ny ) |2 < Cie
(3,1,0,0). By Holder’s inequality, (7.3), (8.10), (8.15), Proposition 8.3 and Lemma A.1,
S (14 1ol + 195" gz, ) IHOZ | < Cie
e (1,1,1,2). By Hélder’s inequality, (7.3), (8.10), (8.18), Propositions 8.3 and A.3,
SIHMws | H w2 SIH™ ws | [H™|gs,, S Cie®.

5+3.,4 543 .4 543 .4

(2,0,0,1). By Holder’s inequality, (7.3), (8.10) and Proposition 8.3,

s(1+a|+w<”>||wg, ) >||H<" log, JIH® s | St
27

5+2 5+3.4

(0,2,0,1). By Holder’s inequality, (7.3), (8.10) and Proposition 8.3,

< (1 IS+ D5z ) I g, Iy S 2"
5’ +35.

542

The term 27" N (7()2 can be treated in a similar fashion, since 7™ and H™ (according to (8.17),

(8.18) and Proposition 8.3) obey similar estimates'? except for a slight difference of weights (' compared
to 0) and constants (A; compared to 2). Since this term is at least quadratic in 7(™) (and its derivatives),
there is plenty of room to handle the weights. We give the estimate here and omit the straightforward proof:

(n) n n
1> N (r )2 s S O(A)Cie® S Cie.

!3Note that in (7.7), 7 does not appear on the RHS.
MNotice that this comparison is only true for 7() and H(™ without &; derivatives, which is what we are concerned about
for this estimate.
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(n) _
We next discuss the scalar field term, %(eéﬂ 1)¢(”))2. Note that this term poses a different challenge

in the sense that the smallness is at a much lower level (i.e., taking any derivative of e(()"_l)qﬁ(”) destroys
the e-smallness). Nevertheless, it has the advantage that the term is compactly supported, and we can use
the product estimate in unweighted Sobolev spaces in Proposition A.5 to obtain'®

™ )
n (n)y2
NGy (o )
H§+2
62'}/(”0 n—1 n—1 627<n) n—1 (834)
Swer leg" ™6™ lzalleg™™ 6™ o + | Sy le6™ ™o 7
L>(B(0,3R)) H3(B(0,3R))
SeC(Ap)Cs.
Here we have used (8.10), (8.11), (8.15), (8.23), Proposition 8.3 and also (8.13) and (8.14) (to control the

difference between e(()nfl) and 0).

A similar argument as (8.34) can be used to bound the term involving (Fjgn))z, using (8.24), (8.20) and
(8.21) instead of (8.23), since F/gn) is also compactly supported, to get!®

(n) n n n)\i n)\ 7
DN ED ) (L) (L))
A

550(140)01' + EQC(Al)Ci 5 80(140)01'.

3
HS o

Combining all the estimates above, we have ||(RHS of (8.1))HH§,+2 < eC(Ap)C;. By Theorem A.7, we
obtain ||N(”+1)|\H§) < e}, which is the first part of (8.31).

Proof of second part of (8.31). We now turn to the estimate for 9, N™+D " including both for
GtNéZ;,ll;) and 9, N1 in (8.31). Since RHS of (8.1) is differentiable in ¢, it is easy to see that 9, N (1) =
(8tNé?;nll;,)X(|x|)log(|x|) + ;N1 s the solution given by Corollary A.8 to the equation

A(O,N™+D) = 9,(RHS of (8.1)).

Therefore, to prove the second part of (8.31), it suffices (1) to bound the integral of 9;(RHS of (8.1)) with
respect to dz, and (2) to bound &;(RHS of (8.1)) in L3,, = HJ,,. Noticing moreover that (by Holder’s
inequality) L3, C L' continuously, it therefore suffices to bound d;(RHS of (8.1)) in Hy,,

Since the estimates for 9,7(™) are worse than those for 8, H™, and those for 7(™ and H are similar

(compare (8.17) and (8.18)), we will treat the term 0 (eQW(n)N(") (T(”))Q) and leave the (easier) term
O (6_27(")]\[(”)|H(”)|2> to the reader. For the term 0, (eQW(mN(”)(T("))Z), we can in fact bound it in the
norm Hj, , (which is stronger than Hy,,) as follows, using (8.10), (8.11), (8.17) and Proposition 8.3:

o (2 NI )2) |1

5+2

(n)

<2 (n) (n) (n) (n) (n)
SN ONer (1N, 10y, + 1, 107 s, ) -
() n n n
+ Hat (ez”Y N )>HW1 ) HT( )HW(;,,+%4||T( )Hcg/,“
~fh-d e

§82A2Ci + OiA164 ,S EQC(AQ)CZ' ,S eC;.

1575 see that using Proposition A.5 and the fact that supp(eé"71>¢(">) C B(0,2R) indeed imply such an estimate where we
(n)
only require the bounds for ;2(:071) in B(0,3R), we argue as follows: Let n be a smooth cutoff function compactly supported

in B(0,3R) which is =1 in B(0,2R). Then

27 ) . (m 27 (™ ne1) \(m
N (eé )¢( )2 < (nN(n_l))(eg )¢>< )2
H3 H3
542
2~(1) 2~(1)

e

-1 n €
SO e P (AR PERR [C

—1 2
o) s lled™ ™ ol | o
The support properties of n thus imply the desired estimate.

16\We note again that the implicit constant in < may depend on Cl;.
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We now turn to the compactly supported terms involving (e(()n_l)¢>(”))2 and (F&"))z. First, for (e(()"_l)gzb(”))z,
by Holder’s inequality, the support properties of egn71)¢(”)7 (8.10), (8.15), (8.23) and Propositions 8.3, 8.4
and A.3, we have

627(") - .,
" (mm(eé Joy?

2™ (N(nfl))2
N®)

HY,,
"o 2
e((J 1)¢>(”)

(= (8.36)

< 1|10y

~

Lo

Lo (B(0,2R))
eé"il)gi)(")

62'7("> (N(n—l))Z
t N(n—l)

< .
N(n) =~ 60(140)01.

He(()nfl)fﬁ(”) .

Lo

L (B(0,2R))

The (FI((L))2 term can be treated similarly using (8.20), (8.21) and (8.24) instead of (8.23):

S 50(141)01

0
5+2

% (Z TN “‘)(F,&”))Qéij(LE{”)%LE{”)j)
A

H

Combining all these gives the estimates for 8&5’5,,2, and O, N1 in (8.31).
Proof of (8.32). Finally, in order to prove (8.32), we estimate 9;(RHS of (8.1)) in Hj, ,. Now, in
contrast to the second part of (8.31), we allow the estimates to be quadratic in C;. First we note that the

Oy (eQV(n’)N(")(T(”))Z) term has been estimated above in (8.35). The 0 (e*QV(n)N(”HH(”)F) term, as we

argued above, is similar.
It therefore remains to estimate the (egn71)¢(”))2 term and the (FI((L))2 term. For the scalar field term,

we have, using the support properties’” of e(()n_l)qb(”), Proposition A.5, (8.10), (8.11), (8.13), (8.15), (8.23),
Propositions 8.3 and 8.4,

627(7]’) n— n
" <N<n) (eg" o)

(n) n— - n n— n
o arere ] I
~ 7t N N(n—1) N(n—1)
L>°(B(0,3R)) L H1
627(") (N(n—l) )2 eén71)¢(") egn71)¢(7l)
Mo — N1 NG
H'(B(0,3R)) L Le
2™ (N(n=1)y2 e(()n—l)d)(n) eg"—1)¢(n)
LN | VZey E— Or N—1) N1
L>(B(0,3R)) H! Lo
e2’y(") N(n—l) 2 e(n71)¢(") e(n71)¢(")
N # o S < eC/(Ag)C2.
H'(B(0,3R)) L Lee

Using (8.20), (8.21) and (8.24) instead of (8.23), the Fz term is similar, for which we have

o, (Z e4ry(n) N (Flgn))Qaij (LXL))i(LXL))j>
A

< eC(A)CE.
H!

542

17We refer the reader to Footnote 15 on p-19 regrading the use of Proposition A.5 when one of the factors is compactly

supported.
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Proposition 8.6 (Estimates for B(”H)). For n > 2, the following estimates hold:

1B, + 18wz, +15 ey, S, (837
8 g/+%, 5'+1

||/3(n+1 ||H§, <, (8.38)

||e(()n)ﬂ(n+l)||H§, <, (8.39)

||eén)6(n+1)||H§/ <c?. (8.40)

Proof. In view of Proposition 8.3, the existence of 3(»*1) and the estimates (8.37) can be proven in exactly
the same manner as Lemma 7.2; we omit the details. We only focus on the proofs of (8.38), (8.39) and
(8.40).

Proof of (8.38). To prove (8.38), we take the divergence of (8.2) (in a similar manner as in the proof of
Lemma 7.2) to get

A(ﬁ(n+1 ) 251@5]168 ( )6*27(71) (H("))ﬂ> . (8.41)

Note that the RHS obviously has 0 mean and therefore by Theorem A.7, in order to prove (8.38), it suffices
to bound the RHS of (8.41) in H},,, by CC;.

Let us note explicitly that in this estimate, the need to have a small loss in the weight (with 6’ = — ¢
instead of d) is due to'® the factor N (")6_2"7(71)7 which grows at infinity. On the other hand, since o and
\N(Sgytip\ are small (by (7.3) and (8.10)), N®™e=27" grows at worst as |z| 0 for large |x|, and this can
indeed be handled by putting in ¢’ in place of § in the estimates. More precisely, by Lemma A.1, Holder’s
inequality, (7.3), (8.10), (8.11), (8.15), (8.18) and Proposition 8.3,

Hak (N(n)e—Qv(") (H("))jg> ‘

Hg’ 2
n) 9~
SIN® e (H ™)l s, (8.42)
S+ HN(”)HW@%A +7™ llwz, i WH gz, + IN g + V7 iz, JIE™ g,

<C; +£2C; < G

Proof of (8.39). For the estimate of e(()")B(”H), we take the divergence of (8.2) and commute the

resulting equation'® with egn) to obtain

A (eg">(,8<”+1>)i) — 25455 By (e NWHD) 4 [A, €| (BD) = I+ 1. (8.43)

It is easy to check that the RHS of (8.43) in fact has mean zero (as is expected). As a consequence, we can
apply Theorem A.7 so that in order to prove the estimate for e(()n)ﬂ("H) in (8.39), it suffices to bound the
RHS of (8.43) in L}, = HY,,, by C;.

For I in (8.43), after commuting [e [ ") ,0x] and using Lemma A.1, it easy to see that we only need to
estimate the following terms:

1, e NG HO) [, + e (7 )NOHO |, s
— n n n —o~(m) n n ’
+ e (e N H s, +118™ o, 196(e™ NWH™) o, .

Using (8.13) and (8.42), the last term is clearly < eC;.

To proceed, notice that according to Proposition 8.3, ]\N/'("), 7™ and H™ are all O(£?) small in L*-
based norms up to 1 derivatives while according to (8.11), (8.15), (8.18) and Proposition 8.4 (and (8.13)),
e(()n)ﬁ(”), e(()n)ﬁ(" and e " (") are O(C;) in appropriate weighted H? spaces. Hence, the first three terms

18This is for instance in contrast to the proof of Proposition 8.5, where because the corresponding RHS is more nonlinear,
one can put N®+1) in a better weighted space.
1975 obtain this one needs to justify that eén) (ﬁ("+1))i is well-defined, but this follows from the fact that the RHS is

differentiable by e( ). ; we omit the details.
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in (8.44) can be treated in a similarly manner. We consider the first term as an example. By (7.3), (8.10),
(8.11), (8.15), (8.18), Proposition 8.3 and Proposition A.3,

—on () Y (1) rr(n
He 2y N( )( ( )H( )H 5’+1
o) n _oa(™) o (p n n
e N o e§VH Dy, + 17Ny e B
i 2
=27 pr(n) (1) pr(n) .
Slem Nl e H i, S G

The other terms in (8.44) can be similarly shown to be < C.
For term IT in (8.43), we first compute

(A, VB < [vVBrDVE™| + VAV ET)

We then estimate this term. In fact, it will be convenient later to bound it in a stronger norm, namely the
H3, ,, norm (instead of the HY, , norm), using (8.13), (8.14) and Proposition A.3:

10 ez, SUBT Vs 18 e, + 18" Vllws , 18 we

s+l 541
(n) (n—1) (n—1) < (845)
I8 g 180Dy, + 18wy, 1Bz, S <ClA0C

Proof of (8.40). Finally, to prove (8.40), we apply Theorem A.7 and estimate the RHS of (8.43) in
H§,+2. Let us note at this point that it is for the purpose of (8.40), we need to commute the equation with

e((Jn) instead of, say, 0;. This is so that we can make use of the top order estimate in (8.18). Indeed, using
the estimates for H(™ in (8.18), we cannot bound general fifth derivatives of H(™), but can only bound the
combination of one e(()n) and four spatial derivatives.

Arguing as (8.44) and using Proposition A.4, for I in (8.43), it suffices to estimate the following terms:

(n)

HI||H5,+2 <||6727 N(n)( (n)H )HH:;’,H + ”672“7(e(()n),y(n))N(n)j'—](n)HHE,/+1 5.46)
— n - (") ’
+ e 2'\/(68 )]\[(n))H(n)HHg/+1 + ||5(")||H§,H5k(€ 2y N(”)H(n))”H;H'

As in the proof of (8.39), the last term is somewhat easier, and can be bounded by < eC; by (8.13) and
(8.42). It remains to estimate the first three terms. Again, as in the proof of (8.39), they are rather similar
and we will only carry out the estimate for the first term in detail. More precisely, by Lemma 7.1, (8.10),
(8.11), (8.15), (8.18) and Proposition 8.3,

le=27" N (e§ H) || s

841

5(1+|N§z;mp|+||N<">||Wzl )(1+|w<">||wz, 1 )eé HO o
5+5.4 §'+5.4

841
+ (N g + 15 N, ) e B llcs,
<Ci+CPSCl

The other terms in (8.46) can be treated in a similar manner. Finally, the term I7 in (8.43) has already
been estimated in Hj |, in (8.45). We therefore conclude the proof of (8.40). O

We have now completed all the elliptic estimates. In the remaining estimates, we can exploit the smallness
time parameter T. However, one still needs to take caution when estimating the time derivatives, as these
are typically controlled by estimating the RHS of the evolution equations, and one still needs to track
precisely the dependence of the constants.

The next quantity we bound is ("), In the following lemma, we prove an energy estimate for general
solutions to inhomogenous wave equations of the type satisfied by 41 in (8.3).

Lemma 8.7 (Energy estimate for the wave equation satisfied by ") Suppose h satisfies the following
inhomogeneous wave equation

1 @ 1 @
e (N(n) ey >h) ~Ah=f. (8.47)
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Then, for a weight function w(|x|) = (1 + |z|?)°, it holds that

/R2 ((N(ln)) (c§"h )+Vh2>( x) dx

(8.48)

§2/ w (2(eé7l)h)2—|—|Vh|2) (0,2)dx + CT sup / w(N™)2 (¢ z) de.

R? (N c[0,1] JR?
In particular, this implies that
ey Veh ey Veh

PN S ON O+ IRy, (0 <2 32 | =50 (©) + |Vl a5, (0)

o] <3 LY iital lo<3 L3 iagial (8.49)
+C(C)T sup [[NU flls, ().

[ ] 5/ +1

Proof. Proof of (8.48). Let w(|z|) be as in the statement of the lemma. We multiply (8.47) by weg")h and
integrate over R? with respect to dz. After integration by parts, we obtain

7\ 2
L (e h / (n)
—we dx + Vh-V (welh) dz = wfey  hdx.
/Rz 20 <N<n) R2 ( 0 ) Rz 0

Hence,

d (e(()n)h)2 1 2 / L (n)yi 1 (n) 12 2
Clt/R2w<2(N(n))2+2|Vh| dot [ 50 ((8™)w) ey e+ VP ) do

+ / o 0, hel™ b da / w&™9,(8™) O hdjh du = / wfel hdz.
R2 R2

||
Since w(|z]) = (1 + |2[*)7 and N® 5 (1+¢)(1 + x(|z])log(|z])),

w(a)) _ w(le)

w'(|z]) < )

Moreover, by (8.13) and Proposition A.3, |3~ + V8™ |1~ < 187 || w2 < 1. Hence,

5+ 1 4
IV(B™w)| Sw,  |[wVB™| < w.

Using the above estimates and Cauchy—Schwarz, we therefore have

d (el n)?
% R2w<(N(n) +|Vh|2>

5/ w (((N(ih)) |Vh2> dx + (/}1&2 w((j\g;ij;))j dx>; (/Rz w(N™)? 2 dm)%

Therefore, using Gronwall’s inequality and choosing T' sufficiently small, we obtain (8.48).
Proof of (8.49). We differentiate (8.47) by up to three spatial derivatives to obtain that for multi-index
a with |of <3,

1

L
(o
N €

N o

1 o) ( 1 (Vah)> —A(V*h) =Vf + {

IOR: e iy v }h (8.50)

By (8.48) with ¢ = M, in order to prove (8.49), we need to multiply the RHS of (8.50) by N(™ and
bound it in L(S,HJFW| We first control the V¢ f term. Notice that in order to obtain the term on RHS of

(8.49), we in particular need to commute [N V*]. By Hélder’s inequality, Proposition A.3 and (8.11)
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(and noting that |V (x(|z)log(|z]) N&<ymp)ll o, Sk [Nasympl, V& € NU{0} and || i llco S 1),

D NS

8/ +1+|al
|| <3
< « (n) « (n)oa (n
Z ||V N f |L§'+1+| \ Z ||V 'Vieg NV Z(N )||L,;/+2+|a1\+\a2\
lal<3 ot |+ |z <2
+ Z 1(V1og NUW)(V*1V log NW)ve (N f )||L§/+3+|a1\+\a2\ (8:51)
lag]+|oz|<1
+ [[(V1og NI (N )] 2

§'+4

IV flzs, (1IN gl + [V 108 Ol ) < CCHIN

541

To control the commutator term in (8.50), we compute
L o (L o
HNW% (mm% MK
vam €y (M),
N Y\ e

Vﬁ(n) (n) ()h
N(n)Vl &N N(®)

~

+ ‘fVlogN ")

’VQhV log N

(o VB
e (47 e ) ¥

(n) (n) ey Viog N (n)
‘ VE" v s h’ ( 0 ) ey h .

N®) N(®) N(®) N®)

Here, we have silently used [eo n) ,0;] = 0;(8™)70;, and have also used the equation (8.47) to rewrite

N%") eg") ( N%n) egn)h). In a similar manner, one can compute the commutator with higher derivatives. We
have, for |a| < 3,

1 o1 a
[N(meo (N<n> )V}h’

s Y (v Ny
s | +laal +i=]a]

+ ‘V’“VQhVO‘Q(Vlog Ny

)

1 () ,
+ v ( el (W )) V“Z(logN("))’V"SVh‘

N(m) N()
|t [+]az|+|as|+i=|a| -1
v vB(n) vz (V1 N(n) ivag eén)h’
* N (Vieg NV s
|t [+]az|+|as]|+i=|al

(8.52)

+
lar|+|az|+|as|+i=|a|

() 2 A
v (Xﬂ(n) > V2 (Vlog N™)v*svh

(6 108 M) (0
0 g h
ap N ~ - oa (n)\iva
* > v NV (Vieg N™)'v s C Ol
|y [+]az|+|as|+i=|a| -1
. (e 10g )
g Vﬂ(n _
@ @ [e} (n)\iva
i v N Vi V7 (VIog NIV

lax [+ oz |+]as|+|oa|+i=|af -1

Here (and below), we use the notation as in the proof of Proposition 8.4 that, say, V°2(V log N(™)? denotes

a product of i factors, each of which is some spatial derivatives of Vlog N(™ and the total number of
derivatives is |aza).

We claim that upon multiplying by N, each of the terms in (8.52) can be bounded in L§,+1+|a‘ by
C(Ay, Ci)(||hHH§,/+1 + ||N(")f||H§/+1). Since the constant can depend on A; and C; in an arbitrary manner,
all terms linear in h can be treated in essentially the same way. We bound one representative term. Using
Holder’s inequality, Proposition A.3, (8.11) (and noting that HV(X(\x|)10g(|x|)N¢£?;mp)||Cﬁl <k |Nasymp!,
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Vk € NU{0} and || 5ty lleo < 1) and (8.14), we have

by

1 (o [(VB™ _
Ny ( el ( Nﬁ(n) )) V2 (Vlog N™)ve Vh

loa | +]az|+as|+i=|al -1 L el
v 3m™ .
< > V0, Nﬁ(n) V2 (Vg N™)iv*svh
las [+]az|+]as|+i=|a|-1 LY 1tal
(n) (n) _
—|— N(n)VOq /8 VQQVV/B va3 (V log N(n))lv(x4Vh (853)
N() N®) -
ot [+ ez |+l as|+loa | +i=|al—1 5 114 al
Vﬁ(n) ﬁ(") Vﬁ(") _
< - (n) 2 (n)2
~ <’ o) e AN | e || N | (1 + [ Nasympl” + IV ||H§+1> IVPlz, |
&' s 541
<ACE|Vh s,
The term which is linear in f can be treated as in (8.51) to obtain
(n) oo a (n)ys ] (n)

loa | +|az|+i=|a| §' 1+l

Combining (8.50), (8.51), (8.52), (8.53) (and analogous estimates for terms in (8.52)) and (8.54), and using
(8.48), yield

(") oa
ey V*h
Z ON(n) (t) + ||Vh||H§/+1(t)
o] <3 LY t141al (8.55)
() ga '
ey 'V¥h o n
<2 ) O (0) +[VVhlzz,  (0) +C(Oi)Tt/§[ng] INC Fllgs, (©):
lo|<3 L§'+1+\a\ ,
which concludes the proof of the Lemma. O
Proposition 8.8 (Estimates for 7). For n > 2, the following estimates hold:
(n) ax(n+1)
Z € VYT + Hvﬁ(fH—l) <40y, (8.56)
N® HS,
|| <3 L6’+1+\a\ 5/ +1
(n)~(n+1)
e
| sctoct, (8.57)
H§’+1
(n)=(n+1)
R SC(A)C. (8.58)
N )
H5’+1

Proof. The strategy is to use Lemma 8.7 to estimate 7("*1). Notice that (8.3) is an equation for A1),
Nevertheless, from (8.3) one can easily derive the following equation for F("+1):

(n) =~ (n+1)
2w (fM)HM(m)

N0 N®)
(8.59)

(n)yi
(RIS of (83)) + 208 (e toe(e1) + oemzel” (-0 (cleDios(la)) )

Moreover, if ¥("+1) satisfies the estimates as indicated in the statement of the proposition and « is a fixed
constant as in the initial data (and in particular time-independent), then v("+*1) = —ay(|z|)log(|z|) +7™+1
is indeed the solution to (8.3).

Proof of (8.56): Estimates for RHS of (8.59) in H}, ;. By Lemma 8.7, to prove (8.56), it suffices
to show that N(™ x (RHS of (8.59)) is bounded in the H} ,, norm by C(Ao,C;). We first estimate the
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2(ef" Ty (™)?

TN NG we Write

RHS of (8.3). For the term

— n—1)~(n n— 2
(e~ = (V50 4 ap" Do, (o logJ2))) -

(ef"~DF(M)2 (a(B D) 0 (x(|=])log(|2)) )

By Cauchy—Schwarz, it clearly suffices to bound and n H},

(N(n l)) N(n—-1) —+1°
By Holder’s inequality (8.10), (8.11), (8.15), Proposition 8.3, (8.25) and Proposition A.3,
(e(()nfl);?(n))2 v e(()nfl);‘y'(n) eénfl);y«(n)
(Ne=D) | C(NOD) (NG
H5’+1 §'+1
_ (n=1)x(n) (n=1)~(n)
n—1 n—1 o 2 €o Y
s (1 + |N(§sym;)| + ||N( )||H§) TN TN
5141 Cg’+2
(n=1)x(n) (n=1)x(n) N (n=1)x(n) |
9 77 o7 (n—1) 7 < O,
T NeoD N(—1) 1 +N 3 N@-1) S eCi
5/+%74 5/+%,4 5 +2

Next, we estimate using Holder’s inequality, Proposition A.3, (7.3), (8.10), (8.11), (8.13) and (8.14) (and
the fact || < 1) that

(B~ V)0: (x (|| log(|]))”
N

3
HJ’+1

Slaf? (14 NG P+ I3 <B "Dl 16l a

8 +1

) (8.60)

H18" Mz 18" Pl
§'+1.4

’ L
§'+5.4

+ 1PN g |87V 2g, < °C(A0)Cr

~Y
+1

For the second term on the RHS of (8.3), by Holder’s inequality, Proposition A.3, Lemma A.6, (7.3), (8.10),
(8.11), (8.15), (8.17) and Proposition 8.3, we have

1N (Y2627 | s

8 +1

< (14 IV 4 1Pz ) (1ol ) (19, 17l
5454 3+5.4

8 +1 5§42

(8.61)
+||7—(7L)||W52,, 3 ||7—(n)||W1/, 5 ) (HN(H)HH3 + HV(n)HH3 ) ||T(n)||c0
+3.4 6/ +3 .4

5”
<eC(A1)C,.

—2()
We next bound the most difficult term, e27"™ (()" b (Nijl) div (B )) which is also the term that limits

the weight allowable in the estimate. Distributing the 60 D derivative and commuting e( "1 with B it
is clear that it suffices to control the following terms:

(n)
(n) (n—1 € n
2y eé ) <N(" dw(ﬂ( ))>

Hg’+1
2(6(’”71)7(")) ] (n 1) logN(n 1) ) N
< deﬂ(”) ‘ + NnD) div 8™ (8.62)
H§’+1 Hg’+1
vamv g div(ed" ) M)
541 Hs

§'+1
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We begin with term I. By (7.3), (8.10), (8.11), (8.13), (8.14), (8.15), Propositions 8.3, 8.4, Lemma A.1 and
Proposition A.3,

—1) V(x(Jz])log(|z()) elm D7) .
< (n—1) e AWM )
IS oleﬂ N(n—1) R o= 1 ldiv B s,
oG §/+3 .4
- (8.63)
_1) V(x(|z[)log(]=[)) eln Dz ) .
+ IaHﬁ N—1) e sy | div B ”W;,%A
541 ngrl

<eC/(Ao)C;.

(9= (B D)1 0, (NS 1) x(|z])log(|z)+N "~ D)

For term II, we write e(()”*l) log N(»=1) = ey . Hence, using Lemma A.1,
Proposition A.4, (8.10), (8.11), (8.13), (8.14) and dropping the good iy factor, we have
)

s (@NW—“ |+ NG 1B (0 o)™ g + |0 N0

+ HW—UVN(”—”‘
H}

asymp asymp
(1IN 4+ IOV ) Idiv 87 s, |+ INCDllgglldiv 8%lcs, ) (860
+ 0N D g div B o,
SC(Ao)CE.

For term I11, after expanding in terms of derivatives of 3(»~1, (") and log N(®~1) (and dropping the good
ﬁ factor), there are the following possibilities: (1) Any factors of B=1 g and N(=1 have at most
2 derivatives; (2) one factor of 3(»~1 or B(™) has at least three derivatives; (3) there is a factor of three
derivatives of log N("~1). In case (1), by (8.10), (8.13) and Lemma A.1, we estimate

8™l

2
741
§ +§,4

S (14 NG b P+ [V log N2, ) 18" Plws,,,

+ <1 + NG| 4+ [V log N("_1)||W;+gy4> (1 + NGy |+ 19 10g NV, ) (8.65)
. (Ilﬂ("‘”llcl

§'+1

8™, 8"y )
4 5’+§,4

(n)
187wz, b

1
2

<.
In case (2), by (8.10), (8.13), (8.14), Lemma A.1 and Proposition A.3, we have

SIBT Pllws - UB™ w2 +18™ ey, [IV1og N Pllco )+ 18Vl 18 [l
8+ S5 .4 §'+1 s

%,4 3, 6+2 541
+ IIB(”)||w;,+%,4(\lﬂ(”*”||w;,+%’4 18" Vllen,  1V10g N Dl )+ 8™ ], 18T, - (8:66)
<eC(Ay)C;.

Finally, in case (3), there must be only one derivative on 5"~ and 5™ and hence using (8.10), (8.11),
(8.13) and Lemma A.1, the term can be bounded by

S (14 INGll + 9 1og N 2 Y 18Dl

8 +1

Hﬁ(n)Hcg,+1 S (1 +e+4Cye? <20, (8.67)

Combining these we have
11T < eC(Ap)C;. (8.68)

It remains to bound the term IV, which is the hardest: it is the term that determines the weight we can
put in. By (8.10), (8.11), (8.14), Lemma A.1 and Proposition A.3,

5/ +1

Vs (1 + NGl + IN 2 ) Idiv(eg"™ 8 llas, , + N s, Ildiv(eg™™" 5] s
2 kN

6'+3
SC(A0)CY.
(8.69)
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This concludes the estimates for (8.62), we summarize it as follows:

o ( N 672,),(71')
2~ (n— . n
e’ ey <N(n_1)dw(,@( ))>

< C(A)CE. (8.70)
HS

841

The fourth term on the RHS of (8.3), after multiplying by N (") can be estimated in a trivial manner using
Lemma A.1, (8.10) and (8.11):

||AN(")HH§,+1 <S|INM |4 ||ﬁ(n)|m§/71 <S|INM |4 ||N(")HH§ <.

asymp asymp

Finally, the last two terms on the RHS of (8.3), i.e., the terms involving d¢(™ and FXL), are compactly
supported, and can be controlled exactly as in the proof of Proposition 8.5 by

< eC(Ao)Ci. (8.71)

3
§'+1

59 o w1 ™, (n ONTTION
50000 + 537 e (Lo (L) (LY
A

H

We now bound the remaining terms on RHS of (8.59) (i.e., those that are not on RHS of (8.3)), after
multiplying by N(). First, an easy explicit computation, together with (7.3), (8.10) and (8.11), show

laN ™ A og () 13, , < lal(1+ [Nyl + IN® | 113) S €2 (8.72)

Slaf (
H§’+1

where the estimate is obtained by writing eén)(,é’(”))i = egnfl)(,é’(”))i — (B — pr=1Yig;(B(M)i and
SINM = 9N — (BM)ig, N and using (7.3), (8.10), (8.11), (8.12), (8.13) and (8.14).

We now apply the energy estimate in (8.49). Combining all the estimates above, we have shown that the
N™ x (RHS of (8.59)) is bounded in H _; by C(Ag, A1,C;). Since T can depend on Cj, Ag and Ay, by
choosing T sufficiently small, (8.49) implies (8.56).

Proof of (8.57). First note that by equation (8.59), we need to control (1) N x (RHS of (8.59))

4 eg"):y(nJrl) .

in H,, by C(Ag)C?, (2) NWA+) in HZ | by C(A9)C2, and (3) NWa*aMa, 9T in HZ
by C(Ag)C2. For (1), note that in the estimates we proved in the course of obtaining (8.56), indeed all
terms on RHS of (8.59) satisty the desired bound. For (2), we have the desired bound thanks to (8.10) and
the estimate (8.56) that we just established above. Finally, for (3), we follow the proof of (8.25) and use
additionally (8.11) and (8.14) to obtain

For the final term, we have

ﬁ(n)lg(n)

(n)
(n) B n ’ 0
Hg’,

0 Nm

Jact (L artcebionton )

)5520(A0)03, (8.73)

3
H&’

(n) = (n+1)
(n) sik p(n) 5 €0 Y
HN O (O
H52’+1
(n)7ax(n+1)
SO+ 910 N gz + 18 gs) [ IV s, + 3 | Dy —
|| <2

2
LS f1tial
<G

Proof of (8.58) step 1: Estimates for RHS of (8.59) in Hj, ;. Similar to in the proof of (8.57),
we first bound N x (RHS of (8.59)) - except that this time we bound it in H}, , by C(A4o)C;. Now
the bounds in the proof of (8.56) show that it remains to improve the estimates for the term I7 in (8.64),
the term IV in (8.69) and the term (8.73) when we replace the Hz?’—&-l norm by the Hg’—&-l norm. We first
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estimate the term analogous to (8.64). By (8.10), (8.11), (8.13), Lemma A.1 and Proposition A.3,

(n—1) (n—1)
€y log N a(n)
oD div (B'™)

1
H6’+1

pena e,

asymp asymp

< (I&eN‘" ol + NGl

+ Ha N(n 1)‘

1
6+1 Cé+1>

> j (ﬂ("))’ +’8N” D H Hdmw(”))H
Cg+2 51/+1 51+;’4
SeC.

Next, we consider the term analogous to (8.69). By Lemma A.1, Proposition A.4, (8.10), (8.13) and (8.14),

<1+|Nagy,;p|+’]v1ogN” 1>(

wl
§/+3 .4

dZU( 6(n)) n n— n—1 n
W N (1 + |N(§sy172)| + ||N( 1)HH2) [|div (e { )/3( ))HH(;,H C(Ao)C;.
541
Finally, for the term analogous to (8.73), we have
ny (B )'
acy” | - 0ix(lz)og(|)))
N(®) HY
o " s (8.74)
n) B" B
Sla| ( GOl N(n S E2C(40)C,

where the last estimate is obtained by writing e(n)(ﬁ("))’ = eg" 1)(6("))1 — (B — pn=1)ig,(B™)? and
INM = g NM — (BM)ig; N and using (7.3), (8.10), (8.11) and (8.13).

Proof of (8.58) step 2: Completion of the proof. As in the proof of (8.57), it remains to control
(n)
N A+ and N () 5“%(7')8 % The former term can be controlled using (8.10) and (8.56) (that

we proved above) as follows:
INC AY D gy, S (4 [ Nasympl + IN@ller, )+ IVY gz, ) S+ Ci S G

Finally, the remaining term can be estimated using (8.10), (8.13) and the argument leading to (8.25):

n)~(n+1)
(n) sik (n) 6O v
HN 0T N

1
H5’+1

( () (g1 60 )Va (n+1)
SA+IVIog N g + 18 1 z2) { IVF" Dy, + D

| <1

L2

S(1+ Ce)C. T
This concludes the proof of the proposition.
O
Proposition 8.9 (Estimates for 7("t1). For n > 2, the following estimates hold:
Ir" s, <C(A)Ci, (8.75)
107D 1, <C(ANC, (8.76)
HatT(nH)HHg,,Jrl <C(A)C. (8.77)

Proof. In view of (8.4), the estimates for 7("*1 can be obtained by directly controlling

o ()
e~

N()
Similarly, to bound 9,7("*t1) it suffices to estimate the 8; derivative of the above quantity. To this end, we
o (n)
use the estimates in (8.10), (8.11), (8.13), (8.14), (8.15) and (8.16). Let us first control the factor %
|2¢ or ]\fc(tgyfnll)plog(|:13|)7 which ultimately contributes to the fact that

( 26Dy | iy (5<n>)>.

Notice that it has growing factors in |z
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we need to worsen the weight in our estimates — using ¢” instead of §’. Nevertheless, for e sufficiently small,
for |z| large, these growing factors can be controlled by |z|7. Hence, by Propositions A.3, A.4 and 8.3, we

have
(n) (n)

e—2'y —2’7

N(®)

N(n=1)
N
H2 .
Zg- -

Also, by (8.11), (8.15), (8.16) Propositions 8.3 and 8.4, as well as Propositions A.3 and A.4, we also have
()

- <1 (8.78)

—oy(m) —oy(m) (™)

N(n=1)
N (n)

N(n—=1)

N at

+||o < 0y (8.79)

0 +

2
H,L,l
10

-
3
Mg

N(n) N(n)

3
HS . |
10

— £ _
10 !

Using (8.78) and (8.79) together with Proposition A.4, (8.13), (8.14), (8.15), Propositions 8.3 and 8.4, we
prove (8.75):

6,27(") 1
o (s
H3
8 +1
727(">N(n71) e(n_l) (n) 727(7”
v e ,
S - OT o |div 3 ||H,
N) N( ) N() 541
Hif—o—l H5'+1 H3%71
A () A7 (n=1) _(n o)
N( 1) e f)/( ) e <7 "
+ 0 N + | ldiv 5o, | < C(A0)Ci.
7%71 C(s/+2 Hi%—l

Next, we prove (8.76). By Proposition A.4, (8.13), (8.14), (8.15), (8.16), (8.78), (8.79) and Proposition 8.4,

=27 (n—1)
2 [_9em (n) iv(BM
O ( N ( 2ep AN + div(B ))

H!

841
_9~(m) n— n—1)~(n n—
B N Siiol IR P /X R 1)
~ N TN ¢ N@-1) -
Hili_ H;H»l 841
_o~(n) n— —1)~(n n—
s 2™ N(n-1) e§* Dy o] B DV (x(|z])log(|xl))
¢ Nm) NO=1) N(n 1 e
Hili, &/ +1
6727(") 6727()
+ o ’&(dz‘vﬁ(”))’ o+ 8tW Hdwﬂ(" S C(A)C;.
Hi£71 841 HE£71 5/+1
10 10

Finally, we prove (8.77). Again, using Proposition A.4, (8.13), (8.14), (8.15), (8.16), (8.78), (8.79) and
Proposition 8.4, we obtain

e (n—1)
2 (9l (n) iv(B8(M
O ( N ( 2ey AN + div(B ))

H62”+1
o2 o) V5 BV (x(lal)log(])
< [N DS ] )
N® ) ) N1 H?
H2 . 2 ot
e D7) BV (| log(Ja]))
+ t N(n) W + ‘Oé| N("_l) H2
H§/+1 8'+1
6_27(71) a i (n) 86—27(70 p (n) <OA C2
i(os oo s, + |2 e T s
2 - g o
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Proposition 8.10 (Estimates for H(”“)). For n > 2, the following estimates hold:
||eén+1)H("+1)||Hg+1 <20C;, (8.80)
IH" Vs <2C;. (8.81)

Proof. Proof of (8.80). In order to estimate (e(()nH))(H(”“))ij in H},,, it obviously suffices to bound the
RHS of (8.5) in the Hj , norm by 20C;. We consider each term on RHS of (8.5): in fact, all but two terms
can be controlled in the stronger Hj , space.

First notice that the terms 227" N(®) (HMY),H(H™) 50, N 9,0 00, and N ™) (FXL)) (L(")) (L(")) ;
are analogous to terms in (8.1) and can be treated as in Proposition 8.5 so that they are bounded as
Il - ||H(:;+2 < eC(Ap)C;; we omit the details.

The remaining terms can be treated as follows. For 8(]»(B(”))k(H(”))i)k, we use (8.13), (8.14), (8.18),
Proposition 8.3 and Lemma A.1 to get

19 (B (H™ )iy g
SIVB™lcs, NH™ 2

5+1

+[vs™ ||W?, L MHD s VB s [H™ [y
§'+5.4 )

+3.4 5454 6+35.,4

5+2

+ VB s, 1™ e

5+2

5 EC(Ao)Cl

The term ;™) ®0; N (") can be treated similarly, except for extra care regarding the logarithmically growing
terms. More precisely, by Holder’s inequality, (8.10), (8.11), (8.15), Proposition 8.3 and Lemma A.1, we
have

100N .,
SIalING (1 + 1)

asymp + |O(|||VN(n ||H‘3 |N<:(L?gmp|||v§(n)”H‘3 + Hv%(n)HC’O ||VN(n)||H3

5+1 S+1 5+1
+ 197 s, VN, +IIV?‘”)IIW1 , JVNO e +HV~(" e, IVN "’le ;
5+ 3 8/t 5.4 5+35.,4

5501‘.
Finally, by Lemma A.1, (8.10) and (8.11),
10:00;N ™ |l gs, < 6N ™| 115 + C|Nasymp| < (12 +£C)Ci,

where the norm on the LHS is to be understood as the H g’ o norm for a 2-tensor.
Combining all the above estimates and choosing ¢ sufficiently small give (8.80).

Proof of (8.81). First note that |[e{" ", Vo] H("+1)| < 2 lon|+laal=lal (Verv gt |vee g+ Hence,
for |a| < 3, using Proposition A.3 and Proposition 8.6, we have

|| (n+1)vaH ’ﬂ+1)|| < He(n+1 ’ﬂ+l)H

+ G| H™ Y| gy (8.82)

5+1+\ | HY 5+1

Next, writing e(”+1)VC‘H("+1) (0 — (5(”+1))k8k)VO‘H¥L+1), squaring the expression, multiplying by
(1 + |z|>)0+2+lel | integrating w1th respect to da dt, integrating by parts and using the estimates for ("1

in Proposition 8.6, we have

sup HVO‘H("H)H

< @ n+1
e 2o () SIVEHOH

(0)+OT sup [el ™ IVeHT| L2

s+2+|al +€[0,T] J 5+2+\al

(0) + CCTA+ [H™ Vs ),

(t)

<|VEHED L

5+2+al Hi

where in the last inequality we have used (8.82) and (8.80).
Now, summing over all |a| < 3, choosing T sufficiently small, and absorbing the term CC;T||H ™+ ||H§)+1

to the LHS, we obtain (8.81). O

Lemma 8.11 (Suppport of (" V). There exists a constant Cy > 0 such that for e, T sufficiently small
(depending on R) and n > 2, ¢V is supported in the set {(t,x) € [0,T] x R? : Cs(1 + R®)t — |z| > —R}.
In particular, choosing T smaller if necessary, supp(¢\"+t1)) c {(t,z) € [0,T] x R? : |z| < 2R}.
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Proof. Since the initial data for ¢("*t1) and 9,¢("t1) is compactly supported in |z] < R, it suffices to show
that {(t,z) € [0,T] x R? : Cs(1 4+ R®)t — || = —R} is a spacelike hypersurface with respect to g(™. We
compute using (4.7)
(9") 7 (d(Co(1 + ROt = Jz]) . d (Cs(1+ Rt — 2])
C2(1+R%)?  20,(1+ Re)(x - ™) w  (z-BM)2 (8.83)

_ S _ —2y

(N2 e[ (N ()2 C T RPNm)

1 ﬁ(”>‘ ( ﬁ("))z
» (NI~ RN BRI S

. Hence, after choosing the parameters appropriately, one easily sees that (8.83) is non-positive.

n . . ~(n 2
For |z| > 2, e~ = e2ax(lz)log(e)) 27" < |z|“® > min{l, s}, and
= ~ €2 log |z|

Proposition 8.12 (Estimates for ¢("+1)). Forn > 2, the following estimate holds:

(n) ¢(n+1)
Oy N(n)

Proof. We perform the energy estimate for the wave equation. First, note that since ¢(1 is compactly
supported in B(0,2R) for all time by Lemma 8.11, we do not need to worry about the spatial decay.
Given a function f, define a 2-tensor Q™ as follows:

QUIIf) = 0af05f — ”)((9(”))_1)""5af3pf~
An easy computation shows that
(g™ DI QURIS) = (95 Dyen ).
where D(™ is the Levi-Civita connection associated to g. Defining

@) 7" = DM (8,)5 + DS (r)a,

196+ s +

we have by Stoke’s theorem that for every ¢ € (0,77,

/ QM1 at’N(n) (n))(ﬂx)\/mdx
=/ e™ 7100 5755 e67)(0,2) /| det g d i)
t L
-/ ) (@O0 1)+ 5@ () | det gzt

where g™ is as in (4.1). We now apply (8.84) to ¢("*1) and its derivatives. The key point here is to note
that by (8.10), (8.13) and Proposition 8.3, the metric components have appropriate smallness in the C°
norm on B(0,2R), and therefore on the compact set B(0,2R), for e sufficiently small,

(1—Ce) <y/|detg™| < (14 Ce), (1—Ce)</|detg™|<(1+ Ce).

On the other hand, since |@) (7("))*8| is controlled by the C'!' norm of the metric, by the estimates in (8.10),
(8.11), (8.13), (8.14) and (8.15), |9 (x(M)*8| < C(Ay, C;) on B(0,2R). Therefore,

sup |0 V| 2(1) < 2[99V 12(0) + C(Ag, C)T sup [0+ 2 (t) < 3C;,
te[0,T] te[0,7]

after choosing 1" to be sufficiently small.

To obtain up to the H? estimates for ¢("t1) | however, we need to differentiate the equation with
respect to spatial derivatives and this leads to higher derivatives of the metric components. Nevertheless,
even though these higher derivative terms are no longer small (and are in general only bounded by constants
depending on Ay and C;), these terms only appear as inhomogeneous terms in the wave equation. Hence,
by choosing T sufficiently small, we obtain

sup |0 V| s (1) < 2097 s (0) + C(Ao, C)T sup 96"V s () < 3C:.

te[0,T] te[0,T]
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(™ p(nt D)

N<")) , notice that the equation for ¢("+1) is given in coordinates as

Finally, in order to control Oy (

follows:

6—27(“) N 6 (") n . 1 b (") (d’L’U B(n) n
TN e N © efV gt +de(]\7(")v¢("+l)) T)@é L") = 0. (8.85)

Therefore,

n n . pe (n) n .
9 eé )¢(n+1) :(ﬁ("))ia» eg )¢(n+1) dZU(N(")V¢( l-‘rl)) n e27 (—26(() )7(") + div ﬁ(")) (e(n)d)(n-H))
! N ' N N (1) e2v™ N 0 '

(8.86)

We directly bound each term on the RHS of (8.86) in H2. The key point in handling these terms is to notice
that upon expanding the derivatives, the only way that N () 8" or 5(") has three spatial derivatives (or
e((]")*y(") has two spatial derivatives) is when ¢("*1) has at most one derivative. In that case, we can bound
the first derivative of ¢(**1) in L by Proposition 8.3 independent of C;. In the case where we do not have
the highest derivative on the metric components, we can use (8.10), (8.13) and Proposition 8.3 to control

the metric components independent of C; and use (8.23) to estimate the scalar field. Let us consider a
typical term. By (8.10), (8.11), (8.13), (8.14), (8.23) and Proposition 8.3,

Hﬂ(n)v( 1 (n)¢n+1)>H

SlIB )HWO24(B o,r)) (1 + |N¢§;L;mp\ + N )HWO24(B o,r)) (1 + ||5(")||W2 (B(0,R) )||3¢(n+1)”H3
+ (IN™ g3 s0,r)) + 18 3 (50,8)) (L + 18 || oo (B0, R)) 198 ]| Lo
<eAoC;i +e*C; < eC(Ap)C; < Ci.
The other terms can be estimated in a similar manner. g

Lemma 8.13. Let h satisfy the following transport equation with an inhomogeneous term f for some A:
Lxl)h = f. (8.87)
Then, h obeys the estimate

T
sup / (1+ [z|*)7h*dx < C(0) </ (1+ |2|*)7h? dx +/ / (1+ xf?)7* 0 12 dﬂﬁdt) ;
t€[0,T] J 3¢ Yo 0 PN

where C(o) is a constant depending on o, in addition to Cei, 0 and R.

Proof. Decompose LX”) with respect to {9, 9;}, i.e.,

L = Myto, + (LYo, (8.88)
(8.87) can be written as
(LYY O+ (L) 0k = . (8.89)

(n 1)

Let w(|z]) = (1+|x|?)?. Multiplying (8.89) by (e N®=D)wh and integrating in spacetime with respect

to dx dt, we obtain
1/t not _
5 / / (we™ N0 (LRO) 0h? + (L)) 0uh?) ) davat
0 t,
t
:// FuwE " NOD)hdz at.
0 Jx,

di / w(L{) (e N R d

This yields

l\DM—l N —

n—1 n 1 n)\1 n=1 -
< )N(n,l)(LE\))t) wh? + 5/ 0; ((Lg))lwe'y( N 1)) h2 dx
¢

=),
/ H(=1)

NT=Dp dy.
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The conclusion follows from the Cauchy—Schwarz inequality, the bounds (8.10), (8.11), (8.15), Proposi-
tion 8.4 (and Proposition A.3), and the observations that "V N < (1 + |z?)7 (by (7.3), (8.10),
(8.15), Proposition 8.3) and (L{")!(e?" ™" N(=1) > 1 (by (8.19)).

O

Lemma 8.14. Suppose h and f satisfy (8.87). Then, for £ = 2,3, t € [0,T], and for any o € (—1,0), we
have

£
10

T
HhIIHg(t)SHhIIHg(O)JrC(Ao,Cz)/O £ llpre,, (&)t

Proof. The £ = 3 case is harder, so we only consider that case. Let a be a spatial multi-index with |a| < 3.
Clearly, we have

(L) 0,(Vh) = Vo f = [V2, (L) 0, (8.90)

To compute the commutator, we consider separately?” the cases p = t and p = i. Denoting by LXL) the

spatial part of LE:), we have

v e s Y vy (les{))

laq |+ |z |+]os|<|a|—1

(Vo2 LY ||V V|

(8.91)
> [ (lee®))| 19
[a|+|az|<|a|-1
and _
[V“,(L%))iai]h‘g S vnvI)||verval. (8.92)

ot |+oz|=]al-1
Here, in (8.91), we have used the equation (8.89).
Hence, applying Lemma 8.13 to V*h (instead of h) with o + |a| in place of o in the weight function w,
using (8.90), (8.91) and (8.92), and summing over all || < 3, we obtain

t t
1Al (8) Sl (0) + / 1flles, . dt’ + / S v (o)) [Ivee s (') dt
0 e O les [+l @2 |=lal -1 12
ot 5 +lal
=:1
t -
+ / > (Vv L || v vh) t') dt’
O Jllaxl+laz|=lal-1 P
=11
t -
+ / 3 vV (log(L)" ) [IV22 LY || 7 (¢') dt’ .
O |1l +las|+las|=lal-1 L2
ot 15+l
=:1II
(8.93)

To proceed, we note that using the estimate (8.21), together with the bounds for N®=1 and (=1 in
(8.11) and (8.15), and Lemma A.1, Propositions A.3 and A.6, we have

|v (oa@y)||,,  +IVEL

5111
M 41 8+t

< C(Ao, C). (8.94)

Here, note in particular there are terms growing as |z| — oo in N®=1 and ("= 50 that we need to use
0" instead of 6" in the weights. Therefore, using Proposition A.4,
1SV (gL ) iz, I, . S CCA0,COllf s, . -
10 10

S 41

20This is because in the H2 norm in the statement of the lemma, we only allow spatial derivatives.
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Similarly, for IT and III, we can use (8.94) and Proposition A.4 to get

1S IVE 3, Bl S C(Ao, Co) [l
and
111 5|9 (g8 | @+ IVE N, bl S Co, Gl

M4

Notice here that in I11, there is a potentially growing factor of LXL)7 but the weights are strong enough to
handle it, as long as ¢ is sufficiently small. Plugging in the estimates for I, IT and I into (8.93), we thus
obtain

T
sup |[|A]lms(t) S HhHHg(O)“‘C(AOaCi)/ (fIIHs + 1 All sz (¢ )) (t) dt.
te[0,7) 0
The conclusion therefore follows from Gronwall’s inequality. O

Proposition 8.15 (Estimates for LXLH)). For n > 2, the following estimates hold:

Hewn) (LX) + ! m, HN Wt (LT - I‘ < Co, (8.95)
5//
He2w<n> (LXLH)) e e + HN n) 7" (L(n+l) < 4,0, (8.96)
) n n n
10 ( 2 ([t Dyi ) iz, + 10 (N( ) (L;H ) ) ||H2,,, < AoC. (8.97)

(n+1)

Proof. For this proof, it is convenient to write L, in the basis {e(()"), 0;}. For this we use the notation

LXH_I) _ (Lxl-‘rl))oeg") + (LXL-‘rl))iai.
One checks that

(LR = (L), () = (L) = () ) (5.98)

We similarly decompose LXL) with respect to {egn), 0;} (instead of {eénil), 0;}) and define LXL) analogously.

7

Proof of (8.95) and (8.96). We first estimate the (L (n+1)) component, which satisfies

(L) (L) = —(F)0, (L5 (LG, (8.99)

where e = 0; and (F(”)) is defined by Dgz)eﬁ (F(”)) s€us Which are given by (B.3).

According to (B.3) (apphed to g(™), and the estimates in (8.10), (8.11), (8. 13) (8.14), (8.15) and
Proposition 8.4, the worst component (from the point of view of the weights) of (I'( ))gﬁ is (T()9, =
e(()n) log N(™); and all the remaining components have H3, norm bounded above by < C(A;)C;. (To see this,
simply notice that if there is a spatial (as opposed to e(()n)) derivatives of the metric components have better
spatial decay, and that epy also has better spatial decay since « is independent of ¢.)

Now, in (8.99), the worst component (I'™)J, indeed appears on the RHS. Nevertheless, if we consider

the equation instead for

(LY)elm (e7 N™(L (Hl))O)

- - (8.100)
=7 N x (RHS of (8.99)) + (LY) (e (2 N0 ) ) (LG9,

we cancel off the term (eg log N("))(L("))O(L(nﬂ))O (and the other terms that are introduced also take the

form of (L n)) (L(RH))ﬂ multiplied by an Hj, function.)
Next, since ¢ 4 is a constant vector, we can rewrite (8.100) as

(Lf@)aegy) (eW(H)N(”)( Lo g |>:(RHS of (8.100)). (8.101)
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On the other hand, on the RHS we can write the components of LXL) as

)

()i n)yi —2y (=) —5; —o~(n=1) —; n)\i/ 7 (n
(L) = (LY eV G = e TR 4 (M) L)y

(n—1) _~(n—1)
VIER] + (N TR

(LX) = (@) = (W) le &l

LRy

and write the components of (L as

1)\ 1)\i _9~(n) ; _9~(n) ;
(LXlJr ))z _ (LXLJr ))z +e 2y CT{Z e az’

(LYY = (L0 — (N) e 8] + (V)7L 3K ;

and use the triangle inequality. Therefore, we conclude using the estimates for (T’ (”)) ap e mentioned above
and (8.11), (8.14), (8.15), (8.21) that for £ = 2,3, the RHS of (8.101) is bounded above in the H5,,+% norm
as follows:

|(RHS of (8.101))]| e

5//+T0

(n—1) n)\i i — (n—1) n
SO(ALC) (14 @) + &, + 1IN (L)~ (R,
(L) s, )

(141 DY 4 g, + IV T = R,

N(n=1) "
* ¢ (8.102)

(n) /_n\/ . . (n) /_n\_/
SC(41,C) (1+||e2” (LYY + @Rl ge,, + [N (L) — cA|||H§,,).

Here, we used the weighted space HY, e instead of Hj, to handle the logarithmically diverging terms

(n=1) g (n)
2y ,e 27 ete.

By Lemma 8.14, (7.14), (8.101) and (8.102), we have, for £ = 2,3,

sup e (0)

t€[0,T]

N )(L(n+1 |H

(n)( (n+1)) |—>|’

5//

+ C(A1,C;)T sup <1 + e 2w7 (Lxlﬂ)) CI”HHg,, + HN(n)ew(" (LXL-&-I))O _ |a>|||H§”> (t).
t€[0,T)
(8.103)

An entirely analogous argument for the equation of 2"’ (LXI—H))" +X! instead of &7 N(™ (L(”+1)) —|eA]|
implies that for £ = 2, 3,

" (L) 4+ R 2L & ()

QRS
H§II Hg//

sup
t€[0,T]

T i Bt
+ C(A1,C;)T sup <1+||627 (Lgﬂ))ura{ ||H§,/ +\|N(n>ev (Lfﬁl))o—laillng,,) (t).

t€[0,T
(8.104)
Combining (8.103) and (8.104) and choosing T sufficiently small give that for £ = 2,3,
sup < e,),(n)]\[(n) (LXLJrl))O _ |C—A>H (t) + eQV(n) (LXLJrl))z + (Z)z (ﬂ)
e 2 o (8.105)
e N R () + | (LX) | ().
Hf

s

To obtain (8.95) from (8.105), we use (7.14) to control the data term and note that

o by (8.98), (LY)0 = (LY
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e and that by (8.98), (7.3) (for a), (8.13) (for 3™), (8.15) (for (™) and (8.105),

) (k)i "), (n ), o(m)vig (1
e (L) = e L) [ (BN LT g, S Clan

laz, I

Finally, to obtain (8.96) from (8.105), we argue similarly except that
e we use Corollary 7.6 instead of (7.14) to estimate the initial data term;
e and that we need to use (8.14) instead of (8.13) to control 3™ in H},.

Note that these result in the estimate being linear in AqC;.
Proof of (8 97). To obtain (8.97), we directly use the equation (8.101) and the corresponding equation

for ¢27" (LE:H)) . For simplicity, let us just consider the bound for J; (eV(n)N(”)(LXLH))O). For this, we

express LXL) in terms of LXL) and write (8.101) as follows:

—_— (n)yi
9, (eww () (L (D)0 ) _ _(La)) o, <6¢")N( LYY — |—>|) (RHS ofn()S.IOO)). (8.106)
(La")' (La")'

The first term on the RHS of (8.106) can be estimated using (8.96) (which we just proved), (8.19), (8.10),
Proposition 8.3, Lemma A.1 and Proposition A.4 as follows: (Recall here that the constant in < can depend
on Ceir)

(m)\i

L " N

ELQ);&- (e N(n)(L( H)) |CA|>
A

2
H,;///

TONCHLLY) o |‘

o

2
Hg//
gA()CZ'.

Finally, for the second term on the RHS of (8.106), we need to get an estimate better than (8.102) (in
terms of dependence on the constants), which is possible since we now only have up to 2 derivatives.

The key point is that the appropriately-weighted-H? norms for (™, (%), N(n n, ™ (L("H))‘ +cxt and

N er™ (L(nJrl )t — |CA| are bounded independently of C;, Ay, Ay or As. More prec1sely, by Lemma 7.1,
(8.10), (8.13), (8.19), (8.21), Proposition 8.3, (8.95) (which we just proved) and Proposition A.4, we have

) Ar(n n 2 (n) n)\i i
NO@PY - @R, o+ e wy + &
(‘Il

(RHS of (8.100))

(LXI))t H?///
~ 2
S (14 ING i+ 18 2, + N g2 + 15 2
(L) = 1 a2, )

(g//)

Note that here on the LHS we use H3,, instead of HZ, to compensate for the factors growing as |z| — oo.

x (14 e Q) + c—Aiian,, + [N

(1+H 2Ly 4+ &

n (n) +1
o

Combining the above estimates and plugging into (8.106) give (8.97) for o (eW(n)N(") (L%H))O). The

other term can be dealt with similarly.

Proposition 8.16 (Lower bound for N ™ (LXLH))]‘/). Forn > 2, the following lower bound holds:
(n) —
( ) 7Oezk

Ny (Lxﬂrl))t

min inf
A zcR2

Proof. By (7.15), at t = 0, we have

mlnxlélﬂg ‘N(”) " (L%H))t‘ (0,2) > Cezi

The desired estimate therefore follows from the bound for 0, (N(”)e“y(n) (LEZZH))t) in Proposition 8.15 to-
gether with Proposition A.3, after choosing T' to be sufficiently small. O
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In our next lemma, we show that FXLH) is supported in an appropriate compact set.

Lemma 8.17 (Support of F("+1)) Choosing Cs (from (8.11)) larger if necessary, fore, T sufficiently small

(depending on R) and n > 2, FXL Y is supported in the set {(t,x) € [0,T] x R? : C5(1 + R*)t — |z| > —R}.

In particular, choosing T smaller if necessary, the support supp(FXLH)) c{(t,z) €[0,T] x R?: |z| < 2R}.

Proof. By the transport equation (8.8) for F' Xﬂ_l), it suffices to show that any integral curve LXL) which at

t=0isin {(z € R?: |z| < R} remains in the set {(¢,z) € [0,T] x R? : Cs(1+ R¥)t — |z| > —R} for all time.
To see this, let us fix such an integral curve v. By (8.21), (and (7.3), (8.10) and Proposition 8.3,)

6" L(n) ¢ L(n) J n— CA £ A
% S 6—27( 1) (N(n—l))Z + 706”“ 5 (1 + |.’L"2)T0 + 705//+1
(La )"(Ly)* (L+[z[?) = (L+[z[*) =
We parametrize 7 by its t-value, and denote by r(t) the |z| value of v(¢). The above inequality implies that

- ' r(7))? Ao T
(t)§R+C/0 ((1+(())) +(1+(r(7))2)“”;1>d

A simple continuity argument shows that for Cy, e, T' appropriately chosen,
r(t) < R+ Cs(1 + R,

which is to be shown. O

=

Proposition 8.18 (Estimates for F( "+ and X(n+ )) Forn > 2, the following estimates hold:

2] s e ori ], sctanc.
n+1 n+1
A g L M=

5’+1

Proof. We now apply Lemma 8.14 to control FXLH) and XXH ) satisfying the equations (8.8) and (8.9). B

the compact support of Fia that we established in Lemma 8.17, we can put in any weights in the bounds
for terms in which Fp appears.
Estimate for FXL+1). By Lemma 8.14, Proposition A.4, (8.22) and (8.24), we have
n4+1 n+1 n n
2 A s () S IER s 0) + C Ao, COTIER s Ol Ly (8) 5 G
€10,

after choosing 7" sufficiently small.
(L9, P

Estimate for 0,F, FUY | We use (8.8) to write O, Fy FUY in terms of BT and (Lﬁil))f XL)FXL'H).
In other words,
(n)yig gp(n+1)
HatF(n+1 || , < (LA ) a7/1;1A X)an+1)
@D e ERy o
The first term is easily seen to obey
( A)(;)A SC(AO)Ci
(LA )t H?2

using (8.19), (8.20) and the estimate for HFXLH)HH:« that we have just established above, and recalling our
convention that C' can depend on Cl;p.
For the second term, we use the fact that supp(F(nH)) C B(0,2R) and use?! Proposition A.5 together

with (8.19), (8.20), (8.22) and the estimate for HF (n+1) ||H3 that we have just established above to obtain

L) g

A
(LY .
L (n+1) L (n+1)
F F < C(Ap)C;.
0
S (n)g XA ‘ H (n)yg XA H A Hc S C(A0)Ci
(LA ) C9(0,3R) (LA ) HZ2(0,3R)

21\We refer the reader to Footnote 15 on p-19 regrading the use of Proposition A.5 when one of the factors is compactly
supported.
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Here, we again recall that C can depend on Ce;r, and hence also C,.
Combining the above estimates, we obtain

10, FS | e < C(Ao)C

Estimate for XXLH) in H?. For the XXL) estimate, notice that the only inhomogeneous term in (8.9)

that is not compactly supported in the ()(XL))2 term, which can be controlled using Proposition A.4 by

IOl S I8 N3 S C(A0)CE.

The remaining terms, which can compactly supported, as easier to handle and can be treated in a similar
manner as in the proof of Proposition 8.5, namely, we have

2((LS)70,0™)2 + 3" F3 (gl (LY)MLEN)?|| < eC(An)Cs.

B Hg’
Therefore, by Lemma 8.14, we have
sup X% ez () < IR 1142 (0) + T(C(Ag)C? + eC(A0)Cy) < Ci (8.107)

t€[0,T

after choosing 7" to be sufficiently small.
Estimate for XX’H) in C,,. We first estimate 3tX,(£+1) in a similar manner as we bound 8,5Ff,‘"+1)

. . (n+1) (LY ax T ()2 RHS of (8.9)
above, namely, we use the equation (8.9) to write J;x,, '~ in terms of ~—2 (wa)f‘ Ly and )

Using the bounds for the terms in (8.9) we proved above and the estimate (8.107) above, we have

10X 2, S C(C).

By Proposition A.3, this implies that ||8txxl+1) ||C§/+1 < C(C;), which, together with (7.18), imply

<20,

(n+1)
XS lles,

We conclude this subsection by noting that the combination of the propositions proved in this subsection
show that we can recover all the estimates in (8.10)—(8.24) (in fact with better constants for most of the
estimates) when replacing (n) by (n+ 1). As a consequence, the estimates in (8.10)—(8.24) hold for all n.

8.3. Convergence of the sequence and solution to the reduced system. Next, we show that the
sequence we constructed in fact converges to a limit (in a larger functional space).
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Define the following distances:
di™ =[O =3 g 4 [0 FTY = )2, + [ HOTD = HO gy 4 (|0 — 70

841
(n) ’I’L+1 (”*1) n (n) ’I’L+1 n— (n—1) n
_|_Z|| 2y )) Y L( ) HH;,, +Z”N )) — N(r=1Dy (Lfql )t”H;,,

(n n n+1 n n+1 n
+[o(6 D — )] +ZHF IR ||H1+Z||x Xy (8.108)
ds =|N{mth) — W,L,,|+||N<““ — N gz + (8% = 8| 2, (8.109)

n (n) n 1 (n—1) n)\i
7 = 10 AL = g,

(n—1)

n (n) n n— n
+Z||at (N ™ (L) N0 Ly,

s

eén)d)(nﬂ) e(g"_l)¢(n)

1 7
10— — e + 2o 19 ESTY = FR) e, (8.110)
A
di o=l Y HOTD — e HO | (8.111)
(n) ~(n+1) (n=1)~(n)

n '7 € n
d§” =00l = e, 10 =T ), (8.112)
dg® =0y (NS, = NS )|+ [0u(NFD — N[+ [|ef B0 — eV B0 s (8.113)

Since we have already obtained uniform bound on the iterates, from now on we need not keep track of
the constants Ay, A1, As. They will henceforth be simply absorbed into constants depending Ce;x, k, 6.
The following proposition gives estimates for the distances dgn). The estimates are easier than those
required for uniform boundedness in the previous subsection, since
e we have already closed the nonlinear bootstrap argument,
e and in the estimates for dl(»”), we only need bounds for lower order of derivatives.
The estimate we prove nevertheless crucially relies on the structure of the equations so that the distances
can be controlled in a step-by-step manner such that at each step the RHS either consists terms bounded in
the previous step or has appropriate smallness constant. It is exactly the same kind of structure that allowed
us to prove the uniform boundedness statement in the previous subsection. We will only briefly indicate
how these estimates are proven, but will refer the reader to the corresponding propositions in the previous
subsection, where the analogous estimates for the corresponding quantities (without taking difference) were
proven.

Proposition 8.19. For n > 3, the following inequalities hold for some fized C, > 1 depending on Ce, 6,
R:

" <CUCHT(@" ™) +dy" ™ dy™) 4 dy" ™ Y d Y a0 ), (8114)
dyV <Cu(d"V +d"P) + Cue(dy ™V + dS ), (8.115)
d§) <Cu (@) + a0+ dS Y+ d ), (8.116)
di” <C.Ci(dy" ) +dg' ), (8.117)
AV <C.d§ Y + i@ + Y P a4+, (8.118)
dg” <C.Cia" ™V 4 ™V 4 " 4 dy Y 4 V) 4 Cued ™ g Y). (8.119)

Proof. The basic strategy is to estimate these differences in a way similar to Section 8.2. In particular, we
use the structure of the equations in a similar manner.

To control dgn) is the easiest. All of these terms are controlled using transport or wave type equations with

0 initial data. Therefore, on the RHS we need to use all of dgn), e dén) and dgnﬂ), déan), the estimate comes

with a small constant T associated with a time integral (cf. estimates for the analogous quantities without

taking differences in Prop051t10ns 8.8 (for ¥+ —5() and 9, (7" +1) —5(M)), 8.10 (H™+Y — H() 8.12 (for

D6 — 7)), .15 (o 31 (LG D) — (LY nd NI (LY - N L0,
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8.18 (for FXH'D — FXL) and XXLH) — XXL))). For 7(*t1) — (") we estimate it directly by integrating
8t(7("+1) — T(")), which can be controlled in terms of dgnil), dénil), déniz), dénil) and dénfl).

To control dé”), we consider the difference between the (n+1)-st iterates of (8.1) and (8.2) and their n-th
iterates and perform elliptic estimates for the differences of N(*+1 — N(®) and g(»+1) — () Arguing as in

Propositions 8.5 and 8.6, for most terms there is a smallness constant € in the coefficient. The only exception
arise when controlling the difference ("1 — (") on the right hand side there is a term H™tY — H(™) with
coefficients depending on N ™ N=1)y "D\ (n=2) gy
by a constant independent of C;. To control d(zn), we consider the difference between the (n + 1)-st iterates
of (8.1) and (8.2) and their n-th iterates and perform elliptic estimates for the differences of N1 — N ()
and (1) — 3(")  Arguing as in Propositions 8.5 and 8.6, for most terms there is a smallness constant e
in the coefficient. The only exception arise when controlling the difference S+ — 3(") on the right hand
side there is a term H(tY — H(™ with coefficients depending on N(")e’y(")7 N(”_l)eV(WI), N("_Q)e'y(”ﬁ),
which while not small, can be controlled by a constant independent of C;.

To control dén), we control the differences for appropriates n’s of RHSs of (8.6), (8.7) and (8.8). It is easy
) =1 4(n—1)
9 1 y L9

, which while not small, can be controlled

to check that to control this we only need to control the difference of terms appearing in dg"
and dén_Q), i.e., we do need to estimate the difference of the top 0; derivative of any quantity. Moreover,
since we do not need to take any derivatives of the RHS of these equations, we check using the estimates
(8.10)-(8.24) and Proposition 8.3 that the constant we have in the estimate can be chosen independent of

C; (cf. Proposition 8.12, 8.15, 8.18).
To control dfln), we bound the difference e(()nH)H (n+1) _ e(()n)H (") and its spatial derivative by controlling

the appropriate difference of of the RHS (8.5). This is similar to the estimates for dg"), except that since we

now need to take one spatial derivative, the constant may depend (linearly) on C; (cf. Proposition 8.10).
eén);};(n«#l) B eg)nfl)ﬁ(n)
NGO NG—D

estimate for 9;(7("*1) — 7(") then follows easily using (8.4). There are two main observations. First, we

note that the RHS does not depend on dén_l), this follows easily from inspecting the RHS of (8.3). Second,
)

To control dé"), we first estimate 0y ( )by taking appropriate difference of (8.3). The

we note that when dghl appears on the RHS, the constant is independent of C;. The relevant term here

NN Loy L n— e _ .
is € e(() D (e > div(B™) ). The key point is that e(() 1)5(”) — e(() 2)5(” D must be multiplied by

2N (n) N(n—1)

at most two derivatives of (), 4(»=1) N®) N®=1) and N(»=2), Hence, by (8.10), Proposition 8.3, these
terms indeed can be bounded independent of C;. The other terms can be controlled more roughly using the
estimate in the previous section since we will allow the coefficient to depend on C;.

To control dén), we take J; derivatives of (8.1) and (8.2), take the appropriate difference, and use elliptic

estimates. The key is to observe that when dé"_l) and dén_l) appear on the RHS, then there is a smallness
constant Cye. To see this, one can argue in a similar manner as in Propositions 8.5 and 8.6. The remaining
terms can be controlled more roughly using the estimate in the previous section since we will allow the
coefficient to depend on Cj. O

Proposition 8.19, together with a simple induction argument, imply the following estimates (we omit the
easy proof):

Corollary 8.20. Assume that for n = 1,2, we have the bound
d™ < B, 4V <8c.B, dfY <2(3C, +16(C.)*)B, d" <2C;(C. +8(C.)?)B,
A < 4(1+ C)C; (20, +16(C.)? + 2C.(2C. + 16(C.)?) + 2C.Ci(C. + 8(C.)?)) B,

d{" < 4C; (2C. + 16(C.)% 4 20, (2C, + 16(C.)?) + 2C.Ci(C. +8(C,)?)) B,
for some B > 0, where C, is as in Proposition 8.19 and C; is as in Corollary 7.6. (Note that this can
always be achieved by taking B larger if necessary).
Then, if T and € are sufficiently small (where T may depend on C;, Ceir, 8, R, but € may only depend
on Ceir, 6, R, but not C;), for every n > 3, the following bounds hold:

d™ <2-(=39-1p (M <23 40, B, d(” <273 . (3C, + 16(C.)?)B,
d™ < 2-=3)y(C, +8(C,)?)B,
A < 2-("=32(1 4 C,)C; (20, + 16(C.)? + 2C.(3C. + 16(C.)%) + 2C.Ci(C. + 8(C.)?)) B,
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di" < 27 =320; (2C, +16(C.)% + 2C.(3C, + 16(C.)?) + 2C.C(C. + 8(C.)?)) B.

The precise expression above is of course unimportant, but it shows that in the function spaces as in
the definition of dgn), .. .,dén), the sequence we constructed is Cauchy and therefore convergent. Using
the regularity that we have obtained, it is easy to verify the limit indeed satisfies the system (6.1)-(6.7),
(6.9)-(6.10). Finally, define ua by (6.8). It is easy to verify that we have indeed constructed a solution
to (6.1)—(6.10). Moreover, one easily checks that the solution is unique: indeed, if there are two solutions,
we can control their difference using the distances (8.108)-(8.113), then an argument as in Proposition 8.19
and Corollary 8.20 shows that these two solutions coincide. We summarize this discussion in the following
theorem:

Theorem 8.21. Given the initial conditions in Section 7, there exists a unique solution

(N767T7H77a¢aLAaFA7XA)

to the reduced system (6.1)—(6.10) such that

e v and N admit the decompositions
v = —ax(|z)log(|z[) +7, N = 1+Nasympx(|z[)log(|z]) + N,
where o > 0 is a constant, Nysymp(t) > 0 is a function of t alone and

~ 4 607}7 3
’YGH(;/, 7€H5/+1,

€0y N v
~ Qi € H}.,, Ne€Hj, N eH;,

with estimates depending only on C;, Ceir, 6 and R.
o Forall A, ¢, 0,0, Fa are supported in*?

J*({t =0} N B(0, R))

and satisfy

€0

N
with estimates depending only on C;, Ceir, 6 and R.

o (B8,7,H,La,xa) are in the following spaces (for all A):

Vo, 0y € H, 0, € H?, Fa € H®, 0,Fa € H?,

B, e € Hy, TEH ., \, Ore€H} . H eHeH}, xacHj;,

eV Ly + X', NeVLYy — |ex| € HY,,  0,(e*'LYy), 8,(Ne L) € H2.,

with estimates depending only on C;, Ceir, 6 and R.
e NeVLly is bounded below by

1
rr}si‘nirmlf |INe Ll |(x) > 50;%
o The smallness conditions in (8.10), (8.13) and Proposition 8.3 hold (without the (n)).

Before we end this subsection, it will be convenient to note that according to Remark 6.3, for ua defined
as above, we have

Proposition 8.22. Given a solution to (6.1)—(6.10), VA, ua satisfies
L = (g7 Dsua.  (67)* Dauadiua = 0.
22Here7 J1 denotes the causal future with respect to the metric g. Strictly speaking, we have only proved that ¢, 0s¢, Fa

are supported in {(t,z) € [0,T] x R? : Cs(1 + R®)t — |z| > —R}, but a posteriori, it is easy to check that the supports indeed
lie in J*({t = 0} N B(0, R)).
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9. LOCAL WELL-POSEDNESS FOR THE SYSTEM (3.2)

In the previous section, we have shown that a unique local solution to the reduced system (6.1)—(6.10)
exists (cf. Theorem 8.21). We now show that given initial data satisfying the constraint equations (7.1)
and (7.2), as well as the initial conditions in Section 7, this solution is indeed a solution to the system (3.2).
For this purpose, it will be notationally convenient to denote®® as in Section B.3 that T}, = 20,¢0,¢ —
guu(g_l)aﬁaa(baﬂ(b + ZA FiauuAayuA-

Given a solution to (6.1)—(6.10), we have the geometric quantities v, 5, N, H and 7. Let K;; be defined
according to (4.2) with 7, H and v as given. At this point, we do not yet know that (1) K;; is the second
fundamental form and that (2) H;; is the traceless part of K;;. On the other hand, by (6.1), we know that
T is the mean curvature of the constant-¢ hypersurfaces.

We compute using (6.1) and (6.4) to get that

1 1 1 1
Kiji==e® 76 + Hij = (5e2'1 — ——e27(0%B1))dij + =—=>(8:8; + 9:3;)
2 2 2N 2N (9.1)
1 1 ’
= — 760(627)5”‘ + 762’7(81‘,6}‘ + 8lﬁj)

2N 2N
Hence, by (B.4), K;; is indeed the second fundamental form of the constant-t hypersurfaces. Moreover,
since we already know that 7 is the mean curvature, it follows from (4.2) that H;; is indeed the traceless
part (with respect to g) of Kj;.

Therefore, it remains to show that 7 = 0, Ojua = xa, and that the first equation in (3.2) is satisfied. Let
us note that the first equation can be rephrased as G, = T},,,, where G, := R, — %g,“,R is the Einstein
tensor.

We first need some preliminary calculations for Goo and Gj;.

Proposition 9.1. Given a solution to the reduced system (6.1)—(6.10), the Einstein tensor (in the basis
{eo, 0;}) is given by

N 1 eV (eor
Goo = ?(607') + Too, Gij = Tij =+ 5%617 (92)
Moreover, T satisfies the following propagation equation:
D'T,, = Fx(Ogua — xa)(Osua). (9.3)

A

Proof. First note that by Proposition 8.22, the computations in (B.3) are applicable.
Proof of first identity in (9.2). By (6.2), (B.10) and (B.19), we have

69 Rij = 8(Ty; — gijtryT). (9.4)
By (6.3), (B.9) and (B.17), we obtain
Roo = N(eoT) + Too — gootryT" (9.5)
(9.4) and (9.5) (and (4.5)) together give

R = —N"2(Neot + Too — gootryT) + e 276" (Ty; — gijtr,T) = 7%607 — 2tr, T, (9.6)
which then implies (using (9.5) again)
Goo = geoT + Tho- (9.7)
Proof of second identity in (9.2). By (6.5), (B.7), (B.10), (B.18), (B.19), (9.4) and (9.6), we obtain
1eXVeyr

Rij =Ti; — gijtr, T, Gij =Ty + dij. (9.8)

2 N
Proof of (9.3). Finally, to derive (9.3), we use (6.6), (6.8), (6.9), (6.10) and Proposition 8.22 to obtain
DMT,,, =20,6(0,8) + > 2Fa(0aFa)(g ") (pua)(@yua) + > FA(Ogua) (D ua)
. .2 , A (9.9)
+ 2 FR(67) @aua) Dp(@sua) = 37 FR(Ogua — xa)@vua).
A A
O

23Note that this is different from the expression for (4)Tm/~
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By Proposition 9.1, in order to show that a solution to (6.1)—(6.10) is indeed a solution to (3.2), it remains
to show that

7=0, Ugua =xa, Goi="Toi. (9.10)
These will be shown simultaneously. We first derive the main equations used to prove (9.10).

Proposition 9.2. The following coupled system hold for T, (Go; — To; — $ N(8;7)) and (Ogua —xa) (where
we again use the basis {eg, 0;}):

B %@t _ 8401) (Goi — Tos) + 2 e LGN (eor)

- 2 N 2 N2
i (O 5 (St + 251005+ 20005 ) (Gos — Ty (9.11)

=— ZF.?&(DQUA —xA)(0iua),
A

1
20~ 80 (57) = e 1990:(Go ~ To)
—2v§i o;N )
:%()(GOJ' — To;) — (2e07 — 8;8Y) % +2_ FA(O5ua = xa)(coua);
A

(9.12)

L40,(0gua — xa) = —(Ogua — xa)(Ogua + xa) — N(eor)(La)*(La)® — 2(Go; — To:)(La)*(La)’,

(9.13)
where (f/;)“ denotes the components of La with respect to the basis {eg,d;}.
Proof. Proof of (9.11). By (B.3),
Ty —(a, — g oy o) ek .
DO(GO’L TO’L) —(at ﬁ 8k:)(GOz TOZ) N (GO’L TO’L) € o NakN(sz 117,])
;N 1 - ‘ 4
= = (Goo = Too) — 5 (2(e07)d] + (3:37) — 08" (9e*)) (Gos — Toy) (0.14)
=(0¢ — B*0k)(Goi — Toi) — (9;N)(eoT)
(egN)§¥ 1 ;
= (1R 4 (20l + @:5) - 5007 @6") ) (G — T
where in the last line we have used (9.2). On the other hand, by (B.3), we have
(971" Dj(Gri — Tii)
—2v ¢jk 1627(607') —2v sjk 5l 0 m
=e 160 | G Ok | —e7d (630K + 61,057 — 010" OmY)(Gri — Tui)
&7k ¢ ¢
— oz (2(e07)d5% — 0ked; B” — 8500k5°) (Goi — Tos)
— e 6% (5507 + 5?&"7 —0;0""0mY)(Gre — The) — Wtsjk( (e07)dij — 0300;8" — 6,00;8°)(Gox — Tor)
10ieor 1 (9;N)(eoT) | (9i7)(eoT) 3(eo7) ¢
R +728‘5ﬂ )(Goi = Tou)
1
~5N? (—(9;8°)67%6;0 — 55k)) Gor — Tor) — e~ 270;y0" (Gre — The)
_10;e07 1(8]\[)(607' ’ N
2N 2 N 2N2 (=607 (e0v) + 207065° + (9,808 8ie + (9:8")) (Gox — Tow), (9.15)

where in the last line we have used (9.2). By (9.3) and the Bianchi equation D*G,,; = 0, we have

(=72 x(9.14))+(9.15)= = 3" 5 Fa(Ogua — xa)(diua).



EINSTEIN EQUATIONS UNDER POLARIZED U(1) SYMMETRY IN AN ELLIPTIC GAUGE 45

The LHS can be expanded, using the expressions in (9.14) and (9.15), as

%(& — BEO)(Goi — Toi) + %(311\7)(607')

+ % (WNW + % (2(607)6{ +(0:p7) — 5ik515(azﬂ’f))) (Goj — To)

gl LONNCOT) | L (6ot () + 20508+ (9,855 + (0,8Y) (Gon — Toe)
== %(@ — B*0,)(Goi — Toi) + %&;;)T % (&N]\)[(;OT)
+ % (W]\]w” + % (‘4(607)55 +2650,8° + 2(5i5j))> (Goj — Toj)s

which proves (9.11).
Proof of (9.12). By (B.3) and (9.2), we have

(971 Do(Goo — Too)

1 . 1 2(eg N y
=- m(at — B'0:)(Goo — Too) + ~ ( (€0 )(Goo — To0)+2e 276 N(9;N)(Go; — TOj))

N N (9.16)
1 . eoN)(egT) 2e72769(0; N
= IN2 (8t - B 8:)(N(@07')) + ( 0 ]\)72 0 ) N( )(Goj — TOj)~
On the other hand, using (B.3) and (9.2), we also have
(971" Di(Gjo — Tjo)
=e~*69;(Gjo — Tjo) — WCS” (2(e0v)dij — (8:8%)55% — (0;8%)6ix) (Goo — Too)
— e 2167 (65 9y + 65 0iy — 60" 9ey) (Gro — Tro)
O;N 1 g
727 i 21ty N T2y 51 k k kL m 7.
=g (Gjo — Tjo) 5€ 0 (2(e07)87 — (0iB") = 6imd™(0eB™)) (Gjx — Tyi) 9.17)

= 2690;(G o — Tjo) — 4?\7( (e07) — 2(0:8")) (eoT)

. . ) . 2y
—e 215 a]év (Gjo — To) — 2e727 (2e0m)d* — 59(3,6%) — 5 (3i)) 0TV,

4 N
€T eV (81N)

N N

By (9.3) and the Bianchi equation D*G o = 0, we have

(9.16) + (9.17) ZFA (Ogua — xa)(eoua),

=e=2899,(Gj0 — Tjo) — (207 — 0if) —= (Gjo = Tjo)-

which implies (9.12).
Proof of (9.13). By Proposition 8.22, (La)* = —(g7*)*”d,ua. Computing as in Section C.2, we get
LR 9,(04ua) = —(O, Ua)? — Rpnra
== (Ogua)® = 2(La0,0)" = 3 FE(LA(0um))* = N(eor)(La)’(La)’ = 2(Goi — Tos) (La)*(La)'
B
where in the last line we have used (9.5) and (9.8). Subtracting (6.10) from this and using Proposition 8.22,
we then obtain (9.13). O

Proposition 9.3. Suppose the solution to (6.1)—(6.10) as constructed in Section 8.1 arises from initial

data with T [x,= 0, (Oyua — xa) [v,= 0 and that the constraint equations are initially satisfied, then the
solution satisfies

7=0, Ogua =xa, Goi—To; =0.
As a consequence, the solution to (6.1)—(6.10) is indeed a solution to (3.2).
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Proof. We will consider the equations (9.11), (9.12) and (9.13) as a linear system for the unknowns 7,
Ogua — xa and Go; — To;. We will use the Gronwall’s inequality to simultaneously show that they are zero.
In order to carry this out, we need to put them in an appropriately weighted L? space. To see that all the
weights are compatible, we will use the following two facts without further comments:

(1) According to the estimates proven in Section 8.1, not all derivatives of the metric components decay.
The only subtlety here are the logarithmic terms as |z| — oo in v and N. Nevertheless, one notes
that all the spatial derivatives of any metric components decay as |x| — oo, and 9y, 9;3° decay
as |z] — co. and J;log N is bounded as || — co. (The decay of 9,y follows from the fact that in
the asymptotic term ay(]z|)log(|x|), « is a constant; while the boundedness of d; log N follows from
the fact that Ngsymp(t) is a function of ¢ only and the log(|z|) terms cancel.) Moreover, for &gy
sufficiently small, for any term that decays, the decay rate is faster than any powers of log(|z|) and
is also faster than e27.

(2) Fa is compactly supported.

We begin the equations in Proposition 9.2. Consider the energy
,_ 1 2 2| 2 N N SN T -~ 2
E(t) = IN2 (6()7') + 2e |GOz TOZ| + |G01 TO’L 2N8’LT| + (DguA XA) (tv {II) dx.
R2
Contracting (9.11) with N2§%(Go; — To; — %N@ﬂ') and integrating by parts, we obtain

d 1 9

- |GOZ - T()i - 7N8i7| (t,l’) dx S CE(t) (918)
dt Jpe 2

for some constant C' > 0.

Next, we consider the estimates for 7, which is slightly more subtle. We compute using (9.11) and (9.12).
In the computation to follow, notice that whenever a derivative falls on the metric components N and -,
we obtain a term O(FE(t)). For this we have in particular used the decay and boundedness properties of the
derivatives of the metric components that we mentioned above. Also, we can freely commute eg and 9; and
the error terms are again O(E(t)). More precisely, we have

% R2 (2]172(607—)2 + 26727|G0i - T01'|2> (t,x)dx
:/Rz (;2(607')(60607') + 46> (Gio — Tio) (€0 (Gio — Tio))) (t,z)dz + O(E(t))
(9.12) /]Rz (26N i (eoT)(05(Gio — Tio)) + 42 (Gio — Tio)(eo(Gio — Tio))> (t,z)dz + O(E(t)) (9.19)
= /Rz < 26]:]27 (6081'7')(Gi0 - Tzo) + 46727(Gi0 —1T; )(eo(Gio — Tio))) (t7 gj) dx + O(E(t))
(9.11) /]R2 (—46_27(01‘0 — Ti0)(eo(Gio — Tio)) + 4e ™27 (Gio — Tio)(eo(Gio — Tzo))) (t,x) dz + O(E(t))
=0(E(t))
By (9.13), we get that for some C > 0
d 2
T /R (Bgua —xa)*(t,x) dz < CE(t). (9.20)

Combining (9.18), (9.19) and (9.20), we thus obtain

%E(t) < CE(1).

Finally, by assumptions, we have, initially, £(0) = 0. Therefore, by Gronwall’s inequality, we have for every
te€0,T]

E(t) =0

The conclusion follows immediately. (|
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10. IMPROVED REGULARITY

Finally, to conclude the proof of Theorem 5.4, it remains to prove the bounds stated in Theorem 5.4.
Notice that some of the estimates are already obtained in Theorem 8.21. The remaining task is therefore
to improve some of the estimates in Theorem 8.21, using now the fact that we know the solution also solves
the original (3.2) and we can therefore use the elliptic equations for the metric components. More precisely,
we have the following proposition:

Proposition 10.1. In the k = 3 case, taking €10, smaller if necessary, all the estimates stated in Theo-
rem 5.4 hold for the solution to (3.2) constructed in Theorem 8.21 and Proposition 9.3.
Proof. Estimates for ¢ and Fa. We first note that by Theorem 8.21, we already have all the desired
estimates for Vo, 0,4, 02¢, Fa and §;Fa. It thus remains to show the estimate for 9?Fa. It can be
easily seen that 02Fa € H' by differentiating the equation (6.9) by 0;, and then using the estimates in
Theorem 8.21 and the fact that F)a is compactly supported in B(0,2R).

Estimates for the metric components. Now that we know that we have a solution to (3.2), it follows
that the metric components satisfy the following elliptic equations:

A = 5570, (log(Ne ™)) (LB)ix — 467 (e0)(9;0) — 26 > Fi (eoua)(Diua) (10.1)
A

e27
= —|Vo]* - = ZFAWuA\? b ( (e0)? ZFA eoua) ) o \LB|2 (10.2)

AN = Q\Lﬁmeﬁ 2(e0$)” + Y _ Fi(eoua)’ (10.3)
= AN N €p - A CoUA . .

All the computations are given in Appendix B.2. More precisely, (10.1) follows from (B.8) and (B.5); (10.2)
follows from (B.16); (10.3) follows from Roo = Too —gootryT', which can be computed using (B.9) and (B.17).

For the metric components (without d; derivatives), we need N Y € Hg’ and f € H, g,. The estimate for
N is already proven in Theorem 8.21. To improve the estimates for 7 and (3, we use (10.1), (10.3), the
estimates in Theorem 8.21 and Corollary A.8 to obtain that ¥ € H?, 8 € Hj,. (Notice that N and ~ can
be put in a better weighted space compared to 5 since on the RHS of (10.2) and (10.3), the terms that are
not compactly supported is quadratic in LS and decay sufficiently fast. This is in contrast to, say, the term
§%§340;; (log(Ne=27)) (LB)i¢ on the RHS of (10.1).)

Estimates for ua and its 0, derivatives. First, by Proposition 8.22 and (C.1), we have

1 ; o 1
~a(coun), Ly =—0e"(dua) = B 15 (

Hence, derivatives of ua can be written in terms of components of Lo and their derivatives. Therefore,
by Theorem 8.21, we have the desired estimates for ua when there are at most two 0; derivatives on ua .
Moreover, the upper bound for (mina inf,cpe [Vua|(z)) ™" holds due to the lower bound for Ne LY in
Theorem 8.21.

Finally, to bound the third 9, derivatives for ua, i.e., the term 07 (¢€?N~tegua), we simply note that
since (¢71)*?0,ua0,ua = 0 (cf. Proposition 8.22),

Ly = €oUA )-

eoua = Ne 7 |Vual.

Hence, we can write e N~ legua in terms of Vua and apply®* the estimates above.

Estimates for the J; derivatives of the metric components. To estimate the J; derivatives of
the metric components, we again use (10.1), (10.2) and (10.3). Differentiating (10.1), (10.2), (10.3) by 0
and using the estimates in Theorem 8.21 as well as Corollary A.8, we have that for some Cj depending on
Ceik, Chigh, k, 6, R, the following estimates hold:

0 Nasympl + 10V 122 + 108z, + 107122 S &2 (10 Nasymol + 10N sy + 196513, + 1071y ) + Ci,

Hence, we have 9;N € HZ, and 8;83, &y € HZ,. Now, by using again the equations (10.1), (10.2), (10.3)
differentiated by 9;, we can apply Corollary A.8 to iteratively improve the regularity until we obtain
N, 07 € HE, 8,8¢€ H}.

24Notice here that by lower bound on |[Vua|, |[Vua| is bounded away from 0 and therefore has the same regularity properties
as Vua.
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Similarly, to estimate the 97 derivatives of the metric components, we differentiate (10.1), (10.2), (10.3) by
0?. Using the estimates in Theorem 8.21 , the estimates for the d; derivatives of the metric components (that
we just derived above), and also Corollary A.8, we have that for some Cj, depending on Ce;i, Chigh, k, 9, R,
the following estimates hold:

07 Nasyrupl + 10 N 1+ 107812, + 108172 < <2 (107 Nasyrmpl + 1928 sy + 107 8ll s, + 17311y ) + O,
This implies that 82]\7, 0?5 € HZ, and 078 € HZ,. As before, we now use the equations (10.1), (10.2), (10.3)
differentiated by 9? and apply Corollary A.8 to iteratively improve the regularity until we obtain
!N, 87 € HE, 0?8 e H}.
O

This concludes the proof of Theorem 5.4 when k = 3. As we mentioned earlier, in the case of larger k,
one can easily show that higher regularity is propagated, and we will omit the proof.

APPENDIX A. WEIGHTED SOBOLEV SPACES

For sake of completeness, we collect some results about weighted Sobolev spaces. For this we recall the
definitions in Definition 2.1. Unless otherwise stated, we will only be interested in weighted Sobolev spaces
on R2. Most of the results can be found in [2, Appendix I] (although we use slightly different notations).

The following is immediate from the definition.

Lemma A.1. Letm > 1, p € [1,00) and 6 € R. Then there exists C > 0 such that for j = 1,2,
05l < Cllulw,
Similarly, form >1,06 e R, j=1,2,
10ullogr < Cllullep-
We have an easy embedding result, which is a straightforward application of the Holder’s inequality:

1

Lemma A.2. If1 <p; <py <00 and ds — 61 > 2 (p% - p2), then we have the continuous embedding

Wt?zxpz C Wighpf
Next, we have Sobolev embedding theorems for weighted Sobolev spaces:

Proposition A.3. Let s,m € NU{0}, 1 < p < oo. The following holds:
e Suppose s > % and B < 4§+ %. Then, the following continuous embedding holds

wlim c cy.
o Suppose s < E Then, the following continuous embedding holds
Wi, C Wit oo
We will also need a product estimate.
Proposition A.4. Let s,s1,80 € NU {0}, p € [1,00], ,01,02 € R. Assume that s < min(sy,s2) and
s < 81+ 89— %. Let 6 < 61+ 62 + %, Then V(u,v) € W;ﬁp X 5?22,17!
luvlwe, < lulwzs Nollwss

We also state another product estimate, which concerns unweighted H?® spaces, and is especially conve-
nient when handling compactly supported functions. See [7, Appendix A] for a proof.

Proposition A.5. Let s € N. Then V(u,v) € (H* N L>®) x (H* N L>®),
lwvllze S lullasllvllzee + llullzes l[vllee-
The following simple lemma will be useful as well.
Lemma A.6. Let o« € R and g € LY, be such that
lg(@)] S (1+ |z*)".

Then the multiplication by g maps Hg to HE_QQ with operator norm bounded by sup,cg2 %.
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The next result, which is due to McOwen, concerns the invertibility of the Laplacian on weighted Sobolev
spaces.

Theorem A.7. (Theorem 0 in [6]) Let m € Z, m > 0, 1 < p < o0 and7%+m<5<m+lf%. The

Laplace operator A : Wg;m — Wiliy , is an injection with closed range
{f€W§12?p| /fsz VvGUﬁOHi},
where H; is the set of harmonic polynomials of degree i. Moreover, u obeys the estimate

lullyzen < CGm,p)| Al
where C(6,m,p) > 0 is a constant depending on §, m and p.
The following is a corollary of Theorem A.7:
Corollary A.8. Let —1<§ <0 and f € Hg+2. Then there exists a solution u of

Au=f

w=ge ([ 1) xtiaho(al) +.

where X is as in Definition 5.1, and v € H} is such that [vllzz < CO)fllao

s+2”

which can be written

APPENDIX B. COMPUTATIONS IN THE ELLIPTIC GAUGE

In this section, we collect some computations for the spacetime metric in the elliptic gauge defined in
Section 4. We will frequently use conventions defined in Section 4 without further comment.

B.1. Connection coefficients. We compute the connection coefficients for the metric (4.5) with respect
to the frame {eg, 1, es}, where eg = 9; — 5°0; and e; = 9;. Notice that

leo, ;] = [0y — B70;,0i) = (0:87)0;, [esrej] =0, glei,eq) =0.

Using this, we compute

g(Doeg, eo) = %60(9(60,60)) = *%(GONQ) = —N(eoN),

. 1
9(Doeo, €;) = —g(eo, Doe;) = —g(eo, Dieg) — (0;87)g(eo, e5) = —551'(9(60,60)) = NO;N,

1 1
9(D;eg, eq) = 531(9(60,60)) = *531']\[2 = —NO;N,

e

g(Diemej) = 5 ((260’7)5¢j - (azﬂk)(;j - (3j5k)5ik) ) (B-l)

g(Doe;, e0) = —g(Doeg, ;) = —NO; N,

ey
g(Doei, ej) = g(Dieg, e;) + €7 (9;8%)8,1, = - ((2e0)8i5 + (0:8%)8;% — (9;8%)6ir)
e* k k
9(Djej,e0) = —g(Djeo, e5) = -5 ((2e07)di5 — (8:8%) 05 — (0;8%)dirc)
9(Djej,er) = e*¥ (6057 + 6107 — 6:;0500) -
Most of these are straightforward, let us just mention that (B.1) is derived using the symmetry g(D..eq,e;) =
i J
9(De,eo,¢€;) so that
(e0€®)6ij = eo(g(ei,e5)) = g(Does, €5) + g(Doey, e;) = 2g(Dieo, €;) + €*7(8;8%) 55 + €7 (0;8%) 8.

Note in particular that the computation for g(D;e;, ex) implies that the Christoffel symbols ffj associated
to the spatial metric g (cf. (4.1)) are given by

T = 6:%0;v + 6;5 0y — 6;;6™ 0. (B.2)
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From the above calculations, we then obtain

N - ;N 1 .
Dyeq =€OTeo +e 269 N9;Nej, Doe; = - ¢+ 2((2€w) + (0iB7) = 6167 (0e8") e,
N 1 . ) .
Djey = N 5((260W)53 —(0ip7) — 5ik5]€(8€ﬁk))eja (B-3)
2
Diej = N2 ((2e07)855 — (9:8%)855 — (9;8%)dir) €0 + (6705 + 5?@‘7 — 6,0 0p) ey,

B.2. Decomposition of the Ricci tensor.

Proposition B.1. Given g of the form (4.5), the second fundamental form K;; (cf. (4.2)) is given by

1 1
Kij = ﬁeo( Q—Y)&ij + ﬁe%(&ﬂj + &;ﬁj), (B4)
Moreover, its traceless part H satisfies
2Ne ' H;; = (LB)4j, (B.5)
where
(LB)ij := 8;00;8° + 6100;8° — 6;;0 8" (B.6)
as in Section 2.
Proof. (B.4) follows from (4.2); and (B.5) follows from (B.4). O

Proposition B.2. Given g of the form (4.5), the components of the Ricci curvature in the basis {eg =
— BF0,0;} are given by

72 1 1 1 _
Rij :5ij (—A’Y + 36 — ﬁ627607 — QZVAN) (815 - 5k8k)H” — 2e 2’YHZ'ZHJ[ (B?)
1 1 1
+ 5 (0;8FHy; + 0i8" Hyj) — N (aiajN = 05 AN = (6F 05y + 0507y — 6,56 0y) a,gv) :
1 .
ROj =N <28j7' - 6_2761k8kHij> s (B8)
2 1 4 —2
Ryo =N <eo7' — Ne™* <H| 3¢ et ) +e 7AN> . (B.9)
Moreover,
SR =2 —-Ay+ 7—262“’ LeQ'Ye T — LAN (B.10)
4 2 oN~ %" 2N '
Proof. From [2, Chapter 6], we have
Rij =Rij + Kij(trg K) — 2(g7 )™ Kim K1 — N7 (Lo, Kij + DiO;N), (B.11)
Ro; =N (0;(trgK) — (g~ ")"* D K1), (B.12)
Roo =N(eo(trgK) — N(g~ )% (5717 KijKijr + AgN), (B.13)

where D, R;; and Aj are defined with respect to g.
Proof of (B.7). First, by (4.3) and (B.2), we have

1 1 1
Rij =—0;jAy+T1 (Hu + - 276UT> — 2727 (H + - 5 27557’) <ng + 262753'[7')
, (B.14)
- N (EeoKz’j + 8¢8jN - (57{63]")/ + 5;687’}/ - 5ij5kza[}/) 8kN) .
To proceed, we compute L., K;; by considering H;; and 7. We calculate
LegHij =0y — B*0)Hij — 0, 8" Hyi — 08" Hyj,
Eeo (Tgij) :62'y(5ij€()7' — 2NTKZ'j.

Therefore, using (4.3) and plugging L., K;; into (B.14), we obtain (B.7).

Proof of (B.8). This follows from (B.12) and the fact that (using (B.2),) for any covariant symmetric

2-tensor A;j,
(G )" DAy = e7210" Ayj — (077) (trg A).
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Proof of (B.9). This is immediate from (B.13) and the conformal invariance of the Laplacian.
Proof of (B.10). Finally, to prove (B.10), we first note that

69 (9;8% Hyi + 0;8" Hy,;) = Hij(LB)Y,
where L is as in (B.6). Combining this with (B.5), we obtain
- 1
54 (—2e—27Hijg + ¥ (9;8" Hyi + c%ﬁ’fH,cj)) = 0.
Taking the trace of (B.7) and using this identity yield (B.10). O

Proposition B.3. Given g of the form (4.5), the scalar curvature R and the Goo = G(eg,eq) component
of the Finstein tensor are given by

2 3 0 aviirn 2e7% 5
R:—N€0T+§T +e M H|? - ~ AN — 2“7 An, (B.15)
1 1
Goo =N%e™ (—m — e S H] + 627472> : (B.16)

Proof. By (4.5), (B.9) and (B.10),

1 2 1 1
=— = (607’ — Ne ™ (|H2 + 26477'2> + eQVAN) +e 272 (A’y + %627 - ﬁehe(ﬂ' - 2NAN) .

Simplifying this yields (B.15). By (4.5), (B.9) and (B.15),
Goo :EN eor — Ne ™7 |H\2 + 16477'2 +e AN | +e N2 [ —Ay + Tje% - LeQVeOT — iAN .

2 2 2 2N 2N
Simplifying this yields (B.16). O
B.3. Computations for the stress-energy-momentum tensor. Definet 7}, by

T = 20,00,6 — (97 )*P0ad0sd + > FAOuuadyua.
A

If (671" 0, uadyua = 0, then
T = (5™ 0,6096 + 5 FR P Syundin = —(a~ 000
A

This implies, with respect to the {eg, d;} basis,

Too — gootryT =2(eo¢)? + Z Fj(eoua)?, (B.17)
A
Tyj — gijtrgT =20i¢0;6 + »  FX(9ua)(9;ua), (B.13)
A
ij ij e 2 2
§9(Ty; — gijtrgT) =26" 0,0, + > ~2 FA(eoua)®. (B.19)
A

ApPPENDIX C. COMPUTATIONS REGARDING EIKONAL FUNCTIONS

C.1. Geodesic equation in coordinates. Suppose u satisfies the eikonal equation®®
(g~ H" 9 udu = 0.

Observe that a consequence of the eikonal equation is the geodesic equation D4, A)g(duA)ﬁ =0. Asis
well-known, they are in fact equivalent: one can solve for Dy L = 0, Lu = 0 for L being an appropriately
defined future-directed null vector field initially orthogonal to the hypersurface of v so that u satisfies the
eikonal equation and L = —(du)*.

In our setting, it is convenient to solve the eikonal equation using yet another (equivalent) set of equations.
In this subsection, we derive these equations by performing some manipulations in coordinates, with g given
by (4.5).

251 applications, u will be ua as in (3.2).
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Suppose we are given a solution u to the eikonal equation, with L = —(du)* future-directed. In terms of
the basis {eg, 01,02}, L is given by
, o 1
Lt = m(eou), L' = 5™ (9;u) — Bzm(eou). (C.1)

By convention, we take equ > 0 so that L is future-directed. In terms of L, the fact that u satisfies the
eikonal equation can be expressed as follows:

N2(LY)? = e®6,(L" 4+ B'LY) (L7 + BILY). (C.2)
C.2. Raychaudhuri equation. Let u be a solution to the eikonal equation
(97 *Pqudpu = 0.

Consider the vector field
LP = —(g7H)*Po,u.
This vector field is null and geodesic. The second fact can be proven as follows:
DpL? = L*D,L”
= (971)*0puDa((g~") "))
= (gfl)a”(gfl)ﬁ”ﬁpuDaaﬂu
= (97" (g~ ")"8,uDyduu
1 _ -1\«
= 5(9 l)ﬁﬂDu((g 1) paozuapu)
=0.

Let 4, o, = {(t,z',2?) : t = t,,u(t,z',2%) = u,} and let ey be the unique unit (spacelike) vector field
tangent to £;,. Let L be the unique null vector field which satisfies both g(L,ep) = 0 and g(L,L) = —2.
Notice that eqy verifies g(egp, L) = g(eg, L) = 0 and g(eg,ep) = 1. Let
X = (D¢, L, eg) g
We write
Dengxea_CL7 DL@QZQL7

where ¢ := $(De, L, L), and 1 := —1(Dreg, L),. We calculate
DLX = DL<DegL360>g
- <DLD€9La€0>g + <D€9L3DL89>Q

=Rpor’ + (De,DiL,eg)g + (D1, Ls €0)g + (De, L, Dyeg)g (C:3)
= Reor” + (n+C)(DrLeg)g — x(De, Ly o)y
Consequently, using that L is geodesic,
L(x) + x> = Rror’ = —RrL.
Moreover, we calculate
Oy = div(L) = (Do, L ea)y — 5{DuL, Ly — 5(DLL, L)y = (Dey L o)y = x. (C.4)
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